1
|
Zhu C, Zhang Z, Liu Z, Shi W, Zhang D, Zhao B, Sun J. '140R' Rootstock Regulates Resveratrol Content in 'Cabernet Sauvignon' Grapevine Leaves Through miRNA. PLANTS (BASEL, SWITZERLAND) 2024; 13:3057. [PMID: 39519974 PMCID: PMC11548312 DOI: 10.3390/plants13213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Grafting is important for increasing the resistance of grapevines to environmental stress, improving fruit quality, and shortening the reproductive period. In this study, 'Cabernet Sauvignon' (CS) grafted on the resistant rootstock 140R (CS/140R), self-grafted grapevines of the resistant rootstock 140R (140R/140R), and self-grafted grapevines of CS (CS/CS) were subjected to high-throughput sequencing; small RNA (sRNA) libraries were constructed, and miRNAs responsive to the grafting process were identified. A total of 177 known miRNAs and 267 novel miRNAs were identified. Many miRNAs responsive to the grafting process were significantly down-regulated in CS/140R leaves relative to CS/CS leaves, such as vvi-miR171c, vvi-miR171e, et al., suggesting that the expression of these miRNAs might be affected by grafting. Kyoto Encyclopedia of Genes and Genomes analysis revealed that the differentially expressed miRNAs regulated the expression of genes in the phenylpropanoid synthesis pathway. Grapevine leaves transiently overexpressing vvi-miR171c were assayed, and the expression of the target gene, VvMYB154, and the resveratrol content were decreased, indicating that vvi-miR171c negatively regulates the expression of VvMYB154. In sum, 140R increased the resveratrol content of the scion by grafting, down-regulating the expression of vvi-miR171c. These results provide new information that will aid future analyses of the effects of grafting on the content of secondary metabolites.
Collapse
Affiliation(s)
- Chunmei Zhu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhijun Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Zhiyu Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Wenchao Shi
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Dongliang Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Baolong Zhao
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| | - Junli Sun
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (C.Z.); (Z.Z.); (Z.L.); (W.S.); (D.Z.); (B.Z.)
- The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of the Xinjiang Production and Construction, Shihezi 832003, China
| |
Collapse
|
2
|
Zhang L, Teng Y, Song Y, Li J, Zhang Z, Xu Y, Fan D, Wang L, Ren Y, He J, Song S, Xi X, Liu H, Ma C. Assessment of heat tolerance and identification of miRNAs during high-temperature response in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1484892. [PMID: 39502927 PMCID: PMC11534869 DOI: 10.3389/fpls.2024.1484892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
With global warming, heat stress has been recognized as a significant factor limiting grapevine development and fruit quality. MicroRNAs (miRNAs) are a class of small non-coding RNAs known to play crucial regulatory roles in stress resistance. Hence, there is an immediate requirement to cultivate and identify grapevine varieties that are resistant to heat and explore miRNA-mediated heat stress defense mechanisms. In this study, we assessed the thermal resistance of 38 grape germplasm resources and identified a series of miRNAs involved in heat stress resistance. The CK (25°C) and HS (45°C) groups of "Shenyue" cuttings of grapes were used as experimental materials for next-generation sequencing and construct libraries of small RNAs. A total of 177 known and 20 novel miRNAs were detected in the libraries. Differential expression analysis identified 65 differentially expressed miRNAs (DEMs) using the DE-Seq procedure. Furthermore, RT-qPCR validation confirmed complementary expression profiles of eight DEMs and their target genes between the HS and CK groups. Heterologous transformation further identified the function of Vvi-miR3633a downregulated under heat stress in Arabidopsis. In the heterologous expression lines, the survival rate was reduced by high temperature treatment indicating the ability of Vvi-miR3633a to regulate heat resistance. Assessing the heat resistance of grape species and the expression patterns of miRNA in response to high temperatures may reveal the molecular processes of heat resistance regulation mediated by miRNA in grapes under heat stress.
Collapse
Affiliation(s)
- Lipeng Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yuanxu Teng
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Junpeng Li
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanyuan Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lujia Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Ren
- College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojun Xi
- Forestry and Pomology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huaifeng Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
| | - Chao Ma
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, Agricultural College of Shihezi University, Shihezi, China
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
3
|
Jiang C, Zhang X, Rao J, Luo S, Luo L, Lu W, Li M, Zhao S, Ren D, Liu J, Song Y, Zheng Y, Sun YB. Enhancing Pseudomonas syringae pv. Actinidiae sensitivity in kiwifruit by repressing the NBS-LRR genes through miRNA-215-3p and miRNA-29-3p identification. FRONTIERS IN PLANT SCIENCE 2024; 15:1403869. [PMID: 39086918 PMCID: PMC11288850 DOI: 10.3389/fpls.2024.1403869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
Kiwifruit bacterial canker, caused by Pseudomonas syringae pv. actinidiae (PSA), poses a grave threat to the global kiwifruit industry. In this study, we examined the role of microRNAs (miRNAs) in kiwifruit's response to PSA. Kiwifruit seedlings subjected to PSA treatment showed significant changes in both miRNA and gene expression compared to the control group. We identified 364 differentially expressed miRNAs (DEMs) and 7170 differentially expressed genes (DEGs). Further analysis revealed 180 miRNAs negatively regulating 641 mRNAs. Notably, two miRNAs from the miRNA482 family, miRNA-215-3p and miRNA-29-3p, were found to increase kiwifruit's sensitivity to PSA when overexpressed. These miRNAs were linked to the regulation of NBS-LRR target genes, shedding light on their role in kiwifruit's defence against PSA. This study offers insights into the miRNA482-NBS-LRR network as a crucial component in enhancing kiwifruit bioresistance to PSA infestation and provides promising candidate genes for further research.
Collapse
Affiliation(s)
- Chengyao Jiang
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoying Zhang
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiahui Rao
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shu Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Liang Luo
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Wei Lu
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Shumei Zhao
- Key Laboratory of Agricultural Engineering in Structure and Environment, China Agricultural University, Beijing, China
| | - Dan Ren
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Jiaming Liu
- Laboratory of Crop Immune Gene Editing Technology, Newsun Research Institute of Biotechnology, Chengdu, China
| | - Yu Song
- Research Institute of Crop Germplasm Resources, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yangxia Zheng
- College of Horticulture, Sichuan Agricultural University, Chengdu, China
| | - Yin-Biao Sun
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London, United Kingdom
| |
Collapse
|
4
|
Mierziak J, Wojtasik W. Epigenetic weapons of plants against fungal pathogens. BMC PLANT BIOLOGY 2024; 24:175. [PMID: 38443788 PMCID: PMC10916060 DOI: 10.1186/s12870-024-04829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024]
Abstract
In the natural environment, plants face constant exposure to biotic stress caused by fungal attacks. The plant's response to various biotic stresses relies heavily on its ability to rapidly adjust the transcriptome. External signals are transmitted to the nucleus, leading to activation of transcription factors that subsequently enhance the expression of specific defense-related genes. Epigenetic mechanisms, including histone modifications and DNA methylation, which are closely linked to chromatin states, regulate gene expression associated with defense against biotic stress. Additionally, chromatin remodelers and non-coding RNA play a significant role in plant defense against stressors. These molecular modifications enable plants to exhibit enhanced resistance and productivity under diverse environmental conditions. Epigenetic mechanisms also contribute to stress-induced environmental epigenetic memory and priming in plants, enabling them to recall past molecular experiences and utilize this stored information for adaptation to new conditions. In the arms race between fungi and plants, a significant aspect is the cross-kingdom RNAi mechanism, whereby sRNAs can traverse organismal boundaries. Fungi utilize sRNA as an effector molecule to silence plant resistance genes, while plants transport sRNA, primarily through extracellular vesicles, to pathogens in order to suppress virulence-related genes. In this review, we summarize contemporary knowledge on epigenetic mechanisms of plant defense against attack by pathogenic fungi. The role of epigenetic mechanisms during plant-fungus symbiotic interactions is also considered.
Collapse
Affiliation(s)
- Justyna Mierziak
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland
| | - Wioleta Wojtasik
- Department of Genetic Biochemistry, Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63, Wroclaw, 51-148, Poland.
| |
Collapse
|
5
|
Liu X, Gao T, Liu C, Mao K, Gong X, Li C, Ma F. Fruit crops combating drought: Physiological responses and regulatory pathways. PLANT PHYSIOLOGY 2023; 192:1768-1784. [PMID: 37002821 PMCID: PMC10315311 DOI: 10.1093/plphys/kiad202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Drought is a common stress in agricultural production. Thus, it is imperative to understand how fruit crops respond to drought and to develop drought-tolerant varieties. This paper provides an overview of the effects of drought on the vegetative and reproductive growth of fruits. We summarize the empirical studies that have assessed the physiological and molecular mechanisms of the drought response in fruit crops. This review focuses on the roles of calcium (Ca2+) signaling, abscisic acid (ABA), reactive oxygen species signaling, and protein phosphorylation underlying the early drought response in plants. We review the resulting downstream ABA-dependent and ABA-independent transcriptional regulation in fruit crops under drought stress. Moreover, we highlight the positive and negative regulatory mechanisms of microRNAs in the drought response of fruit crops. Lastly, strategies (including breeding and agricultural practices) to improve the drought resistance of fruit crops are outlined.
Collapse
Affiliation(s)
- Xiaomin Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Changhai Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaoqing Gong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
6
|
Zhang L, Fan D, Li H, Chen Q, Zhang Z, Liu M, Liu J, Song Y, He J, Xu W, Song S, Liu H, Ren Y, Ma C. Characterization and identification of grapevine heat stress-responsive microRNAs revealed the positive regulated function of vvi-miR167 in thermostability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111623. [PMID: 36750140 DOI: 10.1016/j.plantsci.2023.111623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/19/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
High temperature stress is one of the primary abiotic stresses that restrict fruit tree production. Grapevine (Vitis vinifera) with high economic value throughout the world is a cultivated fruit crop, and its growth and development is often influenced by high temperature stress. Studying the heat stress-response mechanism of grapevine has great significance for understanding the acclimation to heat stress. In this study, we identified a series of heat stress responsive miRNAs and analyzed their function during the heat tolerance response. CK (control group, 25 °C) and heat treatment stress (TS, 45 °C) small RNA (sRNA) libraries were constructed and sequenced by high-throughput sequencing in 'Thompson seedless' grapevine. 873 known-miRNAs and 86 novel-miRNAs were identified, of which 88 known and three novel miRNAs were expressed differentially under heat stress. 322 genes were predicted to be targeted by the miRNAs. Eight selected miRNAs and its targets were confirmed by real time quantitative PCR (RT - qPCR), indicating that these "miRNA - target" were responsive to heat stress. In addition, most of the predicted target genes were negatively regulated by corresponding miRNAs. Gene function and pathway analyses indicated that these genes probably play crucial roles in heat stress tolerance. Vvi-miR167b transiently overexpression in grapevine leaves decreased target gene vvARF6, vvARF6-like and vvARF8 expression. The function of vvi-miR167 was verified by ectopic transformation in Arabidopsis thaliana, and the heat tolerance in transgenic lines was enhanced significantly, suggesting that the vvi-miR167 plays a positive regulatory role in grape thermostability. Comparison of miRNA expression patterns between heat treatment stress and CK can help elucidate the heat stress response and resistance mechanisms in grapes. In conclusion, these results gave us useful information to better understand the heat stress-response during domestication as well as for breeding new cultivars with heat stress resistance in fruit trees.
Collapse
Affiliation(s)
- Lipeng Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Dongying Fan
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui Li
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuju Chen
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minying Liu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingjing Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yue Song
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan He
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huaifeng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China
| | - Yi Ren
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chao Ma
- Shanghai Collaborative Innovation Center of Agri-Seeds/Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
7
|
Wang S, Wang X, Chen J. Identification of miRNAs Involved in Maize-Induced Systemic Resistance Primed by Trichoderma harzianum T28 against Cochliobolus heterostrophus. J Fungi (Basel) 2023; 9:278. [PMID: 36836392 PMCID: PMC9964586 DOI: 10.3390/jof9020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/25/2023] Open
Abstract
microRNAs (miRNAs) are known to play important roles in the immune response to pathogen infection in different plants. Further, Trichoderma strains are able to activate plant defense responses against pathogen attacks. However, little is known about the involvement of miRNAs in the defense response primed by Trichoderma strains. To explore the miRNAs sensitive to priming by Trichoderma, we studied the small RNAs and transcriptome changes in maize leaves that were systemically induced by seed treatment with Trichoderma harzianum (strain T28) against Cochliobolus heterostrophus (C. heterostrophus) infection in leaves. Through analysis of the sequencing data, 38 differentially expressed miRNAs (DEMs) and 824 differentially expressed genes (DEGs) were identified. GO and KEGG analyses of DEGs demonstrated that genes involved in the plant hormone signal transduction pathway and oxidation-reduction process were significantly enriched. In addition, 15 miRNA-mRNA interaction pairs were identified through the combined analysis of DEMs and DEGs. These pairs were supposed to play roles in the maize resistance primed by T. harzianum T28 to C. heterostrophus, in which miR390, miR169j, miR408b, miR395a/p, and novel miRNA (miRn5231) were more involved in the induction of maize resistance. This study provided valuable information for understanding the regulatory role of miRNA in the T. harzianum primed defense response.
Collapse
Affiliation(s)
- Shaoqing Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xinhua Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Ministry of Agriculture Key Laboratory of Urban Agriculture (South), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
8
|
He R, Tang Y, Wang D. Coordinating Diverse Functions of miRNA and lncRNA in Fleshy Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:411. [PMID: 36679124 PMCID: PMC9866404 DOI: 10.3390/plants12020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Non-coding RNAs play vital roles in the diverse biological processes of plants, and they are becoming key topics in horticulture research. In particular, miRNAs and long non-coding RNAs (lncRNAs) are receiving increased attention in fruit crops. Recent studies in horticulture research provide both genetic and molecular evidence that miRNAs and lncRNAs regulate biological function and stress responses during fruit development. Here, we summarize multiple regulatory modules of miRNAs and lncRNAs and their biological roles in fruit sets and stress responses, which would guide the development of molecular breeding techniques on horticultural crops.
Collapse
Affiliation(s)
- Reqing He
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| | - Yajun Tang
- Shandong Laboratory of Advanced Agricultural Sciences, Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Dong Wang
- Key Laboratory of Molecular Biology and Gene Engineering in Jiangxi Province, College of Life Science, Nanchang University, Nanchang 330031, China
| |
Collapse
|
9
|
He L, Yan J, Ding X, Jin H, Zhang H, Cui J, Zhou Q, Yu J. Integrated analysis of transcriptome and microRNAs associated with exogenous calcium-mediated enhancement of hypoxic tolerance in cucumber seedlings ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2023; 13:994268. [PMID: 36684729 PMCID: PMC9846352 DOI: 10.3389/fpls.2022.994268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/30/2022] [Indexed: 06/01/2023]
Abstract
Plants often suffer from hypoxic stress due to flooding caused by extreme weather. Hypoxia usually leads to restricted oxygen supply and alters metabolic patterns from aerobic to anaerobic. Cucumber roots are fragile and highly sensitive to damage from hypoxic stress. The purpose of this study was to investigate the regulatory mechanism of exogenous calcium alleviating hypoxic stress in cucumber through transcriptome and small RNAs analysis. Three treatments were performed in this paper, including untreated-control (CK), hypoxic stress (H), and hypoxic stress + exogenous calcium treatment (H + Ca2+). A large number of differentially expressed genes (DEGs) were identified, 1,463 DEGs between CK vs H, 3,399 DEGs between H vs H + Ca2+, and 5,072 DEGs between CK vs H + Ca2+, respectively. KEGG analysis of DEGs showed that exogenous calcium could activate hormone signaling pathways (ethylene, ABA, IAA and cytokinin), transcription factors (MYB, MYB-related, bHLH, bZIP, and WRKY), calcium signaling and glycolysis pathway to mitigating hypoxic stress in cucumber seedlings. Additionally, miRNA and their target genes were detected and predicted between treatments. The target genes of these miRNAs revealed that auxin, cellulose synthase, and mitochondrial ribosomal related genes (Csa2G315390, Csa6G141390, Csa4G053280, and Csa6G310480) probably play in the improvement of the hypoxic tolerance of cucumber seedlings through exogenous calcium application. In short, our data adds new information to the mechanism of exogenous calcium mitigation of hypoxic stress injury in cucumber seedlings at transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Lizhong He
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jun Yan
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaotao Ding
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Haijun Jin
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Hongmei Zhang
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jiawei Cui
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qiang Zhou
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Dushi Green Engineering Co., Ltd., Shanghai, China
| | - Jizhu Yu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Xu Y, Wang R, Ma P, Cao J, Cao Y, Zhou Z, Li T, Wu J, Zhang H. A novel maize microRNA negatively regulates resistance to Fusarium verticillioides. MOLECULAR PLANT PATHOLOGY 2022; 23:1446-1460. [PMID: 35700097 PMCID: PMC9452762 DOI: 10.1111/mpp.13240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/02/2022] [Accepted: 05/25/2022] [Indexed: 05/21/2023]
Abstract
Although microRNAs (miRNAs) regulate the defence response against multiple pathogenic fungi in diverse plant species, few efforts have been devoted to deciphering the involvement of miRNA in resistance to Fusarium verticillioides, a major pathogenic fungus affecting maize production. In this study, we discovered a novel F. verticillioides-responsive miRNA designated zma-unmiR4 in maize kernels. The expression of zma-unmiR4 was significantly repressed in the resistant maize line but induced in the susceptible lines upon exposure to F. verticillioides exposure, whereas its target gene ZmGA2ox4 exhibited the opposite pattern of expression. Heterologous overexpression of zma-unmiR4 in Arabidopsis resulted in enhanced growth and compromised resistance to F. verticillioides. By contrast, transgenic plants overexpressing ZmGA2ox4 or the homologue AtGA2ox7 showed impaired growth and enhanced resistance to F. verticillioides. Moreover, zma-unmiR4-mediated suppression of AtGA2ox7 disturbed the accumulation of bioactive gibberellin (GA) in transgenic plants and perturbed the expression of a set of defence-related genes in response to F. verticillioides. Exogenous application of GA or a GA biosynthesis inhibitor modulated F. verticillioides resistance in different plants. Taken together, our results suggest that the zma-unmiR4-ZmGA2ox4 module might act as a major player in balancing growth and resistance to F. verticillioides in maize.
Collapse
Affiliation(s)
- Yufang Xu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Renjie Wang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Peipei Ma
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jiansheng Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Yan Cao
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Zijian Zhou
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Tao Li
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
| | - Jianyu Wu
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| | - Huiyong Zhang
- College of Life SciencesHenan Agricultural UniversityZhengzhouChina
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
11
|
Yu J, Qiu K, Sun W, Yang T, Wu T, Song T, Zhang J, Yao Y, Tian J. A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis. PLANT PHYSIOLOGY 2022; 189:66-83. [PMID: 35148400 PMCID: PMC9070812 DOI: 10.1093/plphys/kiac049] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 05/12/2023]
Abstract
Anthocyanin production in apple (Malus domestica) fruit and their consequent coloration can be induced by high-light treatment. The hormone ethylene is also essential for this coloration, but the regulatory relationships that link ethylene and light with anthocyanin-associated coloration are not well defined. In this study, we observed that high-light treatment of apple fruit increased anthocyanin accumulation more than moderate-light treatment did and was the main contributor of induced ethylene production and activation of anthocyanin biosynthesis. A transcriptome study of light-treated apple fruit suggested that a long noncoding RNA (lncRNA), MdLNC610, the corresponding gene of which is physically located downstream from the 1-aminocyclopropane-1-carboxylate oxygenase (ACO) ethylene biosynthesis gene MdACO1, likely affects anthocyanin biosynthesis under high-light treatment. Expression and promoter β-glucuronidase reporter analyses further showed that MdLNC610 upregulates expression of MdACO1 and so likely participates in high-light-induced ethylene biosynthesis. Overexpression of MdACO1 and MdLNC610 in apple fruit and calli indicated that a major increase in MdLNC610 expression activates MdACO1 expression, thereby causing an increase in ethylene production and anthocyanin levels. These results suggest that MdLNC610 participates in the regulation of high-light-induced anthocyanin production by functioning as a positive regulator to promote MdACO1 expression and ethylene biosynthesis. Our study provides insights into the relationship between mRNA and lncRNA networks in the ethylene biosynthetic pathway and anthocyanin accumulation in apple fruit.
Collapse
Affiliation(s)
| | | | | | - Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | | | | |
Collapse
|
12
|
Zhou Z, Zhu Y, Zhang H, Zhang R, Gao Q, Ding T, Wang H, Yan Z, Yao JL. Transcriptome analysis of transgenic apple fruit overexpressing microRNA172 reveals candidate transcription factors regulating apple fruit development at early stages. PeerJ 2022; 9:e12675. [PMID: 35036153 PMCID: PMC8710058 DOI: 10.7717/peerj.12675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 12/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background MicroRNA172 (miR172) has been proven to be critical for fruit growth, since elevated miR172 activity blocks the growth of apple (Malus x domestica Borkh.) fruit. However, it is not clear how overexpression of miR172 affects apple fruit developmental processes. Methods To answer this question, the present study, analyzed global transcriptional changes in miR172-overexpressing (miR172OX) and nongenetically modified wild-type (WT) apple fruit at two developmental stages and in different fruit tissues via RNA-seq. In addition, two cultivars, ‘Hanfu’ and ‘M9’, which have naturally fruit size variation, were included to identify miR172-dependent DEGs. qRT–PCRwas used to verify the reliability of our RNA-seq data. Results Overexpression of miR172 altered the expression levels of many cell proliferation- and cell expansion-related genes. Twenty-four libraries were generated, and 10,338 differentially expressed genes (DEGs) were detected between miR172OX and WT fruit tissues. ‘Hanfu’ and ‘M9’ are two common cultivars that bear fruit of different sizes (250 g and 75 g, respectively). Six libraries were generated, and 3,627 DEGs were detected between ‘Hanfu’ and ‘M9’. After merging the two datasets, 6,888 candidate miR172-specific DEGs were identified. The potential networks associated with fruit size triggered traits were defined among genes belonging to the families of hormone synthesis, signaling pathways, and transcription factors. Our comparative transcriptome analysis provides insights into transcriptome responses to miR172 overexpression in apple fruit and a valuable database for future studies to validate functional genes and elucidate the fruit developmental mechanisms in apple.
Collapse
Affiliation(s)
- Zhe Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Yanmin Zhu
- Tree Fruit Research Laboratory, United States Department of Agriculture, Agricultural Research Service, Wenatchee, WA, USA
| | - Hengtao Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ruiping Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Qiming Gao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Tiyu Ding
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Huan Wang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Zhenli Yan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Jia-Long Yao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China.,The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| |
Collapse
|
13
|
Li D, Wang Z, Sun S, Xiao K, Cao M, Li X, Ma C, Zhang C, Wang L, Lian H, Wang S. VvMYB15 and VvWRKY40 Positively Co-regulated Anthocyanin Biosynthesis in Grape Berries in Response to Root Restriction. FRONTIERS IN PLANT SCIENCE 2021; 12:789002. [PMID: 34956287 PMCID: PMC8695491 DOI: 10.3389/fpls.2021.789002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
In most grapevine planting regions, especially in south of China, plenty of rainfall and high water level underground are the characteristic of the area, a series of problem during fruit ripening easily caused poor color quality. Thereby affecting fruit quality, yield and economic benefits. The accumulation of anthocyanin is regulated by transcriptional regulatory factor and a series of cultivation measures, root restriction can make plants in the environment of stress and stress relief, root restriction induced the higher expression of VvMYB15 and VvWRKY40, and consistent with anthocyanin accumulation. Whether and how root restriction-inducible VvMYB15 and VvWRKY40 transcription factor regulate anthocyanin synthesis in grape berry is still unclear. In this study, we identified that the transient overexpression of VvMYB15 and VvWRKY40 alone or both in strawberry fruits and grape berries can promote anthocyanin accumulation and increase the expression level of anthocyanin biosynthetic genes, indicating VvMYB15 and VvWRKY40 play a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both VvMYB15 and VvWRKY40 specifically bind to the promoter region of VvF3'5'H and VvUFGT, and the expression of VvF3'5'H and VvUFGT is further activated through the heterodimer formation between VvMYB15 and VvWRKY40. Finally, we confirmed that VvMYB15 promoted anthocyanin accumulation by interacting with VvWRKY40 in grape berries, our findings provide insights into a mechanism involving the synergistic regulation of root restriction-dependent coloration and biosynthesis via a VvMYB15 and VvWRKY40 alone or both in grape berries.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenping Wang
- School of Agriculture and Biology, Ningxia University, Yinchuan, China
| | - Sijie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kun Xiao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Minghao Cao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangyi Li
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongli Lian
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Agro-Food Science and Technology, Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
14
|
Tang J, Gu X, Liu J, He Z. Roles of small RNAs in crop disease resistance. STRESS BIOLOGY 2021; 1:6. [PMID: 37676520 PMCID: PMC10429495 DOI: 10.1007/s44154-021-00005-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial and fungal pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
15
|
Liang Y, Zhu W, Chen S, Qian J, Li L. Genome-Wide Identification and Characterization of Small Peptides in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:695439. [PMID: 34220917 PMCID: PMC8244733 DOI: 10.3389/fpls.2021.695439] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/20/2021] [Indexed: 05/06/2023]
Abstract
Small peptides (sPeptides), <100 amino acids (aa) long, are encoded by small open reading frames (sORFs) often found in the 5' and 3' untranslated regions (or other parts) of mRNAs, in long non-coding RNAs, or transcripts from introns and intergenic regions; various sPeptides play important roles in multiple biological processes. In this study, we conducted a comprehensive study of maize (Zea mays) sPeptides using mRNA sequencing, ribosome profiling (Ribo-seq), and mass spectrometry (MS) on six tissues (each with at least two replicates). To identify maize sORFs and sPeptides from these data, we set up a robust bioinformatics pipeline and performed a genome-wide scan. This scan uncovered 9,388 sORFs encoding peptides of 2-100 aa. These sORFs showed distinct genomic features, such as different Kozak region sequences, higher specificity of translation, and high translational efficiency, compared with the canonical protein-coding genes. Furthermore, the MS data verified 2,695 sPeptides. These sPeptides perfectly discriminated all the tissues and were highly associated with their parental genes. Interestingly, the parental genes of sPeptides were significantly enriched in multiple functional gene ontology terms related to abiotic stress and development, suggesting the potential roles of sPeptides in the regulation of their parental genes. Overall, this study lays out the guidelines for genome-wide scans of sORFs and sPeptides in plants by integrating Ribo-seq and MS data and provides a more comprehensive resource of functional sPeptides in maize and gives a new perspective on the complex biological systems of plants.
Collapse
Affiliation(s)
| | | | | | | | - Lin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
16
|
Song L, Fang Y, Chen L, Wang J, Chen X. Role of non-coding RNAs in plant immunity. PLANT COMMUNICATIONS 2021; 2:100180. [PMID: 34027394 PMCID: PMC8132121 DOI: 10.1016/j.xplc.2021.100180] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/06/2023]
Abstract
Crops are exposed to attacks by various pathogens that cause substantial yield losses and severely threaten food security. To cope with pathogenic infection, crops have elaborated strategies to enhance resistance against pathogens. In addition to the role of protein-coding genes as key regulators in plant immunity, accumulating evidence has demonstrated the importance of non-coding RNAs (ncRNAs) in the plant immune response. Here, we summarize the roles and molecular mechanisms of endogenous ncRNAs, especially microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), in plant immunity. We discuss the coordination between miRNAs and small interfering RNAs (siRNAs), between lncRNAs and miRNAs or siRNAs, and between circRNAs and miRNAs in the regulation of plant immune responses. We also address the role of cross-kingdom mobile small RNAs in plant-pathogen interactions. These insights improve our understanding of the mechanisms by which ncRNAs regulate plant immunity and can promote the development of better approaches for breeding disease-resistant crops.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Yu Fang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Lin Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, Sichuan 611130, China
- Corresponding author
| |
Collapse
|
17
|
Ma C, Chen Q, Wang S, Lers A. Downregulation of GeBP-like α factor by MiR827 suggests their involvement in senescence and phosphate homeostasis. BMC Biol 2021; 19:90. [PMID: 33941183 PMCID: PMC8091714 DOI: 10.1186/s12915-021-01015-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 03/29/2021] [Indexed: 01/15/2023] Open
Abstract
Background Leaf senescence is a genetically controlled degenerative process intimately linked to phosphate homeostasis during plant development and responses to environmental conditions. Senescence is accelerated by phosphate deficiency, with recycling and mobilization of phosphate from senescing leaves serving as a major phosphate source for sink tissues. Previously, miR827 was shown to play a significant role in regulating phosphate homeostasis, and induction of its expression was also observed during Arabidopsis leaf senescence. However, whether shared mechanisms underlie potentially common regulatory roles of miR827 in both processes is not understood. Here, we dissect the regulatory machinery downstream of miR827. Results Overexpression or inhibited expression of miR827 led to an acceleration or delay in the progress of senescence, respectively. The transcriptional regulator GLABRA1 enhancer-binding protein (GeBP)-like (GPLα) gene was identified as a possible target of miR827. GPLα expression was elevated in miR827-suppressed lines and reduced in miR827-overexpressing lines. Furthermore, heterologous co-expression of pre-miR827 in tobacco leaves reduced GPLα transcript levels, but this effect was eliminated when pre-miR827 recognition sites in GPLα were mutated. GPLα expression is induced during senescence and its inhibition or overexpression resulted in senescence acceleration and inhibition, accordingly. Furthermore, GPLα expression was induced by phosphate deficiency, and overexpression of GPLα led to reduced expression of phosphate transporter 1 genes, lower leaf phosphate content, and related root morphology. The encoded GPLα protein was localized to the nucleus. Conclusions We suggest that MiR827 and the transcription factor GPLα may be functionally involved in senescence and phosphate homeostasis, revealing a potential new role for miR827 and the function of the previously unstudied GPLα. The close interactions between senescence and phosphate homeostasis are further emphasized by the functional involvement of the two regulatory components, miR827 and GPLα, in both processes and the interactions between them.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel
| | - Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Amnon Lers
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, HaMaccabim Road 68, 7505101, Rishon LeZion, Israel.
| |
Collapse
|
18
|
Yang X, Zhang L, Yang Y, Schmid M, Wang Y. miRNA Mediated Regulation and Interaction between Plants and Pathogens. Int J Mol Sci 2021; 22:ijms22062913. [PMID: 33805611 PMCID: PMC7999934 DOI: 10.3390/ijms22062913] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 11/16/2022] Open
Abstract
Plants have evolved diverse molecular mechanisms that enable them to respond to a wide range of pathogens. It has become clear that microRNAs, a class of short single-stranded RNA molecules that regulate gene expression at the transcriptional or post-translational level, play a crucial role in coordinating plant-pathogen interactions. Specifically, miRNAs have been shown to be involved in the regulation of phytohormone signals, reactive oxygen species, and NBS-LRR gene expression, thereby modulating the arms race between hosts and pathogens. Adding another level of complexity, it has recently been shown that specific lncRNAs (ceRNAs) can act as decoys that interact with and modulate the activity of miRNAs. Here we review recent findings regarding the roles of miRNA in plant defense, with a focus on the regulatory modes of miRNAs and their possible applications in breeding pathogen-resistance plants including crops and trees. Special emphasis is placed on discussing the role of miRNA in the arms race between hosts and pathogens, and the interaction between disease-related miRNAs and lncRNAs.
Collapse
Affiliation(s)
- Xiaoqian Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lichun Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Markus Schmid
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | - Yanwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; (X.Y.); (L.Z.); (Y.Y.); (M.S.)
- National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62338105
| |
Collapse
|
19
|
Arora K, Rai AK, Devanna BN, Dubey H, Narula A, Sharma TR. Deciphering the role of microRNAs during Pi54 gene mediated Magnaporthe oryzae resistance response in rice. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:633-647. [PMID: 33854289 PMCID: PMC7981355 DOI: 10.1007/s12298-021-00960-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 05/08/2023]
Abstract
The broad-spectrum resistance gene Pi54 confers resistance to multiple isolates of Magnaporthe oryzae in rice. In order to decipher the molecular mechanism underlying the Pi54 mediated resistance in rice line Taipei309 Pi54 (carrying Pi54), miRNAome study was performed at 24 h post-inoculation (hpi) with M. oryzae. A total of 222 known miRNAs representing 101 miRNA families were found in this study. Of these, 29 and 24 miRNAs were respectively up- and down-regulated in the resistant Taipei309 Pi54 . Defence response (DR) genes, like, NBSGO35, and OsWAK129b, and genes related to transcription factors were up-regulated in Taipei309 Pi54 line. The vast array of miRNA candidates identified here are miR159c, miR167c, miR2100, miR2118o, miR2118l, miR319a, miR393, miR395l, miR397a, miR397b, miR398, miR439g, miR531b, miR812f, and miR815c, and they manifest their role in balancing the interplay between various DR genes during Pi54 mediated resistance. We also validated miRNA/target gene pairs involved in hormone signalling, and cross-talk among hormone pathways regulating the rice immunity. This study suggests that the Pi54 gene mediated blast resistance is influenced by several microRNAs through PTI and ETI components in the rice line Taipei309 Pi54 , leading to incompatible host-pathogen interaction.
Collapse
Affiliation(s)
- Kirti Arora
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Amit Kumar Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - B. N. Devanna
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- ICAR-National Rice Research Institute, Cuttack, 753006 India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062 India
| | - Tilak Raj Sharma
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012 India
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110 001 India
| |
Collapse
|
20
|
Waheed S, Anwar M, Saleem MA, Wu J, Tayyab M, Hu Z. The Critical Role of Small RNAs in Regulating Plant Innate Immunity. Biomolecules 2021; 11:biom11020184. [PMID: 33572741 PMCID: PMC7912340 DOI: 10.3390/biom11020184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
Plants, due to their sessile nature, have an innate immune system that helps them to defend against different pathogen infections. The defense response of plants is composed of a highly regulated and complex molecular network, involving the extensive reprogramming of gene expression during the presence of pathogenic molecular signatures. Plants attain proper defense against pathogens through the transcriptional regulation of genes encoding defense regulatory proteins and hormone signaling pathways. Small RNAs are emerging as versatile regulators of plant development and act in different tiers of plant immunity, including pathogen-triggered immunity (PTI) and effector-triggered immunity (ETI). The versatile regulatory functions of small RNAs in plant growth and development and response to biotic and abiotic stresses have been widely studied in recent years. However, available information regarding the contribution of small RNAs in plant immunity against pathogens is more limited. This review article will focus on the role of small RNAs in innate immunity in plants.
Collapse
Affiliation(s)
- Saquib Waheed
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Correspondence: (M.A.); (Z.H.)
| | - Muhammad Asif Saleem
- Department of Plant Breeding and Genetics, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Jinsong Wu
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Bioresource & Eco-Environmental Science, Longhua Innovation Institute for Biotechnology, Shenzhen University, Shenzhen 518060, China;
- Correspondence: (M.A.); (Z.H.)
| |
Collapse
|
21
|
Pompili V, Piazza S, Li M, Varotto C, Malnoy M. Transcriptional regulation of MdmiR285N microRNA in apple ( Malus x domestica) and the heterologous plant system Arabidopsis thaliana. HORTICULTURE RESEARCH 2020; 7:99. [PMID: 32637127 PMCID: PMC7326934 DOI: 10.1038/s41438-020-0321-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Malus x domestica microRNA MdmiR285N is a potential key regulator of plant immunity, as it has been predicted to target 35 RNA transcripts coding for different disease resistance proteins involved in plant defense to pathogens. In this study, the promoter region of MdmiR285N was isolated from the apple genome and analyzed in silico to detect potential regulatory regions controlling its transcription. A complex network of putative regulatory elements involved in plant growth and development, and in response to different hormones and stress conditions, was identified. Activity of the β-Glucoronidase (GUS) reporter gene driven by the promoter of MdmiR285N was examined in transgenic apple, demonstrating that MdmiR285N was expressed during the vegetative growth phase. Similarly, in transgenic Arabidopsis thaliana, spatial and temporal patterns of GUS expression revealed that MdmiR285N was differentially regulated during seed germination, vegetative phase change, and reproductive development. To elucidate the role of MdmiR285N in plant immunity, MdmiR285N expression in wild-type apple plants and GUS activity in transgenic apple and Arabidopsis thaliana plants were monitored in response to Erwinia amylovora and Pseudomonas syringae pv. Tomato DC3000. A significant decrease of MdmiR285N levels and GUS expression was observed during host-pathogen infections. Overall, these data suggest that MdmiR285N is involved in the biotic stress response, plant growth, and reproductive development.
Collapse
Affiliation(s)
- Valerio Pompili
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, Università degli Studi di Udine, Via delle Scienze 206, Udine, 33100 Italy
| | - Stefano Piazza
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Mingai Li
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Claudio Varotto
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| | - Mickael Malnoy
- Department of Genomics and Biology of Fruit Crops, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, San Michele all’Adige, 38010 Italy
| |
Collapse
|
22
|
Yu X, Gong H, Cao L, Hou Y, Qu S. MicroRNA397b negatively regulates resistance of Malus hupehensis to Botryosphaeria dothidea by modulating MhLAC7 involved in lignin biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110390. [PMID: 32005395 DOI: 10.1016/j.plantsci.2019.110390] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/20/2019] [Accepted: 12/23/2019] [Indexed: 05/23/2023]
Abstract
MicroRNA (miRNA)-mediated post-transcriptional regulation plays a vital role in the response of plants to pathogens. Although the microRNA397 family has been implicated in physiological processes as an important regulator, little is known about its function in the resistance of plants to pathogens. Here, Malus hupehensis miR397, which was induced by Botryosphaeria dothidea infection, was identified to directly target M. hupehensis Laccase7 (MhLAC7). The expression analysis of mature Mh-miR397 and MhLAC7 revealed their partly opposite expression patterns. The coexpression of Mh-miR397b in MhLAC7 overexpressing Nicotiana benthamiana suppressed the accumulation of exogenous MhLAC7 and endogenous NbLAC7, which led to decreased lignin content and reduced plant resistance to Botrytis cinerea. As reflected by increasing disease severity and pathogen growth, overexpression of miR397b in both the resistant M. hupehensis and susceptible M. domestica 'Gala' resulted in an increased sensitivity to B. dothidea infection, owing to reduced LAC7 expression and lignin content; however, the inhibition of miR397 had opposite effects. MicroRNA397 functions as a negative regulator in the resistance of Malus to B. dothidea by modulating the LAC7 expression and lignin biosynthesis.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Hongyong Gong
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, PR China.
| |
Collapse
|
23
|
Kajal M, Kaushal N, Kaur R, Singh K. Identification of novel microRNAs and their targets in Chlorophytum borivilianum by small RNA and degradome sequencing. Noncoding RNA Res 2020; 4:141-154. [PMID: 32072082 PMCID: PMC7012778 DOI: 10.1016/j.ncrna.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 11/04/2022] Open
Abstract
Plant specific miRNAs (Novel miRNAs) are well known to perform distinctive functions in biological processes. Identification of new miRNAs is necessary to understand their gene regulation. Degradome provides an opportunity to explore the miRNA functions by comparing the miRNA population and their degraded products. In the present study, Small RNA sequencing data was used to identify novel miRNAs. Further, degradome sequencing was carried out to identify miRNAs targets in the plant, Chlorophytum borivilianum. The present study supplemented 40 more novel miRNAs correlating degradome data with smallRNAome. Novel miRNAs, complementary to mRNA partial sequences obtained from degradome sequencing were actually targeting the later. A big pool of miRNA was established by using Oryza sativa, Arabidopsis thaliana, Populus trichocarpa, Ricinus communis, and Vitis vinifera genomic data. Targets were identified for novel miRNAs and total 109 targets were predicted. BLAST2GO analysis elaborate about localization of novel miRNAs’ targets and their corresponding KEGG (Kyoto Encyclopedia for Genes and Genomes) pathways. Identified targets were annotated and were found to be involved in significant biological processes like Nitrogen metabolism, Pyruvate metabolism, Citrate cycle (TCA cycle), photosynthesis, and Glycolysis/Gluconeogenesis. The present study provides an overall view of the miRNA regulation in multiple metabolic pathways that are involved in plant growth, pathogen resistance and secondary metabolism of C. borivilianum.
Collapse
Key Words
- AGO, Argonaute
- BLAST, Basic local Alignment Search Tool
- BP, Biological Process
- CC, Cellular Component
- Chlorophytum borivilianum
- Degradome
- FAO, Food and Agriculture Organization of the United Nations
- GO, Gene Ontology
- IL, Interleukin
- Illumina sequencing
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MCF-7, PC3, HCT-116, Types of cell lines
- MEP, 2-C-methyl-Derythritol-4-phosphate pathway
- MF, Molecular Function
- MFEs, Minimum Fold Energies
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
- MVA, Mevalonic Acid Pathway
- RdDM, RNA-directed DNA methylation
- SRA
- SRA, Sequencing Read Archieve
- TNF, Tumor Necrosis Factor
- iNOS, Inducible Nitric Oxide Synthase
- mgmL−1, milligram per millilitre
- microRNAs
- nt, nucleotide
Collapse
Affiliation(s)
- Monika Kajal
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Nishant Kaushal
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Ravneet Kaur
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| | - Kashmir Singh
- Department of Biotechnology, Panjab University, BMS Block-I, Sector 25, Chandigarh, 160014, India
| |
Collapse
|
24
|
Identification of Appropriate Reference Genes for Normalizing miRNA Expression in Citrus Infected by Xanthomonas citri subsp. citri. Genes (Basel) 2019; 11:genes11010017. [PMID: 31877985 PMCID: PMC7017248 DOI: 10.3390/genes11010017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNA molecules that regulate gene expression at the posttranscriptional level. Reverse transcription-quantitative PCR (RT-qPCR) is one of the most common methods used for quantification of miRNA expression, and the levels of expression are normalized by comparing with reference genes. Thus, the selection of reference genes is critically important for accurate quantification. The present study was intended to identify appropriate miRNA reference genes for normalizing the level of miRNA expression in Citrus sinensis L. Osbeck and Citrus reticulata Blanco infected by Xanthomonas citri subsp. citri, which caused citrus canker disease. Five algorithms (Delta Ct, geNorm, NormFinder, BestKeeper and RefFinder) were used for screening reference genes, and two quantification approaches, poly(A) extension RT-qPCR and stem-loop RT-qPCR, were used to determine the most appropriate method for detecting expression patterns of miRNA. An overall comprehensive ranking output derived from the multi-algorithms showed that poly(A)-tailed miR162-3p/miR472 were the best reference gene combination for miRNA RT-qPCR normalization in citrus canker research. Candidate reference gene expression profiles determined by poly(A) RT-qPCR were more consistent in the two citrus species. To the best of our knowledge, this is the first systematic comparison of two miRNA quantification methods for evaluating reference genes. These results highlight the importance of rigorously assessing candidate reference genes and clarify some contradictory results in miRNA research on citrus.
Collapse
|
25
|
Yang T, Ma H, Zhang J, Wu T, Song T, Tian J, Yao Y. Systematic identification of long noncoding RNAs expressed during light-induced anthocyanin accumulation in apple fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:572-590. [PMID: 31344284 DOI: 10.1111/tpj.14470] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 06/27/2019] [Accepted: 07/09/2019] [Indexed: 05/23/2023]
Abstract
Anthocyanin pigments contribute to the red color of apple (Malus × domestica) fruit and have a major influence on their ornamental, dietary and market value. In this study, we investigated the potential role of long noncoding RNAs (lncRNAs) in anthocyanin biosynthesis. RNA-seq analysis of apple peels from the 'Red Fuji' cultivar during light-induced rapid anthocyanin accumulation revealed 5297 putative lncRNAs. Differential expression analysis further showed that lncRNAs were induced during light treatment and were involved in photosynthesis. Using the miRNA-lncRNA-mRNA network and endogenous target mimic (eTM) analysis, we predicted that two differentially expressed lncRNAs, MLNC3.2 and MLNC4.6, were potential eTMs for miRNA156a and promoted the expression of the SPL2-like and SPL33 transcription factors. Transient expression in apple fruit and stable transformation of apple callus showed that overexpression of the eTMs and SPLs promoted anthocyanin accumulation, with the opposite results in eTM and SPL-silenced fruit. Silencing or overexpressing of miR156a also affected the expression of the identified eTMs and SPLs. These results indicated that MLNC3.2 and MLNC4.6 function as eTMs for miR156a and prevent cleavage of SPL2-like and SPL33 by miR156a during light-induced anthocyanin biosynthesis. Our study provides fundamental insights into lncRNA involvement in the anthocyanin biosynthetic pathway in apple fruit.
Collapse
Affiliation(s)
- Tuo Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Huaying Ma
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Tingting Song
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- National Demonstration Center for Experimental Plant Production Education (Beijing University of Agriculture), Beijing, China
| |
Collapse
|
26
|
Zheng L, Yang Y, Gao C, Ma J, Shah K, Zhang D, Zhao C, Xing L, Han M, An N, Ren X. Transcriptome Analysis Reveals New Insights into MdBAK1-Mediated Plant Growth in Malus domestica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9757-9771. [PMID: 31373492 DOI: 10.1021/acs.jafc.9b02467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BAK1 effects on plant stress responses have been well documented, but little is known regarding its effects on plant growth. In this study, we functionally characterized MdBAK1. Overexpressing MdBAK1 in Arabidopsis thaliana and apple trees promoted growth. Longitudinal stem cells were longer in transgenic plants than in wild-type plants. The size and number of cells and the area of the transverse stem were greater in the transgenic lines than in the wild-type plants. Moreover, transgenic A. thaliana and apple plants were more sensitive to an exogenous brassinosteroid. A transcriptome analysis of wild-type and transgenic apple revealed that MdBAK1 overexpression activated the brassinosteroid and ethylene signals, xylem production, and stress responses. Trend and Venn analyses indicated that carbohydrate, energy, and hormone metabolic activities were greater in transgenic plants during different periods. Moreover, a weighted gene coexpression network analysis proved that carbohydrate, hormone, and xylem metabolism as well as cell growth may be critical for MdBAK1-mediated apple tree growth and development. Compared with the corresponding levels in wild-type plants, the endogenous brassinosteroid, cytokinin, starch, sucrose, trehalose, glucose, fructose, and total sugar contents were considerably different in transgenic plants. Our results imply that MdBAK1 helps to regulate the growth of apple tree through the above-mentioned pathways. These findings provide new information regarding the effects of MdBAK1 onplant growth and development.
Collapse
|
27
|
Chen Q, Deng B, Gao J, Zhao Z, Chen Z, Song S, Wang L, Zhao L, Xu W, Zhang C, Wang S, Ma C. Comparative Analysis of miRNA Abundance Revealed the Function of Vvi-miR828 in Fruit Coloring in Root Restriction Cultivation Grapevine ( Vitis vinifera L.). Int J Mol Sci 2019; 20:ijms20164058. [PMID: 31434233 PMCID: PMC6720769 DOI: 10.3390/ijms20164058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 11/22/2022] Open
Abstract
Root restriction cultivation leads to early maturation and quality improvement, especially in the anthocyanin content in grapevine. However, the molecular mechanisms that underlie these changes have not been thoroughly elucidated. In this study, four small RNA libraries were constructed, which included the green soft stage (GS) and ripe stage (RS) of ‘Muscat’ (Vitis vinifera L.) grape berries that were grown under root restriction (RR) and in traditional cultivation (no root restriction, CK). A total of 162 known miRNAs and 14 putative novel miRNAs were detected from the four small RNA libraries by high-throughput sequencing. An analysis of differentially expressed miRNAs (DEMs) revealed that 13 miRNAs exhibited significant differences in expression between RR and CK at the GS and RS stages, respectively. For different developmental stages of fruit, 23 and 34 miRNAs showed expression differences between the GS and RS stages in RR and CK, respectively. The expression patterns of the eight DEMs and their targets were verified by qRT-PCR, and the expression profiles of target genes were confirmed to be complementary to the corresponding miRNAs in RR and CK. The function of Vvi-miR828, which showed the down regulated expression in the RS stage under root restriction, was identified by gene transformation in Arabidopsis. The anthocyanin content significantly decreased in transgenic lines, which indicates the regulatory capacity of Vvi-miR828 in fruit coloration. The miRNA expression pattern comparison between RR and CK might provide a means of unraveling the miRNA-mediated molecular process regulating grape berry development under root restricted cultivation.
Collapse
Affiliation(s)
- Qiuju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bohan Deng
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Gao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyang Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zili Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Liping Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Agro-Food Science and Technology/Key Laboratory of Agro-Products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
28
|
Liu X, Chen M, Zhou X, Cao Z. Identification of novel miRNAs and their target genes from Populus szechuanica infected with Melampsora larici-populina. Mol Biol Rep 2019; 46:3083-3092. [PMID: 30859446 DOI: 10.1007/s11033-019-04746-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/05/2019] [Indexed: 01/21/2023]
Abstract
Two novel miRNAs were selected from a pre-constructed RNA library of Populus szechuanica infected with the foliar rust fungus Melampsora larici-populina in order to detect the genes regulated as targets of the miRNAs novel_mir_11 and novel_mir_357. The novel miRNAs were identified from P. szechuanica using stem-loop methods and their precursors were able to fold into a complete stem loop structure. The predicted target genes of the novel miRNAs were verified with RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-5'RACE). The full-length sequences of target genes, RPM1 and RPS2/5, in P. szechuanica were obtained through rapid amplification of cDNA ends (RACE) and officially named PsRPM1 and PsRPS2/5. These genes contain nucleotide binding site-leucine-rich repeats (NBS-LRR) domains typical of resistance genes. The expression levels of miRNAs and their target genes in different periods post infection were analysed with quantitative real-time PCR (qRT-PCR). After infection with the foliar rust fungus, the expression levels of the novel miRNAs and their target genes were dynamic. Both novel_mir_11 and novel_mir_357 negatively regulated the expression of their target genes. In this study, the regulatory effects of two novel miRNAs through their target genes were characterized to provide further mechanistic information regarding the interaction between Populus and a foliar rust fungus. Results of this study improve our understanding of the defence response mechanisms of Populus and will stimulate future work to characterize strategies to prevent and control Populus diseases.
Collapse
Affiliation(s)
- Xin Liu
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Chen
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xue Zhou
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhimin Cao
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
29
|
Zhang Q, Zhang Y, Wang S, Hao L, Wang S, Xu C, Jiang F, Li T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. PLANTA 2019; 249:693-707. [PMID: 30368557 DOI: 10.1007/s00425-018-3027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Using a genome-wide analysis of miRNAs in 'Yali' pear (Pyrus bretschneideri) via the next-generation high-throughput sequencing of small RNAs with a bioinformatics analysis, we found that pbr-miR156, pbr-miR164, pbr-miR399, and pbr-miR482 and their target genes function in viral defense in 'Duli' and 'Hongbaoshi'. pbr-miR160, pbr-miR168, pbr-miR171, and pbr-miR319 and their targets function in auxin signaling pathways in 'Zhongai 4' and 'Zhongai 5'. Successful fruit production in pear (Pyrus spp.) depends on the use of optimal combinations of rootstocks and scions. Deciphering plant-pathogen defense mechanisms and hormone signaling pathways is an important step towards developing pear rootstocks and varieties with improved qualities. In the current study, we combined next-generation sequencing of small RNAs with a bioinformatics analysis to systematically identify and characterize 298 miRNAs in the pear scion cultivar 'Yali' (Pyrus bretschneideri). We also analyzed miRNAs in three rootstock varieties ('Duli', 'Zhongai 4', and 'Zhongai 5') and one scion cultivar ('Hongbaoshi'). We found that pbr-miR156, pbr-miR164, pbr-miR399, and pbr-miR482 are induced following infection with the pear virus Apple stem pitting virus (ASPV), and identified their target genes (pbRPS6, pbNAC, pbTLR, and pbRX-CC, respectively), which participate in viral defense pathways in 'Duli' and 'Hongbaoshi'. Furthermore, we identified pbr-miR160, pbr-miR168, pbr-miR171, and pbr-miR319, and found that the production of these miRNAs was suppressed under low levels of synthetic auxin. The targets of these miRNAs (pbARF, pbAEC, pbSCL, and pbTCP4) respond to auxin signaling pathways in 'Zhongai 4' and 'Zhongai 5'. Our results lay the foundation for breeding improved pear cultivars.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
30
|
Rose LE, Overdijk EJR, van Damme M. Small RNA molecules and their role in plant disease. EUROPEAN JOURNAL OF PLANT PATHOLOGY 2019; 153:1-14. [PMID: 30880875 PMCID: PMC6394340 DOI: 10.1007/s10658-018-01614-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 05/04/2023]
Abstract
All plant species are subject to disease. Plant diseases are caused by parasites, e.g. viruses, bacteria, oomycetes, parasitic plants, fungi, or nematodes. In all organisms, gene expression is tightly regulated and underpins essential functions and physiology. The coordination and regulation of both host and pathogen gene expression is essential for pathogens to infect and cause disease. One mode of gene regulation is RNA silencing. This biological process is widespread in the natural world, present in plants, animals and several pathogens. In RNA silencing, small (20-40 nucleotides) non-coding RNAs (small-RNAs, sRNAs) accumulate and regulate gene expression transcriptionally or post-transcriptionally in a sequence-specific manner. Regulation of sRNA molecules provides a fast mode to alter gene activity of multiple gene transcripts. RNA silencing is an ancient mechanism that protects the most sensitive part of an organism: its genetic code. sRNA molecules emerged as regulators of plant development, growth and plant immunity. sRNA based RNA silencing functions both within and between organisms. Here we present the described sRNAs from plants and pathogens and discuss how they regulate host immunity and pathogen virulence. We speculate on how sRNA molecules can be exploited to develop disease resistant plants. Finally, the activity of sRNA molecules can be prevented by proteins that suppress RNA silencing. This counter silencing response completes the dialog between plants and pathogens controlling plant disease or resistance outcome on the RNA (controlling gene expression) and protein level.
Collapse
Affiliation(s)
- Laura E. Rose
- Institut für Populationsgenetik, Heinrich-Heine-Universität, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Elysa J. R. Overdijk
- Laboratory of Phytopathology, Wageningen University, P.O. Box 16, Wageningen, 6700 AA The Netherlands
- Laboratory of Cell Biology, Wageningen University, P.O. Box 633, Wageningen, 6700 AP The Netherlands
| | - Mireille van Damme
- Laboratory of Phytopathology, Wageningen University, P.O. Box 16, Wageningen, 6700 AA The Netherlands
- Keygene N.V, Agro Business Park 90, 6708 PW Wageningen, The Netherlands
| |
Collapse
|
31
|
Niu C, Li H, Jiang L, Yan M, Li C, Geng D, Xie Y, Yan Y, Shen X, Chen P, Dong J, Ma F, Guan Q. Genome-wide identification of drought-responsive microRNAs in two sets of Malus from interspecific hybrid progenies. HORTICULTURE RESEARCH 2019; 6:75. [PMID: 31231533 PMCID: PMC6555824 DOI: 10.1038/s41438-019-0157-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 02/28/2019] [Accepted: 04/05/2019] [Indexed: 05/12/2023]
Abstract
Drought stress can negatively impact apple fruit quality and yield. Apple microRNAs (miRNAs) participate in apple tree and fruit development, as well as in biotic stress tolerance; however, it is largely unknown whether these molecules are involved in the drought response. To identify drought-responsive miRNAs in Malus, we first examined the drought stress tolerance of ten F1 progenies of R3 (M. × domestica) × M. sieversii. We performed Illumina sequencing on pooled total RNA from both drought-tolerant and drought-sensitive plants. The sequencing results identified a total of 206 known miRNAs and 253 candidate novel miRNAs from drought-tolerant plants and drought-sensitive plants under control or drought conditions. We identified 67 miRNAs that were differentially expressed in drought-tolerant plants compared with drought-sensitive plants under drought conditions. Under drought stress, 61 and 35 miRNAs were differentially expressed in drought-tolerant and drought-sensitive plants, respectively. We determined the expression levels of seven out of eight miRNAs by stem-loop qPCR analysis. We also predicted the target genes of all differentially expressed miRNAs and identified the expression of some genes. Gene Ontology analyses indicated that the target genes were mainly involved in stimulus response and cellular and metabolic processes. Finally, we confirmed roles of two miRNAs in apple response to mannitol. Our results reveal candidate miRNAs and their associated mRNAs that could be targeted for improving drought tolerance in Malus species, thus providing a foundation for understanding the molecular networks involved in the response of apple trees to drought stress.
Collapse
Affiliation(s)
- Chundong Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Haiyan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Lijuan Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Mingjia Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Dali Geng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yinpeng Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Yan Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Xiaoxia Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Pengxiang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Jun Dong
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100 China
| |
Collapse
|
32
|
Zhang Y, Zhang Q, Hao L, Wang S, Wang S, Zhang W, Xu C, Yu Y, Li T. A novel miRNA negatively regulates resistance to Glomerella leaf spot by suppressing expression of an NBS gene in apple. HORTICULTURE RESEARCH 2019; 6:93. [PMID: 31645951 PMCID: PMC6804642 DOI: 10.1038/s41438-019-0175-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 06/15/2019] [Indexed: 05/07/2023]
Abstract
Glomerella leaf spot (GLS) of apple (Malus×domestica Borkh.), caused by Glomerella cingulata, is an emerging fungal epidemic threatening the apple industry. Little is known about the molecular mechanism underlying resistance to this devastating fungus. In this study, high-throughput sequencing technology was used to identify microRNAs (miRNAs) involved in GLS resistance in apple. We focused on miRNAs that target genes related to disease and found that expression of a novel miRNA, Md-miRln20, was higher in susceptible apple varieties than in resistant ones. Furthermore, its target gene Md-TN1-GLS exhibited the opposite expression pattern, which suggested that the expression levels of Md-miRln20 and its target gene are closely related to apple resistance to GLS. Furthermore, downregulation of Md-miRln20 in susceptible apple leaves resulted in upregulation of Md-TN1-GLS and reduced the disease incidence. Conversely, overexpression of Md-miRln20 in resistant apple leaves suppressed Md-TN1-GLS expression, with increased disease incidence. We demonstrated that Md-miRln20 negatively regulates resistance to GLS by suppressing Md-TN1-GLS expression and showed, for the first time, a crucial role for miRNA in response to GLS in apple.
Collapse
Affiliation(s)
- Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Yunfei Yu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
33
|
Song S, Xu Y, Huang D, Ashraf MA, Li J, Hu W, Jin Z, Zeng C, Tang F, Xu B, Zeng H, Li Y, Xie J. Identification and characterization of miRNA169 family members in banana ( Musa acuminata L.) that respond to fusarium oxysporum f. sp. cubense infection in banana cultivars. PeerJ 2018; 6:e6209. [PMID: 30595993 PMCID: PMC6305118 DOI: 10.7717/peerj.6209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/04/2018] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) play an important role in plant resistance to pathogen infections. However, little is known about the role of miRNAs in banana Fusarium wilt, which is the most economically devastating disease in banana production. In the present study, we identified and characterized a total of 18 miR169 family members in banana (Musa acuminata L.) based on small RNA sequencing. The banana miR169 family clustered into two groups based on miRNA evolutionary analysis. Multiple sequence alignment indicated a high degree of sequence conservation in miRNA169 family members across 28 plant species. Computational target prediction algorithms were used to identify 25 targets of miR169 family members in banana. These targets were enriched in various metabolic pathways that include the following molecules: glycine, serine, threonine, pentose, glycerolipids, nucleotide sugars, starch, and sucrose. Through miRNA transcriptomic analysis, we found that ma-miR169a and ma-miR169b displayed high expression levels, whereas the other 16 ma-miR169 members exhibited low expression in the HG and Baxi banana cultivars. Further experiments indicate that there were negative relationships between ma-miR169a, ma-miR169b and their targets basing on their expression levels to Foc4 (Fusarium oxysporum f. sp. cubense tropical race 4) infection in resistant cultivars. But they were low expressed in susceptive cultivars. These results suggested that the expression levels of ma-miR169a and ma-miR169b were consistent with the resistance degree of the banana cultivars to Foc4. The analysis presented here constitutes a starting point to understand ma-miR169-mediated Fusarium wilt resistance at the transcriptional level in banana and predicts possible candidate targets for the genetic improvement of banana resistance to Foc4.
Collapse
Affiliation(s)
- Shun Song
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Xu
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dongmei Huang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Muhammad Aleem Ashraf
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.,Department of Plant Breeding and Genetics, University College of Agriculture and Environmental Sciences, The Islamia University of Bahawalpur, Baghdad-Ul-Jadeed Campus, Bahawalpur, Pakistan
| | - Jingyang Li
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Zhiqiang Jin
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Changying Zeng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Fenling Tang
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Biyu Xu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Huicai Zeng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yujia Li
- Key Laboratory of Genetic Improvement of Bananas, Hainan Province, Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
34
|
Zheng L, Zhao C, Mao J, Song C, Ma J, Zhang D, Han M, An N. Genome-wide identification and expression analysis of brassinosteroid biosynthesis and metabolism genes regulating apple tree shoot and lateral root growth. JOURNAL OF PLANT PHYSIOLOGY 2018; 231:68-85. [PMID: 30223145 DOI: 10.1016/j.jplph.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/04/2018] [Accepted: 09/05/2018] [Indexed: 05/21/2023]
Abstract
In plants, brassinosteroid biosynthesis and metabolism genes affect endogenous brassinosteroid metabolic processes as well as stem and root growth. However, there is little information available regarding these genes in apple. In this study, 22 brassinosteroid biosynthesis and metabolism genes were identified in apple (Malus domestica). These genes were named according to their chromosomal locations and the Arabidopsis thaliana homologs. Their conserved characteristic domains, evolutionary relationships, syntenic relationships, chemical characteristics, gene/protein structures, interactions among the encoded proteins, promoter sequences, and functions were investigated. These 22 genes were clustered with their A. thaliana homologs based on bioinformatics analyses, which suggested they are functionally similar in apple and A. thaliana. Tissue-specific expression levels revealed that most of these genes are important for stem growth and development, while several of these genes affect lateral root formation. The transcription patterns of these genes in shoot tips were investigated following diverse treatments [brassinosteroid (shoot tips and roots), brassinazole, auxin, and temperature]. Gene expression levels were also examined in different grafting combinations ('Nagafu No. 2'/Malling 9 and 'Nagafu No. 2'/'Nagafu No. 2') and shoot varieties ('Yanfu No. 6' and 'Nagafu No. 2'). The results indicated that these genes may be involved in apple stem and root growth. The comprehensive genome-wide analysis of brassinosteroid biosynthesis and metabolism genes presented herein may be useful for breeding new apple cultivars with increased vigor. The data also represent a rich genetic resource for future apple gene functional investigations that may have implications for the genetic improvement of apple tree species.
Collapse
Affiliation(s)
- Liwei Zheng
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Caide Zhao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiangping Mao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunhui Song
- College of Horticulture, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
35
|
Ma C, Yang J, Cheng Q, Mao A, Zhang J, Wang S, Weng Y, Wen C. Comparative analysis of miRNA and mRNA abundance in determinate cucumber by high-throughput sequencing. PLoS One 2018; 13:e0190691. [PMID: 29304061 PMCID: PMC5755913 DOI: 10.1371/journal.pone.0190691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022] Open
Abstract
Determinate cucumber is a type of short vines, fewer nodes, and terminal flowers, it is suitable for high-density planting and available harvesting in field cultivation, whereas the indeterminate cucumber is preferred to cultivate in greenhouses. However, many biotic or abiotic stresses could lead indeterminate cucumber to be determinate in greenhouse cultivation, which may decrease yield and fruit quality. Therefore, it is urgent and essential to investigate the key factors forming determinate and terminal flowering in cucumber. In this study, two close background inbred lines were selected and conducted the miRNA and mRNA high throughput sequencing. Interestingly, ethylene-associated miRNAs and mRNAs were intensively obtained, indicating that the plant hormone ethylene is a key factor impacting determinate and terminal flowering in cucumber. The ethylene metabolites analysis showed that significant higher ethylene was observed in determinate line than that in the indeterminate line. The RT-qPCR validation of ethylene related miRNAs Cas-miR172, Cas-miR396, and Cas-miR414 and their target mRNAs showed a significant negative correlation. These data suggested that ethylene-associated miRNAs might affect determinate and terminal flower phenotypes by regulating their target genes expression. This study not only provides a potential molecular mechanism for determinate formation in cucumber but also establishes a method to demonstrate important physiological processes through the comprehensive association of miRNA and mRNA high-throughput sequencing.
Collapse
Affiliation(s)
- Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Yang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Qing Cheng
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- College of Horticulture, China Agricultural University, Beijing, China
| | - Aijun Mao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Jian Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
| | - Shiping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Center for Viticulture and Enology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Institute of Agro-food Science and Technology, Key Laboratory of Agro-products Processing Technology of Shandong, Shandong Academy of Agricultural Sciences, Jinan, People's Republic of China
| | - Yiqun Weng
- Horticulture Department, University of Wisconsin, Madison WI, United States of America
- USDA-ARS Vegetable Crops Research Unit, Madison, WI, United States of America
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, National Engineering Research Center for Vegetables, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing, China
- * E-mail:
| |
Collapse
|
36
|
Chandran V, Wang H, Gao F, Cao XL, Chen YP, Li GB, Zhu Y, Yang XM, Zhang LL, Zhao ZX, Zhao JH, Wang YG, Li S, Fan J, Li Y, Zhao JQ, Li SQ, Wang WM. miR396- OsGRFs Module Balances Growth and Rice Blast Disease-Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:1999. [PMID: 30693011 PMCID: PMC6339958 DOI: 10.3389/fpls.2018.01999] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/24/2018] [Indexed: 05/18/2023]
Abstract
Fitness cost is a common phenomenon in rice blast disease-resistance breeding. MiR396 is a highly conserved microRNA (miRNA) family targeting Growth Regulating Factor (OsGRF) genes. Mutation at the target site of miR396 in certain OsGRF gene or blocking miR396 expression leads to increased grain yield. Here we demonstrated that fitness cost can be trade-off in miR396-OsGRFs module via balancing growth and immunity against the blast fungus. The accumulation of miR396 isoforms was significantly increased in a susceptible accession, but fluctuated in a resistant accession upon infection of Magnaporthe oryzae. The transgenic lines over-expressing different miR396 isoforms were highly susceptible to M. oryzae. In contrast, overexpressing target mimicry of miR396 to block its function led to enhanced resistance to M. oryzae in addition to improved yield traits. Moreover, transgenic plants overexpressing OsGRF6, OsGRF7, OsGRF8, and OsGRF9 exhibited enhanced resistance to M. oryzae, but showed different alteration of growth. While overexpression of OsGRF7 led to defects in growth, overexpression of OsGRF6, OsGRF8, and OsGRF9 resulted in better or no significant change of yield traits. Collectively, our results indicate that miR396 negatively regulates rice blast disease- resistance via suppressing multiple OsGRFs, which in turn differentially control growth and yield. Therefore, miR396-OsGRFs could be a potential module to demolish fitness cost in rice blast disease-resistance breeding.
Collapse
Affiliation(s)
| | - He Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiao-Long Cao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yun-Ping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guo-Bang Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xue-Mei Yang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ling-Li Zhang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying-Ge Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuangcheng Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ji-Qun Zhao
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shao-Qing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Shao-Qing Li, Wen-Ming Wang,
| | - Wen-Ming Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Shao-Qing Li, Wen-Ming Wang,
| |
Collapse
|
37
|
Feng H, Xu M, Zheng X, Zhu T, Gao X, Huang L. microRNAs and Their Targets in Apple ( Malus domestica cv. "Fuji") Involved in Response to Infection of Pathogen Valsa mali. FRONTIERS IN PLANT SCIENCE 2017; 8:2081. [PMID: 29270184 PMCID: PMC5723928 DOI: 10.3389/fpls.2017.02081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/21/2017] [Indexed: 05/19/2023]
Abstract
miRNAs are important regulators involving in plant-pathogen interactions. However, their roles in apple tree response to Valsa canker pathogen (Valsa mali, Vm) infection were poorly understood. In this study, we constructed two miRNA libraries using the twig bark tissues of apple tree (Malus domestica Borkh. cv. "Fuji") inoculated with Vm (IVm) and PDA medium (control, BMd). Among all detected miRNAs, 23 miRNAs were specifically isolated from BMd and 39 miRNAs were specifically isolated from IVm. Meanwhile, the expression of 294 miRNAs decreased; and another 172 miRNAs showed an increased expression trend in IVm compared with that in BMd. Furthermore, two degradome sequencing libraries were also constructed to identify the target genes of these miRNAs. In total, 353 differentially expressed miRNAs between IVm and BMd were detected to be able to target 1,077 unigenes with 2,251 cleavage sites. Based on GO and KEGG analysis, these genes were found to be mainly related to transcription regulation and signal transduction. In addition, we selected 17 miRNAs and 22 corresponding target genes to screen the expression profiles when apple twigs were infected by Vm. The expression trends of most miRNAs/target genes were consist with the results of deep sequencing. Many of them may involve in the apple twig-Vm interaction by inducing/reducing their expression. What's more, miRNAs and their target genes regulate the apple twig-Vm interaction by forming many complicated regulation networks rather than one to one model. It is worth that a conserved miRNAs mdm-miR482b, which was down regulated in IVm compared with BMd, has 14 potential target genes, most of which are disease resistance related genes. This indicates that mdm-miR482b may play important roles in apple twig response to Vm. More important, the feedback regulation of sRNA pathway in apple twig is also very complex, and play critical role in the interaction between apple twig and Vm based on the results of expression analysis. In all, the results will provide insights into the crucial functions of miRNAs in the woody plant, apple tree-Vm interaction.
Collapse
Affiliation(s)
| | | | | | | | | | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
38
|
Wang W, Shi T, Ni X, Xu Y, Qu S, Gao Z. The role of miR319a and its target gene TCP4 in the regulation of pistil development in Prunus mume. Genome 2017; 61:43-48. [PMID: 29035682 DOI: 10.1139/gen-2017-0118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The microRNAs (miRNAs) comprise a broad class of non-coding small endogenous RNAs that are associated with many biological processes through the regulation of target genes, such as leaf morphogenesis and polarity, biotic and abiotic stress responses, and root and flower development. We identified a miRNA that affects flower development, miR319a, in Prunus mume. The Pm-miR319a target, Pm-TCP4, was validated by 5'RACE. The higher expression of Pm-TCP4 in imperfect flowers showed that Pm-TCP4 might promote pistil abortion. Further experiments showed that Pm-miR319a negatively regulates the expression of Pm-TCP4 mRNAs and affected pistil development. Sixteen downstream genes of Pm-TCP4 related to flower development were predicted. Previous studies have shown that they have an impact on the development of pistils. In this study it was established that Pm-miR319a indirectly regulates the development of pistils by regulating its target gene Pm-TCP4.
Collapse
Affiliation(s)
- Wanxu Wang
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China.,b Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement
| | - Ting Shi
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Xiaopeng Ni
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yanshuai Xu
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Shenchun Qu
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Zhihong Gao
- a College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| |
Collapse
|
39
|
Liu SR, Zhou JJ, Hu CG, Wei CL, Zhang JZ. MicroRNA-Mediated Gene Silencing in Plant Defense and Viral Counter-Defense. Front Microbiol 2017; 8:1801. [PMID: 28979248 PMCID: PMC5611411 DOI: 10.3389/fmicb.2017.01801] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/05/2017] [Indexed: 12/25/2022] Open
Abstract
MicroRNAs (miRNAs) are non-coding RNAs of approximately 20–24 nucleotides in length that serve as central regulators of eukaryotic gene expression by targeting mRNAs for cleavage or translational repression. In plants, miRNAs are associated with numerous regulatory pathways in growth and development processes, and defensive responses in plant–pathogen interactions. Recently, significant progress has been made in understanding miRNA-mediated gene silencing and how viruses counter this defense mechanism. Here, we summarize the current knowledge and recent advances in understanding the roles of miRNAs involved in the plant defense against viruses and viral counter-defense. We also document the application of miRNAs in plant antiviral defense. This review discusses the current understanding of the mechanisms of miRNA-mediated gene silencing and provides insights on the never-ending arms race between plants and viruses.
Collapse
Affiliation(s)
- Sheng-Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jing-Jing Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural UniversityHefei, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
40
|
Yu X, Hou Y, Chen W, Wang S, Wang P, Qu S. Malus hupehensis miR168 Targets to ARGONAUTE1 and Contributes to the Resistance against Botryosphaeria dothidea Infection by Altering Defense Responses. PLANT & CELL PHYSIOLOGY 2017; 58:1541-1557. [PMID: 28633325 DOI: 10.1093/pcp/pcx080] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 05/29/2017] [Indexed: 05/23/2023]
Abstract
MicroRNA (miRNA)-mediated post-transcriptional regulation plays a fundamental role in various plant physiological processes, including responses to pathogens. MicroRNA168 has been implicated as an essential factor of miRNA pathways by targeting ARGONAUTE1 (AGO1), the core component of the RNA-induced silencing complex (RISC). A fluctuation in AGO1 expression influences various plant-pathogen interactions, and the homeostasis of AGO1 and miR168 accumulation is maintained by a complicated feedback regulatory loop. In this study, the connection between miR168 and the resistance of Malus hupehensis to Botryosphaeria dothidea is revealed. The induction of both the mature miR168 and its precursor in plants subjected to B. dothidea infection indicate the transcriptional activation of MIR168a. MIR168a promoter analysis demonstrates that the promoter can be activated by B. dothidea and salicylic acid (SA). However, the direct target of miR168, M. hupehensis ARGONAUTE1 (MhAGO1), is shown to be induced under the infection. Expression and transcription activity analysis demonstrate the transcriptional activation and the post-transcriptional suppression of MhAGO1 in response to B. dothidea infection. By inhibiting reactive oxygen species (ROS) production and enhancing SA-mediated defense responses, miR168a delays the symptom development of leaves inoculated with B. dothidea and impedes the pathogen growth, while MhAGO1 is found to have the opposite effects. Collectively, these findings suggest that the expression of miR168 and MhAGO1 in M. hupehensis in response to B. dothidea infection is regulated by a complicated mechanism. Targeting to MhAGO1, a negative regulator, miR168 plays a positive role in the resistance by alterations in diverse defense responses.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China
| | - Yingjun Hou
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Weiping Chen
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Sanhong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Peihong Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, PR China
| |
Collapse
|
41
|
Djami-Tchatchou AT, Sanan-Mishra N, Ntushelo K, Dubery IA. Functional Roles of microRNAs in Agronomically Important Plants-Potential as Targets for Crop Improvement and Protection. FRONTIERS IN PLANT SCIENCE 2017; 8:378. [PMID: 28382044 PMCID: PMC5360763 DOI: 10.3389/fpls.2017.00378] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/06/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs that have recently emerged as important regulators of gene expression, mainly through cleavage and/or translation inhibition of the target mRNAs during or after transcription. miRNAs play important roles by regulating a multitude of biological processes in plants which include maintenance of genome integrity, development, metabolism, and adaptive responses toward environmental stresses. The increasing population of the world and their food demands requires focused efforts for the improvement of crop plants to ensure sustainable food production. Manipulation of mRNA transcript abundance via miRNA control provides a unique strategy for modulating differential plant gene expression and miRNAs are thus emerging as the next generation targets for genetic engineering for improvement of the agronomic properties of crops. However, a deeper understanding of its potential and the mechanisms involved will facilitate the design of suitable strategies to obtain the desirable traits with minimum trade-offs in the modified crops. In this regard, this review highlights the diverse roles of conserved and newly identified miRNAs in various food and industrial crops and recent advances made in the uses of miRNAs to improve plants of agronomically importance so as to significantly enhance crop yields and increase tolerance to various environmental stress agents of biotic-or abiotic origin.
Collapse
Affiliation(s)
- Arnaud T. Djami-Tchatchou
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and BiotechnologyNew Delhi, India
| | - Khayalethu Ntushelo
- Department of Agriculture and Animal Health, University of South Africa (Florida Campus)Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg (Auckland Park Kingsway Campus)Johannesburg, South Africa
| |
Collapse
|
42
|
Xu X, Li X, Hu X, Wu T, Wang Y, Xu X, Zhang X, Han Z. High miR156 Expression Is Required for Auxin-Induced Adventitious Root Formation via MxSPL26 Independent of PINs and ARFs in Malus xiaojinensis. FRONTIERS IN PLANT SCIENCE 2017; 8:1059. [PMID: 28674551 PMCID: PMC5474533 DOI: 10.3389/fpls.2017.01059] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/31/2017] [Indexed: 05/02/2023]
Abstract
Adventitious root formation is essential for the vegetative propagation of perennial woody plants. During the juvenile-to-adult phase change mediated by the microRNA156 (miR156), the adventitious rooting ability decreases dramatically in many species, including apple rootstocks. However, the mechanism underlying how miR156 affects adventitious root formation is unclear. In the present study, we showed that in the presence of the synthetic auxin indole-3-butyric acid (IBA), semi-lignified leafy cuttings from juvenile phase (Mx-J) and rejuvenated (Mx-R) Malus xiaojinensis trees exhibited significantly higher expression of miR156, PIN-FORMED1 (PIN1), PIN10, and rootless concerning crown and seminal roots-like (RTCS-like) genes, thus resulting in higher adventitious rooting ability than those from adult phase (Mx-A) trees. However, the expression of SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE26 (SPL26) and some auxin response factor (ARF) gene family members were substantially higher in Mx-A than in Mx-R cuttings. The expression of NbRTCS-like but not NbPINs and NbARFs varied with miR156 expression in tobacco (Nicotiana benthamiana) plants transformed with 35S:MdMIR156a6 or 35S:MIM156 constructs. Overexpressing the miR156-resistant MxrSPL genes in tobacco confirmed the involvement of MxSPL20, MxSPL21&22, and MxSPL26 in adventitious root formation. Together, high expression of miR156 was necessary for auxin-induced adventitious root formation via MxSPL26, but independent of MxPINs and MxARFs expression in M. xiaojinensis leafy cuttings.
Collapse
|
43
|
Guo X, Ma Z, Zhang Z, Cheng L, Zhang X, Li T. Small RNA-Sequencing Links Physiological Changes and RdDM Process to Vegetative-to-Floral Transition in Apple. FRONTIERS IN PLANT SCIENCE 2017; 8:873. [PMID: 28611800 PMCID: PMC5447065 DOI: 10.3389/fpls.2017.00873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 05/10/2017] [Indexed: 05/22/2023]
Abstract
Transition from vegetative to floral buds is a critical physiological change during flower induction that determines fruit productivity. Small non-coding RNAs (sRNAs) including microRNAs (miRNAs) and small interfering RNAs (siRNAs) are pivotal regulators of plant growth and development. Although the key role of sRNAs in flowering regulation has been well-described in Arabidopsis and some other annual plants, their relevance to vegetative-to-floral transition (hereafter, referred to floral transition) in perennial woody trees remains under defined. Here, we performed Illumina sequencing of sRNA libraries prepared from vegetative and floral bud during flower induction of the apple trees. A large number of sRNAs exemplified by 33 previously annotated miRNAs and six novel members display significant differential expression (DE) patterns. Notably, most of these DE-miRNAs in floral transition displayed opposite expression changes in reported phase transition in apple trees. Bioinformatics analysis suggests most of the DE-miRNAs targeted transcripts involved in SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene regulation, stress responses, and auxin and gibberellin (GA) pathways, with further suggestion that there is an inherent link between physiological stress response and metabolism reprogramming during floral transition. We also observed significant changes in 24 nucleotide (nt) sRNAs that are hallmarks for RNA-dependent DNA methylation (RdDM) pathway, suggestive of the correlation between epigenetic modifications and the floral transition. The study not only provides new insight into our understanding of fundamental mechanism of poorly studied floral transition in apple and other woody plants, but also presents important sRNA resource for future in-depth research in the apple flowering physiology.
Collapse
Affiliation(s)
- Xinwei Guo
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zeyang Ma
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
| | - Zhonghui Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Science, South China Normal UniversityGuangzhou, China
| | - Lailiang Cheng
- Department of Horticulture, Cornell UniversityIthaca, NY, United States
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M UniversityCollege Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M UniversityCollege Station, TX, United States
- *Correspondence: Xiuren Zhang
| | - Tianhong Li
- Department of Fruit Science, College of Horticulture, China Agricultural UniversityBeijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit TreesBeijing, China
- Tianhong Li
| |
Collapse
|
44
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 PMCID: PMC5395612 DOI: 10.3389/fpls.2017.00526] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
|
45
|
Zhang Q, Li Y, Zhang Y, Wu C, Wang S, Hao L, Wang S, Li T. Md-miR156ab and Md-miR395 Target WRKY Transcription Factors to Influence Apple Resistance to Leaf Spot Disease. FRONTIERS IN PLANT SCIENCE 2017; 8:526. [PMID: 28469624 DOI: 10.3389/fpls.2017.0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 03/24/2017] [Indexed: 05/23/2023]
Abstract
MicroRNAs (miRNAs) are key regulators of gene expression that post-transcriptionally regulate transcription factors involved in plant physiological activities. Little is known about the effects of miRNAs in disease resistance in apple (Malus×domestica). We globally profiled miRNAs in the apple cultivar Golden Delicious (GD) infected or not with the apple leaf spot fungus Alternaria alternaria f. sp. mali (ALT1), and identified 58 miRNAs that exhibited more than a 2-fold upregulation upon ALT1 infection. We identified a pair of miRNAs that target protein-coding genes involved in the defense response against fungal pathogens; Md-miR156ab targets a novel WRKY transcription factor, MdWRKYN1, which harbors a TIR and a WRKY domain. Md-miR395 targets another transcription factor, MdWRKY26, which contains two WRKY domains. Real-time PCR analysis showed that Md-miR156ab and Md-miR395 levels increased, while MdWRKYN1 and MdWRKY26 expression decreased in ALT1-inoculated GD leaves; furthermore, the overexpression of Md-miR156ab and Md-miR395 resulted in a significant reduction in MdWRKYN1 and MdWRKY26 expression. To investigate whether these miRNAs and their targets play a crucial role in plant defense, we overexpressed MdWRKYN1 or knocked down Md-miR156ab activity, which in both cases enhanced the disease resistance of the plants by upregulating the expression of the WRKY-regulated pathogenesis-related (PR) protein-encoding genes MdPR3-1, MdPR3-2, MdPR4, MdPR5, MdPR10-1, and MdPR10-2. In a similar analysis, we overexpressed MdWRKY26 or suppressed Md-miR395 activity, and found that many PR protein-encoding genes were also regulated by MdWRKY26. In GD, ALT-induced Md-miR156ab and Md-miR395 suppress MdWRKYN1 and MdWRKY26 expression, thereby decreasing the expression of some PR genes, and resulting in susceptibility to ALT1.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yang Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Chuanbao Wu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural UniversityBeijing, China
| |
Collapse
|
46
|
Identification and Functional Analysis of microRNAs Involved in the Anther Development in Cotton Genic Male Sterile Line Yu98-8A. Int J Mol Sci 2016; 17:ijms17101677. [PMID: 27739413 PMCID: PMC5085710 DOI: 10.3390/ijms17101677] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 01/20/2023] Open
Abstract
Hybrid vigor contributes in a large way to the yield and quality of cotton (Gossypium hirsutum) fiber. Although microRNAs play essential regulatory roles in flower induction and development, it is still unclear if microRNAs are involved in male sterility, as the regulatory molecular mechanisms of male sterility in cotton need to be better defined. In this study, two independent small RNA libraries were constructed and sequenced from the young buds collected from the sporogenous cell formation to the meiosis stage of the male sterile line Yu98-8A and the near-isogenic line. Sequencing revealed 1588 and 1536 known microRNAs and 347 and 351 novel miRNAs from male sterile and male fertile libraries, respectively. MicroRNA expression profiles revealed that 49 conserved and 51 novel miRNAs were differentially expressed. Bioinformatic and degradome analysis indicated the regulatory complexity of microRNAs during flower induction and development. Further RT-qPCR and physiological analysis indicated that, among the different Kyoto Encyclopedia Gene and Genomes pathways, indole-3-acetic acid and gibberellic acid signaling transduction pathways may play pivotal regulatory functions in male sterility.
Collapse
|
47
|
Baldrich P, Campo S, Wu MT, Liu TT, Hsing YIC, San Segundo B. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors. RNA Biol 2016; 12:847-63. [PMID: 26083154 DOI: 10.1080/15476286.2015.1050577] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection.
Collapse
Affiliation(s)
- Patricia Baldrich
- a Centre for Research in Agricultural Genomics (CRAG) ; Edifici CRAG ; Barcelona , Spain
| | | | | | | | | | | |
Collapse
|
48
|
Duan X, Zhang W, Huang J, Hao L, Wang S, Wang A, Meng D, Zhang Q, Chen Q, Li T. PbWoxT1 mRNA from pear (Pyrus betulaefolia) undergoes long-distance transport assisted by a polypyrimidine tract binding protein. THE NEW PHYTOLOGIST 2016; 210:511-24. [PMID: 26661583 DOI: 10.1111/nph.13793] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/25/2015] [Indexed: 05/23/2023]
Abstract
Little is known about the mechanisms by which mRNAs are transported over long distances in the phloem between the rootstock and the scion in grafted woody plants. We identified an mRNA in the pear variety 'Du Li' (Pyrus betulaefolia) that was shown to be transportable in the phloem. It contains a WUSCHEL-RELATED HOMEOBOX (WOX) domain and was therefore named Wox Transport 1 (PbWoxT1). A 548-bp fragment of PbWoxT1 is critical in long-distance transport. PbWoxT1 is rich in CUCU polypyrimidine domains and its mRNAs interact with a polypyrimidine tract binding protein, PbPTB3. Furthermore, the expression of PbWoxT1 significantly increased in the stems of wild-type (WT) tobacco grafted onto the rootstocks of PbWoxT1 or PbPTB3 co-overexpressing lines, but this was not the case in WT plants grafted onto PbWoxT1 overexpressing rootstocks, suggesting that PbPTB3 mediates PbWoxT1 mRNA long-distance transport. We provide novel information that adds a new mechanism with which to explain the noncell-autonomous manner of WOX gene function, which enriches our understanding of how WOX genes work in fruit trees and other species.
Collapse
Affiliation(s)
- Xuwei Duan
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Wenna Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Jing Huang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
49
|
Bai S, Saito T, Ito A, Tuan PA, Xu Y, Teng Y, Moriguchi T. Small RNA and PARE sequencing in flower bud reveal the involvement of sRNAs in endodormancy release of Japanese pear (Pyrus pyrifolia 'Kosui'). BMC Genomics 2016; 17:230. [PMID: 26976036 PMCID: PMC4791883 DOI: 10.1186/s12864-016-2514-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/23/2016] [Indexed: 01/12/2023] Open
Abstract
Background In woody perennial plants, including deciduous fruit trees, such as pear, endodormancy is a strategy for surviving the cold winter. A better understanding of the mechanism underlying the endodormancy phase transition is necessary for developing countermeasures against the effects of global warming. In this study, we analyzed the sRNAome of Japanese pear flower buds in endodormant and ecodormant stages over two seasons by implementing of RNA-seq and degradome-sequencing. Results We identified 137 conserved or less conserved miRNAs and 50 pear-specific miRNAs. However, none of the conserved microRNAs or pear-specific miRNAs was differentially expressed between endodormancy and ecodormancy stages. On the contrast, 1540 of 218,050 loci that produced sRNAs were differentially expressed between endodormancy and ecodormancy, suggesting their potential roles on the phase transition from endodormancy to ecodomancy. We also characterized a multifunctional miRNA precursor MIR168, which produces two functional miR168 transcripts, namely miR168.1 and miR168.2; cleavage events were predominantly mediated by the non-conserved variant miR168.2 rather than the conserved variant miR168.1. Finally, we showed that a TAS3 trans-acting siRNA triggered phased siRNA within the ORF of one of its target genes, AUXIN RESPONSE FACTOR 4, via the analysis of phased siRNA loci, indicating that siRNAs are able to trigger phased siRNAs in pear. Conclusion We analyzed the sRNAome of pear flower bud during dormant phase transition. Our work described the sRNA profiles of pear winter buds during dormant phase transition, showing that dormancy release is a highly coordinated physiological process involving the regulation of sRNAs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2514-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan. .,Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Takanori Saito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.,Present address: Graduate School of Horticulture, Chiba University, Matsudo-shi, Chiba, 271-8510, Japan
| | - Akiko Ito
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Pham Anh Tuan
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | - Ying Xu
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuanwen Teng
- Department of Horticulture, The State Agricultural Ministry's Key Laboratory of Horticultural Plant Growth, Development & Quality Improvement, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Takaya Moriguchi
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan.
| |
Collapse
|
50
|
Fei Q, Zhang Y, Xia R, Meyers BC. Small RNAs Add Zing to the Zig-Zag-Zig Model of Plant Defenses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:165-9. [PMID: 26867095 DOI: 10.1094/mpmi-09-15-0212-fi] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant small RNAs play important roles in transcriptional and posttranscriptional regulation, with ongoing work demonstrating their functions in diverse pathways. Their roles in defense responses are a topic of active investigation, particularly the rich set of micro (mi)RNAs that target disease resistance genes such as nucleotide binding/leucine-rich repeat (NB-LRR) genes. The miRNA-NB-LRR interactions result in the production of phased, secondary small interfering (phasi)RNAs, and phasiRNAs function in both cis and trans to propagate negative regulatory effects across additional members of the target gene family. Yet, while phasiRNAs have the capacity to trigger targeted decay of specific targets, both in cis and trans, their functional relevance in NB-LRR regulation remains largely a matter of speculation.
Collapse
Affiliation(s)
- Qili Fei
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Yu Zhang
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Rui Xia
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| | - Blake C Meyers
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, U.S.A
| |
Collapse
|