1
|
Hou X, Yang J, Xie Y, Ma B, Wang K, Pan W, Ma S, Wang L, Dong CH. The RNA helicase LOS4 regulates pre-mRNA splicing of key genes (EIN2, ERS2, CTR1) in the ethylene signaling pathway. PLANT CELL REPORTS 2024; 43:252. [PMID: 39367948 DOI: 10.1007/s00299-024-03340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
KEY MESSAGE The Arabidopsis RNA helicase LOS4 plays a key role in regulating pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. The plant hormone ethylene plays diverse roles in plant growth, development, and responses to stress. Ethylene is perceived by the membrane-bound ethylene receptors complex, and then triggers downstream components, such as EIN2, to initiate signal transduction into the nucleus, leading to the activation of ethylene-responsive genes. Over the past decades, substantial information has been accumulated regarding gene cloning, protein-protein interactions, and downstream gene expressions in the ethylene pathway. However, our understanding of mRNA post-transcriptional processing and modification of key genes in the ethylene signaling pathway remains limited. This study aims to provide evidence demonstrating the involvement of the Arabidopsis RNA helicase LOS4 in pre-mRNA splicing of the genes EIN2, CTR1, and ERS2 in ethylene signaling pathway. Various genetic approaches including RNAi gene silencing, CRISPR-Cas9 gene editing, and amino acid mutations were employed in this study. When LOS4 was silenced or knocked down, the ethylene sensitivity of etiolated seedlings was significantly enhanced. Further investigation revealed errors in the EIN2 pre-mRNA splicing when LOS4 was knocked down. In addition, aberrant pre-mRNA splicing was observed in the ERS2 and CTR1 genes in the pathway. Biochemical assays indicated that the los4-2 (E94K) mutant protein exhibited increased ATP binding and enhanced ATP hydrolytic activity. Conversely, the los4-1 (G364R) mutant had reduced substrate RNA binding and lower ATP binding activities. These findings significantly advanced our comprehension of the regulatory functions and molecular mechanisms of RNA helicase in ethylene signaling.
Collapse
Affiliation(s)
- Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jingli Yang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- Weifang University of Science and Technology, Weifang, 262700, China
| | - Yanhua Xie
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Binran Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Kun Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Wenqiang Pan
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Shaoqi Ma
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lijuan Wang
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Corbineau F. Ethylene, a Signaling Compound Involved in Seed Germination and Dormancy. PLANTS (BASEL, SWITZERLAND) 2024; 13:2674. [PMID: 39409543 PMCID: PMC11478528 DOI: 10.3390/plants13192674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024]
Abstract
The present review is focused on current findings on the involvement of ethylene in seed biology. The responsiveness of seeds to ethylene depends on the species and the dormancy status, improving concentrations ranging from 0.1 to 200 μL L-1. The signaling pathway of ethylene starts with its binding to five membrane-anchored receptors, which results in the deactivation of Constitutive Triple Response 1 (CTR1, a protein kinase) that does not exert its inhibitory effect on Ethylene Insensitive 2 (EIN2) by phosphorylating its cytosolic C-terminal domain. An analysis of germination in the presence of inhibitors of ethylene synthesis or action, and using seeds from mutant lines altered in terms of the genes involved in ethylene synthesis (acs) and the signaling pathway (etr1, ein2, ein4, ctr1 and erf1), demonstrates the involvement of ethylene in the regulation of seed dormancy. The promoting effect of ethylene is also regulated through crosstalk with abscisic acid (ABA) and gibberellins (GAs), essential hormones involved in seed germination and dormancy, and Reactive Oxygen Species (ROS). Using a mutant of the proteolytic N-degron pathway, Proteolysis (PRT6), the Ethylene Response Factors (ERFs) from group VII (HRE1, HRE2, RAP 2.2, RAP2.3 and RAP 2.12) have also been identified as being involved in seed insensitivity to ethylene. This review highlights the key roles of EIN2 and EIN3 in the ethylene signaling pathway and in interactions with different hormones and discusses the responsiveness of seeds to ethylene, depending on the species and the dormancy status.
Collapse
|
3
|
Pei T, Zhan M, Niu D, Liu Y, Deng J, Jing Y, Li P, Liu C, Ma F. CERK1 compromises Fusarium solani resistance by reducing jasmonate level and undergoes a negative feedback regulation via the MMK2-WRKY71 module in apple. PLANT, CELL & ENVIRONMENT 2024; 47:2491-2509. [PMID: 38515330 DOI: 10.1111/pce.14896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Fusarium spp., a necrotrophic soil-borne pathogen, causes root rot disease on many crops. CERK1, as a typical pattern recognition receptor, has been widely studied. However, the function of CERK1 during plant-Fusarium interaction has not been well described. We determined that MdCERK1 is a susceptibility gene in the apple-Fusarium solani (Fs) interaction, and jasmonic acid (JA) plays a crucial role in this process. MdCERK1 directly targets and phosphorylates the lipoxygenase MdLOX2.1, an enzyme initiating the JA biosynthesis, at positions Ser326 and Thr327. These phosphorylations inhibit its translocation from the cytosol to the chloroplasts, leading to a compromised JA biosynthesis. Fs upregulates MdCERK1 expression during infection. In turn, when the JA level is low, the apple MdWRKY71, a transcriptional repressor of MdCERK1, is markedly upregulated and phosphorylated at Thr99 and Thr102 residues by the MAP kinase MdMMK2. The phosphorylation of MdWRKY71 enhances its transcription inhibition on MdCERK1. Taken together, MdCERK1 plays a novel role in limiting JA biosynthesis. There seems to be an arms race between apple and Fs, in which Fs activates MdCERK1 expression to reduce the JA level, while apple senses the low JA level and activates the MdMMK2-MdWRKY71 module to elevate JA level by inhibiting MdCERK1 expression.
Collapse
Affiliation(s)
- Tingting Pei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Minghui Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dongshan Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuerong Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jie Deng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanyuan Jing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengmin Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
4
|
Mohorović P, Geldhof B, Holsteens K, Rinia M, Daems S, Reijnders T, Ceusters J, Van den Ende W, Van de Poel B. Ethylene inhibits photosynthesis via temporally distinct responses in tomato plants. PLANT PHYSIOLOGY 2024; 195:762-784. [PMID: 38146839 DOI: 10.1093/plphys/kiad685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/24/2023] [Accepted: 11/19/2023] [Indexed: 12/27/2023]
Abstract
Ethylene is a volatile plant hormone that regulates many developmental processes and responses toward (a)biotic stress. Studies have shown that high levels of ethylene repress vegetative growth in many important crops, including tomato (Solanum lycopersicum), possibly by inhibiting photosynthesis. We investigated the temporal effects of ethylene on young tomato plants using an automated ethylene gassing system to monitor the physiological, biochemical, and molecular responses through time course RNA-seq of a photosynthetically active source leaf. We found that ethylene evokes a dose-dependent inhibition of photosynthesis, which can be characterized by 3 temporally distinct phases. The earliest ethylene responses that marked the first phase and occurred a few hours after the start of the treatment were leaf epinasty and a decline in stomatal conductance, which led to lower light perception and CO2 uptake, respectively, resulting in a rapid decline of soluble sugar levels (glucose, fructose). The second phase of the ethylene effect was marked by low carbohydrate availability, which modulated plant energy metabolism to adapt by using alternative substrates (lipids and proteins) to fuel the TCA cycle. Long-term continuous exposure to ethylene led to the third phase, characterized by starch and chlorophyll breakdown, which further inhibited photosynthesis, leading to premature leaf senescence. To reveal early (3 h) ethylene-dependent regulators of photosynthesis, we performed a ChIP-seq experiment using anti-ETHYLENE INSENSITIVE 3-like 1 (EIL1) antibodies and found several candidate transcriptional regulators. Collectively, our study revealed a temporal sequence of events that led to the inhibition of photosynthesis by ethylene and identified potential transcriptional regulators responsible for this regulation.
Collapse
Affiliation(s)
- Petar Mohorović
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Batist Geldhof
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Kristof Holsteens
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Marilien Rinia
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
| | - Stijn Daems
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
| | - Timmy Reijnders
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Johan Ceusters
- Research Group for Sustainable Plant Production and Protection, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Campus Geel, Kleinhoefstraat 4, 2440 Geel, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Wim Van den Ende
- Molecular Biotechnology of Plants and Microorganisms Lab, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Willem de Croylaan 42, 3001 Leuven, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
5
|
Palukaitis P, Yoon JY. Defense signaling pathways in resistance to plant viruses: Crosstalk and finger pointing. Adv Virus Res 2024; 118:77-212. [PMID: 38461031 DOI: 10.1016/bs.aivir.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2024]
Abstract
Resistance to infection by plant viruses involves proteins encoded by plant resistance (R) genes, viz., nucleotide-binding leucine-rich repeats (NLRs), immune receptors. These sensor NLRs are activated either directly or indirectly by viral protein effectors, in effector-triggered immunity, leading to induction of defense signaling pathways, resulting in the synthesis of numerous downstream plant effector molecules that inhibit different stages of the infection cycle, as well as the induction of cell death responses mediated by helper NLRs. Early events in this process involve recognition of the activation of the R gene response by various chaperones and the transport of these complexes to the sites of subsequent events. These events include activation of several kinase cascade pathways, and the syntheses of two master transcriptional regulators, EDS1 and NPR1, as well as the phytohormones salicylic acid, jasmonic acid, and ethylene. The phytohormones, which transit from a primed, resting states to active states, regulate the remainder of the defense signaling pathways, both directly and by crosstalk with each other. This regulation results in the turnover of various suppressors of downstream events and the synthesis of various transcription factors that cooperate and/or compete to induce or suppress transcription of either other regulatory proteins, or plant effector molecules. This network of interactions results in the production of defense effectors acting alone or together with cell death in the infected region, with or without the further activation of non-specific, long-distance resistance. Here, we review the current state of knowledge regarding these processes and the components of the local responses, their interactions, regulation, and crosstalk.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea.
| |
Collapse
|
6
|
Chen M, Jiao SQ, Xie L, Geng X, Qi S, Fan J, Cheng S, Shi J, Cao X. Integrated physiological, transcriptomic, and metabolomic analyses of drought stress alleviation in Ehretia macrophylla Wall. seedlings by SiO 2 NPs (silica nanoparticles). FRONTIERS IN PLANT SCIENCE 2024; 15:1260140. [PMID: 38371410 PMCID: PMC10869631 DOI: 10.3389/fpls.2024.1260140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/19/2024] [Indexed: 02/20/2024]
Abstract
With environmental problems such as climate global warming, drought has become one of the major stress factors, because it severely affects the plant growth and development. Silicon dioxide nanoparticles (SiO2 NPs) are crucial for mitigating abiotic stresses suffered by plants in unfavorable environmental conditions and further promoting plant growth, such as drought. This study aimed to investigate the effect of different concentrations of SiO2 NPs on the growth of the Ehretia macrophylla Wall. seedlings under severe drought stress (water content in soil, 30-35%). The treatment was started by starting spraying different concentrations of SiO2 NPs on seedlings of Ehretia macrophyla, which were consistently under normal and severe drought conditions (soil moisture content 30-35%), respectively, at the seedling stage, followed by physiological and biochemical measurements, transcriptomics and metabolomics analyses. SiO2 NPs (100 mg·L-1) treatment reduced malondialdehyde and hydrogen peroxide content and enhanced the activity of antioxidant enzymes under drought stress. Transcriptomic analysis showed that 1451 differentially expressed genes (DEGs) in the leaves of E. macrophylla seedlings were regulated by SiO2 NPs under drought stress, and these genes mainly participate in auxin signal transduction and mitogen-activated protein kinase signaling pathways. This study also found that the metabolism of fatty acids and α-linolenic acids may play a key role in the enhancement of drought tolerance in SiO2 NP-treated E. macrophylla seedlings. Metabolomics studies indicated that the accumulation level of secondary metabolites related to drought tolerance was higher after SiO2 NPs treatment. This study revealed insights into the physiological mechanisms induced by SiO2 NPs for enhancing the drought tolerance of plants.
Collapse
Affiliation(s)
- Minghui Chen
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Si-qian Jiao
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Lihua Xie
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Xining Geng
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Shuaizheng Qi
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Jianmin Fan
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Shiping Cheng
- Pingdingshan University, Henan Province Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan, China
| | - Jiang Shi
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Xibing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
8
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
9
|
Shin SY, Lee CM, Kim HS, Kim C, Jeon JH, Lee HJ. Ethylene signals modulate the survival of Arabidopsis leaf explants. BMC PLANT BIOLOGY 2023; 23:281. [PMID: 37237253 DOI: 10.1186/s12870-023-04299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Leaf explants are major materials in plant tissue cultures. Incubation of detached leaves on phytohormone-containing media, which is an important process for producing calli and regenerating plants, change their cell fate. Although hormone signaling pathways related to cell fate transition have been widely studied, other molecular and physiological events occurring in leaf explants during this process remain largely unexplored. RESULTS Here, we identified that ethylene signals modulate expression of pathogen resistance genes and anthocyanin accumulation in leaf explants, affecting their survival during culture. Anthocyanins accumulated in leaf explants, but were not observed near the wound site. Ethylene signaling mutant analysis revealed that ethylene signals are active and block anthocyanin accumulation in the wound site. Moreover, expression of defense-related genes increased, particularly near the wound site, implying that ethylene induces defense responses possibly by blocking pathogenesis via wounding. We also found that anthocyanin accumulation in non-wounded regions is required for drought resistance in leaf explants. CONCLUSIONS Our study revealed the key roles of ethylene in the regulation of defense gene expression and anthocyanin biosynthesis in leaf explants. Our results suggest a survival strategy of detached leaves, which can be applied to improve the longevity of explants during tissue culture.
Collapse
Affiliation(s)
- Seung Yong Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea
| | - Chae-Min Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, 34113, Korea
| | - Changsoo Kim
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Korea.
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
10
|
Tang D, Quan C, Lin Y, Wei K, Qin S, Liang Y, Wei F, Miao J. Physio-Morphological, Biochemical and Transcriptomic Analyses Provide Insights Into Drought Stress Responses in Mesona chinensis Benth. FRONTIERS IN PLANT SCIENCE 2022; 13:809723. [PMID: 35222473 PMCID: PMC8866654 DOI: 10.3389/fpls.2022.809723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Drought stress affects the normal growth and development of Mesona chinensis Benth (MCB), which is an important medicinal and edible plant in China. To investigate the physiological and molecular mechanisms of drought resistance in MCB, different concentrations of polyethylene glycol 6000 (PEG6000) (0, 5, 10, and 15%) were used to simulate drought conditions in this study. Results showed that the growth of MCB was significantly limited under drought stress conditions. Drought stress induced the increases in the contents of Chla, Chlb, Chla + b, soluble protein, soluble sugar, and soluble pectin and the activities of superoxide dismutase (SOD), catalase (CAT), total antioxidant capacity (TAC), hydrogen peroxide (H2O2), and malondialdehyde (MDA). Transcriptome analysis revealed 3,494 differentially expressed genes (DEGs) (1,961 up-regulated and 1,533 down-regulated) between the control and 15% PEG6000 treatments. These DEGs were identified to be involved in the 10 metabolic pathways, including "plant hormone signal transduction," "brassinosteroid biosynthesis," "plant-pathogen interaction," "MAPK signaling pathway-plant," "starch and sucrose metabolism," "pentose and glucuronate interconversions," "phenylpropanoid biosynthesis," "galactose metabolism," "monoterpenoid biosynthesis," and "ribosome." In addition, transcription factors (TFs) analysis showed 8 out of 204 TFs, TRINITY_DN3232_c0_g1 [ABA-responsive element (ABRE)-binding transcription factor1, AREB1], TRINITY_DN4161_c0_g1 (auxin response factor, ARF), TRINITY_DN3183_c0_g2 (abscisic acid-insensitive 5-like protein, ABI5), TRINITY_DN28414_c0_g2 (ethylene-responsive transcription factor ERF1b, ERF1b), TRINITY_DN9557_c0_g1 (phytochrome-interacting factor, PIF3), TRINITY_DN11435_c1_g1, TRINITY_DN2608_c0_g1, and TRINITY_DN6742_c0_g1, were closely related to the "plant hormone signal transduction" pathway. Taken together, it was inferred that these pathways and TFs might play important roles in response to drought stress in MCB. The current study provided important information for MCB drought resistance breeding in the future.
Collapse
Affiliation(s)
- Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Yang Lin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Kunhua Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Shuangshuang Qin
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Liang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Jianhua Miao
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Guangxi Engineering Research Center of TCM Resource Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
11
|
Patel R, Mehta K, Goswami D, Saraf M. An Anecdote on Prospective Protein Targets for Developing Novel Plant Growth Regulators. Mol Biotechnol 2021; 64:109-129. [PMID: 34561838 DOI: 10.1007/s12033-021-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/28/2022]
Abstract
Phytohormones are the main regulatory molecules of core signalling networks associated with plant life cycle regulation. Manipulation of hormone signalling cascade enables the control over physiological traits of plant, which has major applications in field of agriculture and food sustainability. Hence, stable analogues of these hormones are long sought after and many of them are currently known, but the quest for more effective, stable and economically viable analogues is still going on. This search has been further strengthened by the identification of the components of signalling cascade such as receptors, downstream cascade members and transcription factors. Furthermore, many proteins of phytohormone cascades are available in crystallized forms. Such crystallized structures can provide the basis for identification of novel interacting compounds using in silico approach. Plenty of computational tools and bioinformatics software are now available that can aid in this process. Here, the metadata of all the major phytohormone signalling cascades are presented along with discussion on major protein-ligand interactions and protein components that may act as a potential target for manipulation of phytohormone signalling cascade. Furthermore, structural aspects of phytohormones and their known analogues are also discussed that can provide the basis for the synthesis of novel analogues.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Krina Mehta
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Meenu Saraf
- Department of Microbiology & Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
12
|
Zhang TY, Li ZQ, Zhao YD, Shen WJ, Chen MS, Gao HQ, Ge XM, Wang HQ, Li X, He JM. Ethylene-induced stomatal closure is mediated via MKK1/3-MPK3/6 cascade to EIN2 and EIN3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1324-1340. [PMID: 33605510 DOI: 10.1111/jipb.13083] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Mitogen-activated protein kinases (MPKs) play essential roles in guard cell signaling, but whether MPK cascades participate in guard cell ethylene signaling and interact with hydrogen peroxide (H2 O2 ), nitric oxide (NO), and ethylene-signaling components remain unclear. Here, we report that ethylene activated MPK3 and MPK6 in the leaves of wild-type Arabidopsis thaliana as well as ethylene insensitive2 (ein2), ein3, nitrate reductase1 (nia1), and nia2 mutants, but this effect was impaired in ethylene response1 (etr1), nicotinamide adenine dinucleotide phosphate oxidase AtrbohF, mpk kinase1 (mkk1), and mkk3 mutants. By contrast, the constitutive triple response1 (ctr1) mutant had constitutively active MPK3 and MPK6. Yeast two-hybrid, bimolecular fluorescence complementation, and pull-down assays indicated that MPK3 and MPK6 physically interacted with MKK1, MKK3, and the C-terminal region of EIN2 (EIN2 CEND). mkk1, mkk3, mpk3, and mpk6 mutants had typical levels of ethylene-induced H2 O2 generation but impaired ethylene-induced EIN2 CEND cleavage and nuclear translocation, EIN3 protein accumulation, NO production in guard cells, and stomatal closure. These results show that the MKK1/3-MPK3/6 cascade mediates ethylene-induced stomatal closure by functioning downstream of ETR1, CTR1, and H2 O2 to interact with EIN2, thereby promoting EIN3 accumulation and EIN3-dependent NO production in guard cells.
Collapse
Affiliation(s)
- Teng-Yue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhong-Qi Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu-Dong Zhao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Wen-Jie Shen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Meng-Shu Chen
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hai-Quan Gao
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Hui-Qin Wang
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Xue Li
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Jun-Min He
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
13
|
Hoang XLT, Prerostova S, Thu NBA, Thao NP, Vankova R, Tran LSP. Histidine Kinases: Diverse Functions in Plant Development and Responses to Environmental Conditions. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:297-323. [PMID: 34143645 DOI: 10.1146/annurev-arplant-080720-093057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The two-component system (TCS), which is one of the most evolutionarily conserved signaling pathway systems, has been known to regulate multiple biological activities and environmental responses in plants. Significant progress has been made in characterizing the biological functions of the TCS components, including signal receptor histidine kinase (HK) proteins, signal transducer histidine-containing phosphotransfer proteins, and effector response regulator proteins. In this review, our scope is focused on the diverse structure, subcellular localization, and interactions of the HK proteins, as well as their signaling functions during development and environmental responses across different plant species. Based on data collected from scientific studies, knowledge about acting mechanisms and regulatory roles of HK proteins is presented. This comprehensive summary ofthe HK-related network provides a panorama of sophisticated modulating activities of HK members and gaps in understanding these activities, as well as the basis for developing biotechnological strategies to enhance the quality of crop plants.
Collapse
Affiliation(s)
- Xuan Lan Thi Hoang
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Sylva Prerostova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Nguyen Binh Anh Thu
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Phuong Thao
- Applied Biotechnology for Crop Development Research Unit, School of Biotechnology, International University, Ho Chi Minh City 700000, Vietnam; , ,
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Radomira Vankova
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany, Czech Academy of Sciences, 165 02 Prague 6, Czech Republic; ,
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409, USA;
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama 230-0045, Japan
| |
Collapse
|
14
|
Zhao H, Yin CC, Ma B, Chen SY, Zhang JS. Ethylene signaling in rice and Arabidopsis: New regulators and mechanisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:102-125. [PMID: 33095478 DOI: 10.1111/jipb.13028] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/21/2020] [Indexed: 05/22/2023]
Abstract
Ethylene is a gaseous hormone which plays important roles in both plant growth and development and stress responses. Based on studies in the dicot model plant species Arabidopsis, a linear ethylene signaling pathway has been established, according to which ethylene is perceived by ethylene receptors and transduced through CONSTITUTIVE TRIPLE RESPONSE 1 (CTR1) and ETHYLENE-INSENSITIVE 2 (EIN2) to activate transcriptional reprogramming. In addition to this canonical signaling pathway, an alternative ethylene receptor-mediated phosphor-relay pathway has also been proposed to participate in ethylene signaling. In contrast to Arabidopsis, rice, a monocot, grows in semiaquatic environments and has a distinct plant structure. Several novel regulators and/or mechanisms of the rice ethylene signaling pathway have recently been identified, indicating that the ethylene signaling pathway in rice has its own unique features. In this review, we summarize the latest progress and compare the conserved and divergent aspects of the ethylene signaling pathway between Arabidopsis and rice. The crosstalk between ethylene and other plant hormones is also reviewed. Finally, we discuss how ethylene regulates plant growth, stress responses and agronomic traits. These analyses should help expand our knowledge of the ethylene signaling mechanism and could further be applied for agricultural purposes.
Collapse
Affiliation(s)
- He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Ma
- Biology and Agriculture Research Center, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100024, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics & Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Bai Z, Zu H, Wang R, Gao X, Zou T, Chen G, Wu J. Molecular role of ethylene in fruit ripening of Ziziphus jujube Mill. PLANT SIGNALING & BEHAVIOR 2020; 15:1834749. [PMID: 33100139 PMCID: PMC7671070 DOI: 10.1080/15592324.2020.1834749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
The fruit of Chinese jujube (Ziziphus jujube) is widely consumed by human beings due to its high proteins, vitamins, and mineral nutrients. The harvest time of Chinese jujube fruit determines its quality, while ethylene plays a pivotal role in fruit ripening. Nevertheless, the relationship between ethylene biosynthesis/signal transduction and fruit ripening of Chinese jujube is still elusive. Here, the Chinese jujube fruit ripening with its fruit peel color change from cyan to dark red at seven different ripening stages (stage I-VII) and expression levels of genes related to ethylene synthesis and signal transduction were determined. Results showed that expression levels of ZjACO1-3, ZjETR2, ZjERF1, and ZjERF4 were increasingly upregulated, whereas the expression levels of ZjERS1, ZjETI, ZjERF2, and ZjERF3 were downregulated from green to red fruit ripening stages. Among them, ZjACO1-3 promoters contain ethylene response element. Taken together, Chinese jujube fruit ripening might be affected by the ethylene signaling which was mainly regulated by ZjACO, a gene involved in ethylene biosynthesis. This research supports theories and techniques for the storage, preservation and molecular breeding of Z. jujube.
Collapse
Affiliation(s)
- Zhenqing Bai
- College of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube (Yan’an University), Yan'an, China
| | - Huanhuan Zu
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Rui Wang
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Xinxin Gao
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ting Zou
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Guoliang Chen
- College of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube (Yan’an University), Yan'an, China
| | - Jiawen Wu
- College of Life Sciences, Yan’an University, Yan’an, China
- Shaanxi Key Laboratory of Chinese Jujube (Yan’an University), Yan'an, China
| |
Collapse
|
16
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
17
|
Abstract
Ethylene is a gaseous phytohormone and the first of this hormone class to be discovered. It is the simplest olefin gas and is biosynthesized by plants to regulate plant development, growth, and stress responses via a well-studied signaling pathway. One of the earliest reported responses to ethylene is the triple response. This response is common in eudicot seedlings grown in the dark and is characterized by reduced growth of the root and hypocotyl, an exaggerated apical hook, and a thickening of the hypocotyl. This proved a useful assay for genetic screens and enabled the identification of many components of the ethylene-signaling pathway. These components include a family of ethylene receptors in the membrane of the endoplasmic reticulum (ER); a protein kinase, called constitutive triple response 1 (CTR1); an ER-localized transmembrane protein of unknown biochemical activity, called ethylene-insensitive 2 (EIN2); and transcription factors such as EIN3, EIN3-like (EIL), and ethylene response factors (ERFs). These studies led to a linear model, according to which in the absence of ethylene, its cognate receptors signal to CTR1, which inhibits EIN2 and prevents downstream signaling. Ethylene acts as an inverse agonist by inhibiting its receptors, resulting in lower CTR1 activity, which releases EIN2 inhibition. EIN2 alters transcription and translation, leading to most ethylene responses. Although this canonical pathway is the predominant signaling cascade, alternative pathways also affect ethylene responses. This review summarizes our current understanding of ethylene signaling, including these alternative pathways, and discusses how ethylene signaling has been manipulated for agricultural and horticultural applications.
Collapse
Affiliation(s)
- Brad M Binder
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
18
|
Zhang J, Chen Y, Lu J, Zhang Y, Wen CK. Uncertainty of EIN2 Ser645/Ser924 Inactivation by CTR1-Mediated Phosphorylation Reveals the Complexity of Ethylene Signaling. PLANT COMMUNICATIONS 2020; 1:100046. [PMID: 33367241 PMCID: PMC7747984 DOI: 10.1016/j.xplc.2020.100046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/26/2019] [Accepted: 04/15/2020] [Indexed: 05/26/2023]
Abstract
ETHYLENE INSENSITIVE2 (EIN2) is a key component of ethylene signaling whose activity is inhibited upon phosphorylation of Ser645 and Ser924 by the Raf-like CONSTITUTIVE TRIPLE-RESPONSE 1 (CTR1) in the absence of ethylene. Ethylene prevents CTR1 activity and thus EIN2Ser645/Ser924 phosphorylation, and subcellular trafficking of a proteolytically cleaved EIN2 C terminus (EIN2-C) from the endoplasmic reticulum to the nucleus and processing bodies triggers ethylene signaling. Here, we report an unexpected complexity of EIN2-activated ethylene signaling. EIN2 activation in part requires ethylene in the absence of CTR1-mediated negative regulation. The ein2 mutant was complemented by the transgenes encoding EIN2, EIN2 variants with mutations that either prevent or mimic Ser645/Ser924 phosphorylation, or EIN2-C; and all the transgenic lines carrying these EIN2-derived transgenes responded to ethylene. Furthermore, we found that the fluorescence protein-tagged EIN2 and its variants were affected little by ethylene and exhibited similar subcellular distribution patterns: in the cytosolic particles and nuclear speckles. Of note, the subcellular localization patterns of EIN2 proteins fused with a fluorescence protein either at the N or C terminus were similar, whereas EIN2-C-YFP was primarily observed in the cytosol but not in the nucleus. Western blots and mass spectrum analyses suggested a high complexity of EIN2, which is likely proteolytically processed into multiple fragments. Our results suggested a nuclear localization of the full-length EIN2, weak association of the EIN2Ser645/Ser924 phosphorylation status and ethylene signaling, and the complexity of ethylene signaling caused by EIN2 and its proteolytic products in different subcellular compartments. We propose an alternative model to explain EIN2-activated ethylene signaling.
Collapse
Affiliation(s)
- Jingyi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuying Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jian Lu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
19
|
Yanping Z, Yuqing H, Chen W, Qian M, Songtao J, Xudong Z, Ting Z, Kekun Z, Haifeng J, Tariq P, Jinggui F. Characterization and Identification of PpEIN3 during the Modulation of Fruit Ripening Process by Ectopic Expressions in Tomato. THE PLANT GENOME 2019; 12:1-12. [PMID: 33016583 DOI: 10.3835/plantgenome2018.11.0089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/13/2019] [Indexed: 06/11/2023]
Abstract
First study of PpEIN3 by transgenic experiments to verify its function in the maturity process PpEIN3 is a positive regulator of ethylene signal transduction pathway to promote fruits ripening Ethylene is one of the most important phytohormone in plants and plays a critical role during growth, development, maturity, and aging. The framework of the ethylene signaling pathway is well reported. Nevertheless, studies on Ethylene Insensitive 3 (EIN3), the downstream regulator of the ethylene signaling pathway, need to be investigated, especially in peach [Prunus persica (L.) Batsch]. In this study, we cloned PpEIN3 from peach and characterized it in tomato (Solanum lycopersicum L.). Our results depicted that the open-reading frame of PpEIN3 was 1875 bp, encoding a protein with 624 amino acid residues that contained a conserved EIN3 domain, a highly conserved N-terminal region, and seven DNA-binding sites. PpEIN3 showed very close association with homologous EIN genes from apple (Malus domestica Borkh.) and grapevine (Vitis vinifera L.). All investigated EIN proteins shared similar domains and structures. The PpEIN3 promoter possessed several motifs related to hormones that affect fruit development and ripening. Spatial-temporal expression analysis revealed that PpEIN3 was expressed at high levels in the late stage of fruit development vs. the early stage. In transgenic tomato, PpEIIN3 showed overexpression and the key ethylene biosynthesis genes SlACO1, SlACS1, and SlSAMS1 were upregulated and promoted early maturation in fruit. By contrast, PpEIIN3 silencing delayed ripening and reduced SlEIN3 expression in tomato. The results confirmed that PpEIN3 is a positive regulator of the ethylene signal transduction pathway, which promoted fruit ripening. Our findings provide valuable insight to the roles in ethylene signal components in the modulation of peach fruit ripening.
Collapse
Affiliation(s)
- Zhang Yanping
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu, 215008, China
- Suzhou Univ. of Science and Technology, Suzhou, Jiangsu, 215009, China
| | - Huang Yuqing
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Wang Chen
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Mu Qian
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Jiu Songtao
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Zhu Xudong
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Zheng Ting
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Zhang Kekun
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Jia Haifeng
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Pervaiz Tariq
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Fang Jinggui
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| |
Collapse
|
20
|
Millar AJ, Urquiza U, Freeman PL, Hume A, Plotkin GD, Sorokina O, Zardilis A, Zielinski T. Practical steps to digital organism models, from laboratory model species to 'Crops in silico. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2403-2418. [PMID: 30615184 DOI: 10.1093/jxb/ery435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/28/2018] [Indexed: 05/20/2023]
Abstract
A recent initiative named 'Crops in silico' proposes that multi-scale models 'have the potential to fill in missing mechanistic details and generate new hypotheses to prioritize directed engineering efforts' in plant science, particularly directed to crop species. To that end, the group called for 'a paradigm shift in plant modelling, from largely isolated efforts to a connected community'. 'Wet' (experimental) research has been especially productive in plant science, since the adoption of Arabidopsis thaliana as a laboratory model species allowed the emergence of an Arabidopsis research community. Parts of this community invested in 'dry' (theoretical) research, under the rubric of Systems Biology. Our past research combined concepts from Systems Biology and crop modelling. Here we outline the approaches that seem most relevant to connected, 'digital organism' initiatives. We illustrate the scale of experimental research required, by collecting the kinetic parameter values that are required for a quantitative, dynamic model of a gene regulatory network. By comparison with the Systems Biology Markup Language (SBML) community, we note computational resources and community structures that will help to realize the potential for plant Systems Biology to connect with a broader crop science community.
Collapse
Affiliation(s)
- Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Uriel Urquiza
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Alastair Hume
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- EPCC, Bayes Centre, University of Edinburgh, Edinburgh, UK
| | - Gordon D Plotkin
- Laboratory for the Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Oxana Sorokina
- Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Argyris Zardilis
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tomasz Zielinski
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
21
|
Berleth M, Berleth N, Minges A, Hänsch S, Burkart RC, Stork B, Stahl Y, Weidtkamp-Peters S, Simon R, Groth G. Molecular Analysis of Protein-Protein Interactions in the Ethylene Pathway in the Different Ethylene Receptor Subfamilies. FRONTIERS IN PLANT SCIENCE 2019; 10:726. [PMID: 31231408 PMCID: PMC6566107 DOI: 10.3389/fpls.2019.00726] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Signal perception and transmission of the plant hormone ethylene are mediated by a family of receptor histidine kinases located at the Golgi-ER network. Similar to bacterial and other plant receptor kinases, these receptors work as dimers or higher molecular weight oligomers at the membrane. Sequence analysis and functional studies of different isoforms suggest that the ethylene receptor family is classified into two subfamilies. In Arabidopsis, the type-I subfamily has two members (ETR1 and ERS1) and the type-II subfamily has three members (ETR2, ERS2, and EIN4). Whereas subfamily-I of the Arabidopsis receptors and their interactions with downstream elements in the ethylene pathway has been extensively studied in the past; related information on subfamily-II is sparse. In order to dissect the role of type-II receptors in the ethylene pathway and to decode processes associated with this receptor subfamily on a quantitative molecular level, we have applied biochemical and spectroscopic studies on purified recombinant receptors and downstream elements of the ethylene pathway. To this end, we have expressed purified ETR2 as a prototype of the type-II subfamily, ETR1 for the type-I subfamily and downstream ethylene pathway proteins CTR1 and EIN2. Functional folding of the purified receptors was demonstrated by CD spectroscopy and autokinase assays. Quantitative analysis of protein-protein interactions (PPIs) by microscale thermophoresis (MST) revealed that ETR2 has similar affinities for CTR1 and EIN2 as previously reported for the subfamily-I prototype ETR1 suggesting similar roles in PPI-mediated signal transfer for both subfamilies. We also used in planta fluorescence studies on transiently expressed proteins in Nicotiana benthamiana leaf cells to analyze homo- and heteromer formation of receptors. These studies show that type-II receptors as well as the type-I receptors form homo- and heteromeric complexes at these conditions. Notably, type-II receptor homomers and type-II:type-I heteromers are more stable than type-I homomers as indicated by their lower dissociation constants obtained in microscale thermophoresis studies. The enhanced stability of type-II complexes emphasizes the important role of type-II receptors in the ethylene pathway.
Collapse
Affiliation(s)
- Mareike Berleth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Niklas Berleth
- Institute of Molecular Medicine I, Heinrich Heine University, Düsseldorf, Germany
| | - Alexander Minges
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced Imaging, Heinrich Heine University, Düsseldorf, Germany
| | | | - Björn Stork
- Institute of Molecular Medicine I, Heinrich Heine University, Düsseldorf, Germany
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | | | - Rüdiger Simon
- Institute for Developmental Genetics, Heinrich Heine University, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf, Germany
- *Correspondence: Georg Groth, ;
| |
Collapse
|
22
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
23
|
Binder BM, Kim HJ, Mathews DE, Hutchison CE, Kieber JJ, Schaller GE. A role for two-component signaling elements in the Arabidopsis growth recovery response to ethylene. PLANT DIRECT 2018; 2:e00058. [PMID: 31245724 PMCID: PMC6508545 DOI: 10.1002/pld3.58] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 05/29/2023]
Abstract
Previous studies indicate that the ability of Arabidopsis seedlings to recover normal growth following an ethylene treatment involves histidine kinase activity of the ethylene receptors. As histidine kinases can function as inputs for a two-component signaling system, we examined loss-of-function mutants involving two-component signaling elements. We find that mutants of phosphotransfer proteins and type-B response regulators exhibit a defect in their ethylene growth recovery response similar to that found with the loss-of-function ethylene receptor mutant etr1-7. The ability of two-component signaling elements to regulate the growth recovery response to ethylene functions independently from their well-characterized role in cytokinin signaling, based on the analysis of cytokinin receptor mutants as well as following chemical inhibition of cytokinin biosynthesis. Histidine kinase activity of the receptor ETR1 also facilitates growth recovery in the ethylene hypersensitive response, which is characterized by a transient decrease in growth rate when seedlings are treated continuously with a low dose of ethylene; however, this response was found to operate independently of the type-B response regulators. These results indicate that histidine kinase activity of the ethylene receptor ETR1 performs two independent functions: (a) regulating the growth recovery to ethylene through a two-component signaling system involving phosphotransfer proteins and type-B response regulators and (b) regulating the hypersensitive response to ethylene in a type-B response regulator independent manner.
Collapse
Affiliation(s)
- Brad M. Binder
- Department of Biochemistry and Cellular & Molecular BiologyUniversity of TennesseeKnoxvilleTennessee
| | - Hyo Jung Kim
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
- Center for Plant Aging ResearchInstitute for Basic Science (IBS)DaeguKorea
| | - Dennis E. Mathews
- Department of Molecular, Cellular, and Biomedical SciencesUniversity of New HampshireDurhamNew Hampshire
| | - Claire E. Hutchison
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
- Present address:
William Harvey Research InstituteQueen Mary University of LondonCharterhouse SquareLondonEC1M 6BQUK
| | - Joseph J. Kieber
- Department of BiologyUniversity of North CarolinaChapel HillNorth Carolina
| | - G. Eric Schaller
- Department of Biological SciencesDartmouth CollegeHanoverNew Hampshire
| |
Collapse
|
24
|
Membrane protein MHZ3 stabilizes OsEIN2 in rice by interacting with its Nramp-like domain. Proc Natl Acad Sci U S A 2018; 115:2520-2525. [PMID: 29463697 PMCID: PMC5877927 DOI: 10.1073/pnas.1718377115] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ethylene signaling pathway has been extensively investigated in Arabidopsis, and EIN2 is the central component. Rice is a monocotyledonous model plant that exhibits different features in many aspects compared with the dicotyledonous Arabidopsis. Thus, rice provides an alternative system for identification of novel components of ethylene signaling. In this study, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-insensitive mutant mhz3. We found that MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like transmembrane domain and impeding protein ubiquitination, blocking proteasome-mediated protein degradation. This study reveals that MHZ3 is required for ethylene signaling and identifies how MHZ3 binds to OsEIN2 via the OsEIN2 N-terminal Nramp-like domain. The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.
Collapse
|
25
|
Liu J, Moore S, Chen C, Lindsey K. Crosstalk Complexities between Auxin, Cytokinin, and Ethylene in Arabidopsis Root Development: From Experiments to Systems Modeling, and Back Again. MOLECULAR PLANT 2017; 10:1480-1496. [PMID: 29162416 DOI: 10.1016/j.molp.2017.11.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 05/23/2023]
Abstract
Understanding how hormones and genes interact to coordinate plant growth in a changing environment is a major challenge in plant developmental biology. Auxin, cytokinin, and ethylene are three important hormones that regulate many aspects of plant development. This review critically evaluates the crosstalk between the three hormones in Arabidopsis root development. We integrate a variety of experimental data into a crosstalk network, which reveals multiple layers of complexity in auxin, cytokinin, and ethylene crosstalk. In particular, data integration reveals an additional, largely overlooked link between the ethylene and cytokinin pathways, which acts through a phosphorelay mechanism. This proposed link addresses outstanding questions on whether ethylene application promotes or inhibits receptor kinase activity of the ethylene receptors. Elucidating the complexity in auxin, cytokinin, and ethylene crosstalk requires a combined experimental and systems modeling approach. We evaluate important modeling efforts for establishing how crosstalk between auxin, cytokinin, and ethylene regulates patterning in root development. We discuss how a novel methodology that iteratively combines experiments with systems modeling analysis is essential for elucidating the complexity in crosstalk of auxin, cytokinin, and ethylene in root development. Finally, we discuss the future challenges from a combined experimental and modeling perspective.
Collapse
Affiliation(s)
- Junli Liu
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Simon Moore
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Keith Lindsey
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
26
|
Schaller GE. Localization of the Ethylene-Receptor Signaling Complex to the Endoplasmic Reticulum: Analysis by Two-Phase Partitioning and Density-Gradient Centrifugation. Methods Mol Biol 2017; 1573:113-131. [PMID: 28293844 DOI: 10.1007/978-1-4939-6854-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ethylene receptors and other elements of the ethylene-signal transduction pathway localize to membranes of the endoplasmic reticulum (ER). New players in the ethylene signaling pathway continue to be discovered and so it is important to have methods by which to diagnose their cellular localization. Two methods for microsome isolation and fractionation are described here that can assist in determining if a protein localizes to the ER: aqueous two-phase partitioning and equilibrium density-gradient centrifugation. Two-phase partitioning serves to purify plasma membrane away from other cellular membranes and can thus discriminate whether a protein is localized to the plasma membrane or not. Equilibrium density-gradient centrifugation is particularly useful for resolving if a protein is localized to the ER. Ribosomes are associated with the rough ER in the presence of Mg2+ but are stripped away when Mg2+is removed from the medium, resulting in a reduction in the ER membrane density and a diagnostic shift in migration when analyzed by equilibrium density-gradient centrifugation. A method for growing plants in liquid culture is also provided because these microsomal membranes exhibit consistent fractionation by both two-phase partitioning and density-gradient centrifugation.
Collapse
Affiliation(s)
- G Eric Schaller
- Department of Biological Sciences, Life Sciences Center, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| |
Collapse
|
27
|
Kessenbrock M, Groth G. Circular Dichroism and Fluorescence Spectroscopy to Study Protein Structure and Protein-Protein Interactions in Ethylene Signaling. Methods Mol Biol 2017; 1573:141-159. [PMID: 28293846 DOI: 10.1007/978-1-4939-6854-1_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Circular dichroism (CD) spectroscopy is an invaluable technique to analyze secondary structure and functional folding of recombinant purified proteins. CD spectroscopy can also be applied to detect changes in protein secondary structure related to the pH or redox conditions found in different cellular compartments or to the interaction with other molecules. Another biophysical technique to monitor conformational changes and interaction with small molecule ligands or biological macromolecules is protein fluorescence spectroscopy making use of the aromatic amino acid tryptophan as a sensitive intrinsic fluorescent probe. Here, we describe the application of CD and tryptophan fluorescence spectroscopy to study soluble and membrane proteins of the ethylene signaling pathway.
Collapse
Affiliation(s)
- Mareike Kessenbrock
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany.
| |
Collapse
|
28
|
Phukan UJ, Jeena GS, Tripathi V, Shukla RK. Regulation of Apetala2/Ethylene Response Factors in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:150. [PMID: 28270817 PMCID: PMC5318435 DOI: 10.3389/fpls.2017.00150] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/25/2017] [Indexed: 05/18/2023]
Abstract
Multiple environmental stresses affect growth and development of plants. Plants try to adapt under these unfavorable condition through various evolutionary mechanisms like physiological and biochemical alterations connecting various network of regulatory processes. Transcription factors (TFs) like APETALA2/ETHYLENE RESPONSE FACTORS (AP2/ERFs) are an integral component of these signaling cascades because they regulate expression of a wide variety of down stream target genes related to stress response and development through different mechanism. This downstream regulation of transcript does not always positively or beneficially affect the plant but also they display some developmental defects like senescence and reduced growth under normal condition or sensitivity to stress condition. Therefore, tight auto/cross regulation of these TFs at transcriptional, translational and domain level is crucial to understand. The present manuscript discuss the multiple regulation and advantage of plasticity and specificity of these family of TFs to a wide or single downstream target(s) respectively. We have also discussed the concern which comes with the unwanted associated traits, which could only be averted by further study and exploration of these AP2/ERFs.
Collapse
Affiliation(s)
- Ujjal J. Phukan
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Gajendra S. Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
| | - Vineeta Tripathi
- Botany Division, CSIR-Central Drug Research InstituteLucknow, India
| | - Rakesh K. Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic PlantsLucknow, India
- *Correspondence: Rakesh K. Shukla
| |
Collapse
|
29
|
Bisson MMA, Kessenbrock M, Müller L, Hofmann A, Schmitz F, Cristescu SM, Groth G. Peptides interfering with protein-protein interactions in the ethylene signaling pathway delay tomato fruit ripening. Sci Rep 2016; 6:30634. [PMID: 27477591 PMCID: PMC4967898 DOI: 10.1038/srep30634] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 07/07/2016] [Indexed: 01/18/2023] Open
Abstract
The plant hormone ethylene is involved in the regulation of several processes with high importance for agricultural applications, e.g. ripening, aging and senescence. Previous work in our group has identified a small peptide (NOP-1) derived from the nuclear localization signal of the Arabidopsis ethylene regulator ETHYLENE INSENSITIVE-2 (EIN2) C-terminal part as efficient inhibitor of ethylene responses. Here, we show that NOP-1 is also able to efficiently disrupt EIN2-ETR1 complex formation in tomato, indicating that the NOP-1 inhibition mode is conserved across plant species. Surface application of NOP-1 on green tomato fruits delays ripening similar to known inhibitors of ethylene perception (MCP) and ethylene biosynthesis (AVG). Fruits treated with NOP-1 showed similar ethylene production as untreated controls underlining that NOP-1 blocks ethylene signaling by targeting an essential interaction in this pathway, while having no effect on ethylene biosynthesis.
Collapse
Affiliation(s)
- Melanie M. A. Bisson
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Mareike Kessenbrock
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Lena Müller
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Alexander Hofmann
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Florian Schmitz
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Simona M. Cristescu
- Department of Molecular and Laser Physics, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Georg Groth
- Biochemical Plant Physiology, Heinrich-Heine-University Düsseldorf, D-40204 Düsseldorf, Germany
| |
Collapse
|
30
|
Light KM, Wisniewski JA, Vinyard WA, Kieber-Emmons MT. Perception of the plant hormone ethylene: known-knowns and known-unknowns. J Biol Inorg Chem 2016; 21:715-28. [DOI: 10.1007/s00775-016-1378-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/19/2016] [Indexed: 12/18/2022]
|
31
|
Alvarez AF, Barba-Ostria C, Silva-Jiménez H, Georgellis D. Organization and mode of action of two component system signaling circuits from the various kingdoms of life. Environ Microbiol 2016; 18:3210-3226. [DOI: 10.1111/1462-2920.13397] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 05/17/2016] [Accepted: 05/23/2016] [Indexed: 11/26/2022]
Affiliation(s)
- Adrian F. Alvarez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Carlos Barba-Ostria
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Hortencia Silva-Jiménez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; 04510 México City, México
| |
Collapse
|
32
|
Le Deunff E, Lecourt J. Non-specificity of ethylene inhibitors: 'double-edged' tools to find out new targets involved in the root morphogenetic programme. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:353-61. [PMID: 26434926 DOI: 10.1111/plb.12405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 05/23/2023]
Abstract
In the last decade, genetic and pharmacological approaches have been used to explore ethylene biosynthesis and perception in order to study the role of ethylene and ethylene/auxin interaction in root architecture development. However, recent findings with pharmacological approaches highlight the non-specificity of commonly used inhibitors. This suggests that caution is required for interpreting these studies and that the use of pharmacological agents is a 'double-edged' tool. On one hand, non-specific effects make interpretation difficult unless other experiments, such as with different mutants or with multiple diversely acting chemicals, are conducted. On the other hand, the non-specificity of inhibitors opens up the possibility of uncovering some ligands or modulators of new receptors such as plant glutamate-like receptors and importance of some metabolic hubs in carbon and nitrogen metabolism such as the pyridoxal phosphate biosynthesis involved in the regulation of the root morphogenetic programme. Identification of such targets is a critical issue to improve the efficiency of absorption of macronutrients in relation to root the morphogenetic programme.
Collapse
Affiliation(s)
- E Le Deunff
- Normandie Université, UMR EVA, F-14032, Caen cedex, France
- INRA, UMR 950, Écophysiologie Végétale & Agronomie, Nutritions NCS, INRA F-14032 Caen cedex, France
| | - J Lecourt
- East Malling Research, East Malling, Kent, UK
| |
Collapse
|
33
|
Mou W, Li D, Bu J, Jiang Y, Khan ZU, Luo Z, Mao L, Ying T. Comprehensive Analysis of ABA Effects on Ethylene Biosynthesis and Signaling during Tomato Fruit Ripening. PLoS One 2016; 11:e0154072. [PMID: 27100326 PMCID: PMC4839774 DOI: 10.1371/journal.pone.0154072] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/10/2016] [Indexed: 12/16/2022] Open
Abstract
ABA has been widely acknowledged to regulate ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism underlying the interaction between these two hormones are largely unexplored. In the present study, exogenous ABA treatment obviously promoted fruit ripening as well as ethylene emission, whereas NDGA (Nordihydroguaiaretic acid, an inhibitor of ABA biosynthesis) application showed the opposite biological effects. Combined RNA-seq with time-course RT-PCR analysis, our study not only helped to illustrate how ABA regulated itself at the transcription level, but also revealed that ABA can facilitate ethylene production and response probably by regulating some crucial genes such as LeACS4, LeACO1, GR and LeETR6. In addition, investigation on the fruits treated with 1-MCP immediately after ABA exposure revealed that ethylene might be essential for the induction of ABA biosynthesis and signaling at the onset of fruit ripening. Furthermore, some specific transcription factors (TFs) known as regulators of ethylene synthesis and sensibility (e.g. MADS-RIN, TAGL1, CNR and NOR) were also observed to be ABA responsive, which implied that ABA influenced ethylene action possibly through the regulation of these TFs expression. Our comprehensive physiological and molecular-level analysis shed light on the mechanism of cross-talk between ABA and ethylene during the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Wangshu Mou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Dongdong Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Jianwen Bu
- Department of Food Science and Engineering, Shandong Agriculture and Engineering University, Ji’nan 250100, People’s Republic of China
| | - Yuanyuan Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Zia Ullah Khan
- Department of Agriculture, Abdul Wali Khan University, Mardan 23200, KPK., Pakistan
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Linchun Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
| | - Tiejin Ying
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People’s Republic of China
- * E-mail:
| |
Collapse
|
34
|
Abstract
Ethylene gas is a major plant hormone that influences diverse processes in plant growth, development and stress responses throughout the plant life cycle. Responses to ethylene, such as fruit ripening, are significant to agriculture. The core molecular elements of the ethylene-signaling pathway have been uncovered, revealing a unique pathway that is negatively regulated. Practical applications of this knowledge can lead to substantial improvements in agriculture.
Collapse
Affiliation(s)
- Caren Chang
- Department of Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, Maryland, 20742, USA.
| |
Collapse
|
35
|
Keunen E, Schellingen K, Vangronsveld J, Cuypers A. Ethylene and Metal Stress: Small Molecule, Big Impact. FRONTIERS IN PLANT SCIENCE 2016; 7:23. [PMID: 26870052 PMCID: PMC4735362 DOI: 10.3389/fpls.2016.00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 01/08/2016] [Indexed: 05/18/2023]
Abstract
The phytohormone ethylene is known to mediate a diverse array of signaling processes during abiotic stress in plants. Whereas many reports have demonstrated enhanced ethylene production in metal-exposed plants, the underlying molecular mechanisms are only recently investigated. Increasing evidence supports a role for ethylene in the regulation of plant metal stress responses. Moreover, crosstalk appears to exist between ethylene and the cellular redox balance, nutrients and other phytohormones. This review highlights our current understanding of the key role ethylene plays during responses to metal exposure. Moreover, particular attention is paid to the integration of ethylene within the broad network of plant responses to metal stress.
Collapse
|
36
|
Olsen A, Lütken H, Hegelund JN, Müller R. Ethylene resistance in flowering ornamental plants - improvements and future perspectives. HORTICULTURE RESEARCH 2015; 2:15038. [PMID: 26504580 PMCID: PMC4591681 DOI: 10.1038/hortres.2015.38] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 05/20/2023]
Abstract
Various strategies of plant breeding have been attempted in order to improve the ethylene resistance of flowering ornamental plants. These approaches span from conventional techniques such as simple cross-pollination to new breeding techniques which modify the plants genetically such as precise genome-editing. The main strategies target the ethylene pathway directly; others focus on changing the ethylene pathway indirectly via pathways that are known to be antagonistic to the ethylene pathway, e.g. increasing cytokinin levels. Many of the known elements of the ethylene pathway have been addressed experimentally with the aim of modulating the overall response of the plant to ethylene. Elements of the ethylene pathway that appear particularly promising in this respect include ethylene receptors as ETR1, and transcription factors such as EIN3. Both direct and indirect approaches seem to be successful, nevertheless, although genetic transformation using recombinant DNA has the ability to save much time in the breeding process, they are not readily used by breeders yet. This is primarily due to legislative issues, economic issues, difficulties of implementing this technology in some ornamental plants, as well as how these techniques are publically perceived, particularly in Europe. Recently, newer and more precise genome-editing techniques have become available and they are already being implemented in some crops. New breeding techniques may help change the current situation and pave the way toward a legal and public acceptance if products of these technologies are indistinguishable from plants obtained by conventional techniques.
Collapse
Affiliation(s)
- Andreas Olsen
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Henrik Lütken
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Josefine Nymark Hegelund
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| | - Renate Müller
- Faculty of Science, Department of Plant and Environmental Sciences, University of Copenhagen, Højbakkegård Alle 9-13, 2630 Taastrup, Denmark
| |
Collapse
|
37
|
Bisson MMA, Groth G. Targeting Plant Ethylene Responses by Controlling Essential Protein-Protein Interactions in the Ethylene Pathway. MOLECULAR PLANT 2015; 8:1165-74. [PMID: 25843012 DOI: 10.1016/j.molp.2015.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/09/2015] [Accepted: 03/30/2015] [Indexed: 05/13/2023]
Abstract
The gaseous plant hormone ethylene regulates many processes of high agronomic relevance throughout the life span of plants. A central element in ethylene signaling is the endoplasmic reticulum (ER)-localized membrane protein ethylene insensitive2 (EIN2). Recent studies indicate that in response to ethylene, the extra-membranous C-terminal end of EIN2 is proteolytically processed and translocated from the ER to the nucleus. Here, we report that the conserved nuclear localization signal (NLS) mediating nuclear import of the EIN2 C-terminus provides an important domain for complex formation with ethylene receptor ethylene response1 (ETR1). EIN2 lacking the NLS domain shows strongly reduced affinity for the receptor. Interaction of EIN2 and ETR1 is also blocked by a synthetic peptide of the NLS motif. The corresponding peptide substantially reduces ethylene responses in planta. Our results uncover a novel mechanism and type of inhibitor interfering with ethylene signal transduction and ethylene responses in plants. Disruption of essential protein-protein interactions in the ethylene signaling pathway as shown in our study for the EIN2-ETR1 complex has the potential to guide the development of innovative ethylene antagonists for modern agriculture and horticulture.
Collapse
Affiliation(s)
- Melanie M A Bisson
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, D-40204 Düsseldorf, Germany
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich-Heine University Düsseldorf, D-40204 Düsseldorf, Germany.
| |
Collapse
|
38
|
Zdarska M, Dobisová T, Gelová Z, Pernisová M, Dabravolski S, Hejátko J. Illuminating light, cytokinin, and ethylene signalling crosstalk in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4913-31. [PMID: 26022257 DOI: 10.1093/jxb/erv261] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Integrating important environmental signals with intrinsic developmental programmes is a crucial adaptive requirement for plant growth, survival, and reproduction. Key environmental cues include changes in several light variables, while important intrinsic (and highly interactive) regulators of many developmental processes include the phytohormones cytokinins (CKs) and ethylene. Here, we discuss the latest discoveries regarding the molecular mechanisms mediating CK/ethylene crosstalk at diverse levels of biosynthetic and metabolic pathways and their complex interactions with light. Furthermore, we summarize evidence indicating that multiple hormonal and light signals are integrated in the multistep phosphorelay (MSP) pathway, a backbone signalling pathway in plants. Inter alia, there are strong overlaps in subcellular localizations and functional similarities in components of these pathways, including receptors and various downstream agents. We highlight recent research demonstrating the importance of CK/ethylene/light crosstalk in selected aspects of plant development, particularly seed germination and early seedling development. The findings clearly demonstrate the crucial integration of plant responses to phytohormones and adaptive responses to environmental cues. Finally, we tentatively identify key future challenges to refine our understanding of the molecular mechanisms mediating crosstalk between light and hormonal signals, and their integration during plant life cycles.
Collapse
Affiliation(s)
- Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Tereza Dobisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Zuzana Gelová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Markéta Pernisová
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Siarhei Dabravolski
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| | - Jan Hejátko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
39
|
Wang J, Wen CK. Cryptic Role of the ETHYLENE INSENSITIVE2 Nuclear Localization Signal in Ethylene Signaling. MOLECULAR PLANT 2015; 8:1129-1130. [PMID: 26116394 DOI: 10.1016/j.molp.2015.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 06/16/2015] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Affiliation(s)
- Jie Wang
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | - Chi-Kuang Wen
- National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China.
| |
Collapse
|
40
|
Abstract
Ethylene is a hormone involved in numerous aspects of growth, development, and responses to biotic and abiotic stresses in plants. Ethylene is perceived through its binding to endoplasmic reticulum-localized receptors that function as negative regulators of ethylene signaling in the absence of the hormone. In Arabidopsis thaliana, five structurally and functionally different ethylene receptors are present. These differ in their primary sequence, in the domains present, and in the type of kinase activity exhibited, which may suggest functional differences among the receptors. Whereas ethylene receptors functionally overlap to suppress ethylene signaling, certain other responses are controlled by specific receptors. In this review, I examine the nature of these receptor differences, how the evolution of the ethylene receptor gene family may provide insight into their differences, and how expression of receptors or their accessory proteins may underlie receptor-specific responses.
Collapse
|
41
|
Cao YR, Chen HW, Li ZG, Tao JJ, Ma B, Zhang WK, Chen SY, Zhang JS. Tobacco ankyrin protein NEIP2 interacts with ethylene receptor NTHK1 and regulates plant growth and stress responses. PLANT & CELL PHYSIOLOGY 2015; 56:803-18. [PMID: 25634961 DOI: 10.1093/pcp/pcv009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/18/2015] [Indexed: 12/16/2023]
Abstract
Ethylene is a gaseous hormone that regulates many processes involved in plant growth, development and stress responses. Previously, we found that the tobacco ethylene receptor NTHK1 (Nicotiana tabacum histidine kinase 1) promotes seedling growth and affects plant salt stress responses. In this study, NTHK1 ethylene receptor-interacting protein 2 (NEIP2) was identified and further characterized in relation to these processes. NEIP2 contains three ankyrin repeats that mediate an interaction with NTHK1 as demonstrated by yeast two-hybrid, glutathione S-transferase (GST) pull-down and co-immunoprecipitation assays. NTHK1 phosphorylates NEIP2 in vitro. Salt stress and ethylene treatment induce NEIP2 accumulation in the first few hours and then the NEIP2 can be phosphorylated in planta. The overexpression of NTHK1 enhances NEIP2 accumulation in the presence of ethylene and salt stress. NEIP2 overexpression promotes plant growth but reduces ethylene responses, which is consistent with the functions of NTHK1. Additionally, NEIP2 improves plant performance under salt and oxidative stress. These results suggest that ethylene-induced NEIP2 probably acts as a brake to reduce ethylene response but resumes growth through interaction with NTHK1. Manipulation of NEIP2 may be beneficial for crop improvement.
Collapse
Affiliation(s)
- Yang-Rong Cao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China These authors contributed equally to this work. Present address: Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Hao-Wei Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China These authors contributed equally to this work
| | - Zhi-Gang Li
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China These authors contributed equally to this work
| | - Jian-Jun Tao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
42
|
Ge XM, Cai HL, Lei X, Zhou X, Yue M, He JM. Heterotrimeric G protein mediates ethylene-induced stomatal closure via hydrogen peroxide synthesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:138-50. [PMID: 25704455 DOI: 10.1111/tpj.12799] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 05/18/2023]
Abstract
Heterotrimeric G proteins function as key players in hydrogen peroxide (H2O2) production in plant cells, but whether G proteins mediate ethylene-induced H2O2 production and stomatal closure are not clear. Here, evidences are provided to show the Gα subunit GPA1 as a missing link between ethylene and H2O2 in guard cell ethylene signalling. In wild-type leaves, ethylene-triggered H2O2 synthesis and stomatal closure were dependent on activation of Gα. GPA1 mutants showed the defect of ethylene-induced H2O2 production and stomatal closure, whereas wGα and cGα overexpression lines showed faster stomatal closure and H2O2 production in response to ethylene. Ethylene-triggered H2O2 generation and stomatal closure were impaired in RAN1, ETR1, ERS1 and EIN4 mutants but not impaired in ETR2 and ERS2 mutants. Gα activator and H2O2 rescued the defect of RAN1 and EIN4 mutants or etr1-3 in ethylene-induced H2O2 production and stomatal closure, but only rescued the defect of ERS1 mutants or etr1-1 and etr1-9 in ethylene-induced H2O2 production. Stomata of CTR1 mutants showed constitutive H2O2 production and stomatal closure, but which could be abolished by Gα inhibitor. Stomata of EIN2, EIN3 and ARR2 mutants did not close in responses to ethylene, Gα activator or H2O2, but do generate H2O2 following challenge of ethylene or Gα activator. The data indicate that Gα mediates ethylene-induced stomatal closure via H2O2 production, and acts downstream of RAN1, ETR1, ERS1, EIN4 and CTR1 and upstream of EIN2, EIN3 and ARR2. The data also show that ETR1 and ERS1 mediate both ethylene and H2O2 signalling in guard cells.
Collapse
Affiliation(s)
- Xiao-Min Ge
- School of Life Sciences, Shaanxi Normal University, Xi'an, 710062, China; School of Life Sciences, Northwest University, Xi'an, 710069, China
| | | | | | | | | | | |
Collapse
|
43
|
Feng G, Liu G, Xiao J. The Arabidopsis EIN2 restricts organ growth by retarding cell expansion. PLANT SIGNALING & BEHAVIOR 2015; 10:e1017169. [PMID: 26039475 PMCID: PMC4622927 DOI: 10.1080/15592324.2015.1017169] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 05/22/2023]
Abstract
The growth of plant organ to its characteristic size is a fundamental developmental process, but the mechanism is still poorly understood. Plant hormones play a great role in organ size control by modulating cell division and/or cell expansion. Ethylene insensitve 2 (EIN2) was first identified by a genetic screen for ethylene insensitivity and is regarded as a central component of ethylene signaling, but its role in cell growth has not been reported. Here we demonstrate that changed expression of EIN2 led to abnormity of cell expansion by morphological and cytological analyses of EIN2 loss-of-function mutants and the overexpressing transgenic plant. Our findings suggest that EIN2 controls final organ size by restricting cell expansion.
Collapse
Affiliation(s)
- Guanping Feng
- School of Life Sciences; Jinggangshan University; Ji’an, Jiangxi, PR China
- Correspondence to: Guanping Feng;
| | - Gang Liu
- School of Life Sciences; Jinggangshan University; Ji’an, Jiangxi, PR China
| | - Jianhua Xiao
- School of Clinical Medicine; Jinggangshan University; Ji’an, Jiangxi, PR China
| |
Collapse
|
44
|
Zhang J, Yu J, Wen CK. An alternate route of ethylene receptor signaling. FRONTIERS IN PLANT SCIENCE 2014; 5:648. [PMID: 25477894 PMCID: PMC4238421 DOI: 10.3389/fpls.2014.00648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 11/03/2014] [Indexed: 05/29/2023]
Abstract
The gaseous plant hormone ethylene is perceived by a family of ethylene receptors and mediates an array of ethylene responses. In the absence of ethylene, receptor signaling is conveyed via the C-terminal histidine kinase domain to the N-terminus of the CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) protein kinase, which represses ethylene signaling mediated by ETHYLENE INSENSITIVE2 (EIN2) followed by EIN3. In the presence of ethylene, the receptors are inactivated when ethylene binds to their N-terminal domain, and consequently CTR1 is inactive, allowing EIN2 and EIN3 to activate ethylene signaling. Recent findings have shown that the ethylene receptor N-terminal portion can conditionally mediate the receptor signal output in mutants lacking CTR1, thus providing evidence of an alternative pathway from the ethylene receptors not involving CTR1. Here we highlight the evidence for receptor signaling to an alternative pathway and suggest that receptor signaling is coordinated via the N- and C-termini, as we address the biological significance of the negative regulation of ethylene signaling by the two pathways.
Collapse
Affiliation(s)
| | | | - Chi-Kuang Wen
- *Correspondence: Chi-Kuang Wen, National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China e-mail:
| |
Collapse
|
45
|
Zhao M, Liu W, Xia X, Wang T, Zhang WH. Cold acclimation-induced freezing tolerance of Medicago truncatula seedlings is negatively regulated by ethylene. PHYSIOLOGIA PLANTARUM 2014; 152:115-29. [PMID: 24494928 DOI: 10.1111/ppl.12161] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 05/07/2023]
Abstract
To evaluate the role of ethylene in cold acclimation and cold stress, freezing tolerance and characteristics associated with cold acclimation were investigated using legume model plant Medicago truncatula Gaertn Jemalong A17. There was a rapid suppression of ethylene production during cold acclimation in A17 plants. Ethylene level was negatively correlated with freezing tolerance as inhibition of ethylene biosynthesis by inhibitors of ethylene biosynthesis enhanced freezing tolerance, while exogenous application of ethylene reduced cold acclimation-induced freezing tolerance. The involvement of ethylene signaling in modulation of freezing tolerance and cold acclimation was further studied using ethylene-insensitive mutant sickle skl. Although skl mutant was more tolerant to freezing than its wild-type counterpart A17 plants, cold acclimation enhanced freezing tolerance in 17 plants, but not in skl mutant. Expression of several ethylene response genes including EIN3, EIN3/EIL and ERFs was suppressed in skl mutant compared to A17 plants under non-cold-acclimated conditions. Cold acclimation downregulated expression of EIN3, EIN3/EIL and ERFs in A17 plants, while expression patterns of these genes were relatively constant in skl mutant during cold acclimation. Cold acclimation-induced increases in transcription of MtCBFs and MtCAS15 were suppressed in skl mutant compared with A17 plants. These results suggest that MtSKL1 is required for perception of the change of ethylene level in M. truncatula plants for the full development of the cold acclimation response by suppressing expression of MtEIN3 and MtEIN3/EIL1, which in turn downregulates expression of MtERFs, leading to the enhanced tolerance of M. truncatula to freezing by upregulating MtCBFs and MtCAS15.
Collapse
Affiliation(s)
- Mingui Zhao
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Wilson RL, Kim H, Bakshi A, Binder BM. The Ethylene Receptors ETHYLENE RESPONSE1 and ETHYLENE RESPONSE2 Have Contrasting Roles in Seed Germination of Arabidopsis during Salt Stress. PLANT PHYSIOLOGY 2014; 165:1353-1366. [PMID: 24820022 PMCID: PMC4081342 DOI: 10.1104/pp.114.241695] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 05/12/2014] [Indexed: 05/18/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), ethylene responses are mediated by a family of five receptors that have both overlapping and nonoverlapping roles. In this study, we used loss-of-function mutants for each receptor isoform to determine the role of individual isoforms in seed germination under salt stress. From this analysis, we found subfunctionalization of the receptors in the control of seed germination during salt stress. Specifically, loss of ETHYLENE RESPONSE1 (ETR1) or ETHYLENE INSENSITIVE4 (EIN4) leads to accelerated germination, loss of ETR2 delays germination, and loss of either ETHYLENE RESPONSE SENSOR1 (ERS1) or ERS2 has no measurable effect on germination. Epistasis analysis indicates that ETR1 and EIN4 function additively with ETR2 to control this trait. Interestingly, regulation of germination by ETR1 requires the full-length receptor. The differences in germination between etr1 and etr2 loss-of-function mutants under salt stress could not be explained by differences in the production of or sensitivity to ethylene, gibberellin, or cytokinin. Instead, etr1 loss-of-function mutants have reduced sensitivity to abscisic acid (ABA) and germinate earlier than the wild type, whereas etr2 loss-of-function mutants have increased sensitivity to ABA and germinate slower than the wild type. Additionally, the differences in seed germination on salt between the two mutants and the wild type are eliminated by the ABA biosynthetic inhibitor norflurazon. These data suggest that ETR1 and ETR2 have roles independent of ethylene signaling that affect ABA signaling and result in altered germination during salt stress.
Collapse
Affiliation(s)
- Rebecca L Wilson
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Heejung Kim
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Arkadipta Bakshi
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Brad M Binder
- Department of Biochemistry, Cellular, and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| |
Collapse
|
47
|
How plants sense ethylene gas--the ethylene receptors. J Inorg Biochem 2014; 133:58-62. [PMID: 24485009 DOI: 10.1016/j.jinorgbio.2014.01.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 11/23/2022]
Abstract
Ethylene is a hormone that affects many processes important for plant growth, development, and responses to stresses. The first step in ethylene signal transduction is when ethylene binds to its receptors. Numerous studies have examined how these receptors function. In this review we summarize many of these studies and present our current understanding about how ethylene binds to the receptors. The biochemical output of the receptors is not known but current models predict that when ethylene binds to the receptors, the activity of the associated protein kinase, CTR1 (constitutive triple response1), is reduced. This results in downstream transcriptional changes leading to ethylene responses. We present a model where a copper cofactor is required and the binding of ethylene causes the receptor to pass through a transition state to become non-signaling leading to lower CTR1 activity.
Collapse
|
48
|
Cho YH, Yoo SD. Novel connections and gaps in ethylene signaling from the ER membrane to the nucleus. FRONTIERS IN PLANT SCIENCE 2014; 5:733. [PMID: 25601870 PMCID: PMC4283510 DOI: 10.3389/fpls.2014.00733] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/02/2014] [Indexed: 05/08/2023]
Abstract
The signaling of the plant hormone ethylene has been studied genetically, resulting in the identification of signaling components from membrane receptors to nuclear effectors. Among constituents of the hormone signaling pathway, functional links involving a putative mitogen-activated protein kinase kinase CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) and a membrane transporter-like protein ETHYLENE INSENSITIVE2 (EIN2) have been missing for a long time. We now learn that EIN2 is cleaved and its C-terminal end moves to the nucleus upon ethylene perception at the membrane receptors, and then the C-terminal end of EIN2 in the nucleus supports EIN3-dependent ethylene-response gene expression. CTR1 kinase activity negatively controls the EIN2 cleavage process through direct phosphorylation. Despite the novel connection of CTR1 with EIN2 that explains a large portion of the missing links in ethylene signaling, our understanding still remains far from its completion. This focused review will summarize recent advances in the EIN3-dependent ethylene signaling mechanisms including CTR1-EIN2 functions with respect to EIN3 regulation and ethylene responses. This will also present several emerging issues that need to be addressed for the comprehensive understanding of signaling pathways of the invaluable plant hormone ethylene.
Collapse
Affiliation(s)
| | - Sang-Dong Yoo
- *Correspondence: Sang-Dong Yoo, Division of Life Sciences, College of Life Sciences and Biotechnology, Korea University, 145 Anamro, Sungbuk-gu, Seoul 136-713, South Korea e-mail:
| |
Collapse
|
49
|
Merchante C, Alonso JM, Stepanova AN. Ethylene signaling: simple ligand, complex regulation. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:554-60. [PMID: 24012247 DOI: 10.1016/j.pbi.2013.08.001] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 08/01/2013] [Accepted: 08/01/2013] [Indexed: 05/21/2023]
Abstract
The hormone ethylene plays numerous roles in plant development. In the last few years the model of ethylene signaling has evolved from an initially largely linear route to a much more complex pathway with multiple feedback loops. Identification of key transcriptional and post-transcriptional regulatory modules controlling expression and/or stability of the core pathway components revealed that ethylene perception and signaling are tightly regulated at multiple levels. This review describes the most current outlook on ethylene signal transduction and emphasizes the latest discoveries in the ethylene field that shed light on the mechanistic mode of action of the central pathway components CTR1 and EIN2, as well as on the post-transcriptional regulatory steps that modulate the signaling flow through the pathway.
Collapse
Affiliation(s)
- Catharina Merchante
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, United States
| | | | | |
Collapse
|
50
|
Mayerhofer H, Mueller-Dieckmann J. Cloning, expression, purification and preliminary X-ray analysis of the dimerization domain of ethylene response sensor 1 (ERS1) from Arabidopsis thaliana. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:1029-32. [PMID: 23989156 PMCID: PMC3758156 DOI: 10.1107/s1744309113021751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/04/2013] [Indexed: 11/10/2022]
Abstract
Ethylene signalling is initiated by a group of membrane-bound receptors with similarity to two-component systems. ERS1 belongs, together with ETR1, to subfamily 1, which plays a predominant role in ethylene signalling. The dimerization domain of ERS1 was crystallized in space groups C222(1) and P2(1)2(1)2, with two and four molecules per asymmetric unit, respectively. The crystals diffracted X-ray radiation to 1.9 Å resolution.
Collapse
Affiliation(s)
- Hubert Mayerhofer
- EMBL Hamburg Outstation, c/o DESY, Notkestrasse 85, 22603 Hamburg, Germany
| | | |
Collapse
|