1
|
Pujari AN, Cullen PJ. Modulators of MAPK pathway activity during filamentous growth in Saccharomyces cerevisiae. G3 (BETHESDA, MD.) 2024; 14:jkae072. [PMID: 38560781 PMCID: PMC11152069 DOI: 10.1093/g3journal/jkae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 12/22/2023] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Mitogen-activated protein kinase (MAPK) pathways control the response to intrinsic and extrinsic stimuli. In the budding yeast Saccharomyces cerevisiae, cells undergo filamentous growth, which is regulated by the fMAPK pathway. To better understand the regulation of the fMAPK pathway, a genetic screen was performed to identify spontaneous mutants with elevated activity of an fMAPK pathway-dependent growth reporter (ste4 FUS1-HIS3). In total, 159 mutants were isolated and analyzed by secondary screens for invasive growth by the plate-washing assay and filament formation by microscopy. Thirty-two mutants were selected for whole-genome sequencing, which identified new alleles in genes encoding known regulators of the fMAPK pathway. These included gain-of-function alleles in STE11, which encodes the MAPKKK, as well as loss-of-function alleles in KSS1, which encodes the MAP kinase, and loss-of-function alleles in RGA1, which encodes a GTPase-activating protein (GAP) for CDC42. New alleles in previously identified pathway modulators were also uncovered in ALY1, AIM44, RCK2, IRA2, REG1, and in genes that regulate protein folding (KAR2), glycosylation (MNN4), and turnover (BLM10). Mutations leading to C-terminal truncations in the transcription factor Ste12p were also uncovered that resulted in elevated reporter activity, identifying an inhibitory domain of the protein from residues 491 to 688. We also find that a diversity of filamentous growth phenotypes can result from combinatorial effects of multiple mutations and by loss of different regulators of the response. The alleles identified here expand the connections surrounding MAPK pathway regulation and reveal new features of proteins that function in the signaling cascade.
Collapse
Affiliation(s)
- Atindra N Pujari
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| |
Collapse
|
2
|
Hays M, Schwartz K, Schmidtke DT, Aggeli D, Sherlock G. Paths to adaptation under fluctuating nitrogen starvation: The spectrum of adaptive mutations in Saccharomyces cerevisiae is shaped by retrotransposons and microhomology-mediated recombination. PLoS Genet 2023; 19:e1010747. [PMID: 37192196 PMCID: PMC10218751 DOI: 10.1371/journal.pgen.1010747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/26/2023] [Accepted: 04/14/2023] [Indexed: 05/18/2023] Open
Abstract
There are many mechanisms that give rise to genomic change: while point mutations are often emphasized in genomic analyses, evolution acts upon many other types of genetic changes that can result in less subtle perturbations. Changes in chromosome structure, DNA copy number, and novel transposon insertions all create large genomic changes, which can have correspondingly large impacts on phenotypes and fitness. In this study we investigate the spectrum of adaptive mutations that arise in a population under consistently fluctuating nitrogen conditions. We specifically contrast these adaptive alleles and the mutational mechanisms that create them, with mechanisms of adaptation under batch glucose limitation and constant selection in low, non-fluctuating nitrogen conditions to address if and how selection dynamics influence the molecular mechanisms of evolutionary adaptation. We observe that retrotransposon activity accounts for a substantial number of adaptive events, along with microhomology-mediated mechanisms of insertion, deletion, and gene conversion. In addition to loss of function alleles, which are often exploited in genetic screens, we identify putative gain of function alleles and alleles acting through as-of-yet unclear mechanisms. Taken together, our findings emphasize that how selection (fluctuating vs. non-fluctuating) is applied also shapes adaptation, just as the selective pressure (nitrogen vs. glucose) does itself. Fluctuating environments can activate different mutational mechanisms, shaping adaptive events accordingly. Experimental evolution, which allows a wider array of adaptive events to be assessed, is thus a complementary approach to both classical genetic screens and natural variation studies to characterize the genotype-to-phenotype-to-fitness map.
Collapse
Affiliation(s)
- Michelle Hays
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Katja Schwartz
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Danica T. Schmidtke
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Dimitra Aggeli
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gavin Sherlock
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
3
|
Maxwell PH. Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mob DNA 2020; 11:16. [PMID: 32336995 PMCID: PMC7175516 DOI: 10.1186/s13100-020-00215-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
Genomics and other large-scale analyses have drawn increasing attention to the potential impacts of transposable elements (TEs) on their host genomes. However, it remains challenging to transition from identifying potential roles to clearly demonstrating the level of impact TEs have on genome evolution and possible functions that they contribute to their host organisms. I summarize TE content and distribution in four well-characterized yeast model systems in this review: the pathogens Candida albicans and Cryptococcus neoformans, and the nonpathogenic species Saccharomyces cerevisiae and Schizosaccharomyces pombe. I compare and contrast their TE landscapes to their lifecycles, genomic features, as well as the presence and nature of RNA interference pathways in each species to highlight the valuable diversity represented by these models for functional studies of TEs. I then review the regulation and impacts of the Ty1 and Ty3 retrotransposons from Saccharomyces cerevisiae and Tf1 and Tf2 retrotransposons from Schizosaccharomyces pombe to emphasize parallels and distinctions between these well-studied elements. I propose that further characterization of TEs in the pathogenic yeasts would enable this set of four yeast species to become an excellent set of models for comparative functional studies to address outstanding questions about TE-host relationships.
Collapse
|
4
|
Cdc42p-interacting protein Bem4p regulates the filamentous-growth mitogen-activated protein kinase pathway. Mol Cell Biol 2014; 35:417-36. [PMID: 25384973 DOI: 10.1128/mcb.00850-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The ubiquitous Rho (Ras homology) GTPase Cdc42p can function in different settings to regulate cell polarity and cellular signaling. How Cdc42p and other proteins are directed to function in a particular context remains unclear. We show that the Cdc42p-interacting protein Bem4p regulates the mitogen-activated protein kinase (MAPK) pathway that controls filamentous growth in Saccharomyces cerevisiae. Bem4p controlled the filamentous-growth pathway but not other MAPK pathways (mating or high-osmolarity glycerol response [HOG]) that also require Cdc42p and other shared components. Bem4p associated with the plasma membrane (PM) protein, Sho1p, to regulate MAPK activity and cell polarization under nutrient-limiting conditions that favor filamentous growth. Bem4p also interacted with the major activator of Cdc42p, the guanine nucleotide exchange factor (GEF) Cdc24p, which we show also regulates the filamentous-growth pathway. Bem4p interacted with the pleckstrin homology (PH) domain of Cdc24p, which functions in an autoinhibitory capacity, and was required, along with other pathway regulators, to maintain Cdc24p at polarized sites during filamentous growth. Bem4p also interacted with the MAPK kinase kinase (MAPKKK) Ste11p. Thus, Bem4p is a new regulator of the filamentous-growth MAPK pathway and binds to general proteins, like Cdc42p and Ste11p, to promote a pathway-specific response.
Collapse
|
5
|
Feretzaki M, Heitman J. Genetic circuits that govern bisexual and unisexual reproduction in Cryptococcus neoformans. PLoS Genet 2013; 9:e1003688. [PMID: 23966871 PMCID: PMC3744442 DOI: 10.1371/journal.pgen.1003688] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 06/18/2013] [Indexed: 12/13/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen with a defined sexual cycle. Nutrient-limiting conditions and pheromones induce a dimorphic transition from unicellular yeast to multicellular hyphae and the production of infectious spores. Sexual reproduction involves cells of either opposite (bisexual) or one (unisexual) mating type. Bisexual and unisexual reproduction are governed by shared components of the conserved pheromone-sensing Cpk1 MAPK signal transduction cascade and by Mat2, the major transcriptional regulator of the pathway. However, the downstream targets of the pathway are largely unknown, and homology-based approaches have failed to yield downstream transcriptional regulators or other targets. In this study, we applied insertional mutagenesis via Agrobacterium tumefaciens transkingdom DNA delivery to identify mutants with unisexual reproduction defects. In addition to elements known to be involved in sexual development (Crg1, Ste7, Mat2, and Znf2), three key regulators of sexual development were identified by our screen: Znf3, Spo11, and Ubc5. Spo11 and Ubc5 promote sporulation during both bisexual and unisexual reproduction. Genetic and phenotypic analyses provide further evidence implicating both genes in the regulation of meiosis. Phenotypic analysis of sexual development showed that Znf3 is required for hyphal development during unisexual reproduction and also plays a central role during bisexual reproduction. Znf3 promotes cell fusion and pheromone production through a pathway parallel to and independent of the pheromone signaling cascade. Surprisingly, Znf3 participates in transposon silencing during unisexual reproduction and may serve as a link between RNAi silencing and sexual development. Our studies illustrate the power of unbiased genetic screens to reveal both novel and conserved circuits that operate sexual reproduction.
Collapse
Affiliation(s)
- Marianna Feretzaki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
7
|
Servant G, Pinson B, Tchalikian-Cosson A, Coulpier F, Lemoine S, Pennetier C, Bridier-Nahmias A, Todeschini AL, Fayol H, Daignan-Fornier B, Lesage P. Tye7 regulates yeast Ty1 retrotransposon sense and antisense transcription in response to adenylic nucleotides stress. Nucleic Acids Res 2012; 40:5271-82. [PMID: 22379133 PMCID: PMC3384299 DOI: 10.1093/nar/gks166] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transposable elements play a fundamental role in genome evolution. It is proposed that their mobility, activated under stress, induces mutations that could confer advantages to the host organism. Transcription of the Ty1 LTR-retrotransposon of Saccharomyces cerevisiae is activated in response to a severe deficiency in adenylic nucleotides. Here, we show that Ty2 and Ty3 are also stimulated under these stress conditions, revealing the simultaneous activation of three active Ty retrotransposon families. We demonstrate that Ty1 activation in response to adenylic nucleotide depletion requires the DNA-binding transcription factor Tye7. Ty1 is transcribed in both sense and antisense directions. We identify three Tye7 potential binding sites in the region of Ty1 DNA sequence where antisense transcription starts. We show that Tye7 binds to Ty1 DNA and regulates Ty1 antisense transcription. Altogether, our data suggest that, in response to adenylic nucleotide reduction, TYE7 is induced and activates Ty1 mRNA transcription, possibly by controlling Ty1 antisense transcription. We also provide the first evidence that Ty1 antisense transcription can be regulated by environmental stress conditions, pointing to a new level of control of Ty1 activity by stress, as Ty1 antisense RNAs play an important role in regulating Ty1 mobility at both the transcriptional and post-transcriptional stages.
Collapse
Affiliation(s)
- Géraldine Servant
- CNRS UPR9073, associated with Univ Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-chimique, F-75005 Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Chavel CA, Dionne HM, Birkaya B, Joshi J, Cullen PJ. Multiple signals converge on a differentiation MAPK pathway. PLoS Genet 2010; 6:e1000883. [PMID: 20333241 PMCID: PMC2841618 DOI: 10.1371/journal.pgen.1000883] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 02/14/2010] [Indexed: 12/12/2022] Open
Abstract
An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors. Signal integration is an essential feature of information flow through signal transduction pathways. The mechanisms by which signals from multiple pathways become integrated into a coordinated response remain unclear. We show that multiple pathways that regulate filamentous growth converge on a differentiation-dependent MAPK pathway. Our findings indicate that more extensive communication occurs between signaling pathways that control the filamentation response than has previously been appreciated. We suggest that global communication hierarchies regulate information flow in other systems, particularly higher eukaryotes where multiple pathways typically function simultaneously to modulate a complex response.
Collapse
Affiliation(s)
- Colin A. Chavel
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Heather M. Dionne
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Barbara Birkaya
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Jyoti Joshi
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Paul J. Cullen
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
9
|
Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ. The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell 2009; 20:3101-14. [PMID: 19439450 DOI: 10.1091/mbc.e08-07-0760] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
A central question in the area of signal transduction is why pathways utilize common components. In the budding yeast Saccharomyces cerevisiae, the HOG and filamentous growth (FG) MAPK pathways require overlapping components but are thought to be induced by different stimuli and specify distinct outputs. To better understand the regulation of the FG pathway, we examined FG in one of yeast's native environments, the grape-producing plant Vitis vinifera. In this setting, different aspects of FG were induced in a temporal manner coupled to the nutrient cycle, which uncovered a multimodal feature of FG pathway signaling. FG pathway activity was modulated by the HOG pathway, which led to the finding that the signaling mucins Msb2p and Hkr1p, which operate at the head of the HOG pathway, differentially regulate the FG pathway. The two mucins exhibited different expression and secretion patterns, and their overproduction induced nonoverlapping sets of target genes. Moreover, Msb2p had a function in cell polarization through the adaptor protein Sho1p that Hkr1p did not. Differential MAPK activation by signaling mucins brings to light a new point of discrimination between MAPK pathways.
Collapse
Affiliation(s)
- Andrew Pitoniak
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260-1300, USA
| | | | | | | | | |
Collapse
|
10
|
Vadaie N, Dionne H, Akajagbor DS, Nickerson SR, Krysan DJ, Cullen PJ. Cleavage of the signaling mucin Msb2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. ACTA ACUST UNITED AC 2008; 181:1073-81. [PMID: 18591427 PMCID: PMC2442203 DOI: 10.1083/jcb.200704079] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signaling mucins are cell adhesion molecules that activate RAS/RHO guanosine triphosphatases and their effector mitogen-activated protein kinase (MAPK) pathways. We found that the Saccharomyces cerevisiae mucin Msb2p, which functions at the head of the Cdc42p-dependent MAPK pathway that controls filamentous growth, is processed into secreted and cell-associated forms. Cleavage of the extracellular inhibitory domain of Msb2p by the aspartyl protease Yps1p generated the active form of the protein by a mechanism incorporating cellular nutritional status. Activated Msb2p functioned through the tetraspan protein Sho1p to induce MAPK activation as well as cell polarization, which involved the Cdc42p guanine nucleotide exchange factor Cdc24p. We postulate that cleavage-dependent activation is a general feature of signaling mucins, which brings to light a novel regulatory aspect of this class of signaling adhesion molecule.
Collapse
Affiliation(s)
- Nadia Vadaie
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | | | |
Collapse
|
11
|
Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 2008; 28:5543-54. [PMID: 18591253 DOI: 10.1128/mcb.00416-08] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ty1 long terminal repeat (LTR) retrotransposon of Saccharomyces cerevisiae is a powerful model to understand the activation of transposable elements by stress and their impact on genome expression. We previously discovered that Ty1 transcription is activated under conditions of severe adenine starvation. The mechanism of activation is independent of the Bas1 transcriptional activator of the de novo AMP biosynthesis pathway and probably involves chromatin remodeling at the Ty1 promoter. Here, we show that the 5' LTR has a weak transcriptional activity and is sufficient for the activation by severe adenine starvation. Furthermore, we demonstrate that Ty1 insertions that bring Ty1 promoter sequences into the vicinity of a reporter gene confer adenine starvation regulation on it. We provide evidence that similar coactivation of genes adjacent to Ty1 sequences occurs naturally in the yeast genome, indicating that Ty1 insertions can mediate transcriptional control of yeast gene expression under conditions of severe adenine starvation. Finally, the transcription pattern of genes adjacent to Ty1 insertions suggests that severe adenine starvation facilitates the initiation of transcription at alternative sites, partly located in the 5' LTR. We propose that Ty1-driven transcription of coding and noncoding sequences could regulate yeast gene expression in response to stress.
Collapse
|
12
|
Berretta J, Pinskaya M, Morillon A. A cryptic unstable transcript mediates transcriptional trans-silencing of the Ty1 retrotransposon in S. cerevisiae. Genes Dev 2008; 22:615-26. [PMID: 18316478 DOI: 10.1101/gad.458008] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryptic unstable transcripts (CUTs) are synthesized from intra- and intergenic regions in Saccharomyces cerevisiae and are rapidly degraded by RNA surveillance pathways, but their function(s) remain(s) elusive. Here, we show that an antisense TY1 CUT, starting within the Ty1 retrotransposon and encompassing the promoter 5' long terminal repeat (LTR), mediates RNA-dependent gene silencing and represses Ty1 mobility. We show that the Ty1 regulatory RNA is synthesized by RNA polymerase II, polyadenylated, and destabilized by the cytoplasmic 5' RNA degradation pathway. Moreover, the Ty1 regulatory RNA represses Ty1 transcription and transposition in trans by acting on the de novo transcribed TY1 RNA. Consistent with a transcriptional regulation mechanism, we show that RNA polymerase II occupancy is reduced on the Ty1 chromatin upon silencing, although TBP binding remains unchanged. Furthermore, the Ty1 silencing is partially mediated by histone deacetylation and requires Set1-dependent histone methylation, pointing out an analogy with heterochromatin gene silencing. Our results show the first example of an RNA-dependent gene trans-silencing mediated by epigenetic marks in S. cerevisiae.
Collapse
Affiliation(s)
- Julia Berretta
- Centre de Genetique Moleculaire-Centre National de la Recherche Scientifique (CGM-CNRS), 91198 Gif/Yvette, France
| | | | | |
Collapse
|
13
|
Maere S, Van Dijck P, Kuiper M. Extracting expression modules from perturbational gene expression compendia. BMC SYSTEMS BIOLOGY 2008; 2:33. [PMID: 18402676 PMCID: PMC2386865 DOI: 10.1186/1752-0509-2-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/10/2008] [Indexed: 12/14/2022]
Abstract
Background Compendia of gene expression profiles under chemical and genetic perturbations constitute an invaluable resource from a systems biology perspective. However, the perturbational nature of such data imposes specific challenges on the computational methods used to analyze them. In particular, traditional clustering algorithms have difficulties in handling one of the prominent features of perturbational compendia, namely partial coexpression relationships between genes. Biclustering methods on the other hand are specifically designed to capture such partial coexpression patterns, but they show a variety of other drawbacks. For instance, some biclustering methods are less suited to identify overlapping biclusters, while others generate highly redundant biclusters. Also, none of the existing biclustering tools takes advantage of the staple of perturbational expression data analysis: the identification of differentially expressed genes. Results We introduce a novel method, called ENIGMA, that addresses some of these issues. ENIGMA leverages differential expression analysis results to extract expression modules from perturbational gene expression data. The core parameters of the ENIGMA clustering procedure are automatically optimized to reduce the redundancy between modules. In contrast to the biclusters produced by most other methods, ENIGMA modules may show internal substructure, i.e. subsets of genes with distinct but significantly related expression patterns. The grouping of these (often functionally) related patterns in one module greatly aids in the biological interpretation of the data. We show that ENIGMA outperforms other methods on artificial datasets, using a quality criterion that, unlike other criteria, can be used for algorithms that generate overlapping clusters and that can be modified to take redundancy between clusters into account. Finally, we apply ENIGMA to the Rosetta compendium of expression profiles for Saccharomyces cerevisiae and we analyze one pheromone response-related module in more detail, demonstrating the potential of ENIGMA to generate detailed predictions. Conclusion It is increasingly recognized that perturbational expression compendia are essential to identify the gene networks underlying cellular function, and efforts to build these for different organisms are currently underway. We show that ENIGMA constitutes a valuable addition to the repertoire of methods to analyze such data.
Collapse
Affiliation(s)
- Steven Maere
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Ghent, Belgium.
| | | | | |
Collapse
|
14
|
Zeller CE, Parnell SC, Dohlman HG. The RACK1 ortholog Asc1 functions as a G-protein beta subunit coupled to glucose responsiveness in yeast. J Biol Chem 2007; 282:25168-76. [PMID: 17591772 DOI: 10.1074/jbc.m702569200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
According to the prevailing paradigm, G-proteins are composed of three subunits, an alpha subunit with GTPase activity and a tightly associated betagamma subunit complex. In the yeast Saccharomyces cerevisiae there are two known Galpha proteins (Gpa1 and Gpa2) but only one Gbetagamma, which binds only to Gpa1. Here we show that the yeast ortholog of RACK1 (receptor for activated protein kinase C1) Asc1 functions as the Gbeta for Gpa2. As with other known Gbeta proteins, Asc1 has a 7-WD domain structure, interacts directly with the Galpha in a guanine nucleotide-dependent manner, and inhibits Galpha guanine nucleotide exchange activity. In addition, Asc1 binds to the effector enzyme adenylyl cyclase (Cyr1), and diminishes the production of cAMP in response to glucose stimulation. Thus, whereas Gpa2 promotes glucose signaling through elevated production of cAMP, Asc1 has opposing effects on these same processes. Our findings reveal the existence of an unusual Gbeta subunit, one having multiple functions within the cell in addition to serving as a signal transducer for cell surface receptors and intracellular effectors.
Collapse
Affiliation(s)
- Corinne E Zeller
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
15
|
Sehgal A, Lee CYS, Espenshade PJ. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast. PLoS Genet 2007; 3:e131. [PMID: 17696611 PMCID: PMC1941750 DOI: 10.1371/journal.pgen.0030131] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 06/22/2007] [Indexed: 01/21/2023] Open
Abstract
Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP), directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.
Collapse
Affiliation(s)
- Alfica Sehgal
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
| | - Chih-Yung S Lee
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, Unites States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
16
|
Wong Sak Hoi J, Herbert C, Bacha N, O'Connell R, Lafitte C, Borderies G, Rossignol M, Rougé P, Dumas B. Regulation and role of a STE12-like transcription factor from the plant pathogen Colletotrichum lindemuthianum. Mol Microbiol 2007; 64:68-82. [PMID: 17376073 DOI: 10.1111/j.1365-2958.2007.05639.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In phytopathogenic fungi, STE12-like genes encode transcription factors essential for appressorium-mediated host penetration. However, their regulation and downstream targets are still unknown. In the present study, a STE12-like gene (CLSTE12) from Colletotrichum lindemuthianum was isolated. We identified a spliced variant whose expression was negatively regulated during early stages of pathogenesis, whereas the correctly spliced mRNA remained expressed up to the penetration step, suggesting distinct roles for these two transcripts. Indeed, the full-length sequence was able to complement a yeast STE12 mutant, whereas overexpression of the transcript variant had a dominant-negative effect on yeast invasive growth and C. lindemuthianum pathogenicity. To further investigate the downstream genes that could be regulated by CLSTE12, disruption mutants were generated. Phenotypic analyses of the mutants revealed reduced pectinase activity and conidial adhesion to polystyrene. Analysis of cell surface proteins allowed the identification of a major protein, Clsp1p, which was absent from the mutants. Clsp1p belongs to a new family of wall-associated proteins only found in euascomycetous fungi. Overall, these results suggest that the activity of CLSTE12 can be modulated by a regulated alternative splicing mechanism and that this factor is involved in the production of cell surface proteins and host cell wall degrading enzymes.
Collapse
Affiliation(s)
- Joanne Wong Sak Hoi
- UMR 5546 CNRS-Université Paul Sabatier Toulouse III, Pôle de Biotechnologie Végétale, 24 Chemin de Borde-Rouge, BP42617 Auzeville, 31326 Castanet-Tolosan, France
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chou S, Lane S, Liu H. Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:4794-805. [PMID: 16782869 PMCID: PMC1489142 DOI: 10.1128/mcb.02053-05] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae transcription factor Ste12 controls two distinct developmental programs of mating and filamentation. Ste12 activity is regulated by Fus3 and Kss1 mitogen-activated protein kinases through two Ste12 inhibitors, Dig1 and Dig2. Mating genes are regulated by Ste12 through Ste12 binding sites (pheromone response elements [PREs]), whereas filamentation genes are supposedly regulated by the cooperative binding of Ste12 and Tec1 on a PRE adjacent to a Tec1-binding site (TCS), termed filamentous responsive element (FRE). However, most filamentation genes do not contain an FRE; instead, they all have a TCS. By immunoprecipitation, we show that Ste12 forms two distinct complexes, Ste12/Dig1/Dig2 and Tec1/Ste12/Dig1, both in vivo and in vitro. The two complexes are formed by the competitive binding of Tec1 and Dig2 with Ste12, as Tec1 can compete off Dig2 from Ste12 in vitro and in vivo. In the Tec1/Ste12/Dig1 complex, Tec1 binds to the N terminus of Ste12 and to Dig1 indirectly through Ste12. Tec1 has low basal activity, and its transcriptional activation is provided by the associated Ste12, which is under Dig1 inhibition. Filamentation genes are bound by the Tec1/Ste12/Dig1 complex, whereas mating genes are occupied by mostly Ste12/Dig1/Dig2 with some Tec1/Ste12/Dig1. We suggest that Tec1 tethers Ste12 to TCS elements upstream of filamentation genes and defines the filamentation genes as a subset of Ste12-regulated genes.
Collapse
Affiliation(s)
- Song Chou
- Department of Biological Chemistry, University of California-Irvine, Irvine, CA 92697-1700, USA
| | | | | |
Collapse
|
18
|
Wang Y, Dohlman HG. Pheromone-regulated Sumoylation of Transcription Factors That Mediate the Invasive to Mating Developmental Switch in Yeast. J Biol Chem 2006; 281:1964-9. [PMID: 16306045 DOI: 10.1074/jbc.m508985200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A fundamental question in biology is how different signaling pathways use common signaling proteins to attain different developmental outcomes. The yeast transcription factor Ste12 is required in at least two distinct signaling processes, each regulated by many of the same protein kinases. Whereas Ste12-Ste12 homodimers promote transcription of genes required for mating, Ste12-Tec1 heterodimers activate genes required for invasive growth. We report that Ste12 and Tec1 undergo covalent modification by the ubiquitin-related modifier SUMO. Stimulation by mating pheromone promotes sumoylation of Ste12 and diminishes the sumoylation of Tec1. In the absence of sumoylation Tec1 is more rapidly degraded. We propose that pheromone-regulated sumoylation of Ste12 and Tec1 promotes a developmental switch from the invasive to the mating differentiation program.
Collapse
Affiliation(s)
- Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | |
Collapse
|
19
|
Fujita A, Hiroko T, Hiroko F, Oka C. Enhancement of superficial pseudohyphal growth by overexpression of the SFG1 gene in yeast Saccharomyces cerevisiae. Gene 2005; 363:97-104. [PMID: 16289536 DOI: 10.1016/j.gene.2005.06.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/14/2005] [Accepted: 06/27/2005] [Indexed: 11/20/2022]
Abstract
In response to nitrogen limitation, diploid yeast strains of Saccharomyces cerevisiae undergo a dimorphic transition to a filamentous growth form known as pseudohyphal growth. This developmental change can be classified into two distinct growing forms: invasive pseudohyphal growth and superficial pseudohyphal growth. We identified a yeast gene, SFG1, whose overexpression predominantly enhances superficial pseudohyphal growth when starved for nitrogen. Sfg1 has a sequence similarity to members of a family of transcriptional regulators of fungal development. Cells of a homozygous sfg1/sfg1 diploid strain have a serious defect in pseudohyphal growth, indicating that Sfg1 has an essential function for pseudohyphal development. Our analyses show that Sfg1 may act separately from mitogen-activated protein kinase (MAPK) pathway and cAMP-dependent protein kinase A (PKA) pathway.
Collapse
Affiliation(s)
- Atsushi Fujita
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology, Tsukuba Central 6-4, 1-1 Higashi, Tsukuba 305-8566, Japan.
| | | | | | | |
Collapse
|
20
|
Lesage P, Todeschini AL. Happy together: the life and times of Ty retrotransposons and their hosts. Cytogenet Genome Res 2005; 110:70-90. [PMID: 16093660 DOI: 10.1159/000084940] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Accepted: 03/18/2004] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the level of intimacy between Ty retrotransposons (Ty1-Ty5) and their host the yeast Saccharomyces cerevisiae. The effects of Ty location in the genome and of host proteins on the expression and mobility of Ty elements are highlighted. After a brief overview of Ty diversity and evolution, we describe the factors that dictate Ty target-site preference and the impact of targeting on Ty and adjacent gene expression. Studies on Ty3 and Ty5 have been especially informative in unraveling the role of host factors (Pol III machinery and silencing proteins, respectively) and integrase in controlling the specificity of integration. In contrast, not much is known regarding Ty1, Ty2 and Ty4, except that their insertion depends on the transcriptional competence of the adjacent Pol III gene and might be influenced by some chromatin components. This review also brings together recent findings on the regulation of Ty1 retrotransposition. A large number of host proteins (over 30) involved in a wide range of cellular processes controls either directly or indirectly Ty1 mobility, primarily at post-transcriptional steps. We focus on several genes for which more detailed analyses have permitted the elaboration of regulatory models. In addition, this review describes new data revealing that repression of Ty1 mobility also involves two forms of copy number control that act at both the trancriptional and post-transcriptional levels. Since S. cerevisiae lacks the conserved pathways for copy number control via transcriptional and post-transcriptional gene silencing found in other eukaryotes, Ty1 copy number control must be via another mechanism whose features are outlined. Ty1 response to stress also implicates activation at both transcriptional and postranscriptional steps of Ty1. Finally, we provide several insights in the role of Ty elements in chromosome evolution and yeast adaptation and discuss the factors that might limit Ty ectopic recombination.
Collapse
Affiliation(s)
- P Lesage
- Institut de Biologie Physico-Chimique, CNRS UPR 9073, Paris, France.
| | | |
Collapse
|
21
|
Maleri S, Ge Q, Hackett EA, Wang Y, Dohlman HG, Errede B. Persistent activation by constitutive Ste7 promotes Kss1-mediated invasive growth but fails to support Fus3-dependent mating in yeast. Mol Cell Biol 2004; 24:9221-38. [PMID: 15456892 PMCID: PMC517903 DOI: 10.1128/mcb.24.20.9221-9238.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase kinase kinase-Ste11 (MAPKKK-Ste11), MAPKK-Ste7, and MAPK-Kss1 mediate pheromone-induced mating differentiation and nutrient-responsive invasive growth in Saccharomyces cerevisiae. The mating pathway also requires the scaffold-Ste5 and the additional MAPK-Fus3. One contribution to specificity in this system is thought to come from stimulus-dependent recruitment of the MAPK cascade to upstream activators that are unique to one or the other pathway. To test this premise, we asked if stimulus-independent signaling by constitutive Ste7 would lead to a loss of biological specificity. Instead, we found that constitutive Ste7 promotes invasion without supporting mating responses. This specificity occurs because constitutive Ste7 activates Kss1, but not Fus3, in vivo and promotes filamentation gene expression while suppressing mating gene expression. Differences in the ability of constitutive Ste7 variants to bind the MAPKs and Ste5 account for the selective activation of Kss1. These findings support the model that Fus3 activation in vivo requires binding to both Ste7 and the scaffold-Ste5 but that Kss1 activation is independent of Ste5. This scaffold-independent activation of Kss1 by constitutive Ste7 and the existence of mechanisms for pathway-specific promoter discrimination impose a unique developmental fate independently of any distinguishing external stimuli.
Collapse
Affiliation(s)
- Seth Maleri
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Qingyuan Ge
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Elizabeth A. Hackett
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Yuqi Wang
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Henrik G. Dohlman
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
| | - Beverly Errede
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina
- Corresponding author. Mailing address: Department of Biochemistry and Biophysics, CB 7260, 512 ME Jones, University of North Carolina, Chapel Hill, NC 27599-7260. Phone: (919) 966-3628. Fax: (919) 966-4812. E-mail:
| |
Collapse
|
22
|
Roosen J, Engelen K, Marchal K, Mathys J, Griffioen G, Cameroni E, Thevelein JM, De Virgilio C, De Moor B, Winderickx J. PKA and Sch9 control a molecular switch important for the proper adaptation to nutrient availability. Mol Microbiol 2004; 55:862-80. [PMID: 15661010 DOI: 10.1111/j.1365-2958.2004.04429.x] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the yeast Saccharomyces cerevisiae, PKA and Sch9 exert similar physiological roles in response to nutrient availability. However, their functional redundancy complicates to distinguish properly the target genes for both kinases. In this article, we analysed different phenotypic read-outs. The data unequivocally showed that both kinases act through separate signalling cascades. In addition, genome-wide expression analysis under conditions and with strains in which either PKA and/or Sch9 signalling was specifically affected, demonstrated that both kinases synergistically or oppositely regulate given gene targets. Unlike PKA, which negatively regulates stress-responsive element (STRE)- and post-diauxic shift (PDS)-driven gene expression, Sch9 appears to exert additional positive control on the Rim15-effector Gis1 to regulate PDS-driven gene expression. The data presented are consistent with a cyclic AMP (cAMP)-gating phenomenon recognized in higher eukaryotes consisting of a main gatekeeper, the protein kinase PKA, switching on or off the activities and signals transmitted through primary pathways such as, in case of yeast, the Sch9-controlled signalling route. This mechanism allows fine-tuning various nutritional responses in yeast cells, allowing them to adapt metabolism and growth appropriately.
Collapse
Affiliation(s)
- Johnny Roosen
- Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg, B-3001 Leuven-Heverlee, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Cells respond to a plethora of signals using a limited set of intracellular signal transduction components. Surprisingly, pathways that transduce distinct signals can share protein components, yet avoid erroneous cross-talk. A highly tractable model system in which to study this paradox is the yeast Saccharomyces cerevisiae, which harbors three mitogen-activated protein kinase (MAPK) signal transduction cascades that share multiple signaling components. In this review we first describe potential mechanisms by which specificity could be achieved by signaling pathways that share components. Second, we summarize key features and components of the yeast MAPK pathways that control the mating pheromone response, filamentous growth, and the response to high osmolarity. Finally, we review biochemical analyses in yeast of mutations that cause cross-talk between these three MAPK pathways and their implications for the mechanistic bases for signaling specificity. Although much remains to be learned, current data indicate that scaffolding and cross pathway inhibition play key roles in the maintenance of fidelity.
Collapse
Affiliation(s)
- Monica A Schwartz
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2200, USA.
| | | |
Collapse
|
24
|
Cullen PJ, Sabbagh W, Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF. A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 2004; 18:1695-708. [PMID: 15256499 PMCID: PMC478191 DOI: 10.1101/gad.1178604] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Signaling molecules such as Cdc42 and mitogen-activated protein kinases (MAPKs) can function in multiple pathways in the same cell. Here, we propose one mechanism by which such factors may be directed to function in a particular pathway such that a specific response is elicited. Using genomic approaches, we identify a new component of the Cdc42- and MAPK-dependent signaling pathway that regulates filamentous growth (FG) in yeast. This factor, called Msb2, is a FG-pathway-specific factor that promotes differential activation of the MAPK for the FG pathway, Kss1. Msb2 is localized to polarized sites on the cell surface and interacts with Cdc42 and with the osmosensor for the high osmolarity glycerol response (HOG) pathway, Sho1. Msb2 is glycosylated and is a member of the mucin family, proteins that in mammalian cells promote disease resistance and contribute to metastasis in cancer cells. Remarkably, loss of the mucin domain of Msb2 causes hyperactivity of the FG pathway, demonstrating an inhibitory role for mucin domains in MAPK pathway activation. Taken together, our data suggest that Msb2 is a signaling mucin that interacts with general components, such as Cdc42 and Sho1, to promote their function in the FG pathway.
Collapse
Affiliation(s)
- Paul J Cullen
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gagiano M, Bauer FF, Pretorius IS. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2002; 2:433-70. [PMID: 12702263 DOI: 10.1111/j.1567-1364.2002.tb00114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.
Collapse
Affiliation(s)
- Marco Gagiano
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | | | | |
Collapse
|
26
|
Abstract
The KEM1/XRN1 gene was originally identified because of its functions in microtubule-mediated processes, and is also known to be a major cytoplasmic 5'-3' exoribonuclease gene, which is involved in RNA turnover. Here we present evidence that KEM1 plays a role in filamentous growth. In Saccharomyces cerevisiae, the filamentation signalling shares multiple components of the MAP kinase cascade (STE7, STE11, and KSS1) and the transcription factor STE12 with mating process. Both haploid invasive growth and diploid pseudohyphal growth were found to be greatly impaired in kem1 mutant strains. KEM1 affected the level of FLO11 transcripts and the expression of the filamentation-associated reporter genes, Ty1-lacZ and FLO11-lacZ. Suppression analysis implies that KEM1 does not affect the RAS/PKA pathway, but that it possibly functions downstream of the MAP kinase pathway during filamentation.
Collapse
Affiliation(s)
- Jaehee Kim
- Department of Microbiology, College of Natural Sciences, Chungnam National University, Youseong-Gu, Gung-Dong, Taejeon, South Korea
| | | |
Collapse
|
27
|
Zhang Z, Smith MM, Mymryk JS. Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 2001; 12:699-710. [PMID: 11251081 PMCID: PMC30974 DOI: 10.1091/mbc.12.3.699] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The C-terminal portion of adenovirus E1A suppresses ras-induced metastasis and tumorigenicity in mammalian cells; however, little is known about the mechanisms by which this occurs. In the simple eukaryote Saccharomyces cerevisiae, Ras2p, the homolog of mammalian h-ras, regulates mitogen-activated protein kinase (MAPK) and cyclic AMP-dependent protein kinase A (cAMP/PKA) signaling pathways to control differentiation from the yeast form to the pseudohyphal form. When expressed in yeast, the C-terminal region of E1A induced pseudohyphal differentiation, and this was independent of both the MAPK and cAMP/PKA signaling pathways. Using the yeast two-hybrid system, we identified an interaction between the C-terminal region of E1A and Yak1p, a yeast dual-specificity serine/threonine protein kinase that functions as a negative regulator of growth. E1A also physically interacts with Dyrk1A and Dyrk1B, two mammalian homologs of Yak1p, and stimulates their kinase activity in vitro. We further demonstrate that Yak1p is required in yeast to mediate pseudohyphal differentiation induced by Ras2p-regulated signaling pathways. However, pseudohyphal differentiation induced by the C-terminal region of E1A is largely independent of Yak1p. These data suggest that mammalian Yak1p-related kinases may be targeted by the E1A oncogene to modulate cell growth.
Collapse
Affiliation(s)
- Z Zhang
- Departments of Oncology, Microbiology and Immunology and Pharmacology and Toxicology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario N6A 4L6, Canada
| | | | | |
Collapse
|
28
|
Lorenz MC, Cutler NS, Heitman J. Characterization of alcohol-induced filamentous growth in Saccharomyces cerevisiae. Mol Biol Cell 2000; 11:183-99. [PMID: 10637301 PMCID: PMC14767 DOI: 10.1091/mbc.11.1.183] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Diploid cells of the budding yeast Saccharomyces cerevisiae starved for nitrogen differentiate into a filamentous growth form. Poor carbon sources such as starches can also stimulate filamentation, whereas haploid cells undergo a similar invasive growth response in rich medium. Previous work has demonstrated a role for various alcohols, by-products of amino acid metabolism, in altering cellular morphology. We found that several alcohols, notably isoamyl alcohol and 1-butanol, stimulate filamentous growth in haploid cells in which this differentiation is normally repressed. Butanol also induces cell elongation and changes in budding pattern, leading to a pseudohyphal morphology, even in liquid medium. The filamentous colony morphology and cell elongation require elements of the pheromone-responsive MAPK cascade and TEC1, whereas components of the nutrient-sensing machinery, such as MEP2, GPA2, and GPR1, do not affect this phenomenon. A screen for 1-butanol-insensitive mutants identified additional proteins that regulate polarized growth (BUD8, BEM1, BEM4, and FIG1), mitochondrial function (MSM1, MRP21, and HMI1), and a transcriptional regulator (CHD1). Furthermore, we have also found that ethanol stimulates hyperfilamentation in diploid cells, again in a MAPK-dependent manner. Together, these results suggest that yeast may sense a combination of nutrient limitation and metabolic by-products to regulate differentiation.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Howard Hughes Medical Institute, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
29
|
Abstract
Fus3, the mitogen-activated protein kinase (MAPK) of the mating pheromone response pathway, inhibits a post-translational step of Ty1 retrotransposition. Fus3 also inhibits haploid invasive growth by blocking cross-activation of invasive growth gene expression by the pheromone response signal cascade. Here, we show that Fus3 kinase activity and dosage co-ordinately regulate Ty1 transposition and invasive growth. A chromosomal copy of the kinase-defective fus3-K42R allele fails to inhibit either Ty1 transposition or invasive growth. When overexpressed, kinase-defective Fus3 weakly inhibits both Ty1 transposition and invasive growth, but is much less inhibitory than wild-type Fus3 expressed at the same level. Moreover, increasing the dosage of wild-type Fus3 intensifies the inhibition of both Ty1 transposition and invasive growth. To demonstrate that Fus3 regulates Ty1 transposition via its negative regulation of the invasive growth pathway, we show by epistatic analysis that the invasive growth pathway transcription factors Ste12 and Tec1 are both required for Fus3-mediated inhibition of Ty1 transposition. When haploid invasive growth is stimulated by high-copy expression of TEC1, by expression of the dominant hypermorphic allele STE11-4 or by deletion of HOG1, Ty1 transposition is concomitantly activated. In summary, these results demonstrate that the haploid invasive growth pathway activates Ty1 transposition at both transcriptional and post-transcriptional levels and that Fus3 inhibits Ty1 transposition by inhibiting the invasive growth pathway.
Collapse
Affiliation(s)
- D Conte
- Molecular Genetics Program, Wadsworth Center and School of Public Health, State University of New York at Albany, PO Box 22002, Albany, NY 12201-2002, USA
| | | |
Collapse
|
30
|
Ansari K, Martin S, Farkasovsky M, Ehbrecht IM, Küntzel H. Phospholipase C binds to the receptor-like GPR1 protein and controls pseudohyphal differentiation in Saccharomyces cerevisiae. J Biol Chem 1999; 274:30052-8. [PMID: 10514491 DOI: 10.1074/jbc.274.42.30052] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hormone receptor-like protein Gpr1p physically interacts with phosphatidylinositol-specific phospholipase C (Plc1p) and with the Galpha protein Gpa2p, as shown by two-hybrid assays and co-immune precipitation of epitope-tagged proteins. Plc1p binds to Gpr1p in either the presence or absence of Gpa2, whereas the Gpr1p/Gpa2p association depends on the presence of Plc1p. Genetic interactions between the null mutations plc1Delta, gpr1Delta, gpa2Delta, and ras2Delta suggest that Plc1p acts together with Gpr1p and Gpa2p in a growth control pathway operating in parallel to the Ras2p function. Diploid cells lacking Gpr1p, Plc1p, or Gpa2p fail to form pseudohyphae upon nitrogen depletion, and the filamentation defect of gpr1Delta and plc1Delta strains is rescued by activating a mitogen-activated protein kinase pathway via STE11-4 or by activating a cAMP pathway via overexpressed Tpk2p. Plc1p is also required for efficient expression of the FG(TyA)::lacZ reporter gene under nitrogen depletion. In conclusion, we have identified two physically interacting proteins, Gpr1p and Plc1p, as novel components of a nitrogen signaling pathway controlling the developmental switch from yeast-like to pseudohyphal growth. Our data suggest that phospholipase C modulates the interaction of the putative nutrient sensor Gpr1p with the Galpha protein Gpa2p as a downstream effector of filamentation control.
Collapse
Affiliation(s)
- K Ansari
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Strasse 3, D-37075 Göttingen, Germany
| | | | | | | | | |
Collapse
|
31
|
Ahn SH, Acurio A, Kron SJ. Regulation of G2/M progression by the STE mitogen-activated protein kinase pathway in budding yeast filamentous growth. Mol Biol Cell 1999; 10:3301-16. [PMID: 10512868 PMCID: PMC25595 DOI: 10.1091/mbc.10.10.3301] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inoculation of diploid budding yeast onto nitrogen-poor agar media stimulates a MAPK pathway to promote filamentous growth. Characteristics of filamentous cells include a specific pattern of gene expression, elongated cell shape, polar budding pattern, persistent attachment to the mother cell, and a distinct cell cycle characterized by cell size control at G2/M. Although a requirement for MAPK signaling in filamentous gene expression is well established, the role of this pathway in the regulation of morphogenesis and the cell cycle remains obscure. We find that ectopic activation of the MAPK signal pathway induces a cell cycle shift to G2/M coordinately with other changes characteristic of filamentous growth. These effects are abrogated by overexpression of the yeast mitotic cyclins Clb1 and Clb2. In turn, yeast deficient for Clb2 or carrying cdc28-1N, an allele of CDK defective for mitotic functions, display enhanced filamentous differentiation and supersensitivity to the MAPK signal. Importantly, activation of Swe1-mediated inhibitory phosphorylation of Thr-18 and/or Tyr-19 of Cdc28 is not required for the MAPK pathway to affect the G2/M delay. Mutants expressing a nonphosphorylatable mutant Cdc28 or deficient for Swe1 exhibit low-nitrogen-dependent filamentous growth and are further induced by an ectopic MAPK signal. We infer that the MAPK pathway promotes filamentous growth by a novel mechanism that inhibits mitotic cyclin/CDK complexes and thereby modulates cell shape, budding pattern, and cell-cell connections.
Collapse
Affiliation(s)
- S H Ahn
- Center for Molecular Oncology and Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
32
|
Donze D, Adams CR, Rine J, Kamakaka RT. The boundaries of the silenced HMR domain in Saccharomyces cerevisiae. Genes Dev 1999; 13:698-708. [PMID: 10090726 PMCID: PMC316548 DOI: 10.1101/gad.13.6.698] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The chromosomes of eukaryotes are organized into structurally and functionally discrete domains that provide a mechanism to compact the DNA as well as delineate independent units of gene activity. It is believed that insulator/boundary elements separate these domains. Here we report the identification and characterization of boundary elements that flank the transcriptionally repressed HMR locus in the yeast Saccharomyces cerevisiae. Deletion of these boundary elements led to the spread of silenced chromatin, whereas the ectopic insertion of these elements between a silencer and a promoter blocked the repressive effects of the silencer on that promoter at HMR and at telomeres. Sequence analysis indicated that the boundary element contained a TY1 LTR, and a tRNA gene and mutational analysis has implicated the Smc proteins, which encode structural components of chromosomes, in boundary element function.
Collapse
Affiliation(s)
- D Donze
- Unit on Chromatin and Transcription, National Institutes of Child Health and Development (NICHD) Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
33
|
Rademacher F, Kehren V, Stoldt VR, Ernst JF. A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 11):2951-2960. [PMID: 9846730 DOI: 10.1099/00221287-144-11-2951] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Saccharomyces cerevisiae and the pathogen Candida albicans can be induced to undergo morphogenesis from a yeast to a filamentous form. A C. albicans gene (CaCCT8) was identified encoding a subunit of the Cct chaperonin complex, whose expression prevents filament formation in both fungi without interfering with growth of the yeast form. In S. cerevisiae, pseudohyphal growth induced by Ras2Val19, by overproduction of Phd1p or by expression of the C. albicans EFG1 gene, was blocked by CaCct8p and its N-terminally deleted derivative CaCct8-delta1p; in contrast, pseudohyphal induction by other components (Cph1p, Cdc42p) could not be suppressed, indicating that morphogenesis per se is not inhibited. CaCCT8 expression also interfered with other Ras2pVal19 phenotypes, including heat sensitivity, lack of glycogen accumulation and lack of sporulation. In C. albicans, overproduction of CaCct8p effectively blocked hyphal morphogenesis induced by starvation conditions and by serum. The results suggest that the activity of a component in the Ras2p signal transduction pathway is suppressed by excess chaperonin subunits. This component may be a novel folding target for the Cct complex. In agreement with this hypothesis, disruption of one of the two CaCCT8 alleles in C. albicans led to defective hyphal morphogenesis.
Collapse
Affiliation(s)
- Felicitas Rademacher
- lnstitut fur Mikrobiologie and Biologisch-Medizi nisches Forsc hu ngszentrum, Heinrich-Heine-Universitat, Universitatsstr. V26.12, D-40225 Dilsseldorf, Germany
| | - Verena Kehren
- lnstitut fur Mikrobiologie and Biologisch-Medizi nisches Forsc hu ngszentrum, Heinrich-Heine-Universitat, Universitatsstr. V26.12, D-40225 Dilsseldorf, Germany
| | - Volker R Stoldt
- lnstitut fur Mikrobiologie and Biologisch-Medizi nisches Forsc hu ngszentrum, Heinrich-Heine-Universitat, Universitatsstr. V26.12, D-40225 Dilsseldorf, Germany
| | - Joachim F Ernst
- lnstitut fur Mikrobiologie and Biologisch-Medizi nisches Forsc hu ngszentrum, Heinrich-Heine-Universitat, Universitatsstr. V26.12, D-40225 Dilsseldorf, Germany
| |
Collapse
|
34
|
Bardwell L, Cook JG, Voora D, Baggott DM, Martinez AR, Thorner J. Repression of yeast Ste12 transcription factor by direct binding of unphosphorylated Kss1 MAPK and its regulation by the Ste7 MEK. Genes Dev 1998; 12:2887-98. [PMID: 9744865 PMCID: PMC317171 DOI: 10.1101/gad.12.18.2887] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/1998] [Accepted: 07/24/1998] [Indexed: 11/25/2022]
Abstract
The mitogen-activated protein kinase (MAPK) Kss1 has a dual role in regulating filamentous (invasive) growth of the yeast Saccharomyces cerevisiae. The stimulatory function of Kss1 requires both its catalytic activity and its activation by the MAPK/ERK kinase (MEK) Ste7; in contrast, the inhibitory function of Kss1 requires neither. This study examines the mechanism by which Kss1 inhibits invasive growth, and how Ste7 action overcomes this inhibition. We found that unphosphorylated Kss1 binds directly to the transcription factor Ste12, that this binding is necessary for Kss1-mediated repression of Ste12, and that Ste7-mediated phosphorylation of Kss1 weakens Kss1-Ste12 interaction and relieves Kss1-mediated repression. Relative to Kss1, the MAPK Fus3 binds less strongly to Ste12 and is correspondingly a weaker inhibitor of invasive growth. Analysis of Kss1 mutants indicated that the activation loop of Kss1 controls binding to Ste12. Potent repression of a transcription factor by its physical interaction with the unactivated isoform of a protein kinase, and relief of this repression by activation of the kinase, is a novel mechanism for signal-dependent regulation of gene expression.
Collapse
Affiliation(s)
- L Bardwell
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
35
|
Cali BM, Doyle TC, Botstein D, Fink GR. Multiple functions for actin during filamentous growth of Saccharomyces cerevisiae. Mol Biol Cell 1998; 9:1873-89. [PMID: 9658177 PMCID: PMC25429 DOI: 10.1091/mbc.9.7.1873] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1998] [Accepted: 03/13/1998] [Indexed: 11/11/2022] Open
Abstract
Saccharomyces cerevisiae is dimorphic and switches from a yeast form to a pseudohyphal (PH) form when starved for nitrogen. PH cells are elongated, bud in a unipolar manner, and invade the agar substrate. We assessed the requirements for actin in mediating the dramatic morphogenetic events that accompany the transition to PH growth. Twelve "alanine scan" alleles of the single yeast actin gene (ACT1) were tested for effects on filamentation, unipolar budding, agar invasion, and cell elongation. Some act1 mutations affect all phenotypes, whereas others affect only one or two aspects of PH growth. Tests of intragenic complementation among specific act1 mutations support the phenotypic evidence for multiple actin functions in filamentous growth. We present evidence that interaction between actin and the actin-binding protein fimbrin is important for PH growth and suggest that association of different actin-binding proteins with actin mediates the multiple functions of actin in filamentous growth. Furthermore, characterization of cytoskeletal structure in wild type and act1/act1 mutants indicates that PH cell morphogenesis requires the maintenance of a highly polarized actin cytoskeleton. Collectively, this work demonstrates that actin plays a central role in fungal dimorphism.
Collapse
Affiliation(s)
- B M Cali
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | | | | | | |
Collapse
|
36
|
Oehlen L, Cross FR. The mating factor response pathway regulates transcription of TEC1, a gene involved in pseudohyphal differentiation of Saccharomyces cerevisiae. FEBS Lett 1998; 429:83-8. [PMID: 9657388 DOI: 10.1016/s0014-5793(98)00568-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The transcription factor Tec1 is involved in pseudohyphal differentiation and agar-invasive growth of Saccharomyces cerevisiae cells. The sole element in the TEC1 promoter that has thus far been shown to control Tec1 function is the filament response element. We find that the TEC1 promoter also contains several pheromone response element sequences which are likely to be functional: TEC1 transcription is induced by mating factor, cell cycle regulated and dependent on the Ste4, Ste18 and Ste5 components of the mating factor signal transduction pathway. Using alleles of the transcription factor Ste12 that are defective in DNA binding, transcriptional induction or cooperativity with other transcription factors, we find little correlation between TEC1 transcript levels and agar-invasive growth.
Collapse
Affiliation(s)
- L Oehlen
- The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
37
|
Chandarlapaty S, Errede B. Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 1998; 18:2884-91. [PMID: 9566907 PMCID: PMC110667 DOI: 10.1128/mcb.18.5.2884] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Ash1 (for asymmetric synthesis of HO) was first uncovered in genetic screens that revealed its role in mating-type switching. Ash1 prevents HO expression in daughter cells. Because Ash1 has a zinc finger-like domain related to that of the GATA family of transcription factors, it presumably acts by repressing HO transcription. Nonswitching diploid cells also express Ash1, suggesting it could have functions in addition to regulation of HO expression. We show here that Ash1 has an essential function for pseudohyphal growth. Our epistasis analyses are consistent with the deduction that Ash1 acts separately from the mitogen-activated protein kinase cascade and Ste12. Similarly to the case in yeast form cells, Ash1 is asymmetrically localized to the nuclei of daughter cells during pseudohyphal growth. This asymmetric localization reveals that there is a previously unsuspected daughter cell-specific function necessary for pseudohyphal growth.
Collapse
Affiliation(s)
- S Chandarlapaty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | |
Collapse
|
38
|
Lorenz MC, Heitman J. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae. EMBO J 1998; 17:1236-47. [PMID: 9482721 PMCID: PMC1170472 DOI: 10.1093/emboj/17.5.1236] [Citation(s) in RCA: 325] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In response to nitrogen starvation, diploid cells of the budding yeast Saccharomyces cerevisiae differentiate into a filamentous, pseudohyphal growth form. This dimorphic transition is regulated by the Galpha protein GPA2, by RAS2, and by elements of the pheromone-responsive MAP kinase cascade, yet the mechanisms by which nitrogen starvation is sensed remain unclear. We have found that MEP2, a high affinity ammonium permease, is required for pseudohyphal differentiation in response to ammonium limitation. In contrast, MEP1 and MEP3, which are lower affinity ammonium permeases, are not required for filamentous growth. Deltamep2 mutant strains had no defects in growth rates or ammonium uptake, even at limiting ammonium concentrations. The pseudohyphal defect of Deltamep2/Deltamep2 strains was suppressed by dominant active GPA2 or RAS2 mutations and by addition of exogenous cAMP, but was not suppressed by activated alleles of the MAP kinase pathway. Analysis of MEP1/MEP2 hybrid proteins identified a small intracellular loop of MEP2 involved in the pseudohyphal regulatory function. In addition, mutations in GLN3, URE2 and NPR1, which abrogate MEP2 expression or stability, also conferred pseudohyphal growth defects. We propose that MEP2 is an ammonium sensor, generating a signal to regulate filamentous growth in response to ammonium starvation.
Collapse
Affiliation(s)
- M C Lorenz
- Departments of Genetics, Duke University Medical Center, 322 CARL Building, Research Drive, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Abstract
Pseudohyphal differentiation, a filamentous growth form of the budding yeast Saccharomyces cerevisiae, is induced by nitrogen starvation. The mechanisms by which nitrogen limitation regulates this process are currently unknown. We have found that GPA2, one of the two heterotrimeric G protein alpha subunit homologs in yeast, regulates pseudohyphal differentiation. Deltagpa2/Deltagpa2 mutant strains have a defect in pseudohyphal growth. In contrast, a constitutively active allele of GPA2 stimulates filamentation, even on nitrogen-rich media. Moreover, a dominant negative GPA2 allele inhibits filamentation of wild-type strains. Several findings, including epistasis analysis and reporter gene studies, indicate that GPA2 does not regulate the MAP kinase cascade known to regulate filamentous growth. Previous studies have implicated GPA2 in the control of intracellular cAMP levels; we find that expression of the dominant RAS2(Gly19Val) mutant or exogenous cAMP suppresses the Deltagpa2 pseudohyphal defect. cAMP also stimulates filamentation in strains lacking the cAMP phosphodiesterase PDE2, even in the absence of nitrogen starvation. Our findings suggest that GPA2 is an element of the nitrogen sensing machinery that regulates pseudohyphal differentiation by modulating cAMP levels.
Collapse
Affiliation(s)
- M C Lorenz
- Department of Genetics, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
40
|
Jiang SW, Trujillo MA, Eberhardt NL. Human chorionic somatomammotropin enhancer function is mediated by cooperative binding of TEF-1 and CSEF-1 to multiple, low-affinity binding sites. Mol Endocrinol 1997; 11:1223-32. [PMID: 9259314 DOI: 10.1210/mend.11.9.9984] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human chorionic somatomammotropin gene enhancer (CSEn) is composed of multiple enhansons (Enh) that share sequence similarities with those of the simian virus, SV40 enhancer (SVEn). The sequence homology includes two GT-IIC-like (Enh1 and Enh4) and three SphI/II-like enhansons (Enh2, Enh3, and Enh5). We previously showed that transcription enhancer factor 1 (TEF-1) and a 30-kDa placental-specific factor, chorionic somatomammotropin enhancer factor 1 (CSEF-1), bind to Enh4, which plays an essential role in enhancer function. In this study, we demonstrate that TEF-1 and CSEF-1 bind specifically to all the other GT-IIC- and SphI/II-like elements within CSEn with a broad range of binding affinities that vary between 0.005 and 0.15 that of Enh4. Each individual concatenated enhanson was able to stimulate hCS promoter activity in an orientation-independent manner in choriocarcinoma cells (BeWo) with an observed stimulation that was directly proportional to its relative binding affinity for TEF-1 and CSEF-1. These results indicate that CSEn function results from the cooperative interaction of TEF-1 and/or CSEF-1 binding to multiple, low-affinity GT-IIC- and SphI/II-like enhansons within the enhancer.
Collapse
Affiliation(s)
- S W Jiang
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
41
|
Baur M, Esch RK, Errede B. Cooperative binding interactions required for function of the Ty1 sterile responsive element. Mol Cell Biol 1997; 17:4330-7. [PMID: 9234690 PMCID: PMC232286 DOI: 10.1128/mcb.17.8.4330] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Ste12p transcription factor controls the expression of Ty1 transposable element insertion mutations and genes whose products are required for mating in Saccharomyces cerevisiae. The binding site for Ste12p is a consensus DNA sequence known as a pheromone response element (PRE). Upstream activating sequences (UASs) derived from known Ste12p-dependent genes have previously been characterized to require either multiple PREs or a single PRE coupled to a binding site for a second protein. The Ste12p-dependent UAS from Ty1, called a sterile response element (SRE), is of the second type and is comprised of a PRE and an adjacent TEA (TEF-1, Tec1, and AbaA motif) DNA consensus sequence (TCS). In this report, we show by UV cross-linking analysis that two proteins, Ste12p and a protein with an apparent size of 72 kDa, directly contact the Ty1 SRE. Other experiments show that Tec1p is required for formation of the Ty1 SRE protein-DNA complex and is physically present in the complex. These results establish a direct role for Tec1p in the Ty1 SRE and yet another set of combinatorial interactions that achieve a qualitatively distinct mode of transcriptional regulation with Ste12p.
Collapse
Affiliation(s)
- M Baur
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill 27599-7260, USA
| | | | | |
Collapse
|
42
|
Crauwels M, Winderickx J, de Winde JH, Thevelein JM. Identification of genes with nutrient-controlled expression by PCR-mapping in the yeast Saccharomyces cerevisiae. Yeast 1997; 13:973-84. [PMID: 9271111 DOI: 10.1002/(sici)1097-0061(199708)13:10<973::aid-yea146>3.0.co;2-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have used RNA fingerprinting by the mRNA Differential Display technique to identify new genes in the yeast Saccharomyces cerevisiae, expression of which is controlled by specific nutrient conditions. mRNA was isolated from cells grown on glucose medium into exponential and stationary phase, and from cells starved for nitrogen on glucose-containing medium. To avoid interference with the large number of glucose-repressible genes, a glucose-repression-deficient strain was used. Twenty different sets of arbitrary primers chosen at random were used for PCR-amplification of reverse transcriptase generated cDNAs, which resulted in six highly reproducible gene expression patterns. The validity of the approach was confirmed by sequencing PCR products of genes with known expression patterns, SUP44/RPS4, CTT1, SSA3, HSP30 and HSP104, and genes with related functions, TEF1 and TEF3, encoding translation elongation factors. In all cases the specificity of the responses was confirmed by Northern blot analysis. The results show that the PCR-mapping method is highly useful for the identification of new genes expressed under specific conditions in the yeast S. cerevisiae.
Collapse
Affiliation(s)
- M Crauwels
- Laboratorium voor Moleculaire Celbiologie, Katholieke Universiteit Leuven, Leuven-Heverlee, Flanders, Belgium
| | | | | | | |
Collapse
|
43
|
Roberts RL, Mösch HU, Fink GR. 14-3-3 proteins are essential for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae. Cell 1997; 89:1055-65. [PMID: 9215628 DOI: 10.1016/s0092-8674(00)80293-7] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
14-3-3 proteins are highly conserved ubiquitous proteins whose explicit functions have remained elusive. Here, we show that the S. cerevisiae 14-3-3 homologs BMH1 and BMH2 are not essential for viability or mating MAPK cascade signaling, but they are essential for pseudohyphal-development MAPK cascade signaling and other processes. Activated alleles of RAS2 and CDC42 induce pseudohyphal development and FG(TyA)-lacZ signaling in Bmh+ strains but not in ste20 (p65PAK) or bmh1 bmh2 mutant strains. Moreover, Bmh1p and Bmh2p associate with Ste20p in vivo. Three alleles of BMH1 encode proteins defective for FG(TyA)-lacZ signaling and association with Ste20p, yet these alleles complement other 14-3-3 functions. Therefore, the 14-3-3 proteins are specifically required for RAS/MAPK cascade signaling during pseudohyphal development in S. cerevisiae.
Collapse
Affiliation(s)
- R L Roberts
- Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Cambridge 02142, USA
| | | | | |
Collapse
|
44
|
Jacquemin P, Martial JA, Davidson I. Human TEF-5 is preferentially expressed in placenta and binds to multiple functional elements of the human chorionic somatomammotropin-B gene enhancer. J Biol Chem 1997; 272:12928-37. [PMID: 9148898 DOI: 10.1074/jbc.272.20.12928] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We report the cloning of a cDNA encoding the human transcription factor hTEF-5, containing the TEA/ATTS DNA binding domain and related to the TEF family of transcription factors. hTEF-5 is expressed in skeletal and cardiac muscle, but the strongest expression is observed in the placenta and in placenta-derived JEG-3 choriocarcinoma cells. In correlation with its placental expression, we show that hTEF-5 binds to several functional enhansons of the human chorionic somatomammotropin (hCS)-B gene enhancer. We define a novel functional element in this enhancer comprising tandemly repeated sites to which hTEF-5 binds cooperatively. In the corresponding region of the hCS-A enhancer, which is known to be inactive, this element is inactivated by a naturally occurring single base mutation that disrupts hTEF-5 binding. We further show that the binding of the previously described placental protein f/chorionic somatomammotropin enhancer factor-1 to TEF-binding sites is disrupted by monoclonal antibodies directed against the TEA domain and that this factor is a proteolytic degradation product of the TEF factors. These results strongly suggest that hTEF-5 regulates the activity of the hCS-B gene enhancer.
Collapse
Affiliation(s)
- P Jacquemin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Collège de France, B.P. 163-67404 Illkirch Cédex, France
| | | | | |
Collapse
|
45
|
Hung W, Olson KA, Breitkreutz A, Sadowski I. Characterization of the basal and pheromone-stimulated phosphorylation states of Ste12p. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 245:241-51. [PMID: 9151949 DOI: 10.1111/j.1432-1033.1997.00241.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Saccharomyces cerevisiae transcription factor Ste12p is required for basal and activated expression of pheromone-responsive genes, and for invasive growth in haploid cells. In diploid yeast, Ste12p is implicated in pseudohyphal development. The ability of Ste12p to effect these various responses in three different cell types must require stringent regulation of its transcriptional activation function and interaction with additional transcription factors. We have examined the phosphorylation state of Ste12p in untreated and pheromone-treated haploid cells, and found eight constitutively phosphorylated peptides. Phosphorylation at the constitutive sites does not require the protein kinases of the pheromone-response pathway. Treatment of haploid yeast with mating pheromone causes the appearance of novel relatively minor phosphorylations on Ste12p. Brief [35S]methionine labeling reveals novel pheromone-dependent, electrophoretically slower migrating Ste12p species. Similarly, the sole difference we observe in tryptic phosphopeptides generated from Ste12p from pheromone-treated and untreated cells is the transient appearance of two novel minor hydrophobic phosphopeptides. The pheromone-dependent phosphorylation of Ste12p requires an intact pheromone-response pathway and localization of Ste12p to the nucleus, but does not require the Ste12p DNA-binding domain. We conclude from these experiments that the pheromone-response pathway induces the formation of specific hyperphosphorylation on Ste12p, which can only be detected as apparently minor modifications in vivo. We argue that, if Ste12p is regulated by direct pheromone-responsive phosphorylation, then that phosphorylation must be represented by the two novel phosphopeptides. However, we cannot exclude the possibility that pheromone-responsive transcription is controlled by direct phosphorylation of a target other than Ste12p.
Collapse
Affiliation(s)
- W Hung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
46
|
Tedford K, Kim S, Sa D, Stevens K, Tyers M. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr Biol 1997; 7:228-38. [PMID: 9094309 DOI: 10.1016/s0960-9822(06)00118-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND In the budding yeast Saccharomyces cerevisiae, components of a single mitogen-activated protein (MAP) kinase pathway transduce two distinct signals, each of which activates an independent developmental programme: peptide mating pheromones initiate the mating response, whereas nutrient limitation initiates filamentous growth. One of the MAP kinases in this pathway, Fus3, triggers mating but antagonizes filamentous growth, while the other, Kss 1, preferentially triggers filamentous growth. Both kinases activate the same transcription factor, Ste 12, which can stimulate gene expression specific to each of the developmental programmes. The precise mechanism by which these MAP kinases activate Ste 12, however, is not clear. RESULTS Two newly identified proteins, Rst 1 and Rst 2 (also known as Dig1 and Dig2), were found to associate physically with Fus3 and Ste12. Rst1 and Rst2 were prominent substrates in kinase reactions of Fus3 immune complexes from pheromone-treated cells. Association of Fus3 with Ste12 required Rst1 and Rst2, and activation of Fus3 by pheromone caused release of Ste12 from the Fus3 complex. Although rst1 and rst2 single mutants had no obvious phenotype, both filamentous growth and mating-specific gene expression were constitutive in rst1 rst2 double mutants. The phenotype of rst1 rst2 cells required Ste12 function, but did not require the function of upstream kinases. Consistent with Rst1 and Rst2 having a role in Ste12 regulation, both proteins were localized to the nucleus. CONCLUSIONS Rst1 and Rst2 repress the mating and filamentous growth responses of S. cerevisiae by directly inhibiting Ste12. Activation of Fus3 or Kss1 may cause phosphorylation-dependent release of Ste12 from Rst1/Rst2 and thereby activate Ste12-dependent transcription.
Collapse
Affiliation(s)
- K Tedford
- Programme in Molecular Biology and Cancer Samuel Lunenfeld Research Institute Mount Sinai Hospital 600 University Avenue, Toronto, Canada M5G 1X5
| | | | | | | | | |
Collapse
|
47
|
Mösch HU, Fink GR. Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 1997; 145:671-84. [PMID: 9055077 PMCID: PMC1207852 DOI: 10.1093/genetics/145.3.671] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WHI3, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2Val19 and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
Collapse
Affiliation(s)
- H U Mösch
- Institute for Microbiology, Georg-August-University Göttingen, Germany
| | | |
Collapse
|
48
|
Abstract
In yeast, an overlapping set of mitogen-activated protein kinase (MAPK) signaling components controls mating, haploid invasion, and pseudohyphal development. Paradoxically, a single downstream transcription factor, Ste12, is necessary for the execution of these distinct programs. Developmental specificity was found to require a transcription factor of the TEA/ATTS family, Tec1, which cooperates with Ste12 during filamentous and invasive growth. Purified derivatives of Ste12 and Tec1 bind cooperatively to enhancer elements called filamentation and invasion response elements (FREs), which program transcription that is specifically responsive to the MAPK signaling components required for filamentous growth. An FRE in the TEC1 promoter functions in a positive feedback loop required for pseudohyphal development.
Collapse
Affiliation(s)
- H D Madhani
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
49
|
Cavarec L, Jensen S, Casella JF, Cristescu SA, Heidmann T. Molecular cloning and characterization of a transcription factor for the copia retrotransposon with homology to the BTB-containing lola neurogenic factor. Mol Cell Biol 1997; 17:482-94. [PMID: 8972229 PMCID: PMC231773 DOI: 10.1128/mcb.17.1.482] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
By transfection experiments, we previously identified a 72-bp enhancer sequence within the Drosophila copia retrotransposon which is involved in the control of the transcription level of this mobile element in cells in culture. Gel shift assays with nuclear extracts from Drosophila hydei-derived DH-33 cells further demonstrated specific interactions of at least two nuclear factors with this enhancer sequence. Using this sequence as a probe for the screening of an expression cDNA library that we constructed from DH-33 cells RNA, we have isolated a cDNA clone encoding a 110-kDa protein with features common to those of known transcription factors; these include a two-zinc-finger motif at the C terminus, three glutamine-rich domains in the presumptive activation domain of the protein, and an N-terminal domain which shares homology with the Bric-à-brac, Tramtrack, and Broad-Complex BTB boxes. The precise DNA recognition sequence for this transcription factor has been determined by both gel shift assays and footprinting experiments with a recombinant protein made in bacteria. The functionality of the cloned element was demonstrated upon transcriptional activation of copia reporter genes, as well as of a minimal promoter coupled with the identified target DNA sequence, in cotransfection assays in cells in culture with an expression vector for the cloned factor. Southern blot and nucleotide sequence analyses revealed a related gene in Drosophila melanogaster (the lola gene) previously identified by a genetic approach as involved in axon growth and guidance. Transfection assays in cells in culture with lola gene expression vectors and in situ hybridization experiments with lola gene mutants finally provided evidence that the copia retrotransposon is regulated by this neurogenic gene in D.melanogaster, with a repressor effect in the central nervous systems of the embryos.
Collapse
Affiliation(s)
- L Cavarec
- Unité de Physicochimie et Pharmacologie des Macromolécules Biologiques, CNRS URA147, Institut Gustave Roussy, Villejuif, France
| | | | | | | | | |
Collapse
|
50
|
Cook JG, Bardwell L, Kron SJ, Thorner J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 1996; 10:2831-48. [PMID: 8918885 DOI: 10.1101/gad.10.22.2831] [Citation(s) in RCA: 174] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Haploid cells of budding yeast Saccharomyces cerevisiae respond to mating pheromones by inducing genes required for conjugation, arresting cell cycle progression, and undergoing morphological changes. The same cells respond to nutrient deprivation by altering budding pattern and inducing genes required for invasive growth. Both developmental alternatives to vegetative proliferation require the MAP kinase Kss1 and the transcriptional transactivator Ste12. Using a two-hybrid screen for gene products that interact with Kss1, two homologous and previously uncharacterized loci (DIG1 and DIG2, for down-regulator of invasive growth) were identified. DIG2 is pheromone-inducible, whereas DIG1 is constitutively expressed. Dig1 colocalizes with Kssl in the nucleus, coimmunoprecipitates with Kss1 from cell extracts in a pheromone-independent manner, and is phosphorylated by Kss1 in immune complexes in a pheromone-stimulated manner. Kss1 binds specifically to a GST-Dig1 fusion in the absence of any other yeast protein. Using the two-hybrid method, both Dig1 and Dig2 also interact with the other MAP kinase of the pheromone response pathway, Fus3. However, neither dig1 or dig2 single mutants, nor a dig1 dig2 double mutant, have a discernible effect on mating. In contrast, dig1 dig2 cells constitutively invade agar medium, whereas a dig1 dig2 ste12 triple mutant does not, indicating that Dig1 and Dig2 share a role in negatively regulating the invasive growth pathway. High-level expression of Dig1 suppresses invasive growth and also causes cells to appear more resistant to pheromone-imposed cell cycle arrest. Ste12 also binds specifically to GST-Dig1 in the absence of any other yeast protein. Collectively, these findings indicate that Dig1, and most likely Dig2, are physiological substrates of Kssl and suggest that they regulate Ste12 function by direct protein-protein interaction.
Collapse
Affiliation(s)
- J G Cook
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | |
Collapse
|