1
|
Annear DJ, Kooy RF. Unravelling the link between neurodevelopmental disorders and short tandem CGG-repeat expansions. Emerg Top Life Sci 2023; 7:265-275. [PMID: 37768318 PMCID: PMC10754333 DOI: 10.1042/etls20230021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Neurodevelopmental disorders (NDDs) encompass a diverse group of disorders characterised by impaired cognitive abilities and developmental challenges. Short tandem repeats (STRs), repetitive DNA sequences found throughout the human genome, have emerged as potential contributors to NDDs. Specifically, the CGG trinucleotide repeat has been implicated in a wide range of NDDs, including Fragile X Syndrome (FXS), the most common inherited form of intellectual disability and autism. This review focuses on CGG STR expansions associated with NDDs and their impact on gene expression through repeat expansion-mediated epigenetic silencing. We explore the molecular mechanisms underlying CGG-repeat expansion and the resulting epigenetic modifications, such as DNA hypermethylation and gene silencing. Additionally, we discuss the involvement of other CGG STRs in neurodevelopmental diseases. Several examples, including FMR1, AFF2, AFF3, XYLT1, FRA10AC1, CBL, and DIP2B, highlight the complex relationship between CGG STR expansions and NDDs. Furthermore, recent advancements in this field are highlighted, shedding light on potential future research directions. Understanding the role of STRs, particularly CGG-repeats, in NDDs has the potential to uncover novel diagnostic and therapeutic strategies for these challenging disorders.
Collapse
Affiliation(s)
- Dale J Annear
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
2
|
Viana PF, Feldberg E, Takagui FH, Menezes S, Vogt RC, Ezaz T. Matamatas Chelus spp. (Testudines, Chelidae) have a remarkable evolutionary history of sex chromosomes with a long-term stable XY microchromosome system. Sci Rep 2022; 12:6676. [PMID: 35461353 PMCID: PMC9035145 DOI: 10.1038/s41598-022-10782-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/11/2022] [Indexed: 11/26/2022] Open
Abstract
The genus Chelus, commonly known as Matamata is one of the most emblematic and remarkable species among the Neotropical chelids. It is an Amazonian species with an extensive distribution throughout Negro/Orinoco and Amazonas River basins. Currently, two species are formally recognized: Chelus orinocensis and Chelus fimbriata and although it is still classified as "Least Concern" in the IUCN, the Matamatas are very appreciated and illegally sold in the international pet trade. Regardless, little is known regarding many aspects of its natural history. Chromosomal features for Chelus, for instance, are meagre and practically restricted to the description of the diploid number (2n = 50) for Chelus fimbriata, and its sex determining strategies are yet to be fully investigated. Here, we examined the karyotype of Chelus fimbriata and the newly described Chelus orinocensis, applying an extensive conventional and molecular cytogenetic approach. This allowed us to identify a genetic sex determining mechanism with a micro XY sex chromosome system in both species, a system that was likely present in their most common recent ancestor Chelus colombiana. Furthermore, the XY system found in Chelus orinocensis and Chelus fimbriata, as seen in other chelid species, recruited several repeat motifs, possibly prior to the split of South America and Australasian lineages, indicating that such system indeed dates back to the earliest lineages of Chelid species.
Collapse
Affiliation(s)
- Patrik F Viana
- Coordenação de Biodiversidade, Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, CEP: 69067-375, Brazil.
| | - Eliana Feldberg
- Coordenação de Biodiversidade, Laboratory of Animal Genetics, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, CEP: 69067-375, Brazil
| | - Fábio Hiroshi Takagui
- Animal Cytogenetics Laboratory, Department of General Biology, CCB, Londrina State University, Londrina, Brazil
| | - Sabrina Menezes
- Coordenação de Biodiversidade, Centro de Estudos de Quelônios da Amazônia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, CEP: 69067-375, Brazil
| | - Richard C Vogt
- Coordenação de Biodiversidade, Centro de Estudos de Quelônios da Amazônia, Instituto Nacional de Pesquisas da Amazônia, Av. André Araújo 2936, Petrópolis, Manaus, AM, CEP: 69067-375, Brazil
| | - Tariq Ezaz
- Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, 12 2616, Australia
| |
Collapse
|
3
|
Mode and Tempo of Microsatellite Evolution across 300 Million Years of Insect Evolution. Genes (Basel) 2020; 11:genes11080945. [PMID: 32824315 PMCID: PMC7464534 DOI: 10.3390/genes11080945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 01/02/2023] Open
Abstract
Microsatellites are short, repetitive DNA sequences that can rapidly expand and contract due to slippage during DNA replication. Despite their impacts on transcription, genome structure, and disease, relatively little is known about the evolutionary dynamics of these short sequences across long evolutionary periods. To address this gap in our knowledge, we performed comparative analyses of 304 available insect genomes. We investigated the impact of sequence assembly methods and assembly quality on the inference of microsatellite content, and we explored the influence of chromosome type and number on the tempo and mode of microsatellite evolution across one of the most speciose clades on the planet. Diploid chromosome number had no impact on the rate of microsatellite evolution or the amount of microsatellite content in genomes. We found that centromere type (holocentric or monocentric) is not associated with a difference in the amount of microsatellite content; however, in those species with monocentric chromosomes, microsatellite content tends to evolve faster than in species with holocentric chromosomes.
Collapse
|
4
|
Vershkov D, Benvenisty N. Human pluripotent stem cells in modeling human disorders: the case of fragile X syndrome. Regen Med 2017; 12:53-68. [DOI: 10.2217/rme-2016-0100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human pluripotent stem cells (PSCs) generated from affected blastocysts or from patient-derived somatic cells are an emerging platform for disease modeling and drug discovery. Fragile X syndrome (FXS), the leading cause of inherited intellectual disability, was one of the first disorders modeled in both embryonic stem cells and induced PCSs and can serve as an exemplary case for the utilization of human PSCs in the study of human diseases. Over the past decade, FXS-PSCs have been used to address the fundamental questions regarding the pathophysiology of FXS. In this review we summarize the methodologies for generation of FXS-PSCs, discuss their advantages and disadvantages compared with existing modeling systems and describe their utilization in the study of FXS pathogenesis and in the development of targeted treatment.
Collapse
Affiliation(s)
- Dan Vershkov
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nissim Benvenisty
- The Azrieli Center for Stem Cells & Genetic Research, Department of Genetics, Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| |
Collapse
|
5
|
Colak D, Zaninovic N, Cohen MS, Rosenwaks Z, Yang WY, Gerhardt J, Disney MD, Jaffrey SR. Promoter-bound trinucleotide repeat mRNA drives epigenetic silencing in fragile X syndrome. Science 2014; 343:1002-5. [PMID: 24578575 DOI: 10.1126/science.1245831] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epigenetic gene silencing is seen in several repeat-expansion diseases. In fragile X syndrome, the most common genetic form of mental retardation, a CGG trinucleotide-repeat expansion adjacent to the fragile X mental retardation 1 (FMR1) gene promoter results in its epigenetic silencing. Here, we show that FMR1 silencing is mediated by the FMR1 mRNA. The FMR1 mRNA contains the transcribed CGG-repeat tract as part of the 5' untranslated region, which hybridizes to the complementary CGG-repeat portion of the FMR1 gene to form an RNA·DNA duplex. Disrupting the interaction of the mRNA with the CGG-repeat portion of the FMR1 gene prevents promoter silencing. Thus, our data link trinucleotide-repeat expansion to a form of RNA-directed gene silencing mediated by direct interactions of the trinucleotide-repeat RNA and DNA.
Collapse
Affiliation(s)
- Dilek Colak
- Department of Pharmacology, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Testing the FMR1 promoter for mosaicism in DNA methylation among CpG sites, strands, and cells in FMR1-expressing males with fragile X syndrome. PLoS One 2011; 6:e23648. [PMID: 21909353 PMCID: PMC3166088 DOI: 10.1371/journal.pone.0023648] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 07/22/2011] [Indexed: 11/19/2022] Open
Abstract
Variability among individuals in the severity of fragile X syndrome (FXS) is influenced by epigenetic methylation mosaicism, which may also be common in other complex disorders. The epigenetic signal of dense promoter DNA methylation is usually associated with gene silencing, as was initially reported for FMR1 alleles in individuals with FXS. A paradox arose when significant levels of FMR1 mRNA were reported for some males with FXS who had been reported to have predominately methylated alleles. We have used hairpin-bisufite PCR, validated with molecular batch-stamps and barcodes, to collect and assess double-stranded DNA methylation patterns from these previously studied males. These patterns enable us to distinguish among three possible forms of methylation mosaicism, any one of which could explain FMR1 expression in these males. Our data indicate that cryptic inter-cell mosaicism in DNA methylation can account for the presence of FMR1 mRNA in some individuals with FXS.
Collapse
|
7
|
Kastelan D, Grubic Z, Kraljevic I, Polasek O, Dusek T, Stingl K, Kerhin-Brkljacic V, Korsic M. The role of estrogen receptor-alpha gene TA polymorphism and aromatase gene TTTA polymorphism on peak bone mass attainment in males: is there an additive negative effect of certain allele combinations? J Bone Miner Metab 2009; 27:198-204. [PMID: 19172223 DOI: 10.1007/s00774-008-0029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 06/16/2008] [Indexed: 01/26/2023]
Abstract
Idiopathic osteoporosis in males is influenced predominantly by low peak bone mass as a feature under a strong genetic control. Among a number of candidate genes, alpha-estrogen receptor (ERalpha) and CYP19 genes are of particular interest due to important role of estrogen in pathophysiology of osteoporosis. In the present study we examined the association of certain allelic combinations of ERalpha gene thymine-adenine (TA) polymorphism and aromatase gene TTTA polymorphism on bone mineral density (BMD) in young men. The study sample consisted of 92 unrelated healthy male volunteers, aged 21-35. In each subject, lumbar spine and proximal femur BMD, parameters of bone turnover and 25-OHD level were measured. Two ERalpha (TA)( n ) alleles, allele 19 and allele 21, were found to be associated with lower BMD. The presence of allele 19 was associated with significantly lower lumbar spine (P = 0.006) and trochanter (P = 0.02) BMD while the subjects positive for allele 21 had significantly lower lumbar spine (P = 0.04), trochanter (P = 0.02) and total hip (P = 0.03) BMD. Men with CYP19 (TTTA)(7-3)/ERalpha (TA)(19) allele combination had significantly lower lumbar spine BMD (P = 0.02) and those with CYP19 (TTTA)(7-3)/ERalpha (TA)(21) allele combination had significantly lower BMD for all three measurements, i.e. lumbar spine (P = 0.02), femoral neck (P = 0.02) and total hip (P = 0.008). These particular combinations of high-risk alleles were associated with lower median lumbar spine, femoral neck and total hip BMD than either of the allele alone suggesting that negative effect of two risk alleles on peak bone mass add up.
Collapse
Affiliation(s)
- Darko Kastelan
- Division of Endocrinology, Department of Internal Medicine, University Hospital Zagreb, Kispaticeva 12, 10000 Zagreb, Croatia.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Oxidative Stress and the Metabolic Pathology of Autism. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2008. [DOI: 10.1007/978-1-60327-489-0_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
BACKGROUND Transcriptional silencing of tumour suppressor genes by DNA hypermethylation plays a crucial role in the progression of gastric cancer. Many genes involved in the regulation of cell cycle, tissue invasion, DNA repair and apoptosis have been shown to be inactivated by this type of epigenetic mechanism. RESULTS Recent studies have demonstrated that DNA hypermethylation begins early in cancer progression, and in some cases, may precede the neoplastic process. Ageing is associated with DNA hypermethylation, and may provide a mechanistic link between ageing and cancer. Several reports have indicated that Epstein-Barr virus-related gastric cancer is associated with a high frequency of DNA hypermethylation, suggesting that viral oncogenesis might involve DNA hypermethylation with inactivation of tumour suppressor genes. Hypermethylation of hMLH1 with the resulting loss of its expression is known to cause microsatellite instability, which reflects genomic instability associated with defective DNA mismatch repair genes in the tumour. CONCLUSIONS In conclusion, recent studies demonstrate that DNA hypermethylation is a crucial mechanism of inactivation of tumour suppressor genes in gastric cancer. A better understanding of DNA hypermethylation will provide us with new opportunities in the diagnosis and therapy of gastric cancer.
Collapse
Affiliation(s)
- T Y Kim
- National Research Laboratory for Cancer Epigenetics, Cancer Research Institute, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The intention of this review is to familiarize the practicing clinician with the current status and future direction of molecular testing in obstetrics. As a discipline, obstetrics and gynecology is unique in that it deals with the full spectrum of molecular genetic testing. This spectrum includes infectious disease, neoplasia and inherited diseases. This review will focus on inherited conditions and complex diseases, as it is in this context that we may fully realize the true promise of the human genome and its application to the practice of medicine. RECENT FINDINGS Despite the successful sequencing of the human genome, very few new molecular genetic tests have become available. The apparent reason for this lies in the relative paucity of information gleaned from examining the genes themselves. Two new avenues of investigation are presently underway to improve the 'infirmity' of this information archive. Rather than merely looking at differential gene expression, clinician scientists have begun to examine genetic polymorphisms of single and multiple genes within and between individuals in an attempt to explain biologic processes, including disease states. The second avenue involves the characterization of the products of gene expression--proteins. Proteomics, in conjunction with high throughput polymorphism analysis, may enable us to diagnose and treat complex multifactorial diseases. SUMMARY Molecular diagnostics for multifactorial diseases will become conceptually and technologically more complex than present DNA testing modalities. The development and ultimate acceptance of these tests will require greater coordination between the medical and scientific communities to ensure that the right technologies are applied to the highest quality samples to answer the most relevant questions.
Collapse
|
11
|
Chandler SP, Kansagra P, Hirst MC. Fragile X (CGG)n repeats induce a transcriptional repression in cis upon a linked promoter: evidence for a chromatin mediated effect. BMC Mol Biol 2003; 4:3. [PMID: 12659659 PMCID: PMC153536 DOI: 10.1186/1471-2199-4-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2003] [Accepted: 03/21/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Expansion of an unstable (CGG)n repeat to over 200 triplets within the promoter region of the human FMR1 gene leads to extensive local methylation and transcription silencing, resulting in the loss of FMRP protein and the development of the clinical features of fragile X syndrome. The causative link between (CGG)n expansion, methylation and gene silencing is unknown, although gene silencing is associated with extensive changes to local chromatin architecture. RESULTS In order to determine the direct effects of increased repeat length on gene transcription in a chromatin context, we have examined the influence of FMR1 (CGG)n repeats upon transcription from the HSV thymidine kinase promoter in the Xenopus laevis oocyte. We observe a reduction in mRNA production directly associated with increasing repeat length, with a 90% reduction in mRNA production from arrays over 100 repeats in length. Using a kinetic approach, we show that this transcriptional repression is concomitant with chromatin maturation and, using in vitro transcription, we show that chromatin formation is a fundamental part of the repressive pathway mediated by (CGG)n repeats. Using Trichostatin A, a histone deacetylase inhibitor, we show reactivation of the silenced promoter. CONCLUSIONS Thus, isolated fragile X associated (CGG)n repeat arrays can exert a modifying and transcriptionally repressive influence over adjacent promoters and this repressive phenomenon is, in part, mediated by histone deacetylation.
Collapse
Affiliation(s)
- Simon P Chandler
- Sangamo BioSciences, 501 Canal Blvd. Ste A100, Point Richmond Tech Center II, Richmond, CA 94804, USA
- formerly at Lab. Epigenetics & Chromatin, Institute of Biomolecular & Biomedical Sciences, St. Michaels Bldg, University of Portsmouth, Southsea, Hampshire, PO1 2DT, UK
| | - Pushpa Kansagra
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| | - Mark C Hirst
- Genome Instability Group, Department of Biological Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA UK
| |
Collapse
|
12
|
Li YC, Korol AB, Fahima T, Beiles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 2002; 11:2453-65. [PMID: 12453231 DOI: 10.1046/j.1365-294x.2002.01643.x] [Citation(s) in RCA: 613] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microsatellites, or tandem simple sequence repeats (SSR), are abundant across genomes and show high levels of polymorphism. SSR genetic and evolutionary mechanisms remain controversial. Here we attempt to summarize the available data related to SSR distribution in coding and noncoding regions of genomes and SSR functional importance. Numerous lines of evidence demonstrate that SSR genomic distribution is nonrandom. Random expansions or contractions appear to be selected against for at least part of SSR loci, presumably because of their effect on chromatin organization, regulation of gene activity, recombination, DNA replication, cell cycle, mismatch repair system, etc. This review also discusses the role of two putative mutational mechanisms, replication slippage and recombination, and their interaction in SSR variation.
Collapse
Affiliation(s)
- You-Chun Li
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | | | | | | | |
Collapse
|
13
|
Pietrobono R, Pomponi MG, Tabolacci E, Oostra B, Chiurazzi P, Neri G. Quantitative analysis of DNA demethylation and transcriptional reactivation of the FMR1 gene in fragile X cells treated with 5-azadeoxycytidine. Nucleic Acids Res 2002; 30:3278-85. [PMID: 12136110 PMCID: PMC135754 DOI: 10.1093/nar/gkf434] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In fragile X syndrome, hypermethylation of the expanded CGG repeat and of the upstream promoter leads to transcriptional silencing of the FMR1 gene. Absence of the FMR1 protein results in mental retardation. We previously proved that treatment with 5-azadeoxycytidine (5-azadC) of fragile X cell lines results in reactivation of the FMR1 gene. We now show that this treatment causes passive demethylation of the FMR1 gene promoter. We employed the bisulfite-sequencing technique to detect the methylation status of individual CpG sites in the entire promoter region, upstream of the CGG repeat. Lymphoblastoid cell lines of fragile X males with full mutations of different sizes were tested before and after treatment with 5-azadC at various time points. We observed that individual cells are either completely unmethylated or not, with few relevant exceptions. We also investigated the extent of methylation in the full mutation (CGG repeat) itself by Southern blot analysis after digestion with methylation-sensitive enzymes Fnu4HI and McrBC and found that the CGG repeat remains at least partially methylated in many cells with a demethylated promoter. This may explain the quantitative discrepancy between the large extent of promoter demethylation and the limited levels of FMR1 transcriptional reactivation estimated by quantitative real-time fluorescent RT-PCR analysis.
Collapse
Affiliation(s)
- Roberta Pietrobono
- Istituto di Genetica Medica, Università Cattolica, and Centro Ricerche per la Disabilità Mentale e Motoria, Associazione Anni Verdi, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Kang GH, Lee S, Kim WH, Lee HW, Kim JC, Rhyu MG, Ro JY. Epstein-barr virus-positive gastric carcinoma demonstrates frequent aberrant methylation of multiple genes and constitutes CpG island methylator phenotype-positive gastric carcinoma. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 160:787-94. [PMID: 11891177 PMCID: PMC1867170 DOI: 10.1016/s0002-9440(10)64901-2] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CpG island methylation is an important mechanism for inactivating the genes involved in tumorigenesis. Gastric carcinoma (GC) is one of the tumors that exhibits a high frequency of aberrant CpG island methylation. There have been many reports suggesting a close link between Epstein-Barr virus (EBV) and the development of GC. However, little is known about the oncogenic mechanism of EBV in gastric carcinogenesis. Twenty-one cases of EBV-positive GC and 56 cases of EBV-negative GC were examined for aberrant DNA methylation of the CpG islands of 19 genes or loci and the differences in the methylation frequency between EBV-positive and -negative GCs were investigated to determine a role of aberrant methylation in EBV-related gastric carcinogenesis. The average number of methylated genes or loci was higher in EBV-positive GCs than in EBV-negative GCs (13.4 versus 7.8, respectively, P < 0.001). EBV-positive GCs showed methylation in at least 10 CpG islands (52.6% of the tested genes), whereas 62.5% of EBV-negative GCs showed methylation in <10 CpG islands. THBS1, APC, p16, 14-3-3 sigma, MINT1, and MINT25 were methylated at a frequency >90% in EBV-positive GCs. The methylation frequency difference in the respective CpG islands between EBV-positive and -negative GCs was statistically significant (P < 0.05). Among these genes or loci, the methylation frequency of p16 in the EBV-positive GCs was more than three times higher than in the EBV-negative GCs. The PTEN, RASSF1A, GSTP1, MGMT, and MINT2 were methylated in EBV-positive GCs at a frequency of more than three times that of the EBV-negative GCs. These results demonstrate a relationship between EBV and aberrant methylation in GC and suggest that aberrant methylation may be an important mechanism of EBV-related gastric carcinogenesis.
Collapse
Affiliation(s)
- Gyeong Hoon Kang
- Department of Pathology, Seoul NationalUniversity College of Medicine and Cancer Research Institute, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
15
|
Grabczyk E, Kumari D, Usdin K. Fragile X syndrome and Friedreich's ataxia: two different paradigms for repeat induced transcript insufficiency. Brain Res Bull 2001; 56:367-73. [PMID: 11719274 DOI: 10.1016/s0361-9230(01)00572-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
DNA repeat expansion is the genetic basis for a growing number of neurological disorders. While the largest subset of these diseases results in an increase in the length of a polyglutamine tract in the protein encoded by the affected gene, the most common form of inherited mental retardation, fragile X syndrome, and the most common inherited ataxia, Friedreich's ataxia, are both caused by expansions that are transcribed but not translated. These expansions both decrease expression of the gene in which the expanded repeat is located, but they do so by quite different mechanisms. In fragile X syndrome, CGG. CCG expansion in the 5' untranslated region of the FMR1 gene leads to hypermethylation of the repeats and the adjacent CpG-rich promoter. Methylation prevents the binding of the transcription factor alpha-Pal/NRF-1, and may indirectly affect the binding of other factors via the formation of transcriptionally silent chromatin. In Friedreich's ataxia, GAA. TTC expansion in an intron of the FRDA gene reduces expression by interfering with transcription elongation. The model that best describes the available data is transcription-driven formation of a transient purine. purine. pyrimidine DNA triplex behind an advancing RNA polymerase. This structure lassoes the RNA polymerase that caused it, trapping the enzyme on the template.
Collapse
Affiliation(s)
- E Grabczyk
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0830, USA
| | | | | |
Collapse
|
16
|
Salat U, Bardoni B, Wöhrle D, Steinbach P. Increase of FMRP expression, raised levels of FMR1 mRNA, and clonal selection in proliferating cells with unmethylated fragile X repeat expansions: a clue to the sex bias in the transmission of full mutations? J Med Genet 2000; 37:842-50. [PMID: 11073538 PMCID: PMC1734474 DOI: 10.1136/jmg.37.11.842] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Fragile X syndrome is a triplet repeat disorder caused by expansions of a CGG repeat in the fragile X mental retardation gene (FMR1) to more than 220 triplets (full mutation) that usually coincide with hypermethylation and transcriptional silencing. The disease phenotype results from deficiency or loss of FMR1 protein (FMRP) and occurs in both sexes. The underlying full mutations arise exclusively on transmission from a mother who carries a premutation allele (60-200 CGGs). While the absolute requirement of female transmission could result from different mechanisms, current evidence favours selection or contraction processes acting at gametogenesis of pre- and full mutation males. To address these questions experimentally, we used a model system of cultured fibroblasts from a male who presented heterogeneous unmethylated expansions in the pre- and full mutation size range. On continual cell proliferation to 30 doublings we re-examined the behaviour of the expanded repeats on Southern blots and also determined the expression of the FMR1 gene by FMRP immunocytochemistry, western analysis, and RT-PCR. With increasing population doublings, expansion patterns changed and showed accumulation of shorter alleles. The FMRP levels were below normal but increased continuously while the cells that were immunoreactive for FMRP accumulated. The level of FMR1 mRNA was raised with even higher levels of mRNA measured at higher passages. Current results support the theory of a selection advantage of FMRP positive over FMRP deficient cells. During extensive proliferation of spermatogonia in fragile X males, this selection mechanism would eventually replace all full mutations by shorter alleles allowing more efficient FMRP translation. At the proliferation of oogonia of carrier females, the same mechanism would, in theory, favour transmission of any expanded FMR1 allele on inactive X chromosomes.
Collapse
Affiliation(s)
- U Salat
- Department of Human Genetics, University Hospital, 89070 Ulm, Germany.
| | | | | | | |
Collapse
|
17
|
Weisman-Shomer P, Naot Y, Fry M. Tetrahelical forms of the fragile X syndrome expanded sequence d(CGG)(n) are destabilized by two heterogeneous nuclear ribonucleoprotein-related telomeric DNA-binding proteins. J Biol Chem 2000; 275:2231-8. [PMID: 10636930 DOI: 10.1074/jbc.275.3.2231] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Formations of hairpin and tetrahelical structures by the trinucleotide repeat sequence d(CGG)(n) might contribute to its expansion in fragile X syndrome. Here we show that tetraplex structures of d(CGG)(n) are destabilized by two mammalian heterogeneous nuclear ribonucleoprotein-related tetraplex telomeric DNA-binding and -stabilizing proteins, quadruplex telomeric DNA-binding protein 42 (qTBP42) (Sarig, G., Weisman-Shomer, P., Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 4474-4482) and unimolecular quadruplex telomeric DNA-binding protein 25 (uqTBP25) (Erlitzki, R., and Fry, M. (1997) J. Biol. Chem. 272, 15881-15890). Blunt-ended and 3'-tailed or 3'- and 5'-tailed bimolecular tetraplex structures of d(CGG)(n) and guanine-sparse 20-/46-mer partial DNA duplex were progressively destabilized by increasing amounts of qTBP42 or uqTBP25 in time-dependent and ATP- or Mg(2+)-independent reactions. By contrast, tetraplex structures of telomeric and IgG sequences or guanine-rich double-stranded DNA resisted destabilization by qTBP42 or uqTBP25. Increased stability of tetraplex d(CGG)(n) in the presence of K(+) or Na(+) ions or at lowered reaction temperature diminished the destabilizing activity of uqTBP25. The contrasting stabilization of tetraplex telomeric DNA and destabilization of tetraplex d(CGG)(n) by qTBP42 and uqTBP25 suggested that sequence or structural differences between these tetraplexes might serve as cues for the differential stabilizing/destabilizing activities.
Collapse
Affiliation(s)
- P Weisman-Shomer
- Unit of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, P. O. Box 9649, Haifa 31096, Israel
| | | | | |
Collapse
|
18
|
Backes M, Gen� B, Schreck J, Doerfler W, Lehmkuhl G, von Gontard A. Cognitive and behavioral profile of fragile X boys: Correlations to molecular data. ACTA ACUST UNITED AC 2000. [DOI: 10.1002/1096-8628(20001113)95:2<150::aid-ajmg11>3.0.co;2-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Carrillo C, Cisneros B, Montañez C. Sp1 and AP2 transcription factors are required for the human fragile mental retardation promoter activity in SK-N-SH neuronal cells. Neurosci Lett 1999; 276:149-52. [PMID: 10612627 DOI: 10.1016/s0304-3940(99)00798-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The promoter of the human fragile mental retardation gene (FMR1) was functionally analyzed in order to identify elements responsible for its regulation. Plasmids carrying the wild type or different deleted-promoter sequences driving the chloramphenicol acetyl transferase gene (CAT) were transiently transfected into the SK-N-SH cells and the CAT activity was assessed. Deletion studies suggested that major regulatory elements are present in a DNA region between positions -123 and -51. Gel mobility shift and footprinting assays using a DNA fragment encompassing that promoter region showed that SP1 and AP2 transcription factors could be involved in the functioning of the FMR1 promoter.
Collapse
Affiliation(s)
- C Carrillo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., Mexico City, Mexico
| | | | | |
Collapse
|
20
|
Peters DG, Kassam A, St Jean PL, Yonas H, Ferrell RE. Functional polymorphism in the matrix metalloproteinase-9 promoter as a potential risk factor for intracranial aneurysm. Stroke 1999; 30:2612-6. [PMID: 10582986 DOI: 10.1161/01.str.30.12.2612] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE There is convincing evidence that susceptibility to intracranial aneurysms (ICAs) has a genetic component. However, few studies have sought to identify functional variation in specific candidate genes that may predispose individuals to develop an ICA. METHODS ICA cases and controls were genotyped for a simple length polymorphism in the promoter of matrix metalloproteinase-9 (MMP-9) to test for association between variation in the promoter and the occurrence of ICA. Alternative alleles were cloned into an in vitro reporter vector, transfected into human HT1080 fibroblasts, and assayed for promoter activity by beta-gal and luciferase assays. Electrophoretic gel shift assays were used to assess nuclear factor binding. RESULTS A length polymorphism in the promoter of MMP-9 was nonrandomly associated with the occurrence of ICA in a case-control study. This polymorphism was shown, by direct sequencing of 36 individuals, to be the only sequence variation within a 736-base pair region proximal to the transcriptional start site of the gene. Variation in the length of this repetitive element was shown to modulate promoter activity in an in vitro reporter assay, with the highest promoter activity being observed in constructs bearing the longest [(CA)23] element. Electrophoretic mobility shift assays were used to show that the (CA) element is bound by a sequence-specific DNA-binding protein. CONCLUSIONS Genetic variation in the promoter of the MMP-9 gene results in variation in its expression at the level of transcription. This may result in subtle differences in MMP-9 activity within the circle of Willis, leading to increased susceptibility to ICA formation.
Collapse
Affiliation(s)
- D G Peters
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, PA 15261, USA.
| | | | | | | | | |
Collapse
|
21
|
Liu Z, Tan G, Li P, Dunham RA. Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus. Biochem Biophys Res Commun 1999; 259:190-4. [PMID: 10334938 DOI: 10.1006/bbrc.1999.0751] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The presence of trinucleotide microsatellites within genes is a well-known cause for a number of genetic diseases. However, the precise distribution of dinucleotide microsatellites within genes is less well documented. Here we report 15 unique cDNAs containing dinucleotide repeats from the channel catfish Ictalurus punctatus. Gene identities of nine of the 15 cDNAs were determined, of which three encode structural genes, and six encode regulatory proteins. Five cDNAs harbored dinucleotide repeats in the 5' untranslated region (5'-NTR), nine in the 3'-NTR, and one in the coding region. The presence of these transcribed dinucleotide repeats and their potential expansion in size within coding regions could lead to disruption of the original protein and/or formation of new genes by frame shift. The low number of dinucleotide repeats within coding regions suggests that they were strongly selected against. All the transcribed microsatellite loci examined were polymorphic making them useful for gene mapping in catfish.
Collapse
Affiliation(s)
- Z Liu
- Department of Fisheries and Allied Aquacultures, Auburn University, Auburn, Alabama, 36849, USA.
| | | | | | | |
Collapse
|
22
|
Ciotti M, Chen F, Rubaltelli FF, Owens IS. Coding defect and a TATA box mutation at the bilirubin UDP-glucuronosyltransferase gene cause Crigler-Najjar type I disease. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1407:40-50. [PMID: 9639672 DOI: 10.1016/s0925-4439(98)00030-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mutations at the bilirubin UDP-glucuronosyltransferase (transferase) gene in a severely hyperbilirubinemic Crigler-Najjar (CN) type I individual was compared with that in a moderately hyperbilirubinemic CN II individual. The CN-I (CF) patient in this study sustained a TATA box insertional mutation which was paired with a coding defect at the second allele, unlike all coding defects previously seen in CN-I patients. The sequence of the mutant TATA box, [A(TA)8A], also seen in the CN-II patient, was compared with that at the wild-type box, [A(TA)7A]. Transcriptional activity with [A(TA)8A] was 10-15% that with the wild-type box when present in the -1.7 kb upstream regulatory region (URR) of the bilirubin transferase UGT1A1 gene which was fused to the chloramphenicol acetyl transferase reporter gene, pCAT 1.7H, and transfected into HepG2 cells. Also, a construct with a TA deletion, [A(TA)6A], was prepared and used as a control; transcriptional activity was 65% normal. The coding region defect, R336W, seen in CF (CN-I) was placed in the bilirubin transferase UGT1A1 [HUG-Br1] cDNA, and its corresponding protein was designated UGT1A1*32. The UGT1A1*32 protein supported 0-10% normal bilirubin glucuronidation when expressed in COS-1 cells. The I294T coding defect seen at the second allele in SM (CN-II) generated the UGT1A1*33 mutant protein which supported 40-55% normal activity with a normal Km (2.5 microM) for bilirubin. The hyperbilirubinemia seen in SM decreased in response to phenobarbital treatment, unlike that seen in CF. Parents of the patients were carriers of the respective mutations uncovered in the offspring. The TATA box mutation paired with a deleterious missense mutation is, therefore, completely repressive in the CN-I patient, and is responsible for a lethal genotype/phenotype; but when homozygous, i.e. paired with itself, as previously reported in the literature, it is far less repressive and generates the mild Gilbert's phenotype.
Collapse
Affiliation(s)
- M Ciotti
- Heritable Disorders Branch, National Institute of Child Health and Human Development, National Institutes of Health, Building 10, Room 9S-242, Bethesda, Maryland 20892-1830, USA
| | | | | | | |
Collapse
|
23
|
Hirst MC, White PJ. Cloned human FMR1 trinucleotide repeats exhibit a length- and orientation-dependent instability suggestive of in vivo lagging strand secondary structure. Nucleic Acids Res 1998; 26:2353-8. [PMID: 9580685 PMCID: PMC147547 DOI: 10.1093/nar/26.10.2353] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The normal human FMR1 gene contains a genetically stable (CGG) n trinucleotide repeat which usually carries interspersed AGG triplets. An increase in repeat number and the loss of interspersions results in array instability, predominantly expansion, leading to FMR1 gene silencing. Instability is directly related to the length of the uninterrupted (CGG) n repeat and is widely assumed to be related to an increased propensity to form G-rich secondary structures which lead to expansion through replication slippage. In order to investigate this we have cloned human FMR1 arrays with internal structures representing the normal, intermediate and unstable states. In one replicative orientation, arrays show a length-dependent instability, deletions occurring in a polar manner. With longer arrays these extend into the FMR1 5'-flanking DNA, terminating at either of two short CGG triplet arrays. The orientation-dependent instability suggests that secondary structure forms in the G-rich lagging strand template, resolution of which results in intra-array deletion. These data provide direct in vivo evidence for a G-rich lagging strand secondary structure which is believed to be involved in the process of triplet expansion in humans.
Collapse
Affiliation(s)
- M C Hirst
- Institute of Molecular Medicine, The John Radcliffe Hospital, Headley Way, Headington, Oxford OX3 9DS, UK.
| | | |
Collapse
|
24
|
Bashirova AA, Markelov ML, Shlykova TV, Levshenkova EV, Alibaeva RA, Frolova EI. The human RIL gene: mapping to human chromosome 5q31.1, genomic organization and alternative transcripts. Gene X 1998; 210:239-45. [PMID: 9573374 DOI: 10.1016/s0378-1119(98)00080-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ril gene encoding a LIM domain protein of an unknown function was previously identified by differential expression cloning as a candidate tumor suppressor gene in rat fibroblasts (Kiess, M., Scharm, B., Aguzzi, A., Hajnal, A., Klemenz, R., Schwarte-Waldhoff, I., Schafer, R., 1995. Expression of ril, a novel LIM domain gene, is down-regulated in HRAS-transformed cells and restored in phenotypic revertants. Oncogene 10, 61-68). Searching for novel genes on human chromosome 5q31.1 by the cDNA selection technique, we isolated a cDNA clone identical with the cDNA of the human RIL gene (GenBank Accession No. X93510). The human 5q31.1 region is of interest because it contains the cytokine gene cluster and is frequently deleted in the malignant cells of patients with myelodysplasia and myeloid leukemia. Using Southern blot analysis and restriction mapping of genomic YAC (yeast artificial chromosome) and cosmid clones, we located the human RIL gene 240-260 kb telomeric to the IRF1 gene and characterized its genomic structure. PCR analysis indicated the presence of two alternative RIL transcripts in human fetal brain mRNA. The major transcript is identical with the RIL cDNA previously deposited in GenBank and contains seven exons distributed over 14.5 kb of genomic DNA with the two last 3'-exons coding a LIM domain. The minor transcript lacks the sixth exon compared with the major transcript, which leads to the loss of the LIM domain. We also identified two putative transcription start points (tsp) and sequenced the 5'-flanking region of RIL to reveal potential binding sites for transcriptional factors.
Collapse
Affiliation(s)
- A A Bashirova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|
25
|
Chiurazzi P, Pomponi MG, Willemsen R, Oostra BA, Neri G. In vitro reactivation of the FMR1 gene involved in fragile X syndrome. Hum Mol Genet 1998; 7:109-13. [PMID: 9384610 DOI: 10.1093/hmg/7.1.109] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Fragile X syndrome is the most frequent cause of heritable mental retardation. Most patients have a mutation in the 5' untranslated region of the FMR1 gene, consisting of the amplification of a polymorphic (CGG)nrepeat sequence, and cytogenetically express the folate-sensitive fragile site FRAXA in Xq27.3. Fragile X patients harbour an expanded sequence with >200 CGG repeats (full mutation), accompanied by methylation of most cytosines of the sequence itself and of the upstream CpG island. This abnormal hypermethylation of the promoter suppresses gene transcription, resulting in the absence of the FMR1 protein. Rare individuals of normal intelligence were shown to carry a completely or partially unmethylated full mutation and to express the FMR1 protein. Given this observation and knowing that the open reading frame of the mutated FMR1 gene is intact, we decided to investigate whether its activity could be restored in vitro by inducing DNA demethylation with 5-azadeoxycytidine (5-azadC) in fragile X patients' lymphoblastoid cells. We report that treatment with 5-azadC causes reactivation of fully mutated FMR1 genes with 300-800 repeats, as shown by the restoration of specific mRNA and protein production. This effect correlates with the extent of promoter demethylation, determined by restriction analysis with methylation-sensitive enzymes. These results confirm the critical role of FMR1 promoter hypermethylation in the pathogenesis of the fragile X syndrome, provide an additional explanation for the normal IQ of the rare males with unmethylated full mutations and pave the way to future attempts at pharmacologically restoring mutant FMR1 gene activity in vivo.
Collapse
Affiliation(s)
- P Chiurazzi
- Istituto di Genetica Medica, Università Cattolica, and Centro Ricerche per la Disabilità Mentale e Motoria, Associazione Anni Verdi, Largo F. Vito 1, 00168 Rome, Italy
| | | | | | | | | |
Collapse
|