1
|
El Khattabi O, Lamwati Y, Henkrar F, Collin B, Levard C, Colin F, Smouni A, Fahr M. Lead-induced changes in plant cell ultrastructure: an overview. Biometals 2024:10.1007/s10534-024-00639-5. [PMID: 39325137 DOI: 10.1007/s10534-024-00639-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Lead (Pb) is one of the most harmful toxic metals and causes severe damage to plants even at low concentrations. Pb inhibits plant development, reduces photosynthesis rates, and causes metabolic disfunctions. Plant cells display these alterations in the form of abnormal morphological modifications resulting from ultrastructural changes in the cell wall, plasma membrane, chloroplast, endoplasmic reticulum, mitochondria, and nuclei. Depending on plant tolerance capacity, the ultrastructural changes could be either a sign of toxicity that limits plant development or an adaptive strategy to cope with Pb stress. This paper gathers data on Pb-induced changes in cell ultrastructure observed in many tolerant and hyperaccumulator plants and describes the ultrastructural changes that appear to be mechanisms to alleviate Pb toxicity. The different modifications caused by Pb in cell organelles are summarized and reinforced with hypotheses that provide an overview of plant responses to Pb stress and explain the physiological and morphological changes that occur in tolerant plants. These ultrastructural modifications could help assess the potential of plants for use in phytoremediation.
Collapse
Affiliation(s)
- Oumaima El Khattabi
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Youssef Lamwati
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
- Institut Méditerranéen de Biodiversité et d'Ecologie Marine et Continentale - Aix Marseille University, 13397, Marseille, France
| | - Fatima Henkrar
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Blanche Collin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Clement Levard
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Fabrice Colin
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
- CEREGE - IRD, Aix Marseille University, 13100, Aix-en-Provence, France
| | - Abdelaziz Smouni
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco
| | - Mouna Fahr
- Laboratoire de Biotechnologie et Physiologie Végétales, Faculté des Sciences, Université Mohammed V de Rabat, 4 Avenue Ibn Batouta BP 1014 RP, 10000, Rabat, Morocco.
- Laboratoire Mixte International Activité Minière Responsable "LMI-AMIR", IRD/UM5/INAU, 10000, Rabat, Morocco.
| |
Collapse
|
2
|
Emmons-Bell M, Forsyth G, Sundquist A, Oldeman S, Gardikioti A, de Souza R, Coene J, Kamel MH, Ayyapan S, Fuchs HA, Verhelst S, Smeeton J, Musselman CA, Schvartzman JM. Polyamines regulate cell fate by altering the activity of histone-modifying enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.600738. [PMID: 39005392 PMCID: PMC11244958 DOI: 10.1101/2024.07.02.600738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Polyamines are polycationic alkyl-amines abundant in proliferating stem and cancer cells. How these metabolites influence numerous cellular functions remains unclear. Here we show that polyamine levels decrease during differentiation and that inhibiting polyamine synthesis leads to a differentiated-like cell state. Polyamines concentrate in the nucleus and are further enriched in the nucleoli of cells in culture and in vivo . Loss of polyamines drives changes in chromatin accessibility that correlate with altered histone post-translational modifications. Polyamines interact electrostatically with DNA on the nucleosome core, stabilizing histone tails in conformations accessible to modifying enzymes. These data reveal a mechanism by which an abundant metabolite influences chromatin structure and function in a non-sequence specific manner, facilitating chromatin remodeling during reprogramming and limiting it during fate commitment.
Collapse
|
3
|
Adams JME, Moulding PB, El-Halfawy OM. Polyamine-Mediated Sensitization of Klebsiella pneumoniae to Macrolides through a Dual Mode of Action. ACS Infect Dis 2024; 10:2183-2195. [PMID: 38695481 DOI: 10.1021/acsinfecdis.4c00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Chemicals bacteria encounter at the infection site could shape their stress and antibiotic responses; such effects are typically undetected under standard lab conditions. Polyamines are small molecules typically overproduced by the host during infection and have been shown to alter bacterial stress responses. We sought to determine the effect of polyamines on the antibiotic response of Klebsiella pneumoniae, a Gram-negative priority pathogen. Interestingly, putrescine and other natural polyamines sensitized K. pneumoniae to azithromycin, a macrolide protein translation inhibitor typically used for Gram-positive bacteria. This synergy was further potentiated in the physiological buffer, bicarbonate. Chemical genomic screens suggested a dual mechanism, whereby putrescine acts at the membrane and ribosome levels. Putrescine permeabilized the outer membrane of K. pneumoniae (NPN and β-lactamase assays) and the inner membrane (Escherichia coli β-galactosidase assays). Chemically and genetically perturbing membranes led to a loss of putrescine-azithromycin synergy. Putrescine also inhibited protein synthesis in an E. coli-derived cell-free protein expression assay simultaneously monitoring transcription and translation. Profiling the putrescine-azithromycin synergy against a combinatorial array of antibiotics targeting various ribosomal sites suggested that putrescine acts as tetracyclines targeting the 30S ribosomal acceptor site. Next, exploiting the natural polyamine-azithromycin synergy, we screened a polyamine analogue library for azithromycin adjuvants, discovering four azithromycin synergists with activity starting from the low micromolar range and mechanisms similar to putrescine. This work sheds light on the bacterial antibiotic responses under conditions more reflective of those at the infection site and provides a new strategy to extend the macrolide spectrum to drug-resistant K. pneumoniae.
Collapse
Affiliation(s)
- Joshua M E Adams
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
4
|
Serafini-Fracassini D, Del Duca S. Programmed Cell Death Reversal: Polyamines, Effectors of the U-Turn from the Program of Death in Helianthus tuberosus L. Int J Mol Sci 2024; 25:5386. [PMID: 38791426 PMCID: PMC11121942 DOI: 10.3390/ijms25105386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/22/2024] [Accepted: 04/08/2024] [Indexed: 05/26/2024] Open
Abstract
This review describes a 50-year-long research study on the characteristics of Helianthus tuberosus L. tuber dormancy, its natural release and programmed cell death (PCD), as well as on the ability to change the PCD so as to return the tuber to a life program. The experimentation on the tuber over the years is due to its particular properties of being naturally deficient in polyamines (PAs) during dormancy and of immediately reacting to transplants by growing and synthesizing PAs. This review summarizes the research conducted in a unicum body. As in nature, the tuber tissue has to furnish its storage substances to grow vegetative buds, whereby its destiny is PCD. The review's main objective concerns data on PCD, the link with free and conjugated PAs and their capacity to switch the destiny of the tuber from a program of death to one of new life. PCD reversibility is an important biological challenge that is verified here but not reported in other experimental models. Important aspects of PA features are their capacity to change the cell functions from storage to meristematic ones and their involvement in amitosis and differentiation. Other roles reported here have also been confirmed in other plants. PAs exert multiple diverse roles, suggesting that they are not simply growth substances, as also further described in other plants.
Collapse
Affiliation(s)
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
- Interdepartmental Centre for Agri-Food Industrial Research, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
5
|
Kaur N. Insight into the binding interactions of fluorenone-pendent Schiff base with calf thymus DNA. Anal Biochem 2023:115216. [PMID: 37353067 DOI: 10.1016/j.ab.2023.115216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/15/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023]
Abstract
A novel fluorenone appended Schiff base (L) has been synthesized and utilized for studying the binding interactions with Calf Thymus DNA (ct-DNA). The mechanism of binding with ct-DNA was explored by employing various spectroscopic techniques viz. UV-Vis absorption spectroscopy, fluorescence emission spectroscopy, gel-electrophoresis, circular dichroism (CD), melting studies, viscosity arrays and molecular modelling methodology. The interpretation of UV-vis absorbance spectra pointed to binding of L within minor groove of ct-DNA with the binding constant of Kb = 0.15 × 104 M-1. Dye-displacement studies with Rhodamine-B (RhB) and Ethylene Bromide (EB) in fluorescence spectroscopy verified the groove binding mode of interaction between L and ct-DNA. Melting studies, circular dichroism, and viscosity studies further elucidated the binding modes of L with ct-DNA. Thermodynamic variable measurements taken at various temperatures such as ΔG⁰, ΔH⁰, and ΔS⁰ revealed that hydrophobic forces played a significant role in the binding process. The meticulous computational interaction demonstrated by molecular docking confirmed the minor groove binding of L with ct-DNA.
Collapse
Affiliation(s)
- Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
6
|
Gupta S, Aggarwal S, Munde M. New Insights into the Role of Ligand-Binding Modes in GC-DNA Condensation through Thermodynamic and Spectroscopic Studies. ACS OMEGA 2023; 8:4554-4565. [PMID: 36777612 PMCID: PMC9909821 DOI: 10.1021/acsomega.2c01557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/20/2022] [Indexed: 06/18/2023]
Abstract
In biological systems, the unprompted assembly of DNA molecules by cationic ligands into condensed structures is ubiquitous. The ability of ligands to provoke DNA packaging is crucial to the molecular organization and functional control of DNA, yet their underlined physical roles have remained elusive. Here, we have examined the DNA condensation mechanism of four cationic ligands, including their primary DNA-binding modes through extensive biophysical studies. We observed contrasting changes for these ligands binding to poly[dGdC]:poly[dGdC] (GC-DNA) and poly[dAdT]:poly[dAdT] (AT-DNA). Based on a CD spectroscopic study, it was confirmed that only GC-DNA undergoes B- to Ψ-type DNA transformation in the presence of ligands. In the fluorescence displacement assay (FDA), the ability of ligands to displace GC-DNA-bound EtBr follows the order: protamine21+ > cohex3+ > Ni2+ > spermine4+, which indicates that there is no direct correlation between the ligand charge and its ability to displace the drug from the DNA, indicating that GC-DNA condensation is not just influenced by electrostatic interaction but ligand-specific interactions may also have played a crucial role. Furthermore, the detailed ITC-binding studies suggested that DNA-ligand interactions are generally driven by unfavorable enthalpy and favorable entropy. The correlations from various studies insinuate that cationic ligands show major groove binding as one of the preferred binding modes during GC-DNA condensation.
Collapse
Affiliation(s)
- Sakshi Gupta
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
- Department
of Applied Science, The NorthCap University, Sector 23-A, Gurgaon, Haryana 122017, India
| | - Soumya Aggarwal
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Manoj Munde
- School
of Physical Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
7
|
Novel gluconate stabilized gold nanoparticles as a colorimetric sensor for quantitative evaluation of spermine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Self-Assembled Alkylated Polyamine Analogs as Supramolecular Anticancer Agents. Molecules 2022; 27:molecules27082441. [PMID: 35458639 PMCID: PMC9032695 DOI: 10.3390/molecules27082441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Conformationally restrained polyamine analog PG11047 is a well-known drug candidate that modulates polyamine metabolism and inhibits cancer cell growth in a broad spectrum of cancers. Here, we report a structure–activity relationship study of the PG11047 analogs (HPGs) containing alkyl chains of varying length, while keeping the unsaturated spermine backbone unchanged. Synthesis of higher symmetrical homologues was achieved through a synthetic route with fewer steps than the previous route to PG11047. The amphiphilic HPG analogs underwent self-assembly and formed spherically shaped nanoparticles whose size increased with the hydrophobic alkyl group’s increasing chain length. Assessment of the in vitro anticancer activity showed more than an eight-fold increase in the cancer cell inhibition activity of the analogs with longer alkyl chains compared to PG11047 in human colon cancer cell line HCT116, and a more than ten-fold increase in human lung cancer cell line A549. Evaluation of the inhibition of spermine oxidase (SMOX) showed no activity for PG11047, but activity was observed for its higher symmetrical homologues. Comparison with a reference SMOX inhibitor MDL72527 showed nine-fold better activity for the best performing HPG analog.
Collapse
|
9
|
Tomita A, Daiho T, Kusakizako T, Yamashita K, Ogasawara S, Murata T, Nishizawa T, Nureki O. Cryo-EM reveals mechanistic insights into lipid-facilitated polyamine export by human ATP13A2. Mol Cell 2021; 81:4799-4809.e5. [PMID: 34798056 DOI: 10.1016/j.molcel.2021.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/26/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
The cytoplasmic polyamine maintains cellular homeostasis by chelating toxic metal cations, regulating transcriptional activity, and protecting DNA. ATP13A2 was identified as a lysosomal polyamine exporter responsible for polyamine release into the cytosol, and its dysfunction is associated with Alzheimer's disease and other neural degradation diseases. ATP13A2 belongs to the P5 subfamily of the P-type ATPase family, but its mechanisms remain unknown. Here, we report the cryoelectron microscopy (cryo-EM) structures of human ATP13A2 under four different conditions, revealing the structural coupling between the polyamine binding and the dephosphorylation. Polyamine is bound at the luminal tunnel and recognized through numerous electrostatic and π-cation interactions, explaining its broad specificity. The unique N-terminal domain is anchored to the lipid membrane to stabilize the E2P conformation, thereby accelerating the E1P-to-E2P transition. These findings reveal the distinct mechanism of P5B ATPases, thereby paving the way for neuroprotective therapy by activating ATP13A2.
Collapse
Affiliation(s)
- Atsuhiro Tomita
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takashi Daiho
- Department of Biochemistry, Asahikawa Medical University, Midorigaoka-Higashi, Asahikawa 078-8510, Japan
| | - Tsukasa Kusakizako
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Keitaro Yamashita
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Satoshi Ogasawara
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Takeshi Murata
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Tomohiro Nishizawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Tsurumi, Yokohama 230-0045, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
10
|
Despotović D, Longo LM, Aharon E, Kahana A, Scherf T, Gruic-Sovulj I, Tawfik DS. Polyamines Mediate Folding of Primordial Hyperacidic Helical Proteins. Biochemistry 2020; 59:4456-4462. [PMID: 33175508 PMCID: PMC7735664 DOI: 10.1021/acs.biochem.0c00800] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/29/2020] [Indexed: 12/11/2022]
Abstract
Polyamines are known to mediate diverse biological processes, and specifically to bind and stabilize compact conformations of nucleic acids, acting as chemical chaperones that promote folding by offsetting the repulsive negative charges of the phosphodiester backbone. However, whether and how polyamines modulate the structure and function of proteins remain unclear. In particular, early proteins are thought to have been highly acidic, like nucleic acids, due to a scarcity of basic amino acids in the prebiotic context. Perhaps polyamines, the abiotic synthesis of which is simple, could have served as chemical chaperones for such primordial proteins? We replaced all lysines of an ancestral 60-residue helix-bundle protein with glutamate, resulting in a disordered protein with 21 glutamates in total. Polyamines efficiently induce folding of this hyperacidic protein at submillimolar concentrations, and their potency scaled with the number of amine groups. Compared to cations, polyamines were several orders of magnitude more potent than Na+, while Mg2+ and Ca2+ had an effect similar to that of a diamine, inducing folding at approximately seawater concentrations. We propose that (i) polyamines and dications may have had a role in promoting folding of early proteins devoid of basic residues and (ii) coil-helix transitions could be the basis of polyamine regulation in contemporary proteins.
Collapse
Affiliation(s)
- Dragana Despotović
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Liam M. Longo
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Earth-Life
Science Institute, Tokyo Institute of Technology, 152-8550 Tokyo, Japan
- Blue
Marble Space Institute of Science, Seattle, Washington 98154, United States
| | - Einav Aharon
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Amit Kahana
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
- Department
of Molecular Genetics, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Tali Scherf
- Department
of Chemical Research Support, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| | - Ita Gruic-Sovulj
- Department
of Chemistry, Faculty of Science, University
of Zagreb, 10000 Zagreb, Croatia
| | - Dan S. Tawfik
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, 7610001 Rehovot, Israel
| |
Collapse
|
11
|
Jiang H, Rao X, Li L, Liu Z. A gas pressure and colorimetric signal dual-mode strategy for sensitive detection of spermine using ssDNA-coated Au@Pt nanoparticles as the probe. Analyst 2020; 145:7673-7679. [PMID: 32970056 DOI: 10.1039/d0an01473g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The naturally occurring spermine (Spm), as one of the many cationic polyamines, plays a key role in biological processes and is involved in a variety of diseases. The very similar structures among biogenic polyamines present a major challenge to achieve discriminative testing among them. In this contribution, using arbitrary ssDNA-coated Au@PtNPs as the probe, we demonstrated that a dual-mode strategy via a gas pressure and colorimetric signal readout can be used for the sensitive and specific detection of Spm, due to the target-responsive aggregation of the Au@PtNPs leading to the inhibition of the catalyzed gas-generation reaction and the colorimetric change of the Au@PtNP solution. The proposed pressure-based signaling strategy has a detection limit of 9.6 nM, and can be used not only in the laboratory but also in the point-of-care setting. Meanwhile, the colorimetric assay displays the advantage of being easily discerned with the naked eye. Compared with the traditional methods of chromatography and capillary electrophoresis combined with chemical derivatization, the strategy described here would provide a convenient new alternative for the specific detection of Spm in biological samples.
Collapse
Affiliation(s)
- Huan Jiang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | | | | | | |
Collapse
|
12
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Reprint of "Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces". J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
Guo H, Guo H, Zhang L, Fan Y, Wu J, Tang Z, Zhang Y, Fan Y, Zeng F. Dynamic Transcriptome Analysis Reveals Uncharacterized Complex Regulatory Pathway Underlying Genotype-Recalcitrant Somatic Embryogenesis Transdifferentiation in Cotton. Genes (Basel) 2020; 11:E519. [PMID: 32392816 PMCID: PMC7290922 DOI: 10.3390/genes11050519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/21/2020] [Accepted: 05/05/2020] [Indexed: 11/27/2022] Open
Abstract
As a notable illustration of totipotency and plant regeneration, somatic embryogenesis (SE) is the developmental reprogramming of somatic cells toward the embryogenesis pathway, the key step for genetic engineering. Investigations examining the totipotency process are of great fundamental and practical importance in crop biotechnology. However, high-frequency regeneration of cotton via SE has been limited due to genotype-dependent response. The molecular basis deciphering SE genotype recalcitrance remains largely unexplored in cotton. In the current study, to comprehensively investigate the dynamic transcriptional profiling and gene regulatory patterns involved in SE process, a genome-wide RNA sequencing analysis was performed in two cotton genotypes with distinct embryogenic abilities, the highly embryogenic genotype Yuzao 1 (YZ) and the recalcitrant genotype Lumian 1 (LM). Three typical developmental staged cultures of early SE-hypocotyls (HY), nonembryogenic calli (NEC) and primary embryogenic calli (PEC)-were selected to establish the transcriptional profiles. Our data revealed that a total of 62,562 transcripts were present amongst different developmental stages in the two genotypes. Of these, 18,394 and 26,514 differentially expressed genes (DEGs) were identified during callus dedifferentiation (NEC-VS-HY) and embryogenic transdifferentiation (PEC-VS-NEC), respectively in the recalcitrant genotype, 21,842 and 22,343 DEGs in the highly embryogenic genotype. Furthermore, DEGs were clustered into six expression patterns during cotton SE process in the two genotypes. Moreover, functional enrichment analysis revealed that DEGs were significantly enriched in fatty acid, tryptophan and pyruvate metabolism in the highly embryogenic genotype and in DNA conformation change otherwise in the recalcitrant genotype. In addition, critical SE-associated expressed transcription factors, as well as alternative splicing events, were notably and preferentially activated during embryogenic transdifferentiation in the highly embryogenic genotype compared with the recalcitrant genotype. Taken together, by systematically comparing two genotypes with distinct embryogenic abilities, the findings in our study revealed a comprehensive overview of the dynamic gene regulatory patterns and uncharacterized complex regulatory pathways during cotton SE genotype-dependent response. Our work provides insights into the molecular basis and important gene resources for understanding the underlying genotype recalcitrance during SE process and plant regeneration, thereby holding great promise for accelerating the application of biotechnology to cotton for improving its breeding efficiency.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an 271018, China; (H.G.); (H.G.); (L.Z.); (Y.F.); (J.W.); (Z.T.); (Y.Z.); (Y.F.)
| |
Collapse
|
14
|
Zeng D, Salvatore P, Karlsen KK, Zhang J, Wengel J, Ulstrup J. Electrochemical intercalator binding to single- and double-strand DNA- and LNA-based molecules on Au(111)-electrode surfaces. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Upregulation of Polyamine Transport in Human Colorectal Cancer Cells. Biomolecules 2020; 10:biom10040499. [PMID: 32218236 PMCID: PMC7226413 DOI: 10.3390/biom10040499] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 01/29/2023] Open
Abstract
Polyamines are essential growth factors that have a positive role in cancer cell growth. Their metabolic pathway and the diverse enzymes involved have been studied in depth in multiple organisms and cells. Polyamine transport also contributes to the intracellular polyamine content but this is less well-studied in mammalian cells. As the polyamine transporters could provide a means of selective drug delivery to cancer cells, a greater understanding of polyamine transport and its regulation is needed. In this study, transport of polyamines and polyamine content was measured and the effect of modulating each was determined in human colorectal cancer cells. The results provide evidence that upregulation of polyamine transport depends on polyamine depletion and on the rate of cell growth. Polyamine transport occurred in all colorectal cancer cell lines tested but to varying extents. The cell lines with the lowest basal uptake showed the greatest increase in response to polyamine depletion. Kinetic parameters for putrescine and spermidine suggest the existence of two separate transporters. Transport was shown to be a saturable but non-polarised process that can be regulated both positively and negatively. Using the polyamine transporter to deliver anticancer drugs more selectively is now a reality, and the ability to manipulate the polyamine transport process increases the possibility of using these transporters therapeutically.
Collapse
|
16
|
Plateau P, Moch C, Blanquet S. Spermidine strongly increases the fidelity of Escherichia coli CRISPR Cas1-Cas2 integrase. J Biol Chem 2019; 294:11311-11322. [PMID: 31171718 DOI: 10.1074/jbc.ra119.007619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Site-selective CRISPR array expansion at the origin of bacterial adaptive immunity relies on recognition of sequence-dependent DNA structures by the conserved Cas1-Cas2 integrase. Off-target integration of a new spacer sequence outside canonical CRISPR arrays has been described in vitro However, this nonspecific integration activity is rare in vivo Here, we designed gel assays to monitor fluorescently labeled protospacer insertion in a supercoiled 3-kb plasmid harboring a minimal CRISPR locus derived from the Escherichia coli type I-E system. This assay enabled us to distinguish and quantify target and off-target insertion events catalyzed by E. coli Cas1-Cas2 integrase. We show that addition of the ubiquitous polyamine spermidine or of another polyamine, spermine, significantly alters the ratio between target and off-target insertions. Notably, addition of 2 mm spermidine quenched the off-target spacer insertion rate by a factor of 20-fold, and, in the presence of integration host factor, spermidine also increased insertion at the CRISPR locus 1.5-fold. The observation made in our in vitro system that spermidine strongly decreases nonspecific activity of Cas1-Cas2 integrase outside the leader-proximal region of a CRISPR array suggests that this polyamine plays a potential role in the fidelity of the spacer integration also in vivo.
Collapse
Affiliation(s)
- Pierre Plateau
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Clara Moch
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| | - Sylvain Blanquet
- BIOC, CNRS, Ecole polytechnique, IP Paris, F-91128 Palaiseau, France
| |
Collapse
|
17
|
Naji A, Hejazi K, Mahgerefteh E, Podgornik R. Charged nanorods at heterogeneously charged surfaces. J Chem Phys 2018; 149:134702. [PMID: 30292214 DOI: 10.1063/1.5044391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We study the spatial and orientational distribution of charged nanorods (rodlike counterions) as well as the effective interaction mediated by them between two plane-parallel surfaces that carry fixed (quenched) heterogeneous charge distributions. The nanorods are assumed to have an internal charge distribution, specified by a multivalent monopolar moment and a finite quadrupolar moment, and the quenched surface charge is assumed to be randomly distributed with equal mean and variance on the two surfaces. While equally charged surfaces are known to repel within the traditional mean-field theories, the presence of multivalent counterions has been shown to cause attractive interactions between uniformly charged surfaces due to the prevalence of strong electrostatic couplings that grow rapidly with the counterion valency. We show that the combined effects due to electrostatic correlations (caused by the coupling between the mean surface field and the multivalent, monopolar, charge valency of counterions) as well as the disorder-induced interactions (caused by the coupling between the surface disorder field and the quadrupolar moment of counterions) lead to much stronger attractive interactions between two randomly charged surfaces. The interaction profile turns out to be a nonmonotonic function of the intersurface separation, displaying an attractive minimum at relatively small separations, where the ensuing attraction can exceed the maximum strong-coupling attraction (produced by multivalent monopolar counterions between uniformly charged surfaces) by more than an order of magnitude.
Collapse
Affiliation(s)
- Ali Naji
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Kasra Hejazi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Elnaz Mahgerefteh
- School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran, Iran
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Kolbinger FR, Koeneke E, Ridinger J, Heimburg T, Müller M, Bayer T, Sippl W, Jung M, Gunkel N, Miller AK, Westermann F, Witt O, Oehme I. The HDAC6/8/10 inhibitor TH34 induces DNA damage-mediated cell death in human high-grade neuroblastoma cell lines. Arch Toxicol 2018; 92:2649-2664. [PMID: 29947893 PMCID: PMC6063332 DOI: 10.1007/s00204-018-2234-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022]
Abstract
High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.
Collapse
Affiliation(s)
- Fiona R Kolbinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Emily Koeneke
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Johannes Ridinger
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Tino Heimburg
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Michael Müller
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Theresa Bayer
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, W.-Langenbeck-Str. 4, 06120, Halle, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Albertstraße 25, 79104, Freiburg, Germany
| | - Nikolas Gunkel
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Aubry K Miller
- Cancer Drug Development Group, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Frank Westermann
- Research Group Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Witt
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany.,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Ina Oehme
- Preclinical Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ), 69120, Heidelberg, Germany. .,Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ), and German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
19
|
Terui Y, Yoshida T, Sakamoto A, Saito D, Oshima T, Kawazoe M, Yokoyama S, Igarashi K, Kashiwagi K. Polyamines protect nucleic acids against depurination. Int J Biochem Cell Biol 2018; 99:147-153. [PMID: 29649565 DOI: 10.1016/j.biocel.2018.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/21/2018] [Accepted: 04/06/2018] [Indexed: 11/20/2022]
Abstract
Depurination is accelerated by heat and reactive oxygen species under physiological conditions. We previously reported that polyamines are involved in mitigation of heat shock and oxidative stresses through stimulation of the synthesis of heat shock and antioxidant proteins. This time, we investigated whether polyamines are directly involved in protecting nucleic acids from thermal depurination induced by high temperature. The suppressing efficiencies of depurination of DNA by spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 50%, 60% and 80%, respectively. Mg2+ also protected nucleic acids against depurination but to a lesser degree than polyamines. Longer unusual polyamines were more effective at protecting DNA against depurination compared to standard polyamines. The tRNA depurination suppressing efficiencies of spermine, caldopentamine and caldohexamine in the presence of 1 mM Mg2+, were approximately 60%, 70% and 80%, respectively. Standard polyamines protected tRNA and ribosomes more effectively than DNA against thermal depurination. Branched polyamines such as mitsubishine and tetrakis(3-aminopropyl)ammonium also protected RNA more effectively than DNA against depurination. These results suggest that the suppressing effect of depurination of nucleic acids (DNA and RNA) depends on the types of polyamines: i.e. to maintain functional conformation of nucleic acids at high temperature, longer and branched polyamines play important roles in protecting nucleic acids from depurination compared to standard polyamines and Mg2+.
Collapse
Affiliation(s)
- Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| | - Taketo Yoshida
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | | | - Tairo Oshima
- Institute of Environmental Biology, Kyowa-Kako, Machida, Tokyo, Japan
| | | | | | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, Chiba, Japan; Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan.
| |
Collapse
|
20
|
Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives. Int J Biol Macromol 2018; 109:143-151. [PMID: 29247733 DOI: 10.1016/j.ijbiomac.2017.11.156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/24/2017] [Accepted: 11/25/2017] [Indexed: 11/23/2022]
Abstract
Two bis-polyaza pyridinophane derivatives and their monomeric reference compounds revealed strong interactions with ds-DNA and RNA. The bis-derivatives show a specific condensation of GC- and IC-DNA, which is almost two orders of magnitude more efficient than the well-known condensation agent spermine. The type of condensed DNA was identified as ψ-DNA, characterized by the exceptionally strong CD signals. At variance to the almost silent AT(U) polynucleotides, these strong CD signals allow the determination of GC-condensates at nanomolar nucleobase concentrations. Detailed thermodynamic characterisation by ITC reveals significant differences between the DNA binding of the bis-derivative compounds (enthalpy driven) and that of spermine and of their monomeric counterparts (entropy driven). Atomic force microscopy confirmed GC-DNA compaction by the bis-derivatives and the formation of toroid- and rod-like structures responsible for the ψ-type pattern in the CD spectra.
Collapse
|
21
|
Krych Ł, Kot W, Bendtsen KM, Hansen AK, Vogensen FK, Nielsen DS. Have you tried spermine? A rapid and cost-effective method to eliminate dextran sodium sulfate inhibition of PCR and RT-PCR. J Microbiol Methods 2018; 144:1-7. [DOI: 10.1016/j.mimet.2017.10.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/29/2023]
|
22
|
Abstract
Polyamines are small, abundant, aliphatic molecules present in all mammalian cells. Within the context of the cell, they play a myriad of roles, from modulating nucleic acid conformation to promoting cellular proliferation and signaling. In addition, polyamines have emerged as important molecules in virus-host interactions. Many viruses have been shown to require polyamines for one or more aspects of their replication cycle, including DNA and RNA polymerization, nucleic acid packaging, and protein synthesis. Understanding the role of polyamines has become easier with the application of small-molecule inhibitors of polyamine synthesis and the use of interferon-induced regulators of polyamines. Here we review the diverse mechanisms in which viruses require polyamines and investigate blocking polyamine synthesis as a potential broad-spectrum antiviral approach.
Collapse
|
23
|
The influence of the commensal microbiota on distal tumor-promoting inflammation. Semin Immunol 2017; 32:62-73. [PMID: 28687194 DOI: 10.1016/j.smim.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/29/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
Commensal microbes inhabit barrier surfaces, providing a first line of defense against invading pathogens, aiding in metabolic function of the host, and playing a vital role in immune development and function. Several recent studies have demonstrated that commensal microbes influence systemic immune function and homeostasis. For patients with extramucosal cancers, or cancers occurring distal to barrier surfaces, the role of commensal microbes in influencing tumor progression is beginning to be appreciated. Extrinsic factors such as chronic inflammation, antibiotics, and chemotherapy dysregulate commensal homeostasis and drive tumor-promoting systemic inflammation through a variety of mechanisms, including disruption of barrier function and bacterial translocation, release of soluble inflammatory mediators, and systemic changes in metabolic output. Conversely, it has also been demonstrated that certain immune therapies, immunogenic chemotherapies, and checkpoint inhibitors rely on the commensal microbiota to facilitate anti-tumor immune responses. Thus, it is evident that the mechanisms associated with commensal microbe facilitation of both pro- and anti-tumor immune responses are context dependent and rely upon a variety of factors present within the tumor microenvironment and systemic periphery. The goal of this review is to highlight the various contexts during which commensal microbes orchestrate systemic immune function with a focus on describing possible scenarios where the loss of microbial homeostasis enhances tumor progression.
Collapse
|
24
|
Interaction between DNA and Drugs Having Protonable Basic Groups: Characterization through Affinity Constants, Drug Release Kinetics, and Conformational Changes. Sci Pharm 2017; 85:scipharm85010001. [PMID: 28054999 PMCID: PMC5388140 DOI: 10.3390/scipharm85010001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/16/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
This paper reports the in vitro characterization of the interaction between the phosphate groups of DNA and the protonated species of drugs with basic groups through the determination of the affinity constants, the reversibility of the interaction, and the effect on the secondary structure of the macromolecule. Affinity constants of the counterionic condensation DNA–drug were in the order of 106. The negative electrokinetic potential of DNA decreased with the increase of the proportion of loading drugs. The drugs were slowly released from the DNA–drug complexes and had release kinetics consistent with the high degree of counterionic condensation. The circular dichroism profile of DNA was not modified by complexation with atenolol, lidocaine, or timolol, but was significantly altered by the more lipophilic drugs benzydamine and propranolol, revealing modifications in the secondary structure of the DNA. The in vitro characterization of such interactions provides a physicochemical basis that would contribute to identify the effects of this kind of drugs in cellular cultures, as well as side effects observed under their clinical use. Moreover, this methodology could also be projected to the fields of intracellular DNA transfection and the use of DNA as a carrier of active drugs.
Collapse
|
25
|
Salo HM, Sarjala T, Jokela A, Häggman H, Vuosku J. Moderate stress responses and specific changes in polyamine metabolism characterize Scots pine somatic embryogenesis. TREE PHYSIOLOGY 2016; 36:392-402. [PMID: 26786537 PMCID: PMC4885945 DOI: 10.1093/treephys/tpv136] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/29/2015] [Indexed: 05/02/2023]
Abstract
Somatic embryogenesis (SE) is one of the methods with the highest potential for the vegetative propagation of commercially important coniferous species. However, many conifers, including Scots pine (Pinus sylvestris L.), are recalcitrant to SE and a better understanding of the mechanisms behind the SE process is needed. In Scots pine SE cultures, embryo production is commonly induced by the removal of auxin, addition of abscisic acid (ABA) and the desiccation of cell masses by polyethylene glycol (PEG). In the present study, we focus on the possible link between the induction of somatic embryo formation and cellular stress responses such as hydrogen peroxide protection, DNA repair, changes in polyamine (PA) metabolism and autophagy. Cellular PA contents and the expression of the PA metabolism genes arginine decarboxylase (ADC), spermidine synthase (SPDS), thermospermine synthase (ACL5) and diamine oxidase (DAO) were analyzed, as well as the expression of catalase (CAT), DNA repair genes (RAD51, KU80) and autophagy-related genes (ATG5, ATG8) throughout the induction of somatic embryo formation in Scots pine SE cultures. Among the embryo-producing SE lines, the expression of ADC, SPDS, ACL5, DAO, CAT, RAD51, KU80 and ATG8 showed consistent profiles. Furthermore, the overall low expression of the stress-related genes suggests that cells in those SE lines were not stressed but recognized the ABA+PEG treatment as a signal to trigger the embryogenic pathway. In those SE lines that were unable to produce embryos, cells seemed to experience the ABA+PEG treatment mostly as osmotic stress and activated a wide range of stress defense mechanisms. Altogether, our results suggest that the direction to the embryogenic pathway is connected with cellular stress responses in Scots pine SE cultures. Thus, the manipulation of stress response pathways may provide a way to enhance somatic embryo production in recalcitrant Scots pine SE lines.
Collapse
Affiliation(s)
- Heikki M Salo
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Tytti Sarjala
- Natural Resources Institute Finland (Luke), Parkano Unit, FI-39700 Parkano, Finland
| | - Anne Jokela
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Hely Häggman
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland
| | - Jaana Vuosku
- Genetics and Physiology Department, University of Oulu, PO Box 3000, FI-90014 Oulu, Finland Natural Resources Institute Finland (Luke), Rovaniemi Unit, FI-96300 Rovaniemi, Finland
| |
Collapse
|
26
|
Legocka J, Sobieszczuk-Nowicka E, Wojtyla Ł, Samardakiewicz S. Lead-stress induced changes in the content of free, thylakoid- and chromatin-bound polyamines, photosynthetic parameters and ultrastructure in greening barley leaves. JOURNAL OF PLANT PHYSIOLOGY 2015; 186-187:15-24. [PMID: 26318643 DOI: 10.1016/j.jplph.2015.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/09/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to determine the impact of lead (Pb) stress as 0.6mM Pb(NO3)2 on the content of free, thylakoid- and chromatin-bound polyamines (PAs) and diamine oxidase (DAO) activity in detached greening barley leaves. Additionally, photosynthetic-related parameters, generation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content and ultrastructural changes under Pb-stress were studied. The level of putrescine (Put) was reduced progressively to 56% at 24h of Pb stress, and it was correlated with 38% increase of DAO activity. Spermidine (Spd) content was not affected by Pb-stress, while the free spermine (Spm) level significantly increased by about 83% at 6h, and in that time the lowest level of H2O2 was observed. The exogenous applied Spm to Pb-treated leaves caused a decrease in the content of H2O2. In greening leaves exposed to Pb an accumulation of chlorophylls a and b was inhibited by about 39 and 47%, respectively, and photosynthetic parameters of efficiency of electron transport and photochemical reaction in chloroplasts as ΦPSII, ETR and RFd were lowered by about 23-32%. The level of thylakoid-bound Put decreased by about 22%. Moreover, thylakoids isolated from chloroplasts of Pb-treated leaves were characterized with lower Put/Spm ratio as compared to control leaves. In the presence of Pb the significant decrease in the number of thylakoids per granum and cap-shape invaginations of cytoplasmic material were noticed. In Pb-stressed leaves the level of chromatin-bound Spm increased by about 48% and sometimes condensed chromatin in nuclei was observed. We conclude that in greening barley leaves exposed to Pb-stress changes in free, thylakoid- and chromatin-bound PAs play some role in the functioning of leaves or plants in heavy metal stress conditions.
Collapse
Affiliation(s)
- Jolanta Legocka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland.
| | - Ewa Sobieszczuk-Nowicka
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Łukasz Wojtyla
- Department of Plant Physiology, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| | - Sławomir Samardakiewicz
- Laboratory of Electron and Confocal Microscopy, Faculty of Biology, Adam Mickiewicz University in Poznan, ul. Umultowska 89, 61-614 Poznań, Poland
| |
Collapse
|
27
|
An M, Hutchison JM, Parkin SR, DeRouchey JE. Role of pH on the Compaction Energies and Phase Behavior of Low Generation PAMAM–DNA Complexes. Macromolecules 2014. [DOI: 10.1021/ma5020808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Min An
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - James M. Hutchison
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Sean R. Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Jason E. DeRouchey
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
28
|
Jain A, Krishna Deepak RNV, Sankararamakrishnan R. Oxygen-aromatic contacts in intra-strand base pairs: analysis of high-resolution DNA crystal structures and quantum chemical calculations. J Struct Biol 2014; 187:49-57. [PMID: 24816369 DOI: 10.1016/j.jsb.2014.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/19/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Three-dimensional structures of biomolecules are stabilized by a large number of non-covalent interactions and some of them such as van der Waals, electrostatic and hydrogen bond interactions are well characterized. Delocalized π-electron clouds of aromatic residues are known to be involved in cation-π, CH-π, OH-π and π-π interactions. In proteins, many examples have been found in which the backbone carbonyl oxygen of one residue makes close contact with the aromatic center of aromatic residues. Quantum chemical calculations suggest that such contacts may provide stability to the protein secondary structures. In this study, we have systematically analyzed the experimentally determined high-resolution DNA crystal structures and identified 91 examples in which the aromatic center of one base is in close contact (<3.5Ǻ) with the oxygen atom of preceding (Group-I) or succeeding base (Group-II). Examples from Group-I are overwhelmingly observed and cytosine or thymine is the preferred base contributing oxygen atom in Group-I base pairs. A similar analysis of high-resolution RNA structures surprisingly did not yield many examples of oxygen-aromatic contact of similar type between bases. Ab initio quantum chemical calculations on compounds based on DNA crystal structures and model compounds show that interactions between the bases in base pairs with oxygen-aromatic contacts are energetically favorable. Decomposition of interaction energies indicates that dispersion forces are the major cause for energetically stable interaction in these base pairs. We speculate that oxygen-aromatic contacts in intra-strand base pairs in a DNA structure may have biological significance.
Collapse
Affiliation(s)
- Alok Jain
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - R N V Krishna Deepak
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | | |
Collapse
|
29
|
Kapdi AR, Fairlamb IJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem Soc Rev 2014; 43:4751-77. [PMID: 24723061 DOI: 10.1039/c4cs00063c] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Much success has been achieved with platinum-based chemotherapeutic agents, i.e. through interactions with DNA. The long-term application of Pt complexes is thwarted by issues, leading scientists to examine other metals such as palladium which could exhibit complementary modes of action (given emphasis wherever known). Over the last 10 years several research groups have focused on the application of an eclectic array of palladium complexes (of the type PdX2L2, palladacycles and related structures) as potential anti-cancer agents. This review therefore provides readers with an up to date account of the advances that have taken place over the past several decades.
Collapse
Affiliation(s)
- Anant R Kapdi
- Department of Chemistry, Institute of Chemical Technology, 302, Advance Centre, Nathalal Parekh Road, Matunga, Mumbai-400019, India.
| | | |
Collapse
|
30
|
Park H, Nichols JW, Kang HC, Bae YH. Bioreducible polyspermine as less toxic and efficient gene carrier. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3269] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongsuk Park
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
| | - Joseph W. Nichols
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
| | - Han Chang Kang
- Department of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy; The Catholic University of Korea; 43 Jibong-ro, Wonmi-gu Bucheon-si Gyeonggi-do 420-743 Republic of Korea
| | - You Han Bae
- Department of Bioengineering; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
- Department of Pharmaceutics and Pharmaceutical Chemistry; University of Utah; 30S 2000E, Rm2972 Salt Lake City UT 84112 USA
- Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center; 7-50 Songdo-dong Yeonsu-gu Incheon 406-840 Republic of Korea
| |
Collapse
|
31
|
An M, Parkin SR, DeRouchey JE. Intermolecular forces between low generation PAMAM dendrimer condensed DNA helices: role of cation architecture. SOFT MATTER 2014; 10:590-599. [PMID: 24651934 DOI: 10.1039/c3sm52096j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In recent years, dendriplexes, complexes of cationic dendrimers with DNA, have become attractive DNA delivery vehicles due to their well-defined chemistries. To better understand the nature of the forces condensing dendriplexes, we studied low generation poly(amidoamine) (PAMAM) dendrimer-DNA complexes and compared them to comparably charged linear arginine peptides. Using osmotic stress coupled with X-ray scattering, we have investigated the effect of molecular chain architecture on DNA-DNA intermolecular forces that determine the net attraction and equilibrium interhelical distance within these polycation condensed DNA arrays. In order to compact DNA, linear cations are believed to bind in DNA grooves and to interact with the phosphate backbone of apposing helices. We have previously shown a length dependent attraction resulting in higher packaging densities with increasing charge for linear cations. Hyperbranched polycations, such as polycationic dendrimers, presumably would not be able to bind to DNA and correlate their charges in the same manner as linear cations. We show that attractive and repulsive force amplitudes in PAMAM-DNA assemblies display significantly different trends than comparably charged linear arginines resulting in lower DNA packaging densities with increasing PAMAM generation. The salt and pH dependencies of packaging in PAMAM dendrimer-DNA and linear arginine-DNA complexes were also investigated. Significant differences in the force curve behaviour and salt and pH sensitivities suggest that different binding modes may be present in DNA condensed by dendrimers when compared to linear polycations.
Collapse
Affiliation(s)
- Min An
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA.
| | | | | |
Collapse
|
32
|
Singh G, Mangat SS, Sharma H, Singh J, Arora A, Singh Pannu AP, Singh N. Design and syntheses of novel fluorescent organosilicon-based chemosensors through click silylation: detection of biogenic amines. RSC Adv 2014. [DOI: 10.1039/c4ra02270j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
First report on the use of organosilicon-based chemosensors for the recognition of biogenic amines.
Collapse
Affiliation(s)
- Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced in Chemistry
- Panjab University
- Chandigarh, India
| | | | - Hemant Sharma
- Department of Chemistry
- Indian Institute of Technology
- Ropar, India
| | - Jandeep Singh
- Department of Chemistry and Centre of Advanced in Chemistry
- Panjab University
- Chandigarh, India
| | - Aanchal Arora
- Department of Chemistry and Centre of Advanced in Chemistry
- Panjab University
- Chandigarh, India
| | | | - Narinder Singh
- Department of Chemistry
- Indian Institute of Technology
- Ropar, India
| |
Collapse
|
33
|
Sen A, Sahu D, Ganguly B. In silico studies toward understanding the interactions of DNA base pairs with protonated linear/cyclic diamines. J Phys Chem B 2013; 117:9840-50. [PMID: 23909683 DOI: 10.1021/jp402847u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protonated amino groups are ubiquitous in nature and important in the fields of chemistry and biology. In search of efficient polyamine analogues, we have performed DFT calculations on the interactions of some simple cyclic and constrained protonated diamines with the DNA base pairs and compared the results with those obtained for the corresponding interactions involving linear diamines, which mimic biogenic polyamines such as spermine. The interactions are mainly governed by the strong hydrogen bonding between the ligand and the DNA base pairs. The DFT calculations suggest that the major-groove N7 interaction (GC base pair) with linear diamine is energetically more favored than other possible interactions, as reported with spermine. The cyclic diamines exhibited better interactions with the N7 site of the AT and GC base pairs of DNA than the linear diamines. The net atomic charges calculated for the protonated amine hydrogens were higher for the cyclic systems than for the linear diamines, inducing better binding affinity with the DNA base pairs. The stable conformers of cyclic diamines were predicted using the MP2/aug-cc-pVDZ level of theory. The positions of the protonated diamine groups in these cyclic systems are crucial for effective binding with the DNA base pairs. The DFT-calculated results show that diequatorial (ee) 1,2-cyclohexadiamine (CHDA) is a promising candidate as a polyamine analogue for biogenic polyamines. Molecular dynamics simulations were performed using explicit water molecules for the interaction of representative ligands with the DNA base pairs to examine the influence of solvent molecules on such interactions.
Collapse
Affiliation(s)
- Anik Sen
- Computation and Simulation Unit, Analytical Discipline & Centralized Instrument Facility, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002, India
| | | | | |
Collapse
|
34
|
Murray-Stewart T, Hanigan CL, Woster PM, Marton LJ, Casero RA. Histone deacetylase inhibition overcomes drug resistance through a miRNA-dependent mechanism. Mol Cancer Ther 2013; 12:2088-99. [PMID: 23943804 DOI: 10.1158/1535-7163.mct-13-0418] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The treatment of specific tumor cell lines with poly- and oligoamine analogs results in a superinduction of polyamine catabolism that is associated with cytotoxicity; however, other tumor cells show resistance to analog treatment. Recent data indicate that some of these analogs also have direct epigenetic effects. We, therefore, sought to determine the effects of combining specific analogs with an epigenetic targeting agent in phenotypically resistant human lung cancer cell lines. We show that the histone deacetylase inhibitor MS-275, when combined with (N(1), N(11))-bisethylnorspermine (BENSpm) or (N(1), N(12))-bis(ethyl)-cis-6,7-dehydrospermine tetrahydrochloride (PG-11047), synergistically induces the polyamine catabolic enzyme spermidine/spermine N(1)-acetyltransferase (SSAT), a major determinant of sensitivity to the antitumor analogs. Evidence indicates that the mechanism of this synergy includes reactivation of miR-200a, which targets and destabilizes kelch-like ECH-associated protein 1 (KEAP1) mRNA, resulting in the translocation and binding of nuclear factor (erythroid-derived 2)-like 2 (NRF2) to the polyamine-responsive element of the SSAT promoter. This transcriptional stimulation, combined with positive regulation of SSAT mRNA and protein by the analogs, results in decreased intracellular concentrations of natural polyamines and growth inhibition. The finding that an epigenetic targeting agent is capable of inducing a rate-limiting step in polyamine catabolism to overcome resistance to the antitumor analogs represents a completely novel chemotherapeutic approach. In addition, this is the first demonstration of miRNA-mediated regulation of the polyamine catabolic pathway. Furthermore, the individual agents used in this study have been investigated clinically; therefore, translation of these combinations into the clinical setting holds promise.
Collapse
Affiliation(s)
- Tracy Murray-Stewart
- Corresponding Author: Robert A. Casero, Jr., CRB 1 Room 551, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, 1650 Orleans Street, Bunting Blaustein Building, Baltimore, MD 21287.
| | | | | | | | | |
Collapse
|
35
|
Singh V, Das P. Condensation of DNA--a putative obstruction for repair process in abasic clustered DNA damage. DNA Repair (Amst) 2013; 12:450-7. [PMID: 23582211 DOI: 10.1016/j.dnarep.2013.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/27/2013] [Accepted: 03/07/2013] [Indexed: 12/31/2022]
Abstract
Clustered DNA damages are defined as two or more closely located DNA damage lesions that may be present within a few helical turns of the DNA double strand. These damages are potential signatures of ionizing radiation and are often found to be repair resistant. Types of damaged lesions frequently found inside clustered DNA damage sites include oxidized bases, abasic sites, nucleotide dimers, strand breaks or their complex combinations. In this study, we used a bistranded two-lesion abasic cluster DNA damage model to access the repair process of DNA in condensate form. Oligomer DNA duplexes (47 bp) were designed to have two deoxyuridine in the middle of the sequences, three bases apart in opposite strands. The deoxyuridine residues were converted into abasic sites by treatment with UDG enzyme creating an abasic clustered damage site in a precise position in each of the single strand of the DNA duplex. This oligomer duplex having compatible cohesive ends was ligated to pUC19 plasmid, linearized with HindIII restriction endonuclease. The plasmid-oligomer conjugate was transformed into condensates by treating them with spermidine. The efficiency of strand cleavage action of ApeI enzyme on the abasic sites was determined by denaturing PAGE after timed incubation of the oligomer duplex and the oligomer-plasmid conjugate in presence and absence of spermidine. The efficiency of double strand breaks was determined similarly by native PAGE. Quantitative gel analysis revealed that rate of abasic site cleavage is reduced in the DNA condensates as compared to the oligomer DNA duplex or the linear ligated oligomer-plasmid conjugates. Generation of double strand break is significantly reduced also, suggesting that their creation is not proportionate to the number of abasic sites cleaved in the condensate model. All these suggest that the ApeI enzyme have difficulty to access the abasic sites located deep into the condensates leading to repair refractivity of the damages. In addition, we found that presence of a polyamine such as spermidine has no notable effect in the incision activity of ApeI enzyme in linear oligomer DNA duplexes in our experimental concentration.
Collapse
Affiliation(s)
- Vandana Singh
- Department of Chemistry, Indian Institute of Technology Patna, Patna 800013, Bihar, India.
| | | |
Collapse
|
36
|
Copp RR, Peebles DD, Soref CM, Fahl WE. Radioprotective efficacy and toxicity of a new family of aminothiol analogs. Int J Radiat Biol 2013; 89:485-92. [PMID: 23369131 DOI: 10.3109/09553002.2013.770579] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE A family of 17 new nucleophilic-polyamine and aminothiol structures was designed and synthesized to identify new topical or systemic radioprotectors with acceptable mammalian toxicity profiles. design elements included: (i) Length and charge of the DNA-interacting, alkylamine backbone, (ii) nucleophilicity of the reactive oxygen species (ROS)-scavenging group, and (iii) non-toxic drug concentration achievable in animal tissues. MATERIALS AND METHODS Mouse maximum tolerated doses (MTD) were determined by increasing intraperitoneal (IP) doses. To assess radioprotective efficacy, mice received IP 0.5 MTD doses prior to an LD95 radiation dose (8.63 Gy), and survival was monitored. Topically applied aminothiol was also scored for prevention of radiation-induced dermatitis (17.3 Gy to skin). RESULTS The most radioprotective aminothiols had 4-6 carbons and 1-2 amines, and unlike amifostine and its analogs, displayed a terminal thiol from an alkyl side chain that projected the thiol away from the DNA major groove into the environment surrounding the DNA. The five carbon, single thiol, alkylamine, PrC-210, conferred 100% survival to an otherwise 100% lethal dose of whole-body radiation and achieved 100% prevention of Grade 2-3 radiation dermatitis. By mass spectrometry analysis, the one aminothiol that was tested formed mixed disulfides with cysteine and glutathione. CONCLUSIONS Multiple, highly radioprotective, aminothiol structures, with acceptable systemic toxicities, were identified.
Collapse
|
37
|
Highly selective colorimetric detection of spermine in biosamples on basis of the non-crosslinking aggregation of ssDNA-capped gold nanoparticles. Talanta 2012; 106:255-60. [PMID: 23598125 DOI: 10.1016/j.talanta.2012.10.079] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/25/2012] [Accepted: 10/25/2012] [Indexed: 11/22/2022]
Abstract
The selective adsorption of single-stranded oligonucleotides (ssDNA) on gold nanoparticles (AuNPs) is well known for stabilizing the AuNPs against aggregation even at high salt concentrations. Our investigation shows that the non-crosslinking aggregation of arbitrary ssDNA-capped AuNPs occurs due to their interaction with the cationic polyamine, spermine (Spm), even without any addition of NaCl. The non-crosslinking aggregation mechanism is that the Spm, served as multivalent counterions, plays the dual roles of charge shielding and ion bridging among the ssDNA-capped AuNPs, which jointly result in the aggregation of the ssDNA-capped AuNPs. Therefore, a sensitive and highly selective colorimetric method for the detection of Spm was developed. To the best of our knowledge, it is the first successful case as to the efforts towards the development of optical assays for cationic polyamine, showing neither natural UV absorption nor fluorescence. Compared with the traditional methods of chromatography and capillary electrophoresis, the approach described here would provide a convenient alternative and new train of thought for the specific detection of Spm in both biological fluid and fermented products.
Collapse
|
38
|
Oligoamine analogues in combination with 2-difluoromethylornithine synergistically induce re-expression of aberrantly silenced tumour-suppressor genes. Biochem J 2012; 442:693-701. [PMID: 22132744 PMCID: PMC3286856 DOI: 10.1042/bj20111271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Epigenetic gene silencing is an important mechanism in the initiation and progression of cancer. Abnormal DNA CpG island hypermethylation and histone modifications are involved in aberrant silencing of tumour-suppressor genes. LSD1 (lysine-specific demethylase 1) was the first enzyme identified to specifically demethylate H3K4 (Lys4 of histone H3). Methylated H3K4 is an important mark associated with transcriptional activation. The flavin adenine dinucleotide-binding amine oxidase domain of LSD1 is homologous with two polyamine oxidases, SMO (spermine oxidase) and APAO (N1-acetylpolyamine oxidase). We have demonstrated previously that long-chain polyamine analogues, the oligoamines, are inhibitors of LSD1. In the present paper we report the synergistic effects of specific oligoamines in combination with DFMO (2-difluoromethylornithine), an inhibitor of ornithine decarboxylase, in human colorectal cancer cells. DFMO treatment depletes natural polyamines and increases the uptake of exogenous polyamines. The combination of oligoamines and DFMO results in a synergistic re-expression of aberrantly silenced tumour-suppressor genes, including SFRP2 (secreted frizzled-related protein 2), which encodes a Wnt signalling pathway antagonist and plays an anti-tumorigenic role in colorectal cancer. The treatment-induced re-expression of SFRP2 is associated with increased H3K4me2 (di-methyl H3K4) in the gene promoter. The combination of LSD1-inhibiting oligoamines and DFMO represents a novel approach to epigenetic therapy of cancer.
Collapse
|
39
|
van Lierop D, Krpetić Ž, Guerrini L, Larmour IA, Dougan JA, Faulds K, Graham D. Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides. Chem Commun (Camb) 2012; 48:8192-4. [PMID: 22544041 DOI: 10.1039/c2cc31731a] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improved positively charged nanoparticles are described to provide a simplified SERS substrate for DNA detection. Complete flocculation of the nanoparticles is prevented due to the controlled analyte induced aggregation. This provides a stable aggregation state which significantly extends the analysis window simplifying DNA detection by SERS.
Collapse
Affiliation(s)
- Danny van Lierop
- Centre for Molecular Nanometrology, WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral St., Glasgow, G1 1XL, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Shao Q, Goyal S, Finzi L, Dunlap D. Physiological levels of salt and polyamines favor writhe and limit twist in DNA. Macromolecules 2012; 45:3188-3196. [PMID: 23526178 DOI: 10.1021/ma300211t] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Quantitative analysis of single molecule experiments show that adding either of two natural polyamines, spermine or spermidine, produced more compact plectonemes in DNA in physiological concentrations of monovalent salt. They also promoted plectoneme formation at lower values of torsion in measurements of extension versus twist. Quantifying changes in the plectonemic DNA using some results from simple rod models suggested that exposure to polyamines reduced the radii and increased the densities of plectonemes. Thus, polyamines may limit the twist density by favoring writhe which maintains the B-form. Although polymerases may significantly stretch the double helix, denature DNA, and produce twist instead of writhe, natural polyamines stabilize base-pairing, limit twist to maintain the B-form, and promote supercoiling, which is conducive to replication and transcription and essential for DNA packaging.
Collapse
Affiliation(s)
- Qing Shao
- Department of Physics, Emory University, Atlanta, GA 30322
| | | | | | | |
Collapse
|
41
|
Cation charge dependence of the forces driving DNA assembly. Biophys J 2011; 99:2608-15. [PMID: 20959102 DOI: 10.1016/j.bpj.2010.08.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 08/16/2010] [Accepted: 08/17/2010] [Indexed: 11/21/2022] Open
Abstract
Understanding the strength and specificity of interactions among biologically important macromolecules that control cellular functions requires quantitative knowledge of intermolecular forces. Controlled DNA condensation and assembly are particularly critical for biology, with separate repulsive and attractive intermolecular forces determining the extent of DNA compaction. How these forces depend on the charge of the condensing ion has not been determined, but such knowledge is fundamental for understanding the basis of DNA-DNA interactions. Here, we measure DNA force-distance curves for a homologous set of arginine peptides. All forces are well fit as the sum of two exponentials with 2.4- and 4.8-Å decay lengths. The shorter-decay-length force is always repulsive, with an amplitude that varies slightly with length or charge. The longer-decay-length force varies strongly with cation charge, changing from repulsion with Arg¹ to attraction with Arg². Force curves for a series of homologous polyamines and the heterogeneous protein protamine are quite similar, demonstrating the universality of these forces for DNA assembly. Repulsive amplitudes of the shorter-decay-length force are species-dependent but nearly independent of charge within each species. A striking observation was that the attractive force amplitudes for all samples collapse to a single curve, varying linearly with the inverse of the cation charge.
Collapse
|
42
|
Bregier-Jarzebowska R, Lomozik L. Interactions of cadmium(II) ions with adenosine as well as adenosine-5′-monophosphate and diamine or triamines in the ternary systems. J COORD CHEM 2010. [DOI: 10.1080/00958970701286243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
| | - Lechoslaw Lomozik
- a Faculty of Chemistry , A. Mickiewicz University , 60-780 Poznan, Grunwaldzka 6, Poland
| |
Collapse
|
43
|
Delépine AS, Tripier R, Le Baccon M, Handel H. From Flexible to Constrained Tris(tetraamine) Ligands: Synthesis, Acid-Base Properties, and Structural Effect on the Coordination Process with Nucleotides. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000495] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Dong X, Cheng J, Li J, Wang Y. Graphene as a novel matrix for the analysis of small molecules by MALDI-TOF MS. Anal Chem 2010; 82:6208-14. [PMID: 20565059 PMCID: PMC2912442 DOI: 10.1021/ac101022m] [Citation(s) in RCA: 285] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Graphene was utilized for the first time as a matrix for the analysis of low molecular weight compounds using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Polar compounds including amino acids, polyamines, anticancer drugs, and nucleosides could be successfully analyzed. Additionally, nonpolar compounds including steroids could be detected with high resolution and sensitivity. Compared with a conventional matrix, graphene exhibited a high desorption/ionization efficiency for nonpolar compounds. The graphene matrix functions as a substrate to trap analytes, and it transfers energy to the analytes upon laser irradiation, which allows for the analytes to be readily desorbed/ionized and interference of intrinsic matrix ions to be eliminated. The use of graphene as a matrix avoided the fragmentation of analytes and provided good reproducibility and a high salt tolerance, underscoring the potential application of graphene as a matrix for MALDI MS analysis of practical samples in complex sample matrixes. We also demonstrated that the use of graphene as an adsorbent for the solid-phase extraction of squalene could improve greatly the detection limit. This work not only opens a new field for applications of graphene, but also offers a new technique for high-speed analysis of low molecular weight compounds in areas such as metabolism research and natural product characterization.
Collapse
Affiliation(s)
- Xiaoli Dong
- Department of Chemistry, University of California, Riverside, California 92521-0403
| | - Jinsheng Cheng
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China 100084
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, China 100084
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403
| |
Collapse
|
45
|
Pledgie-Tracy A, Billam M, Hacker A, Sobolewski MD, Woster PM, Zhang Z, Casero RA, Davidson NE. The role of the polyamine catabolic enzymes SSAT and SMO in the synergistic effects of standard chemotherapeutic agents with a polyamine analogue in human breast cancer cell lines. Cancer Chemother Pharmacol 2010; 65:1067-81. [PMID: 19727732 PMCID: PMC2840063 DOI: 10.1007/s00280-009-1112-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Accepted: 08/06/2009] [Indexed: 11/12/2022]
Abstract
INTRODUCTION Polyamine analogues have demonstrated significant activity against human breast cancer cell lines as single agents as well as in combination with other cytotoxic drugs. This study evaluates the ability of a polyamine analogue N (1),N (11)-bis(ethyl)norspermine (BENSpm) to synergize with six standard chemotherapeutic agents, 5-fluorouracil (FU), fluorodeoxyuridine, cis-diaminechloroplatinum(II) (C-DDP), paclitaxel, docetaxel, and vinorelbine. MATERIALS AND METHODS Four human breast cancer cell lines (MDA-MB-231, MCF-7, Hs578t, and T47D) and one immortalized, non-tumorigenic mammary epithelial cell line (MCF-10A) were used for in vitro combination studies with BENSpm and cytotoxic drugs. Xenograft mice models generated with MDA-MB-231 cells were used for in vivo studies with BENSpm and paclitaxel. RESULTS AND CONCLUSION BENSpm exhibited synergistic inhibitory effect on cell proliferation in combination with 5-FU or paclitaxel in human breast cancer cell lines (MDA-MB-231 and MCF-7) and was either antagonistic or less effective in the non-tumorigenic MCF-10A cell line. Synergism was highest with 120 h concomitant treatment or pre-treatment with BENSpm for 24 h followed by concomitant treatment for 96 additional hours. Since the cytotoxic effects of many polyamine analogues and cytotoxic agents are believed to act, in part, through induction of the polyamine catabolic enzymes SSAT and SMO, the role of these enzymes on synergistic response was evaluated in MDA-MB-231 and MCF-7 treated with BENSpm and 5-FU or paclitaxel. Combination treatments of BENSpm with 5-FU or paclitaxel resulted in induction of SSAT mRNA and activity in both cell lines compared to either drug alone, while SMO mRNA and activity were increased only in MDA-MB-231 cells. Induction was greater with BENSpm/paclitaxel combination than BENSpm/5-FU. Further, RNAi studies demonstrated that both SSAT and SMO play a significant role in the response of MDA-MB-231 cells to treatment with BENSpm and 5-FU or paclitaxel. In MCF-7 cells, only SSAT appears to be involved in the response to these treatments. In an effort to translate combination studies from in vitro to in vivo, and to form a basis for clinical setting, the in vivo therapeutic efficacy of BENSpm alone and in combination with paclitaxel on tumor regression was evaluated in xenograft mice models generated with MDA-MB-231 cells. Intraperitoneal exposure to BENSpm or taxol singly and in combination for 4 weeks resulted in significant inhibition in tumor growth. These findings help elucidate the mechanisms involved in synergistic drug response and support combinations of polyamine analogues with chemotherapeutic agents which could potentially be used in the treatment of breast cancer.
Collapse
Affiliation(s)
- Allison Pledgie-Tracy
- The Department of Chemistry & Biochemistry, University of Maryland, Baltimore County, MD 21250
| | - Madhavi Billam
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | - Amy Hacker
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | | | - Patrick M. Woster
- The Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, Wayne State University, Detroit, MI 48202
| | - Zhe Zhang
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University, Baltimore, MD 21231
| | | |
Collapse
|
46
|
Pavan GM, Kostiainen MA, Danani A. Computational Approach for Understanding the Interactions of UV-Degradable Dendrons with DNA and siRNA. J Phys Chem B 2010; 114:5686-93. [DOI: 10.1021/jp911439q] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Giovanni M. Pavan
- Mathematical and Physical Sciences Research Unit (SMF), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Mauri A. Kostiainen
- Mathematical and Physical Sciences Research Unit (SMF), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | - Andrea Danani
- Mathematical and Physical Sciences Research Unit (SMF), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| |
Collapse
|
47
|
Luan B, Aksimentiev A. Electric and Electrophoretic Inversion of the DNA Charge in Multivalent Electrolytes. SOFT MATTER 2010; 6:243-246. [PMID: 20563230 PMCID: PMC2885735 DOI: 10.1039/b917973a] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Counterion-induced inversion of the DNA charge was characterized through extensive molecular dynamics simulations. We observed reversal of the DNA motion in an external electric field upon increasing the concentration of trivalent or quadrivalent counterions. In the case of a divalent electrolyte, inversion of the DNA's electric charge was observed at high concentrations of the electrolyte but not reversal of the DNA' electrophoretic motion. We demonstrate that inversion of the DNA's electrophoretic mobility results from a complex interplay of electrostatics and hydrodynamics.
Collapse
Affiliation(s)
- Binquan Luan
- IBM Physical Science Division, PO Box 218, Yorktown Heights, New York 10598
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA
| |
Collapse
|
48
|
Abstract
Cell-cycle progression is a one-way journey where the cell grows in size to be able to divide into two equally sized daughter cells. The cell cycle is divided into distinct consecutive phases defined as G(1) (first gap), S (synthesis), G(2) (second gap) and M (mitosis). A non-proliferating cell, which has retained the ability to enter the cell cycle when it receives appropriate signals, is in G(0) phase, and cycling cells that do not receive proper signals leave the cell cycle from G(1) into G(0). One of the major events of the cell cycle is the duplication of DNA during S-phase. A group of molecules that are important for proper cell-cycle progression is the polyamines. Polyamine biosynthesis occurs cyclically during the cell cycle with peaks in activity in conjunction with the G(1)/S transition and at the end of S-phase and during G(2)-phase. The negative regulator of polyamine biosynthesis, antizyme, shows an inverse activity compared with the polyamine biosynthetic activity. The levels of the polyamines, putrescine, spermidine and spermine, double during the cell cycle and show a certain degree of cyclic variation in accordance with the biosynthetic activity. When cells in G(0)/G(1) -phase are seeded in the presence of compounds that prevent the cell-cycle-related increases in the polyamine pools, the S-phase of the first cell cycle is prolonged, whereas the other phases are initially unaffected. The results point to an important role for polyamines with regard to the ability of the cell to attain optimal rates of DNA replication.
Collapse
|
49
|
Pavan GM, Danani A, Pricl S, Smith DK. Modeling the Multivalent Recognition between Dendritic Molecules and DNA: Understanding How Ligand “Sacrifice” and Screening Can Enhance Binding. J Am Chem Soc 2009; 131:9686-94. [DOI: 10.1021/ja901174k] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Giovanni M. Pavan
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Andrea Danani
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - Sabrina Pricl
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| | - David K. Smith
- Molecular Simulations Engineering (MOSE) Laboratory, Department of Chemical Engineering (DICAMP), University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy, Institute of Computer Integrated Manufacturing for Sustainable Innovation (ICIMSI), University for Applied Sciences of Southern Switzerland (SUPSI), Centro Galleria 2, Manno, CH-6928, Switzerland, and Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|
50
|
Regulation of gene expression by PrrA in Rhodobacter sphaeroides 2.4.1: role of polyamines and DNA topology. J Bacteriol 2009; 191:4341-52. [PMID: 19411327 DOI: 10.1128/jb.00243-09] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present study, we show in vitro binding of PrrA, a global regulator in Rhodobacter sphaeroides 2.4.1, to the PrrA site 2, within the RSP3361 locus. Specific binding, as shown by competition experiments, requires the phosphorylation of PrrA. The binding affinity of PrrA for site 2 was found to increase 4- to 10-fold when spermidine was added to the binding reaction. The presence of extracellular concentrations of spermidine in growing cultures of R. sphaeroides gave rise to a twofold increase in the expression of the photosynthesis genes pucB and pufB, as well as the RSP3361 gene, under aerobic growth conditions, as shown by the use of lacZ transcriptional fusions, and led to the production of light-harvesting spectral complexes. In addition, we show that negative supercoiling positively regulates the expression of the RSP3361 gene, as well as pucB. We show the importance of supercoiling through an evaluation of the regulation of gene expression in situ by supercoiling, in the case of the former gene, as well as using the DNA gyrase inhibitor novobiocin. We propose that polyamines and DNA supercoiling act synergistically to regulate expression of the RSP3361 gene, partly by affecting the affinity of PrrA binding to the PrrA site 2 within the RSP3361 gene.
Collapse
|