1
|
Le NT. The significance of ERK5 catalytic-independent functions in disease pathways. Front Cell Dev Biol 2023; 11:1235217. [PMID: 37601096 PMCID: PMC10436230 DOI: 10.3389/fcell.2023.1235217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also known as BMK1 or MAPK7, represents a recent addition to the classical mitogen-activated protein kinase (MAPK) family. This family includes well-known members such as ERK1/2, c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK), as well as atypical MAPKs such as ERK3, ERK4, ERK7 (ERK8), and Nemo-like kinase (NLK). Comprehensive reviews available elsewhere provide detailed insights into ERK5, which interested readers can refer to for in-depth knowledge (Nithianandarajah-Jones et al., 2012; Monti et al., Cancers (Basel), 2022, 14). The primary aim of this review is to emphasize the essential characteristics of ERK5 and shed light on the intricate nature of its activation, with particular attention to the catalytic-independent functions in disease pathways.
Collapse
Affiliation(s)
- Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
2
|
de Mattos K, Dumas FO, Campolina-Silva GH, Belleannée C, Viger RS, Tremblay JJ. ERK5 Cooperates With MEF2C to Regulate Nr4a1 Transcription in MA-10 and MLTC-1 Leydig Cells. Endocrinology 2023; 164:bqad120. [PMID: 37539861 PMCID: PMC10435423 DOI: 10.1210/endocr/bqad120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/30/2023] [Accepted: 08/02/2023] [Indexed: 08/05/2023]
Abstract
Leydig cells produce hormones required for the development and maintenance of sex characteristics and fertility in males. MEF2 transcription factors are important regulators of Leydig cell gene expression and steroidogenesis. ERK5 is an atypical member of the MAP kinase family that modulates transcription factor activity, either by direct phosphorylation or by acting as a transcriptional coactivator. While MEF2 and ERK5 are known to cooperate transcriptionally, the presence and role of ERK5 in Leydig cells remained unknown. Our goal was to determine whether ERK5 is present in Leydig cells and whether it cooperates with MEF2 to regulate gene expression. We found that ERK5 is present in Leydig cells in testicular tissue and immortalized cell lines. ERK5 knockdown in human chorionic gonadotrophin-treated MA-10 Leydig cells reduced steroidogenesis and decreased Star and Nr4a1 expression. Luciferase assays using a synthetic reporter plasmid containing 3 MEF2 elements revealed that ERK5 enhances MEF2-dependent promoter activation. Although ERK5 did not cooperate with MEF2 on the Star promoter in Leydig cell lines, we found that ERK5 and MEF2C do cooperate on the Nr4a1 promoter, which contains 2 adjacent MEF2 elements. Mutation of each MEF2 element in a short version of the Nr4a1 promoter significantly decreased the ERK5/MEF2C cooperation, indicating that both MEF2 elements need to be intact. The ERK5/MEF2C cooperation did not require phosphorylation of MEF2C on Ser387. Taken together, our data identify ERK5 as a new regulator of MEF2 activity in Leydig cells and provide potential new insights into mechanisms that regulate Leydig cell gene expression and function.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Félix-Olivier Dumas
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Gabriel Henrique Campolina-Silva
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
| | - Clémence Belleannée
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, G1V 4G2, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
3
|
Moustafa A, Hashemi S, Brar G, Grigull J, Ng SHS, Williams D, Schmitt-Ulms G, McDermott JC. The MEF2A transcription factor interactome in cardiomyocytes. Cell Death Dis 2023; 14:240. [PMID: 37019881 PMCID: PMC10076289 DOI: 10.1038/s41419-023-05665-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/02/2022] [Accepted: 02/08/2023] [Indexed: 04/07/2023]
Abstract
Transcriptional regulators encoded by the Myocyte Enhancer Factor 2 (MEF2) gene family play a fundamental role in cardiac development, homeostasis and pathology. Previous studies indicate that MEF2A protein-protein interactions serve as a network hub in several cardiomyocyte cellular processes. Based on the idea that interactions with regulatory protein partners underly the diverse roles of MEF2A in cardiomyocyte gene expression, we undertook a systematic unbiased screen of the MEF2A protein interactome in primary cardiomyocytes using an affinity purification-based quantitative mass spectrometry approach. Bioinformatic processing of the MEF2A interactome revealed protein networks involved in the regulation of programmed cell death, inflammatory responses, actin dynamics and stress signaling in primary cardiomyocytes. Further biochemical and functional confirmation of specific protein-protein interactions documented a dynamic interaction between MEF2A and STAT3 proteins. Integration of transcriptome level data from MEF2A and STAT3-depleted cardiomyocytes reveals that the balance between MEF2A and STAT3 activity exerts a level of executive control over the inflammatory response and cardiomyocyte cell survival and experimentally ameliorates Phenylephrine induced cardiomyocyte hypertrophy. Lastly, we identified several MEF2A/STAT3 co-regulated genes, including the MMP9 gene. Herein, we document the cardiomyocyte MEF2A interactome, which furthers our understanding of protein networks involved in the hierarchical control of normal and pathophysiological cardiomyocyte gene expression in the mammalian heart.
Collapse
Affiliation(s)
- Amira Moustafa
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Sara Hashemi
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Seneca College, School of Health Sciences, King City, ON, L7B 1B3, Canada
| | - Gurnoor Brar
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada
| | - Jörg Grigull
- Department of Mathematics and Statistics, York University, Toronto, ON, M3J1P3, Canada
| | - Siemon H S Ng
- Analytical Sciences, Sanofi, Toronto, ON, M2R 3T4, Canada
- Analytical Development, Notch Therapeutics, Toronto, ON, M5G 1M1, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5T 0S8, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON, M3J 1P3, Canada.
- Muscle Health Research Centre (MHRC), York University, Toronto, ON, M3J 1P3, Canada.
- Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
4
|
Wu Z, Yuan J, Li J, Du Z, Yin M, Cheng X, Liu X, Jia J. Hsa_circ_0008870 suppresses bone formation of growth plate through inhibition of miR-185-3p/ MAPK1 axis in idiopathic short stature. Front Bioeng Biotechnol 2022; 10:1022830. [PMID: 36304901 PMCID: PMC9592914 DOI: 10.3389/fbioe.2022.1022830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Idiopathic short stature (ISS) is the most common clinical cause of the short stature with an unclear aetiology and a lack of effective treatment. Circular RNAs have been shown to play a significant regulatory role through various signal transduction pathways in a variety of diseases in recent years. However, the role of circular RNAs on ISS is not yet well-understood and requires a special attention. The differentially expressed circular RNAs were screened by microarray chip analysis, and RT-qPCR was used to verify the expression of hsa_circ_0008870 in ISS patients. Subsequently, in vitro and in vivo experiments were conducted to determine the biological functions of hsa_circ_0008870 in ISS. The authors first confirmed that hsa_ circ_0008870 was downregulated in ISS children. Meanwhile, we also observed that the downregulated hsa_circ _0008870 significantly inhibited chondrocyte proliferation and endochondral ossification in vivo and in vitro. Mechanistically, hsa_circ_0008870 regulates MAPK1 expression by sponge miR-185-3p. This mechanism of action was further verified through rescue experiments. Finally, the authors revealed that the silencing of hsa_circ_0008870 induces low expression of MAPK1 by impairing the sponge action of miR-185-3p, thereby inhibiting chondrocyte proliferation, hypertrophy, and endochondral ossification, which results in a short stature phenotype. In addition to these, we also observed an interesting phenomenon that upregulated of miR-185-3p can in turn inhibit the expression of hsa_circ_0008870 in chondrocytes. This suggests that hsa_circ_0008870 could potentially serve as a therapeutic target for the treatment of ISS.
Collapse
Affiliation(s)
- Zhiwen Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Jinghong Yuan
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Jiantian Li
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, China
| | - Zhi Du
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Ming Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
| | - Xigao Cheng
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, China
| | - Xijuan Liu
- Department of Paediatrics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Xijuan Liu, ; Jingyu Jia,
| | - Jingyu Jia
- Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Institute of Orthopedics of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
- Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Intervertebral Disc Disease, Nanchang University, Nanchang, Jiangxi, China
- *Correspondence: Xijuan Liu, ; Jingyu Jia,
| |
Collapse
|
5
|
Li R, Shu M, Liu X, Nei Z, Ye B, Wang H, Gong Y. Genome-wide identification of mitogen-activated protein kinase (MAPK) gene family in yellow catfish (Pelteobagrus fulviadraco) and their expression profiling under the challenge of Aeromonas hydrophila. JOURNAL OF FISH BIOLOGY 2022; 101:699-710. [PMID: 35751135 DOI: 10.1111/jfb.15141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
As serine/threonine protein kinases, mitogen-activated protein kinases (MAPK) take part in cellular metabolism. This work found 14 MAPK genes in the yellow catfish (Pelteobagrus fulviadraco) genome and evaluated their taxonomy, conserved domains and evolutionary linkages for a better understanding of the MAPK gene family's evolutionary relationship and antibacterial immune response. The findings revealed that several MAPK genes are activated in response to immunological and inflammatory responses. Collinearity research revealed that in yellow catfish and zebrafish, there are six pairs of highly similar MAPK genes, indicating that these genes have been more conserved throughout evolution. The MAPK gene quantification findings revealed that JNK1a, JNK1b, p38delta and p38alpha b expression levels were considerably upregulated, indicating that they act in fish innate immunity. The findings implied that MAPK genes may involve in defence against detrimental microbe in yellow catfish, which will help researchers better understand how MAPK genes work in the innate immune system.
Collapse
Affiliation(s)
- Ronghui Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mingyu Shu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xuanxuan Liu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Zhiwei Nei
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Ben Ye
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Heyu Wang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yifu Gong
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
6
|
Shu C, Hou L, Chen Q, Zhu T, Yang J, Luo X, Su Y, Wang Y. Irradiation with a red light-emitting diode enhances the proliferation of stem cells of apical papilla via the ERK5 signalling pathway. Lasers Med Sci 2022; 37:2259-2268. [PMID: 35022873 DOI: 10.1007/s10103-021-03492-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/06/2021] [Indexed: 11/27/2022]
Abstract
This Querystudy aimed to investigate the effects of low-energy red light-emitting diode (LED) irradiation on the proliferation of stem cells from apical papilla (SCAPs) and preliminarily elucidated the underlying molecular mechanisms. SCAPs were isolated and identified in vitro. The light source was a 10 W red LED with continuous output and a wavelength of 600-700 nm. SCAPs were irradiated with 0 (control group), 0.5 J/cm2, 1 J/cm2, 3 J/cm2, or 5 J/cm2. Cell Counting Kit-8 (CCK-8) assays were used to analyze cell proliferation rates and determine the most effective concentration of extracellular signal-regulated kinase 5 (ERK5) blocker, BIX02189. A real-time polymerase chain reaction (RT-PCR) was carried out to determine the involvement of the ERK5 signalling pathway and proliferation-associated genes (C-Jun, Jun B, and Cyclin D1). 5-Ethynyl-2'-deoxyuridine (EDU) was used to analyze cell cycle kinetic parameters. CCK-8 assay results suggested that SCAPs in red LED groups exhibited a higher proliferation rate than those in the control group, and 10 μmol/L BIX02189 was the most effective blocker. The RT-PCR results demonstrate that red LEDs upregulated the expression of the ERK5, C-Jun, Jun B, and Cyclin D1 genes, and BIX02189 successfully blocked the ERK5 signalling pathway. The results of EdU staining indicated that red LED promoted DNA synthesis activity and that BIX02189 suppressed cells into S phase. Red LEDs irradiation enhances the proliferation of SCAPs via the ERK5 signalling pathway by upregulating the expression of C-Jun, Jun B, and Cyclin D1.
Collapse
Affiliation(s)
- Chunxia Shu
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
- Suining First People's Hospital, Suining, 629000, China
| | - Lan Hou
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Qiang Chen
- The TCM Hospital of Longquanyi District, Chengdu, 610100, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, 266003, China
| | - Juan Yang
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Xiang Luo
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Yutong Su
- School of Stomatology Southwest Medical University, Lu Zhou, 646000, China
| | - Yao Wang
- The Affiliated Stomatology Hospital of Southwest Medical University, Lu Zhou, 646000, China.
| |
Collapse
|
7
|
Cornwell JD, McDermott JC. MEF2 in cardiac hypertrophy in response to hypertension. Trends Cardiovasc Med 2022; 33:204-212. [PMID: 35026393 DOI: 10.1016/j.tcm.2022.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Hypertension is a globally prevalent pathological condition and an underlying risk factor for the development of cardiac hypertrophy leading to heart failure. Myocyte enhancer factor 2 (Mef2) has been identified as one of the primary effectors of morphological changes in the hypertensive heart, as part of a complex network of molecular signaling controlling cardiac gene expression. Experimental chronic pressure-overload models that mimic hypertension in the mammalian heart lead to the activation of various pathological mechanisms that result in structural changes leading to debilitating cardiac hypertrophy and ultimately heart failure. The purpose here is to survey the literature implicating Mef2 in hypertension induced cardiac hypertrophy, towards illuminating points of interest for understanding and potentially treating heart failure.
Collapse
Affiliation(s)
- James D Cornwell
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada
| | - John C McDermott
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, ON M3J 1P3, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
8
|
Small molecule ERK5 kinase inhibitors paradoxically activate ERK5 signalling: be careful what you wish for…. Biochem Soc Trans 2021; 48:1859-1875. [PMID: 32915196 PMCID: PMC7609025 DOI: 10.1042/bst20190338] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
ERK5 is a protein kinase that also contains a nuclear localisation signal and a transcriptional transactivation domain. Inhibition of ERK5 has therapeutic potential in cancer and inflammation and this has prompted the development of ERK5 kinase inhibitors (ERK5i). However, few ERK5i programmes have taken account of the ERK5 transactivation domain. We have recently shown that the binding of small molecule ERK5i to the ERK5 kinase domain stimulates nuclear localisation and paradoxical activation of its transactivation domain. Other kinase inhibitors paradoxically activate their intended kinase target, in some cases leading to severe physiological consequences highlighting the importance of mitigating these effects. Here, we review the assays used to monitor ERK5 activities (kinase and transcriptional) in cells, the challenges faced in development of small molecule inhibitors to the ERK5 pathway, and classify the molecular mechanisms of paradoxical activation of protein kinases by kinase inhibitors.
Collapse
|
9
|
Erazo T, Espinosa-Gil S, Diéguez-Martínez N, Gómez N, Lizcano JM. SUMOylation Is Required for ERK5 Nuclear Translocation and ERK5-Mediated Cancer Cell Proliferation. Int J Mol Sci 2020; 21:ijms21062203. [PMID: 32209980 PMCID: PMC7139592 DOI: 10.3390/ijms21062203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 01/09/2023] Open
Abstract
The MAP kinase ERK5 contains an N-terminal kinase domain and a unique C-terminal tail including a nuclear localization signal and a transcriptional activation domain. ERK5 is activated in response to growth factors and stresses and regulates transcription at the nucleus by either phosphorylation or interaction with transcription factors. MEK5-ERK5 pathway plays an important role regulating cancer cell proliferation and survival. Therefore, it is important to define the precise molecular mechanisms implicated in ERK5 nucleo-cytoplasmic shuttling. We previously described that the molecular chaperone Hsp90 stabilizes and anchors ERK5 at the cytosol and that ERK5 nuclear shuttling requires Hsp90 dissociation. Here, we show that MEK5 or overexpression of Cdc37—mechanisms that increase nuclear ERK5—induced ERK5 Small Ubiquitin-related Modifier (SUMO)-2 modification at residues Lys6/Lys22 in cancer cells. Furthermore, mutation of these SUMO sites abolished the ability of ERK5 to translocate to the nucleus and to promote prostatic cancer PC-3 cell proliferation. We also show that overexpression of the SUMO protease SENP2 completely abolished endogenous ERK5 nuclear localization in response to epidermal growth factor (EGF) stimulation. These results allow us to propose a more precise mechanism: in response to MEK5 activation, ERK5 SUMOylation favors the dissociation of Hsp90 from the complex, allowing ERK5 nuclear shuttling and activation of the transcription.
Collapse
|
10
|
Lochhead PA, Tucker JA, Tatum NJ, Wang J, Oxley D, Kidger AM, Johnson VP, Cassidy MA, Gray NS, Noble MEM, Cook SJ. Paradoxical activation of the protein kinase-transcription factor ERK5 by ERK5 kinase inhibitors. Nat Commun 2020; 11:1383. [PMID: 32170057 PMCID: PMC7069993 DOI: 10.1038/s41467-020-15031-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
The dual protein kinase-transcription factor, ERK5, is an emerging drug target in cancer and inflammation, and small-molecule ERK5 kinase inhibitors have been developed. However, selective ERK5 kinase inhibitors fail to recapitulate ERK5 genetic ablation phenotypes, suggesting kinase-independent functions for ERK5. Here we show that ERK5 kinase inhibitors cause paradoxical activation of ERK5 transcriptional activity mediated through its unique C-terminal transcriptional activation domain (TAD). Using the ERK5 kinase inhibitor, Compound 26 (ERK5-IN-1), as a paradigm, we have developed kinase-active, drug-resistant mutants of ERK5. With these mutants, we show that induction of ERK5 transcriptional activity requires direct binding of the inhibitor to the kinase domain. This in turn promotes conformational changes in the kinase domain that result in nuclear translocation of ERK5 and stimulation of gene transcription. This shows that both the ERK5 kinase and TAD must be considered when assessing the role of ERK5 and the effectiveness of anti-ERK5 therapeutics.
Collapse
Affiliation(s)
- Pamela A Lochhead
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| | - Julie A Tucker
- York Biomedical Research Institute and Department of Biology, University of York, York, YO10 5DD, UK
| | - Natalie J Tatum
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Jinhua Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - David Oxley
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Andrew M Kidger
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Victoria P Johnson
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
- Institute of Cancer Research, Chester Beatty Laboratories, 237 Fulham Road, London, SW3 6JB, UK
| | - Megan A Cassidy
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin E M Noble
- CRUK Newcastle Drug Discovery Unit, Newcastle University Centre for Cancer, Newcastle University, Newcastle, NE2 4HH, UK
| | - Simon J Cook
- Signalling Laboratory, The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
11
|
Beyond Kinase Activity: ERK5 Nucleo-Cytoplasmic Shuttling as a Novel Target for Anticancer Therapy. Int J Mol Sci 2020; 21:ijms21030938. [PMID: 32023850 PMCID: PMC7038028 DOI: 10.3390/ijms21030938] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 01/18/2023] Open
Abstract
The importance of mitogen-activated protein kinases (MAPK) in human pathology is underlined by the relevance of abnormalities of MAPK-related signaling pathways to a number of different diseases, including inflammatory disorders and cancer. One of the key events in MAPK signaling, especially with respect to pro-proliferative effects that are crucial for the onset and progression of cancer, is MAPK nuclear translocation and its role in the regulation of gene expression. The extracellular signal-regulated kinase 5 (ERK5) is the most recently discovered classical MAPK and it is emerging as a possible target for cancer treatment. The bigger size of ERK5 when compared to other MAPK enables multiple levels of regulation of its expression and activity. In particular, the phosphorylation of kinase domain and C-terminus, as well as post-translational modifications and chaperone binding, are involved in ERK5 regulation. Likewise, different mechanisms control ERK5 nucleo-cytoplasmic shuttling, underscoring the key role of ERK5 in the nuclear compartment. In this review, we will focus on the mechanisms involved in ERK5 trafficking between cytoplasm and nucleus, and discuss how these processes might be exploited to design new strategies for cancer treatment.
Collapse
|
12
|
Liu J, Han X, Zhu G, Liu S, Lu Q, Tang Z. Analysis of potential functional significance of microRNA‑3613‑3p in human umbilical vein endothelial cells affected by heat stress. Mol Med Rep 2019; 20:1846-1856. [PMID: 31257536 PMCID: PMC6625459 DOI: 10.3892/mmr.2019.10376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of microRNA‑3613‑3p (miR‑3613‑3p) was previously reported in endothelial cells (ECs) during heat stress. The aim of the present study was to investigate the precise role of miR‑3613‑3p in heat stress. In the present study, potential gene targets of miR‑3613‑3p in heat‑treated ECs were assessed, and the potential effects of miR‑3613‑3p were determined using Gene Ontology enrichment analysis. Kyoto Encyclopedia of Genes and Genomes pathway analysis was used to identify signaling pathways that may be affected by miR‑3613‑3p in heat‑treated cells. Reverse transcription‑quantitative PCR, western blotting and annexin V‑FITC/propidium iodide staining were performed to detect miRNA expression, protein expression and apoptosis, respectively. Luciferase gene reporter assay was performed to evaluate the association between miR‑3613‑3p and mitogen‑activated protein kinase kinase kinase 2 (MAP3K2). Bioinformatics analysis revealed 865 potential gene targets for miR‑3613‑3p and a series of functions and pathways in heat‑treated ECs. 'Negative regulation of apoptotic process' was identified as a potential function of miR‑3613‑3p. In addition, functional analysis confirmed the downregulated expression levels of miR‑3613‑3p in ECs during heat stress, which was accompanied by an increase in apoptosis; restoration of miR‑3613‑3p expression inhibited apoptosis. MAP3K2 protein was demonstrated to be upregulated in heat‑treated ECs, and overexpression of miR‑3613‑3p reduced MAP3K2 expression levels. Additionally, MAP3K2 was targeted by miR‑3613‑3p. These results indicated that miR‑3613‑3p may have complicated roles in ECs under heat stress. miR‑3613‑3p may serve an important role in the apoptosis of heat‑treated ECs, and this effect may be partly achieved by targeting MAP3K2.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
- Department of Emergency, Hefei BOE Hospital Co., Ltd., Anhui, Hefei 230011, P.R. China
| | - Xuan Han
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Central Theater General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
13
|
Wang C, Arrington J, Ratliff AC, Chen J, Horton HE, Nie Y, Yue F, Hrycyna CA, Tao WA, Kuang S. Methyltransferase-like 21c methylates and stabilizes the heat shock protein Hspa8 in type I myofibers in mice. J Biol Chem 2019; 294:13718-13728. [PMID: 31346037 DOI: 10.1074/jbc.ra119.008430] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/22/2019] [Indexed: 11/06/2022] Open
Abstract
Protein methyltransferases mediate posttranslational modifications of both histone and nonhistone proteins. Whereas histone methylation is well-known to regulate gene expression, the biological significance of nonhistone methylation is poorly understood. Methyltransferase-like 21c (Mettl21c) is a newly classified nonhistone lysine methyltransferase whose in vivo function has remained elusive. Using a Mettl21c LacZ knockin mouse model, we show here that Mettl21c expression is absent during myogenesis and restricted to mature type I (slow) myofibers in the muscle. Using co-immunoprecipitation, MS, and methylation assays, we demonstrate that Mettl21c trimethylates heat shock protein 8 (Hspa8) at Lys-561 to enhance its stability. As such, Mettl21c knockout reduced Hspa8 trimethylation and protein levels in slow muscles, and Mettl21c overexpression in myoblasts increased Hspa8 trimethylation and protein levels. We further show that Mettl21c-mediated stabilization of Hspa8 enhances its function in chaperone-mediated autophagy, leading to degradation of client proteins such as the transcription factors myocyte enhancer factor 2A (Mef2A) and Mef2D. In contrast, Mettl21c knockout increased Mef2 protein levels in slow muscles. These results identify Hspa8 as a Mettl21c substrate and reveal that nonhistone methylation has a physiological function in protein stabilization.
Collapse
Affiliation(s)
- Chao Wang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Justine Arrington
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Anna C Ratliff
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Hannah E Horton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Yaohui Nie
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Feng Yue
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907
| | - Christine A Hrycyna
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907.,Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| | - W Andy Tao
- Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907.,Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907 .,Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
14
|
Adams NR, Vasquez YM, Mo Q, Gibbons W, Kovanci E, DeMayo FJ. WNK lysine deficient protein kinase 1 regulates human endometrial stromal cell decidualization, proliferation, and migration in part through mitogen-activated protein kinase 7. Biol Reprod 2018; 97:400-412. [PMID: 29025069 DOI: 10.1093/biolre/iox108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/28/2017] [Indexed: 12/21/2022] Open
Abstract
The differentiation of endometrial stromal cells into decidual cells, termed decidualization, is an integral step in the establishment of pregnancy. The mitogen-activated protein kinase homolog, WNK lysine deficient protein kinase 1 (WNK1), is activated downstream of epidermal growth factor receptor during decidualization. Primary human endometrial stromal cells (HESCs) were subjected to small interfering RNA knockdown of WNK1 followed by in vitro decidualization. This abrogated expression of the decidual marker genes, insulin like growth factor binding protein 1 (IGFBP1) and prolactin (PRL), and prevented adoption of decidual cell morphology. Analysis of the WNK1-dependent transcriptome by RNA-Seq demonstrated that WNK1 regulates the expression of 1858 genes during decidualization. Gene ontology and upstream regulator pathway analysis showed that WNK1 regulates cell migration, differentiation, and proliferation. WNK1 was required for many of the gene expression changes that drive decidualization, including the induction of the inflammatory cytokines, C-C motif chemokine ligand 8 (CCL8), interleukin 1 beta (IL1B), and interleukin 15 (IL15), and the repression of transforming growth factor-beta (TGF-beta) pathway genes, including early growth response 2 (EGR2), SMAD family member 3 (SMAD3), integrin subunit alpha 2 (ITGA2), integrin subunit alpha 4 (ITGA4), and integrin subunit beta 3 (ITGB3). In addition to abrogating decidualization, WNK1 knockdown decreased the migration and proliferation of HESCs. Furthermore, mitogen-activated protein kinase 7 (MAPK7), a known downstream target of WNK1, was activated during decidualization in a WNK1-dependent manner. Small interfering RNA knockdown of MAPK7 demonstrated that MAPK7 regulates a subset of WNK1-regulated genes and controls the migration and proliferation of HESCs. These results indicate that WNK1 and MAPK7 promote migration and proliferation during decidualization and regulate the expression of inflammatory cytokines and TGF-beta pathway genes in HESCs.
Collapse
Affiliation(s)
- Nyssa R Adams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yasmin M Vasquez
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - William Gibbons
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Ertug Kovanci
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| |
Collapse
|
15
|
Mitochondrial Complex I activity signals antioxidant response through ERK5. Sci Rep 2018; 8:7420. [PMID: 29743487 PMCID: PMC5943249 DOI: 10.1038/s41598-018-23884-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/21/2018] [Indexed: 11/29/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) generates ROS as a byproduct of mitochondrial complex I activity. ROS-detoxifying enzymes are made available through the activation of their antioxidant response elements (ARE) in their gene promoters. NRF2 binds to AREs and induces this anti-oxidant response. We show that cells from multiple origins performing OXPHOS induced NRF2 expression and its transcriptional activity. The NRF2 promoter contains MEF2 binding sites and the MAPK ERK5 induced MEF2-dependent NRF2 expression. Blocking OXPHOS in a mouse model decreased Erk5 and Nrf2 expression. Furthermore, fibroblasts derived from patients with mitochondrial disorders also showed low expression of ERK5 and NRF2 mRNAs. Notably, in cells lacking functional mitochondrial complex I activity OXPHOS did not induce ERK5 expression and failed to generate this anti-oxidant response. Complex I activity induces ERK5 expression through fumarate accumulation. Eukaryotic cells have evolved a genetic program to prevent oxidative stress directly linked to OXPHOS and not requiring ROS.
Collapse
|
16
|
Belkahla S, Haq Khan AU, Gitenay D, Alexia C, Gondeau C, Vo DN, Orecchioni S, Talarico G, Bertolini F, Cartron G, Hernandez J, Daujat-Chavanieu M, Allende-Vega N, Gonzalez MV. Changes in metabolism affect expression of ABC transporters through ERK5 and depending on p53 status. Oncotarget 2017; 9:1114-1129. [PMID: 29416681 PMCID: PMC5787424 DOI: 10.18632/oncotarget.23305] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Accepted: 12/05/2017] [Indexed: 12/25/2022] Open
Abstract
Changes in metabolism require the efflux and influx of a diverse variety of metabolites. The ABC superfamily of transporters regulates the exchange of hundreds of substrates through the impermeable cell membrane. We show here that a metabolic switch to oxidative phosphorylation (OXPHOS), either by treating cells with dichloroacetate (DCA) or by changing the available substrates, reduced expression of ABCB1, ABCC1, ABCC5 and ABCG2 in wild-type p53-expressing cells. This metabolic change reduced histone changes associated to active promoters. Notably, DCA also inhibited expression of these genes in two animal models in vivo. In contrast, OXPHOS increased the expression of the same transporters in mutated (mut) or null p53-expressing cells. ABC transporters control the export of drugs from cancer cells and render tumors resistant to chemotherapy, playing an important role in multiple drug resistance (MDR). Wtp53 cells forced to perform OXPHOS showed impaired drug clearance. In contrast mutp53 cells increased drug clearance when performing OXPHOS. ABC transporter promoters contain binding sites for the transcription factors MEF2, NRF1 and NRF2 that are targets of the MAPK ERK5. OXPHOS induced expression of the MAPK ERK5. Decreasing ERK5 levels in wtp53 cells increased ABC expression whereas it inhibited expression in mutp53 cells. Our results showed that the ERK5/MEF2 pathway controlled ABC expression depending on p53 status.
Collapse
Affiliation(s)
- Sana Belkahla
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Abrar Ul Haq Khan
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Delphine Gitenay
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Catherine Alexia
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Claire Gondeau
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,Département d'Hépato-gastroentérologie A, Hôpital Saint Eloi, CHU Montpellier, Montpellier, France
| | - Dang-Nghiem Vo
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Stefania Orecchioni
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Department of Oncology and Hemato-Oncology, European Institute of Oncology, Milan, Italy
| | - Guillaume Cartron
- Département d'Hématologie Clinique, CHU Montpellier, Université Montpellier I, Montpellier, France
| | - Javier Hernandez
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France
| | - Martine Daujat-Chavanieu
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France
| | - Nerea Allende-Vega
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,These two authors share senior authorship
| | - Martin Villalba Gonzalez
- Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), INSERM, Univ De Montpellier, Montpellier, France.,Department of Lymphocyte Differentiation, Tolerance and Metabolism: Basis for Immunotherapy, Institut De Médecine Régénératrice Et Biothérapie (IRMB), CHU Montpellier, Montpellier, France.,These two authors share senior authorship
| |
Collapse
|
17
|
Liu J, Zhu G, Xu S, Liu S, Lu Q, Tang Z. Analysis of miRNA expression profiling in human umbilical vein endothelial cells affected by heat stress. Int J Mol Med 2017; 40:1719-1730. [PMID: 29039486 PMCID: PMC5716433 DOI: 10.3892/ijmm.2017.3174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/28/2017] [Indexed: 12/20/2022] Open
Abstract
To investigate the regulation of endothelial cell (EC) microRNAs (miRNAs) altered by heat stress, miRNA microarrays and bioinformatics methods were used to determine changes in miRNA profiles and the pathophysiological characteristics of differentially expressed miRNAs. A total of 31 differentially expressed miRNAs were identified, including 20 downregulated and 11 upregulated miRNAs. Gene Ontology (GO) enrichment analysis revealed that the validated targets of the differentially expressed miRNAs were significantly enriched in gene transcription regulation. The pathways were also significantly enriched in the Kyoto Encyclopedia of Genes and Genomes analysis, and most were cancer-related, including the mitogen-activated protein kinase signaling pathway, pathways involved in cancer, the Wnt signaling pathway, the Hippo signaling pathway, proteoglycans involved in cancer and axon guidance. The miRNA-gene and miRNA-GO network analyses revealed several hub miRNAs, genes and functions. Notably, miR-3613-3p played a dominant role in both networks. MAP3K2, MGAT4A, TGFBR1, UBE2R2 and SMAD4 were most likely to be controlled by the altered miRNAs in the miRNA-gene network. The miRNA-GO network analysis revealed significantly complicated associations between miRNAs and different functions, and that the significantly enriched functions targeted by the differentially expressed miRNAs were mostly involved in regulating gene transcription. The present study demonstrated that miRNAs are involved in the pathophysiology of heat-treated ECs. Understanding the functions of miRNAs may provide novel insights into the molecular mechanisms underlying the heat-induced pathophysiology of ECs.
Collapse
Affiliation(s)
- Jie Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Guoguo Zhu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Siya Xu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Shixin Liu
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Qiping Lu
- Department of General Surgery, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| | - Zhongzhi Tang
- Department of Emergency, Wuhan General Hospital of People's Liberation Army of China, Wuhan, Hubei 430070, P.R. China
| |
Collapse
|
18
|
Khan AUH, Allende-Vega N, Gitenay D, Gerbal-Chaloin S, Gondeau C, Vo DN, Belkahla S, Orecchioni S, Talarico G, Bertolini F, Bozic M, Valdivielso JM, Bejjani F, Jariel I, Lopez-Mejia IC, Fajas L, Lecellier CH, Hernandez J, Daujat M, Villalba M. The PDK1 Inhibitor Dichloroacetate Controls Cholesterol Homeostasis Through the ERK5/MEF2 Pathway. Sci Rep 2017; 7:10654. [PMID: 28878225 PMCID: PMC5587676 DOI: 10.1038/s41598-017-10339-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 08/08/2017] [Indexed: 12/17/2022] Open
Abstract
Controlling cholesterol levels is a major challenge in human health, since hypercholesterolemia can lead to serious cardiovascular disease. Drugs that target carbohydrate metabolism can also modify lipid metabolism and hence cholesterol plasma levels. In this sense, dichloroacetate (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, augments usage of the glycolysis-produced pyruvate in the mitochondria increasing oxidative phosphorylation (OXPHOS). In several animal models, DCA decreases plasma cholesterol and triglycerides. Thus, DCA was used in the 70 s to treat diabetes mellitus, hyperlipoproteinemia and hypercholesterolemia with satisfactory results. However, the mechanism of action remained unknown and we describe it here. DCA increases LDLR mRNA and protein levels as well as LDL intake in several cell lines, primary human hepatocytes and two different mouse models. This effect is mediated by transcriptional activation as evidenced by H3 acetylation on lysine 27 on the LDLR promoter. DCA induces expression of the MAPK ERK5 that turns on the transcription factor MEF2. Inhibition of this ERK5/MEF2 pathway by genetic or pharmacological means decreases LDLR expression and LDL intake. In summary, our results indicate that DCA, by inducing OXPHOS, promotes ERK5/MEF2 activation leading to LDLR expression. The ERK5/MEF2 pathway offers an interesting pharmacological target for drug development.
Collapse
Affiliation(s)
- Abrar Ul Haq Khan
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Nerea Allende-Vega
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Delphine Gitenay
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Sabine Gerbal-Chaloin
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Claire Gondeau
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France.,Département d'Hépato-gastroentérologie A, Hôpital Saint Eloi, CHU, Montpellier, France
| | - Dang-Nghiem Vo
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Sana Belkahla
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Milica Bozic
- Vascular and Renal Translational Research Group. Institut de Recerca Biomedica de Lleida (IRBLLIDA), Lleida, Spain
| | - Jose M Valdivielso
- Vascular and Renal Translational Research Group. Institut de Recerca Biomedica de Lleida (IRBLLIDA), Lleida, Spain
| | | | | | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Javier Hernandez
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France
| | - Martine Daujat
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France.,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France
| | - Martin Villalba
- INSERM, U1183; Université de Montpellier, UFR Medecine, 80, av. Augustin Fliche, 34295, Montpellier Cedex 5, France. .,Institut de Médecine Régénératrice et Biothérapie (IRMB), CHU Montpellier, Montpellier, 34295, France.
| |
Collapse
|
19
|
Dong C, Yang XZ, Zhang CY, Liu YY, Zhou RB, Cheng QD, Yan EK, Yin DC. Myocyte enhancer factor 2C and its directly-interacting proteins: A review. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 126:22-30. [DOI: 10.1016/j.pbiomolbio.2017.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 02/01/2017] [Indexed: 11/27/2022]
|
20
|
Heart Failure and MEF2 Transcriptome Dynamics in Response to β-Blockers. Sci Rep 2017; 7:4476. [PMID: 28667250 PMCID: PMC5493616 DOI: 10.1038/s41598-017-04762-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 05/19/2017] [Indexed: 01/12/2023] Open
Abstract
Myocyte Enhancer Factor 2 (MEF2) mediates cardiac remodelling in heart failure (HF) and is also a target of β-adrenergic signalling, a front-line treatment for HF. We identified global gene transcription networks involved in HF with and without β-blocker treatment. Experimental HF by transverse aortic constriction (TAC) in a MEF2 “sensor” mouse model (6 weeks) was followed by four weeks of β-blockade with Atenolol (AT) or Solvent (Sol) treatment. Transcriptome analysis (RNA-seq) from left ventricular RNA samples and MEF2A depleted cardiomyocytes was performed. AT treatment resulted in an overall improvement in cardiac function of TAC mice and repression of MEF2 activity. RNA-seq identified 65 differentially expressed genes (DEGs) due to TAC treatment with enriched GO clusters including the inflammatory system, cell migration and apoptosis. These genes were mapped against DEGs in cardiomyocytes in which MEF2A expression was suppressed. Of the 65 TAC mediated DEGs, AT reversed the expression of 28 mRNAs. Rarres2 was identified as a novel MEF2 target gene that is upregulated with TAC in vivo and isoproterenol treatment in vitro which may have implications in cardiomyocyte apoptosis and hypertrophy. These studies identify a cohort of genes with vast potential for disease diagnosis and therapeutic intervention in heart failure.
Collapse
|
21
|
Yu LN, Sun LH, Wang M, Yan M. Research progress of the role and mechanism of extracellular signal-regulated protein kinase 5 (ERK5) pathway in pathological pain. J Zhejiang Univ Sci B 2017; 17:733-741. [PMID: 27704743 DOI: 10.1631/jzus.b1600188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Extracellular signal-regulated protein kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (MAPK1), is an important member of ERK family, which is a subfamily of the large MAPK family. ERK5 is expressed in many tissues, including the dorsal root ganglion (DRG) neurons and the spinal cord. In this review, we focus on elaborating ERK5-associated pathway in pathological pain, in which the ERK5/CREB (cyclic adenosine monophosphate (cAMP)-response element-binding protein) pathway plays a crucial role in the transduction of pain signal and contributes to pain hypersensitivity. ERK5 activation in the spinal dorsal horn occurs mainly in microglia. The activation of ERK5 can be mediated by N-methyl-D-aspartate (NMDA) receptors. We also elaborate the relationship between ERK5 activation and nerve growth factor-tyrosine kinase A (NGF-TrkA), and the connection between ERK5 activation and brain-derived neurotrophic factor (BDNF) in pathological pain in detail.
Collapse
Affiliation(s)
- Li-Na Yu
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Li-Hong Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| | - Min Yan
- Department of Anesthesiology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China.,Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou 221000, China
| |
Collapse
|
22
|
Gomez N, Erazo T, Lizcano JM. ERK5 and Cell Proliferation: Nuclear Localization Is What Matters. Front Cell Dev Biol 2016; 4:105. [PMID: 27713878 PMCID: PMC5031611 DOI: 10.3389/fcell.2016.00105] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 09/06/2016] [Indexed: 12/31/2022] Open
Abstract
ERK5, the last MAP kinase family member discovered, is activated by the upstream kinase MEK5 in response to growth factors and stress stimulation. MEK5-ERK5 pathway has been associated to different cellular processes, playing a crucial role in cell proliferation in normal and cancer cells by mechanisms that are both dependent and independent of its kinase activity. Thus, nuclear ERK5 activates transcription factors by either direct phosphorylation or acting as co-activator thanks to a unique transcriptional activation TAD domain located at its C-terminal tail. Consequently, ERK5 has been proposed as an interesting target to tackle different cancers, and either inhibitors of ERK5 activity or silencing the protein have shown antiproliferative activity in cancer cells and to block tumor growth in animal models. Here, we review the different mechanisms involved in ERK5 nuclear translocation and their consequences. Inactive ERK5 resides in the cytosol, forming a complex with Hsp90-Cdc37 superchaperone. In a canonical mechanism, MEK5-dependent activation results in ERK5 C-terminal autophosphorylation, Hsp90 dissociation, and nuclear translocation. This mechanism integrates signals such as growth factors and stresses that activate the MEK5-ERK5 pathway. Importantly, two other mechanisms, MEK5-independent, have been recently described. These mechanisms allow nuclear shuttling of kinase-inactive forms of ERK5. Although lacking kinase activity, these forms activate transcription by interacting with transcription factors through the TAD domain. Both mechanisms also require Hsp90 dissociation previous to nuclear translocation. One mechanism involves phosphorylation of the C-terminal tail of ERK5 by kinases that are activated during mitosis, such as Cyclin-dependent kinase-1. The second mechanism involves overexpression of chaperone Cdc37, an oncogene that is overexpressed in cancers such as prostate adenocarcinoma, where it collaborates with ERK5 to promote cell proliferation. Although some ERK5 kinase inhibitors have shown antiproliferative activity it is likely that those tumors expressing kinase-inactive nuclear ERK5 will not respond to these inhibitors.
Collapse
Affiliation(s)
| | | | - Jose M. Lizcano
- Protein Kinases and Signal Transduction Laboratory, Institut de Neurociencies and Departament de Bioquimica i Biologia Molecular, Facultat de Medicina, Universitat Autonoma de BarcelonaBarcelona, Spain
| |
Collapse
|
23
|
Myers SM, Bawn RH, Bisset LC, Blackburn TJ, Cottyn B, Molyneux L, Wong AC, Cano C, Clegg W, Harrington RW, Leung H, Rigoreau L, Vidot S, Golding BT, Griffin RJ, Hammonds T, Newell DR, Hardcastle IR. High-Throughput Screening and Hit Validation of Extracellular-Related Kinase 5 (ERK5) Inhibitors. ACS COMBINATORIAL SCIENCE 2016; 18:444-55. [PMID: 27400250 DOI: 10.1021/acscombsci.5b00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The extracellular-related kinase 5 (ERK5) is a promising target for cancer therapy. A high-throughput screen was developed for ERK5, based on the IMAP FP progressive binding system, and used to identify hits from a library of 57 617 compounds. Four distinct chemical series were evident within the screening hits. Resynthesis and reassay of the hits demonstrated that one series did not return active compounds, whereas three series returned active hits. Structure-activity studies demonstrated that the 4-benzoylpyrrole-2-carboxamide pharmacophore had excellent potential for further development. The minimum kinase binding pharmacophore was identified, and key examples demonstrated good selectivity for ERK5 over p38α kinase.
Collapse
Affiliation(s)
- Stephanie M Myers
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ruth H Bawn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Louise C Bisset
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Timothy J Blackburn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Betty Cottyn
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Lauren Molyneux
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Ai-Ching Wong
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Celine Cano
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - William Clegg
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Ross W Harrington
- School of Chemistry, Newcastle University , Bedson Building, Newcastle upon Tyne, NE1 7RU, U.K
| | - Hing Leung
- The Beatson Institute for Cancer Research , Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| | - Laurent Rigoreau
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - Sandrine Vidot
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Bernard T Golding
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Roger J Griffin
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| | - Tim Hammonds
- Cancer Research Technology, Ltd., Discovery Laboratories, Wolfson Institute for Biomedical Research, The Cruciform Building, Gower Street, London, WC1E 6BT, U.K
| | - David R Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Medical School, Framlington Place, Newcastle University , Paul O'Gorman Building, Newcastle upon Tyne, NE2 4HH, U.K
| | - Ian R Hardcastle
- Newcastle Cancer Centre, Northern Institute for Cancer Research and School of Chemistry, Bedson Building, Newcastle University , Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
24
|
Abstract
Vascular endothelial growth factor (VEGF) plays a fundamental role in angiogenesis and endothelial cell biology, and has been the subject of intense study as a result. VEGF acts via a diverse and complex range of signaling pathways, with new targets constantly being discovered. This review attempts to summarize the current state of knowledge regarding VEGF cell signaling in endothelial and cardiovascular biology, with a particular emphasis on its role in angiogenesis.
Collapse
Affiliation(s)
- Ian Evans
- Centre for Cardiovascular Biology and Medicine, Division of Medicine, University College London, Rayne Building, 5 University Street, London, WC1E 6JF, UK,
| |
Collapse
|
25
|
|
26
|
Tessier SN, Storey KB. Lessons from mammalian hibernators: molecular insights into striated muscle plasticity and remodeling. Biomol Concepts 2016; 7:69-92. [DOI: 10.1515/bmc-2015-0031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/21/2016] [Indexed: 12/19/2022] Open
Abstract
AbstractStriated muscle shows an amazing ability to adapt its structural apparatus based on contractile activity, loading conditions, fuel supply, or environmental factors. Studies with mammalian hibernators have identified a variety of molecular pathways which are strategically regulated and allow animals to endure multiple stresses associated with the hibernating season. Of particular interest is the observation that hibernators show little skeletal muscle atrophy despite the profound metabolic rate depression and mechanical unloading that they experience during long weeks of torpor. Additionally, the cardiac muscle of hibernators must adjust to low temperature and reduced perfusion, while the strength of contraction increases in order to pump cold, viscous blood. Consequently, hibernators hold a wealth of knowledge as it pertains to understanding the natural capacity of myocytes to alter structural, contractile and metabolic properties in response to environmental stimuli. The present review outlines the molecular and biochemical mechanisms which play a role in muscular atrophy, hypertrophy, and remodeling. In this capacity, four main networks are highlighted: (1) antioxidant defenses, (2) the regulation of structural, contractile and metabolic proteins, (3) ubiquitin proteosomal machinery, and (4) macroautophagy pathways. Subsequently, we discuss the role of transcription factors nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Myocyte enhancer factor 2 (MEF2), and Forkhead box (FOXO) and their associated posttranslational modifications as it pertains to regulating each of these networks. Finally, we propose that comparing and contrasting these concepts to data collected from model organisms able to withstand dramatic changes in muscular function without injury will allow researchers to delineate physiological versus pathological responses.
Collapse
Affiliation(s)
- Shannon N. Tessier
- 1Department of Surgery and Center for Engineering in Medicine, Massachusetts General Hospital and Harvard Medical School, Building 114 16th Street, Charlestown, MA 02129, USA
| | - Kenneth B. Storey
- 2Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa K1S 5B6, Ontario, Canada
| |
Collapse
|
27
|
Korashy HM, Al-Suwayeh HA, Maayah ZH, Ansari MA, Ahmad SF, Bakheet SA. Mitogen-activated protein kinases pathways mediate the sunitinib-induced hypertrophy in rat cardiomyocyte H9c2 cells. Cardiovasc Toxicol 2015; 15:41-51. [PMID: 24984876 DOI: 10.1007/s12012-014-9266-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sunitinib (SUN) is a multi-targeted tyrosine kinase inhibitor used for the treatment of gastrointestinal stromal tumors and renal cell carcinoma. Cardiotoxicity has been reported as a significant side effect associated with the SUN treatment, yet the mechanism is poorly understood. The main purpose of this study was to investigate the potential effects of SUN on cardiac hypertrophic genes and the role of mitogen-activated protein kinases (MAPKs) signaling pathway in rat cardiomyocyte H9c2 cell line. In the present study, real-time quantitative polymerase chain reaction showed that the treatment of H9c2 cells with increasing concentrations of SUN (0, 1, 2.5, and 5 µM) significantly induced hypertrophic gene markers, such as brain natriuretic peptides (BNP) and myosin heavy chain (β-MHC and α-MHC) in concentration- and time-dependent manners. The onset of mRNA induction was observed as early as 9 h and remained elevated for at least 18 h after treatment with SUN 5 µM. At the protein level, Western blot analysis showed that SUN increased BNP and β-MHC, while it inhibited α-MHC protein levels in a concentration-dependent manner. These SUN-mediated effects were associated with increase in cell size and hypertrophy by approximately 70 % at the highest concentration, 5 µM. Importantly, inhibition of the MAPK signaling pathway using SB203580 (p38 MAPK inhibitor), U0126 (extracellular signal-regulated kinase inhibitor), and SP600125 (c-Jun NH2-terminal kinase inhibitor) significantly potentiated the SUN-induced BNP and β-MHC mRNA levels, but did alter the α-MHC level. Whereas at the protein level, MAPK inhibitors generally decreased the SUN-induced BNP, whereas only SB and U0 increased β-MHC protein levels with no effect on α-MHC, which were associated with a significant decrease in cell size. Together, these results indicate that SUN induced hypertrophic gene expression through MAPK-dependent mechanisms.
Collapse
Affiliation(s)
- Hesham Mohamed Korashy
- Department of Pharmacology and Toxicology, College of Pharmacology, King Saud University, P.O. Box 2457, Riyadh, 11451, Kingdom of Saudi Arabia,
| | | | | | | | | | | |
Collapse
|
28
|
A p38 Mitogen-Activated Protein Kinase-Regulated Myocyte Enhancer Factor 2-β-Catenin Interaction Enhances Canonical Wnt Signaling. Mol Cell Biol 2015; 36:330-46. [PMID: 26552705 DOI: 10.1128/mcb.00832-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Canonical Wnt/β-catenin signaling plays a major role in various biological contexts, such as embryonic development, cell proliferation, and cancer progression. Previously, a connection between p38 mitogen-activated protein kinase (MAPK) signaling and Wnt-mediated activation of β-catenin was implied but poorly understood. In the present study, we investigated potential cross talk between p38 MAPK and Wnt/β-catenin signaling. Here we show that a loss of p38 MAPK α/β function reduces β-catenin nuclear accumulation in Wnt3a-stimulated primary vascular smooth muscle cells (VSMCs). Conversely, active p38 MAPK signaling increases β-catenin nuclear localization and target gene activity in multiple cell types. Furthermore, the effect of p38 MAPK α/β on β-catenin activity is mediated through phosphorylation of a key p38 MAPK target, myocyte enhancer factor 2 (MEF2). Here we report a p38 MAPK-mediated, phosphorylation-dependent interaction between MEF2 and β-catenin in multiple cell types and primary VSMCs that results in (i) increased β-catenin nuclear retention, which is reversed by small interfering RNA (siRNA)-mediated MEF2 gene silencing; (ii) increased activation of MEF2 and Wnt/β-catenin target genes; and (iii) increased Wnt-stimulated cell proliferation. These observations provide mechanistic insight into a fundamental level of cross talk between p38 MAPK/MEF2 signaling and canonical Wnt signaling.
Collapse
|
29
|
Hashemi S, Salma J, Wales S, McDermott JC. Pro-survival function of MEF2 in cardiomyocytes is enhanced by β-blockers. Cell Death Discov 2015; 1:15019. [PMID: 27551452 PMCID: PMC4979494 DOI: 10.1038/cddiscovery.2015.19] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/10/2015] [Accepted: 07/13/2015] [Indexed: 12/18/2022] Open
Abstract
β1-Adrenergic receptor (β1-AR) stimulation increases apoptosis in cardiomyocytes through activation of cAMP/protein kinase A (PKA) signaling. The myocyte enhancer factor 2 (MEF2) proteins function as important regulators of myocardial gene expression. Previously, we reported that PKA signaling directly represses MEF2 activity. We determined whether (a) MEF2 has a pro-survival function in cardiomyocytes, and (b) whether β-adrenergic/PKA signaling modulates MEF2 function in cardiomyocytes. Initially, we observed that siRNA-mediated gene silencing of MEF2 induces cardiomyocyte apoptosis as indicated by flow cytometry. β1-AR activation by isoproterenol represses MEF2 activity and promotes apoptosis in cultured neonatal cardiomyocytes. Importantly, β1-AR mediated apoptosis was abrogated in cardiomyocytes expressing a PKA-resistant form of MEF2D (S121/190A). We also observed that a β1-blocker, Atenolol, antagonizes isoproterenol-induced apoptosis while concomitantly enhancing MEF2 transcriptional activity. β-AR stimulation modulated MEF2 cellular localization in cardiomyocytes and this effect was reversed by β-blocker treatment. Furthermore, Kruppel-like factor 6, a MEF2 target gene in the heart, functions as a downstream pro-survival factor in cardiomyocytes. Collectively, these data indicate that (a) MEF2 has an important pro-survival role in cardiomyocytes, and (b) β-adrenergic signaling antagonizes the pro-survival function of MEF2 in cardiomyocytes and β-blockers promote it. These observations have important clinical implications that may contribute to novel strategies for preventing cardiomyocyte apoptosis associated with heart pathology.
Collapse
Affiliation(s)
- S Hashemi
- Department of Biology, York University, Toronto, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, Canada
| | - J Salma
- Department of Biology, York University, Toronto, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, Canada
| | - S Wales
- Department of Biology, York University, Toronto, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, Canada
| | - J C McDermott
- Department of Biology, York University, Toronto, Canada; Muscle Health Research Centre (MHRC), York University, Toronto, Canada; Centre for Research in Biomolecular Interactions (CRBI), York University, Toronto, Canada; Centre for Research in Mass Spectrometry (CRMS), York University, Toronto, Canada
| |
Collapse
|
30
|
Wilhelmsen K, Xu F, Farrar K, Tran A, Khakpour S, Sundar S, Prakash A, Wang J, Gray NS, Hellman J. Extracellular signal-regulated kinase 5 promotes acute cellular and systemic inflammation. Sci Signal 2015; 8:ra86. [PMID: 26307013 DOI: 10.1126/scisignal.aaa3206] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inflammatory critical illness is a syndrome that is characterized by acute inflammation and organ injury, and it is triggered by infections and noninfectious tissue injury, both of which activate innate immune receptors and pathways. Although reports suggest an anti-inflammatory role for the mitogen-activated protein kinase (MAPK) extracellular signal-regulated kinase 5 (ERK5), we previously found that ERK5 mediates proinflammatory responses in primary human cells in response to stimulation of Toll-like receptor 2 (TLR2). We inhibited the kinase activities and reduced the abundances of ERK5 and MEK5, a MAPK kinase directly upstream of ERK5, in primary human vascular endothelial cells and monocytes, and found that ERK5 promoted inflammation induced by a broad range of microbial TLR agonists and by the proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Furthermore, we found that inhibitors of MEK5 or ERK5 reduced the plasma concentrations of proinflammatory cytokines in mice challenged with TLR ligands or heat-killed Staphylococcus aureus, as well as in mice that underwent sterile lung ischemia-reperfusion injury. Finally, we found that inhibition of ERK5 protected endotoxemic mice from death. Together, our studies support a proinflammatory role for ERK5 in primary human endothelial cells and monocytes, and suggest that ERK5 is a potential therapeutic target in diverse disorders that cause inflammatory critical illness.
Collapse
Affiliation(s)
- Kevin Wilhelmsen
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Fengyun Xu
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Katherine Farrar
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alphonso Tran
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Samira Khakpour
- Graduate Program in Biomedical Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Shirin Sundar
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Arun Prakash
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinhua Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nathanael S Gray
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Judith Hellman
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94143, USA. Division of Critical Care Medicine and Biomedical Sciences Program, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
31
|
Hernández Lemus E, Baca López K, Lemus R, García Herrera R. The role of master regulators in gene regulatory networks. PAPERS IN PHYSICS 2015. [DOI: 10.4279/pip.070011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Gene regulatory networks present a wide variety of dynamical responses to intrinsic and extrinsic perturbations. Arguably, one of the most important of such coordinated responses is the one of amplification cascades, in which activation of a few key-responsive transcription factors (termed master regulators, MRs) lead to a large series of transcriptional activation events. This is so since master regulators are transcription factors controlling the expression of other transcription factor molecules and so on. MRs hold a central position related to transcriptional dynamics and control of gene regulatory networks and are often involved in complex feedback and feedforward loops inducing non-trivial dynamics. Recent studies have pointed out to the myocyte enhancing factor 2C (MEF2C, also known as MADS box transcription enhancer factor 2, polypeptide C) as being one of such master regulators involved in the pathogenesis of primary breast cancer. In this work, we perform an integrative genomic analysis of the transcriptional regulation activity of MEF2C and its target genes to evaluate to what extent are these molecules inducing collective responses leading to gene expression deregulation and carcinogenesis. We also analyzed a number of induced dynamic responses, in particular those associated with transcriptional bursts, and nonlinear cascading to evaluate the influence they may have in malignant phenotypes and cancer.Received: 20 Novembre 2014, Accepted: 24 June 2015; Edited by: C. A. Condat, G. J. Sibona; DOI: http://dx.doi.org/10.4279/PIP.070011Cite as: E Hernández-Lemus, K Baca-López, R Lemus, R García-Herrera, Papers in Physics 7, 070011 (2015)This paper, by E Hernández-Lemus, K Baca-López, R Lemus, R García-Herrera, is licensed under the Creative Commons Attribution License 3.0.
Collapse
|
32
|
Chu UB, Duellman T, Weaver SJ, Tao Y, Yang J. Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298. Biochim Biophys Acta Gen Subj 2015; 1850:1415-25. [PMID: 25829196 DOI: 10.1016/j.bbagen.2015.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/08/2015] [Accepted: 03/23/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Statins are potent inhibitors of cholesterol biosynthesis and are clinically beneficial in preventing cardiovascular diseases, however, the therapeutic utility of these drugs is limited by myotoxicity. Here, we explored the mechanism of statin-mediated activation of ERK5 in the human endothelium with the goal of identifying compounds that confer endothelial protection but are nontoxic to muscle. METHODS An ERK5-one hybrid luciferase reporter transfected into COS-7 cells with pharmacological and molecular manipulations dissected the signaling pathway leading to statin activation of ERK5. qRT-PCR of HUVEC cells documented the transcriptional activation of endothelial-protective genes. Lastly, morphological and cellular ATP analysis, and induction of atrogin-1 in C2C12 myotubes were used to assess statin-induced myopathy. RESULTS Statin activation of ERK5 is dependent on the cellular reduction of GGPPs. Furthermore, we found that the combination of FTI-277 (inhibitor of farnesyl transferase) and GGTI-298 (inhibitor of geranylgeranyl transferase I) mimicked the statin-mediated activation of ERK5. FTI-277 and GGTI-298 together recapitulated the beneficial effects of statins by transcriptionally upregulating anti-inflammatory mediators such as eNOS, THBD, and KLF2. Finally, C2C12 skeletal myotubes treated with both FTI-277 and GGTI-298 evoked less morphological and cellular changes recognized as biomarkers of statin-associated myopathy. CONCLUSIONS Statin-induced endothelial protection and myopathy are mediated by distinct metabolic intermediates and co-inhibition of farnesyl transferase and geranylgeranyl transferase I confer endothelial protection without myopathy. GENERAL SIGNIFICANCE The combinatorial FTI-277 and GGTI-298 drug regimen provides a promising alternative avenue for endothelial protection without myopathy.
Collapse
Affiliation(s)
- Uyen B Chu
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Tyler Duellman
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Sara J Weaver
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Yunting Tao
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA
| | - Jay Yang
- Department of Anesthesiology, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA; Training Program in Translational Cardiovascular Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53706 USA.
| |
Collapse
|
33
|
Jain P, Lavorgna A, Sehgal M, Gao L, Ginwala R, Sagar D, Harhaj EW, Khan ZK. Myocyte enhancer factor (MEF)-2 plays essential roles in T-cell transformation associated with HTLV-1 infection by stabilizing complex between Tax and CREB. Retrovirology 2015; 12:23. [PMID: 25809782 PMCID: PMC4374383 DOI: 10.1186/s12977-015-0140-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 01/15/2015] [Indexed: 12/17/2022] Open
Abstract
Background The exact molecular mechanisms regarding HTLV-1 Tax-mediated viral gene expression and CD4 T-cell transformation have yet to be fully delineated. Herein, utilizing virus-infected primary CD4+ T cells and the virus-producing cell line, MT-2, we describe the involvement and regulation of Myocyte enhancer factor-2 (specifically MEF-2A) during the course of HTLV-1 infection and associated disease syndrome. Results Inhibition of MEF-2 expression by shRNA and its activity by HDAC9 led to reduced viral replication and T-cell transformation in correlation with a heightened expression of MEF-2 in ATL patients. Mechanistically, MEF-2 was recruited to the viral promoter (LTR, long terminal repeat) in the context of chromatin, and constituted Tax/CREB transcriptional complex via direct binding to the HTLV-1 LTR. Furthermore, an increase in MEF-2 expression was observed upon infection in an extent similar to CREB (known Tax-interacting transcription factor), and HATs (p300, CBP, and p/CAF). Confocal imaging confirmed MEF-2 co-localization with Tax and these proteins were also shown to interact by co-immunoprecipitation. MEF-2 stabilization of Tax/CREB complex was confirmed by a novel promoter-binding assay that highlighted the involvement of NFAT (nuclear factor of activated T cells) in this process via Tax-mediated activation of calcineurin (a calcium-dependent serine-threonine phosphatase). MEF-2-integrated signaling pathways (PI3K/Akt, NF-κB, MAPK, JAK/STAT, and TGF-β) were also activated during HTLV-1 infection of primary CD4+ T cells, possibly regulating MEF-2 activity. Conclusions We demonstrate the involvement of MEF-2 in Tax-mediated LTR activation, viral replication, and T-cell transformation in correlation with its heightened expression in ATL patients through direct binding to DNA within the HTLV-1 LTR. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0140-1) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Wu Y, Chakrabarti S. ERK5 Mediated Signalling in Diabetic Retinopathy. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2015; 4:17-26. [PMID: 25861671 PMCID: PMC4389294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Diabetic retinopathy is the lead among causes of blindness in North America. Glucose-induced endothelial injury is the most important cause of diabetic retinopathy and other vascular complications. Extracellular signal-regulated kinase 5 (ERK5), also known as big mitogen-activated protein kinase 1 (BMK1), is a member of mitogen-activated protein kinases (MAPK) family. Physiologically, it is critical for cardiovascular development and maintenance of the endothelial cell integrity. Extracellular signal-regulated kinase 5 is protective for endothelial cells under stimulation and stress. Decreased activation of ERK5 results in increased endothelial cell death. Extracellular signal-regulated kinase 5 signaling may be subject to alteration by hyperglycemia, while signaling pathway including ERK5 may be subject to alteration during pathogenesis of diabetic complications. In this review, the role of ERK5 in diabetic macro- and microvascular complications with a focus on diabetic retinopathy are summarized and discussed.
Collapse
|
35
|
Qiu F, Yang L, Fang W, Li Y, Yang R, Yang X, Deng J, Huang B, Xie C, Zhou Y, Lu J. A functional polymorphism in the promoter of ERK5 gene interacts with tobacco smoking to increase the risk of lung cancer in Chinese populations. Mutagenesis 2013; 28:561-7. [PMID: 23804708 DOI: 10.1093/mutage/get033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitogen/extracellular signal-regulated kinase-5 (MEK5)/extracellular signal-regulated protein kinase-5 (ERK5) pathway plays a pro-oncogenic role in tumourigenesis by anticell apoptosis, promoting cell proliferation and differentiation in response to extracellular stimuli. As overexpressed MEK5/ERK5 is involved in the development of lung cancer, we hypothesised that the single nucleotide polymorphisms (SNPs) in MEK5 and ERK5 genes may influence gene expression and thus be associated with lung cancer risk. Five putative functional polymorphisms (rs3743353T>C, rs7172582C>T and rs2278076A>G of MEK5 and rs3866958G>T and rs2233083C>T of ERK5) were genotyped in two independent case-control studies with a total of 1559 lung cancer patients and 1679 controls in southern and eastern Chinese population. We found the rs3866958G>T of ERK5 was significantly associated with lung cancer risk, while other SNPs were not. Compared with the rs3866958TG/TT genotypes, the GG genotype conferred an increased risk of lung cancer (odds ratio = 1.30, 95% confidence interval = 1.12-1.51, P = 5.0×10(-4)), and this effect was more pronounced in smokers, accompanying with a significant interaction with smoking (P interaction = 0.013). The GG genotype also had significant higher mRNA levels of ERK5 in lung cancer tissues than TG/TT genotypes (P = 1.0×10(-4)); the luciferase reporter with the G allele showed significant higher transcription activities than the T allele, especially after the treatment with tobacco extract in vitro. Our data indicated that the functional polymorphism rs3866958G>T in ERK5 was associated with an increased lung cancer risk in smokers by virtue of the positive interaction with smoking on promoting the ERK5 expression, which might be a valuable indicator for predicting lung cancer risk in smokers.
Collapse
Affiliation(s)
- Fuman Qiu
- The Institute for Chemical Carcinogenesis, The State Key Lab of Respiratory Disease, Guangzhou Medical University, 195 Dongfengxi Road, Guangzhou 510182, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Elkins JM, Wang J, Deng X, Pattison MJ, Arthur JSC, Erazo T, Gomez N, Lizcano JM, Gray NS, Knapp S. X-ray crystal structure of ERK5 (MAPK7) in complex with a specific inhibitor. J Med Chem 2013; 56:4413-21. [PMID: 23656407 PMCID: PMC3683888 DOI: 10.1021/jm4000837] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
protein kinase ERK5 (MAPK7) is an emerging drug target for
a variety of indications, in particular for cancer where it plays
a key role mediating cell proliferation, survival, epithelial–mesenchymal
transition, and angiogenesis. To date, no three-dimensional structure
has been published that would allow rational design of inhibitors.
To address this, we determined the X-ray crystal structure of the
human ERK5 kinase domain in complex with a highly specific benzo[e]pyrimido[5,4-b]diazepine-6(11H)-one inhibitor. The structure reveals that specific residue
differences in the ATP-binding site, compared to the related ERKs
p38s and JNKs, allow for the development of ERK5-specific inhibitors.
The selectivity of previously observed ERK5 inhibitors can also be
rationalized using this structure, which provides a template for future
development of inhibitors with potential for treatment of disease.
Collapse
Affiliation(s)
- Jonathan M Elkins
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kohli S, Ahuja S, Rani V. Transcription factors in heart: promising therapeutic targets in cardiac hypertrophy. Curr Cardiol Rev 2013; 7:262-71. [PMID: 22758628 PMCID: PMC3322445 DOI: 10.2174/157340311799960618] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 01/08/2012] [Accepted: 01/08/2011] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene expression is central to cell growth, differentiation and diseases. Context specific and signal dependent regulation of gene expression is achieved to a large part by transcription factors. Cardiac transcription factors regulate heart development and are also involved in stress regulation of the adult heart, which may lead to cardiac hypertrophy. Hypertrophy of cardiac myocytes is an outcome of the imbalance between prohypertrophic factors and anti-hypertrophic factors. This is initially a compensatory mechanism but sustained hypertrophy may lead to heart failure. The growing knowledge of transcriptional control mechanisms is helpful in the development of novel therapies. This review summarizes the role of cardiac transcription factors in cardiac hypertrophy, emphasizing their potential as attractive therapeutic targets to prevent the onset of heart failure and sudden death as they can be converging targets for current therapy.
Collapse
Affiliation(s)
- Shrey Kohli
- Department of Biotechnology, Jaypee Institute of Information Technology University, NOIDA 210307, India
| | | | | |
Collapse
|
38
|
Shao J, Zhang J, Zhang Z, Jiang H, Lou X, Huang B, Foltz G, Lan Q, Huang Q, Lin B. Alternative polyadenylation in glioblastoma multiforme and changes in predicted RNA binding protein profiles. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2013; 17:136-49. [PMID: 23421905 DOI: 10.1089/omi.2012.0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Alternative polyadenylation (APA) is widely present in the human genome and plays a key role in carcinogenesis. We conducted a comprehensive analysis of the APA products in glioblastoma multiforme (GBM, one of the most lethal brain tumors) and normal brain tissues and further developed a computational pipeline, RNAelements (http://sysbio.zju.edu.cn/RNAelements/), using covariance model from known RNA binding protein (RBP) targets acquired by RNA Immunoprecipitation (RIP) analysis. We identified 4530 APA isoforms for 2733 genes in GBM, and found that 182 APA isoforms from 148 genes showed significant differential expression between normal and GBM brain tissues. We then focused on three genes with long and short APA isoforms that show inconsistent expression changes between normal and GBM brain tissues. These were myocyte enhancer factor 2D, heat shock factor binding protein 1, and polyhomeotic homolog 1 (Drosophila). Using the RNAelements program, we found that RBP binding sites were enriched in the alternative regions between the first and the last polyadenylation sites, which would result in the short APA forms escaping regulation from those RNA binding proteins. To the best of our knowledge, this report is the first comprehensive APA isoform dataset for GBM and normal brain tissues. Additionally, we demonstrated a putative novel APA-mediated mechanism for controlling RNA stability and translation for APA isoforms. These observations collectively lay a foundation for novel diagnostics and molecular mechanisms that can inform future therapeutic interventions for GBM.
Collapse
Affiliation(s)
- Jiaofang Shao
- Systems Biology Division, Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Canonical and kinase activity-independent mechanisms for extracellular signal-regulated kinase 5 (ERK5) nuclear translocation require dissociation of Hsp90 from the ERK5-Cdc37 complex. Mol Cell Biol 2013; 33:1671-86. [PMID: 23428871 DOI: 10.1128/mcb.01246-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 5 (ERK5) plays a crucial role in cell proliferation, regulating gene transcription. ERK5 has a unique C-terminal tail which contains a transcriptional activation domain, and activates transcription by phosphorylating transcription factors and acting itself as a transcriptional coactivator. However, the molecular mechanisms that regulate its nucleocytoplasmatic traffic are unknown. We have used tandem affinity purification to identify proteins that interact with ERK5. We show that ERK5 interacts with the Hsp90-Cdc37 chaperone in resting cells, and that inhibition of Hsp90 or Cdc37 results in ERK5 ubiquitylation and proteasomal degradation. Interestingly, activation of cellular ERK5 induces Hsp90 dissociation from the ERK5-Cdc37 complex, leading to ERK5 nuclear translocation and activation of transcription, by a mechanism which requires the autophosphorylation at its C-terminal tail. Consequently, active ERK5 is no longer sensitive to Hsp90 or Cdc37 inhibitors. Cdc37 overexpression also induces Hsp90 dissociation and the nuclear translocation of a kinase-inactive form of ERK5 which retains transcriptional activity. This is the first example showing that ERK5 transcriptional activity does not require kinase activity. Since Cdc37 cooperates with ERK5 to promote cell proliferation, Cdc37 overexpression (as happens in some cancers) might represent a new, noncanonical mechanism by which ERK5 regulates tumor proliferation.
Collapse
|
40
|
Dionyssiou MG, Nowacki NB, Hashemi S, Zhao J, Kerr A, Tsushima RG, McDermott JC. Cross-talk between glycogen synthase kinase 3β (GSK3β) and p38MAPK regulates myocyte enhancer factor 2 (MEF2) activity in skeletal and cardiac muscle. J Mol Cell Cardiol 2012; 54:35-44. [PMID: 23137781 DOI: 10.1016/j.yjmcc.2012.10.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 10/26/2012] [Accepted: 10/28/2012] [Indexed: 12/21/2022]
Abstract
Characterizing the signaling network that controls MEF2 transcription factors is crucial for understanding skeletal and cardiac muscle gene expression. Glycogen synthase kinase 3β (GSK3β) regulates MEF2 activity indirectly through reciprocal regulation of p38MAPK. Cross-talk between GSK3β and p38MAPK regulates MEF2 activity in skeletal and cardiac muscle. Understanding cross-talk in the signaling network converging at MEF2 control has therapeutic implications in cardiac and skeletal muscle pathology. Glycogen synthase kinase 3β (GSK3β) is a known regulator of striated muscle gene expression suppressing both myogenesis and cardiomyocyte hypertrophy. Since myocyte enhancer factor 2 (MEF2) proteins are key transcriptional regulators in both systems, we assessed whether MEF2 is a target for GSK3β. Pharmacological inhibition of GSK3β resulted in enhanced MEF2A/D expression and transcriptional activity in skeletal myoblasts and cardiac myocytes. Even though in silico analysis revealed GSK3β consensus (S/T)XXX(S/T) sites on MEF2A, a subsequent in vitro kinase assay revealed that MEF2A is only a weak substrate. However, we did observe a posttranslational modification in MEF2A in skeletal myoblasts treated with a GSK3β inhibitor which coincided with increased p38MAPK phosphorylation, a potent MEF2A activator, indicating that GSK3β inhibition may de-repress p38MAPK. Heart specific excision of GSK3β in mice also resulted in up-regulation of p38MAPK activity. Interestingly, upon pharmacological p38MAPK inhibition (SB203580), GSK3β inhibition loses its effect on MEF2 transcriptional activity suggesting potent cross-talk between the two pathways. Thus we have documented that cross-talk between p38MAPK and GSK3β signaling converges on MEF2 activity having potential consequences for therapeutic modulation of cardiac and skeletal muscle gene expression.
Collapse
Affiliation(s)
- M G Dionyssiou
- Department of Biology, York University, 4700 Keele St., Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | |
Collapse
|
41
|
Nithianandarajah-Jones GN, Wilm B, Goldring CEP, Müller J, Cross MJ. ERK5: structure, regulation and function. Cell Signal 2012; 24:2187-96. [PMID: 22800864 DOI: 10.1016/j.cellsig.2012.07.007] [Citation(s) in RCA: 170] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2012] [Accepted: 07/09/2012] [Indexed: 01/06/2023]
Abstract
Extracellular signal-regulated kinase 5 (ERK5), also termed big mitogen-activated protein kinase-1 (BMK1), is the most recently identified member of the mitogen-activated protein kinase (MAPK) family and consists of an amino-terminal kinase domain, with a relatively large carboxy-terminal of unique structure and function that makes it distinct from other MAPK members. It is ubiquitously expressed in numerous tissues and is activated by a variety of extracellular stimuli, such as cellular stresses and growth factors, to regulate processes such as cell proliferation and differentiation. Targeted deletion of Erk5 in mice has revealed that the ERK5 signalling cascade plays a critical role in cardiovascular development and vascular integrity. Recent data points to a potential role in pathological conditions such as cancer and tumour angiogenesis. This review focuses on the physiological and pathological role of ERK5, the regulation of this kinase and the recent development of small molecule inhibitors of the ERK5 signalling cascade.
Collapse
Affiliation(s)
- Gopika N Nithianandarajah-Jones
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | | | | | | | |
Collapse
|
42
|
Yin Y, She H, Li W, Yang Q, Guo S, Mao Z. Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Front Physiol 2012; 3:171. [PMID: 22661957 PMCID: PMC3362091 DOI: 10.3389/fphys.2012.00171] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 05/10/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disorder due to selective death of neurons in the substantia nigra pars compacta. The cause of cell death remains largely unknown. Myocyte enhancer factor 2 (MEF2) is a group of transcriptional factors required to regulate neuronal development, synaptic plasticity, as well as survival. Recent studies show that MEF2 functions are regulated in multiple subcellular organelles and suggest that dysregulation of MEF2 plays essential roles in the pathogenesis of PD. Many kinases associated with transcription, translation, protein misfolding, autophagy, and cellular energy homeostasis are involved in the neurodegenerative process. Following the first demonstration that mitogen-activated protein kinase p38 (p38 MAPK) directly phosphorylates and activates MEF2 to promote neuronal survival, several other kinase regulators of MEF2s have been identified. These include protein kinase A and extracellular signal regulated kinase 5 as positive MEF2 regulators, and cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3β as negative regulators in response to diverse toxic signals relevant to PD. It is clear that MEF2 has emerged as a key point where survival and death signals converge to exert their regulatory effects, and dysregulation of MEF2 function in multiple subcellular organelles may underlie PD pathogenesis. Moreover, several other kinases such as leucine-rich repeat kinase 2 and PTEN-induced putative kinase 1 (PINK1) are of particular interest due to their potential interaction with MEF2.
Collapse
Affiliation(s)
- Yue Yin
- Institute of Plastic Surgery, Xijing Hospital, Fourth Military Medical University Xi'an, Shaanxi, China
| | | | | | | | | | | |
Collapse
|
43
|
Zhang YB, Dong HY, Zhao XM, Fan L, Zou Y, Zhang C, Li G, Liu JC, Niu YC. Hydroxysafflor Yellow A Attenuates Carbon Tetrachloride-Induced Hepatic Fibrosis in Rats by Inhibiting Erk5 Signaling. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:481-94. [DOI: 10.1142/s0192415x12500371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepatic stellate cells (HSCs) undergo activation during the development of liver fibrosis. Transcription factor myocyte enhancer factor (MEF2) 2C plays a key role in this process. In the present study, we investigated the effect of hydroxysafflor yellow A (HSYA) on hepatic fibrosis and further investigated potential mechanisms in vivo. Sprague-Dawley rats were administered with CCl4 together with or without HYSA for 12 weeks. The effect of HYSA on hepatic fibrosis was evaluated using hematoxylin-eosin and Van Gieson staining. Messenger RNA expression was quantified by real-time polymerase chain reaction, and protein was quantified by Western blot or immunohistochemistry. Our results revealed that CCl4 treatment induced micronodular hepatic fibrosis with a pronounced deposition of collagen fibers. Treatment with HYSA resulted in a significant decrease in fibrosis, protein expression of α-SMA, and MEF-2C gene expression. This was accompanied by a decreased expression of Tβ-RI, Tβ-RII, MEKK3, MEK5, and phosphorylation of ERk5. HYSA alone had no effect on the measured parameters. Our findings demonstrate that HSYA protected, at least in part, the rat liver from CCl 4-caused fibrogenesis through inhibition of hepatic stellate cell (HSC) activation, attenuation of transforming growth factor beta (TGF-β) signaling. HSYA may become a novel and promising agent for the inhibition of hepatic fibrosis.
Collapse
Affiliation(s)
- Ying-Bo Zhang
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Han-Ying Dong
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Xue-Ming Zhao
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Li Fan
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Yu Zou
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Chun Zhang
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Gang Li
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Ji-Cheng Liu
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| | - Ying-Cai Niu
- Institute of Medicine, Qiqihar Medical University, Qiqihar 161006, China
| |
Collapse
|
44
|
Suppression of a MEF2-KLF6 survival pathway by PKA signaling promotes apoptosis in embryonic hippocampal neurons. J Neurosci 2012; 32:2790-803. [PMID: 22357862 DOI: 10.1523/jneurosci.3609-11.2012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the mammalian nervous system, regulation of transcription factor activity is a crucial determinant of neuronal cell survival, differentiation, and death. The myocyte enhancer factor 2 (MEF2) transcription factors have been implicated in cellular processes underlying neuronal survival and differentiation. A core component of the MEF2 complex is the MEF2D subunit. Recently, we reported that cAMP-dependent protein kinase (cAMP/PKA) signaling negatively regulates MEF2D function in myogenic cells. Here, we assessed whether cAMP signaling converges on the prosurvival role of MEF2D in Sprague Dawley rat embryonic (E18) hippocampal neurons. Initially, we observed that experimental induction of cAMP/PKA signaling promotes apoptosis in primary hippocampal neurons as indicated by TUNEL and FACS analysis. Luciferase reporter gene assays revealed that PKA potently represses MEF2D trans-activation properties in neurons. This effect was largely reversed by engineered neutralizing mutations of PKA phospho-acceptor sites on MEF2D (S121/190A). Krüppel-like factor 6 (KLF6) was identified as a key transcriptional target of MEF2 in hippocampal neurons, and siRNA-mediated knockdown of KLF6 expression promotes neuronal cell death and also antagonizes the prosurvival role of MEF2D. These observations have important implications for understanding the pathways controlling cell survival and death in the mammalian nervous system.
Collapse
|
45
|
Wu W, Xiao H, Laguna-Fernandez A, Villarreal G, Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, Shyy JYJ. Flow-Dependent Regulation of Kruppel-Like Factor 2 Is Mediated by MicroRNA-92a. Circulation 2011; 124:633-41. [PMID: 21768538 DOI: 10.1161/circulationaha.110.005108] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Upregulated by atheroprotective flow, the transcription factor Krüppel-like factor 2 (KLF2) is crucial for maintaining endothelial function. MicroRNAs (miRNAs) are noncoding small RNAs that regulate gene expression at the posttranscriptional level. We examined the role of miRNAs, particularly miR-92a, in the atheroprotective flow-regulated KLF2. METHODS AND RESULTS Dicer knockdown increased the level of KLF2 mRNA in human umbilical vein endothelial cells, suggesting that KLF2 is regulated by miRNA. In silico analysis predicted that miR-92a could bind to the 3' untranslated region of KLF2 mRNA. Overexpression of miR-92a decreased the expression of KLF2 and the KLF2-regulated endothelial nitric oxide synthase and thrombomodulin at mRNA and protein levels. A complementary finding is that miR-92a inhibitor increased the mRNA and protein expression of KLF2, endothelial nitric oxide synthase, and thrombomodulin. Subsequent studies revealed that atheroprotective laminar flow downregulated the level of miR-92a precursor to induce KLF2, and the level of this flow-induced KLF2 was reduced by miR-92a precursor. Furthermore, miR-92a level was lower in human umbilical vein endothelial cells exposed to the atheroprotective pulsatile shear flow than under atheroprone oscillatory shear flow. Anti-Ago1/2 immunoprecipitation coupled with real-time polymerase chain reaction revealed that pulsatile shear flow decreased the functional targeting of miR-92a precursor/KLF2 mRNA in human umbilical vein endothelial cells. Consistent with these findings, mouse carotid arteries receiving miR-92a precursor exhibited impaired vasodilatory response to flow. CONCLUSIONS Atheroprotective flow patterns decrease the level of miR-92a, which in turn increases KLF2 expression to maintain endothelial homeostasis.
Collapse
Affiliation(s)
- Wei Wu
- Division of Biomedical Sciences, University of California-Riverside, 92521, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Maiti S, Dutta S, Das PK. Unmodified "GNP-oligonucleotide" nanobiohybrids: a simple route for emission enhancement of DNA intercalators. Chemistry 2011; 17:7538-48. [PMID: 21567505 DOI: 10.1002/chem.201100622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Indexed: 11/07/2022]
Abstract
We present herein a simple method for enhancing the emission of DNA intercalators in homogeneous nanobiohybrids of unlabeled oligonucleotides and unmodified gold nanoparticles (GNPs). Pristine single-stranded DNA (ss-DNA) has been wrapped around unmodified GNPs to induce metal-enhanced fluorescence (MEF) of DNA intercalators, such as ethidium bromide and propidium iodide. The thickness of the ss-DNA layer on the gold nanosurface determines the extent of MEF, since this depends on the position of the intercalator in relation to the metal surface. Presumably, at a suitable thickness of this DNA layer, more of the intercalator is localized at the optimum distance from the nanoparticle to give rise to MEF. Importantly, no external spacer or coating agent was needed to induce the MEF effect of the GNPs. The concentration ratios of Au to DNA in the nanohybrids, as well as the capping agents applied to the GNPs, play key roles in enhancing the emission of the intercalators. The dimensions of both components of the nanobiohybrids, that is, the size of the GNPs and the length of the oligonucleotide, have considerable influences on the emission enhancement of the intercalators. Emission intensity increased with increasing size of the GNPs and length of the oligonucleotide only when the DNA efficiently wrapped the nanoparticles. An almost 100 % increment in the quantum yield of ethidium bromide was achieved with the GNP-DNA nanobiohybrid compared with that with DNA alone (in the absence of GNP), and the fluorescence emission was enhanced by 50 % even at an oligonucleotide concentration of 2 nM. The plasmonic effect of the GNPs in the emission enhancement was also established by the use of similar nanobioconjugates of ss-DNA with nonmetallic carbon nanoparticles and TiO(2) nanoparticles, with which no increase in the fluorescence emission of ethidium bromide was observed.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata-700032, India
| | | | | |
Collapse
|
47
|
Al Madhoun AS, Mehta V, Li G, Figeys D, Wiper-Bergeron N, Skerjanc IS. Skeletal myosin light chain kinase regulates skeletal myogenesis by phosphorylation of MEF2C. EMBO J 2011; 30:2477-2489. [PMID: 21556048 PMCID: PMC3116284 DOI: 10.1038/emboj.2011.153] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/19/2011] [Indexed: 12/18/2022] Open
Abstract
The MEF2 factors regulate transcription during cardiac and skeletal myogenesis. MEF2 factors establish skeletal muscle commitment by amplifying and synergizing with MyoD. While phosphorylation is known to regulate MEF2 function, lineage-specific regulation is unknown. Here, we show that phosphorylation of MEF2C on T(80) by skeletal myosin light chain kinase (skMLCK) enhances skeletal and not cardiac myogenesis. A phosphorylation-deficient MEF2C mutant (MEFT80A) enhanced cardiac, but not skeletal myogenesis in P19 stem cells. Further, MEFT80A was deficient in recruitment of p300 to skeletal but not cardiac muscle promoters. In gain-of-function studies, skMLCK upregulated myogenic regulatory factor (MRF) expression, leading to enhanced skeletal myogenesis in P19 cells and more efficient myogenic conversion. In loss-of-function studies, MLCK was essential for efficient MRF expression and subsequent myogenesis in embryonic stem (ES) and P19 cells as well as for proper activation of quiescent satellite cells. Thus, skMLCK regulates MRF expression by controlling the MEF2C-dependent recruitment of histone acetyltransferases to skeletal muscle promoters. This work identifies the first kinase that regulates MyoD and Myf5 expression in ES or satellite cells.
Collapse
Affiliation(s)
- Ashraf Said Al Madhoun
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Virja Mehta
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Grace Li
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel Figeys
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Nadine Wiper-Bergeron
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Ilona S Skerjanc
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
48
|
Keshet Y, Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol 2010; 661:3-38. [PMID: 20811974 DOI: 10.1007/978-1-60761-795-2_1] [Citation(s) in RCA: 426] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sequential activation of kinases within the mitogen-activated protein (MAP) kinase (MAPK) cascades is a common, and evolutionary-conserved mechanism of signal transduction. Four MAPK cascades have been identified in the last 20 years and those are usually named according to the MAPK components that are the central building blocks of each of the cascades. These are the extracellular signal-regulated kinase 1/2 (ERK1/2), c-Jun N-Terminal kinase (JNK), p38, and ERK5 cascades. Each of these cascades consists of a core module of three tiers of protein kinases termed MAPK, MAPKK, and MAP3K, and often two additional tiers, the upstream MAP4K and the downstream MAPKAPK, which can complete five tiers of each cascade in certain cell lines or stimulations. The transmission of the signal via each cascade is mediated by sequential phosphorylation and activation of the components in the sequential tiers. These cascades cooperate in transmitting various extracellular signals and thus control a large number of distinct and even opposing cellular processes such as proliferation, differentiation, survival, development, stress response, and apoptosis. One way by which the specificity of each cascade is regulated is through the existence of several distinct components in each tier of the different cascades. About 70 genes, which are each translated to several alternatively spliced isoforms, encode the entire MAPK system, and allow the wide array of cascade's functions. These components, their regulation, as well as their involvement together with other mechanisms in the determination of signaling specificity by the MAPK cascade is described in this review. Mis-regulation of the MAPKs signals usually leads to diseases such as cancer and diabetes; therefore, studying the mechanisms of specificity-determination may lead to better understanding of these signaling-related diseases.
Collapse
Affiliation(s)
- Yonat Keshet
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
49
|
Rose BA, Force T, Wang Y. Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 2010; 90:1507-46. [PMID: 20959622 PMCID: PMC3808831 DOI: 10.1152/physrev.00054.2009] [Citation(s) in RCA: 562] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Among the myriad of intracellular signaling networks that govern the cardiac development and pathogenesis, mitogen-activated protein kinases (MAPKs) are prominent players that have been the focus of extensive investigations in the past decades. The four best characterized MAPK subfamilies, ERK1/2, JNK, p38, and ERK5, are the targets of pharmacological and genetic manipulations to uncover their roles in cardiac development, function, and diseases. However, information reported in the literature from these efforts has not yet resulted in a clear view about the roles of specific MAPK pathways in heart. Rather, controversies from contradictive results have led to a perception that MAPKs are ambiguous characters in heart with both protective and detrimental effects. The primary object of this review is to provide a comprehensive overview of the current progress, in an effort to highlight the areas where consensus is established verses the ones where controversy remains. MAPKs in cardiac development, cardiac hypertrophy, ischemia/reperfusion injury, and pathological remodeling are the main focuses of this review as these represent the most critical issues for evaluating MAPKs as viable targets of therapeutic development. The studies presented in this review will help to reveal the major challenges in the field and the limitations of current approaches and point to a critical need in future studies to gain better understanding of the fundamental mechanisms of MAPK function and regulation in the heart.
Collapse
Affiliation(s)
- Beth A Rose
- Departments of Anesthesiology, Physiology, and Medicine, David Geffen School of Medicine, Molecular Biology, Institute, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
50
|
Biyashev D, Veliceasa D, Kwiatek A, Sutanto MM, Cohen RN, Volpert OV. Natural angiogenesis inhibitor signals through Erk5 activation of peroxisome proliferator-activated receptor gamma (PPARgamma). J Biol Chem 2010; 285:13517-24. [PMID: 20185831 PMCID: PMC2859512 DOI: 10.1074/jbc.m110.117374] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Indexed: 01/30/2023] Open
Abstract
Erk-5, a member of the MAPK superfamily, has a catalytic domain similar to Erk1/2 and a unique C-terminal domain enabling binding with transcription factors. Aberrant vascularization in the Erk5-null mice suggested a link to angiogenesis. Ectopic expression of constitutively active Erk5 blocks endothelial cell morphogenesis and causes HIF1-alpha destabilization/degradation. However the mechanisms by which endogenous Erk5 regulates angiogenesis remain unknown. We show that Erk5 and its activating kinase MEK5 are the upstream mediators of the anti-angiogenic signal by the natural angiogenesis inhibitor, pigment epithelial-derived factor (PEDF). We demonstrate that Erk5 phosphorylation allows activation of PPARgamma transcription factor by displacement of SMRT co-repressor. PPARgamma, in turn is critical for NFkappaB activation, PEDF-dependent apoptosis, and anti-angiogenesis. The dominant negative MEK5 mutant and Erk5 shRNA diminished PEDF-dependent apoptosis, inhibition of the endothelial cell chemotaxis, and angiogenesis. This is the first evidence of Erk5-dependent transduction of signals by endogenous angiogenesis inhibitors.
Collapse
Affiliation(s)
- Dauren Biyashev
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| | - Dorina Veliceasa
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| | - Angela Kwiatek
- the Physiology Department, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 and
| | | | - Ronald N. Cohen
- the Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Chicago, Chicago, Illinois 60637
| | - Olga V. Volpert
- From the Urology Department and RH Lurie Comprehensive Cancer Center and
| |
Collapse
|