1
|
van Breugel ME, Gerber A, van Leeuwen F. The choreography of chromatin in RNA polymerase III regulation. Biochem Soc Trans 2024; 52:1173-1189. [PMID: 38666598 PMCID: PMC11346459 DOI: 10.1042/bst20230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/27/2024]
Abstract
Regulation of eukaryotic gene expression involves a dynamic interplay between the core transcriptional machinery, transcription factors, and chromatin organization and modification. While this applies to transcription by all RNA polymerase complexes, RNA polymerase III (RNAPIII) seems to be atypical with respect to its mechanisms of regulation. One distinctive feature of most RNAPIII transcribed genes is that they are devoid of nucleosomes, which relates to the high levels of transcription. Moreover, most of the regulatory sequences are not outside but within the transcribed open chromatin regions. Yet, several lines of evidence suggest that chromatin factors affect RNAPIII dynamics and activity and that gene sequence alone does not explain the observed regulation of RNAPIII. Here we discuss the role of chromatin modification and organization of RNAPIII transcribed genes and how they interact with the core transcriptional RNAPIII machinery and regulatory DNA elements in and around the transcribed genes.
Collapse
Affiliation(s)
- Maria Elize van Breugel
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
| | - Alan Gerber
- Department of Neurosurgery, Amsterdam UMC Location Vrije Universiteit Amsterdam, Amsterdam 1081HV, The Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam 1081HV, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam 1066 CX, The Netherlands
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands
| |
Collapse
|
2
|
Mattijssen S, Kerkhofs K, Stephen J, Yang A, Han CG, Tadafumi Y, Iben JR, Mishra S, Sakhawala RM, Ranjan A, Gowda M, Gahl WA, Gu S, Malicdan MC, Maraia RJ. A POLR3B-variant reveals a Pol III transcriptome response dependent on La protein/SSB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.577363. [PMID: 38410490 PMCID: PMC10896340 DOI: 10.1101/2024.02.05.577363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Kyra Kerkhofs
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Joshi Stephen
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Acong Yang
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - Chen G. Han
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Yokoyama Tadafumi
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - James R. Iben
- Molecular Genetics Core, NICHD, NIH, Bethesda, MD 20892, USA
| | - Saurabh Mishra
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Rima M. Sakhawala
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Amitabh Ranjan
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mamatha Gowda
- Department of Obstetrics & Gynaecology, Jawaharlal Institute of Post-Graduate Medical Education and Research, Puducherry, India
| | - William A. Gahl
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Shuo Gu
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD, 21702 USA
| | - May C. Malicdan
- Section of Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD 20892, USA
| | - Richard J. Maraia
- Section on Molecular and Cell Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Levi O, Mallik M, Arava YS. ThrRS-Mediated Translation Regulation of the RNA Polymerase III Subunit RPC10 Occurs through an Element with Similarity to Cognate tRNA ASL and Affects tRNA Levels. Genes (Basel) 2023; 14:462. [PMID: 36833389 PMCID: PMC9956033 DOI: 10.3390/genes14020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Aminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins. However, the mRNA targets, mechanism of interaction, and regulatory consequences of this binding are not fully resolved. Here, we focused on yeast cytosolic threonine tRNA synthetase (ThrRS) to decipher its impact on mRNA binding. Affinity purification of ThrRS with its associated mRNAs followed by transcriptome analysis revealed a preference for mRNAs encoding RNA polymerase subunits. An mRNA that was significantly bound compared to all others was the mRNA encoding RPC10, a small subunit of RNA polymerase III. Structural modeling suggested that this mRNA includes a stem-loop element that is similar to the anti-codon stem loop (ASL) structure of ThrRS cognate tRNA (tRNAThr). We introduced random mutations within this element and found that almost every change from the normal sequence leads to reduced binding by ThrRS. Furthermore, point mutations at six key positions that abolish the predicted ASL-like structure showed a significant decrease in ThrRS binding with a decrease in RPC10 protein levels. Concomitantly, tRNAThr levels were reduced in the mutated strain. These data suggest a novel regulatory mechanism in which cellular tRNA levels are regulated through a mimicking element within an RNA polymerase III subunit in a manner that involves the tRNA cognate aaRS.
Collapse
Affiliation(s)
| | | | - Yoav S. Arava
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
4
|
Jacobs RQ, Carter ZI, Lucius AL, Schneider DA. Uncovering the mechanisms of transcription elongation by eukaryotic RNA polymerases I, II, and III. iScience 2022; 25:105306. [PMID: 36304104 PMCID: PMC9593817 DOI: 10.1016/j.isci.2022.105306] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 10/03/2022] [Indexed: 11/01/2022] Open
Abstract
Eukaryotes express three nuclear RNA polymerases (Pols I, II, and III) that are essential for cell survival. Despite extensive investigation of the three Pols, significant knowledge gaps regarding their biochemical properties remain because each Pol has been evaluated independently under disparate experimental conditions and methodologies. To advance our understanding of the Pols, we employed identical in vitro transcription assays for direct comparison of their elongation rates, elongation complex (EC) stabilities, and fidelities. Pol I is the fastest, most likely to misincorporate, forms the least stable EC, and is most sensitive to alterations in reaction buffers. Pol II is the slowest of the Pols, forms the most stable EC, and negligibly misincorporated an incorrect nucleotide. The enzymatic properties of Pol III were intermediate between Pols I and II in all assays examined. These results reveal unique enzymatic characteristics of the Pols that provide new insights into their evolutionary divergence.
Collapse
Affiliation(s)
- Ruth Q. Jacobs
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zachariah I. Carter
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Aaron L. Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
5
|
Kovalenko TF, Larionova TD, Antipova NV, Shakhparonov MI, Pavlyukov MS. The Role of Non-coding RNAs in the Pathogenesis of Glial Tumors. Acta Naturae 2021; 13:38-51. [PMID: 34707896 PMCID: PMC8526181 DOI: 10.32607/actanaturae.11270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 11/25/2022] Open
Abstract
Among the many malignant neoplasms, glioblastoma (GBM) leads to one of the worst prognosis for patients and has an almost 100% recurrence rate. The only chemotherapeutic drug that is widely used for treating glioblastoma is temozolomide, a DNA alkylating agent. Its impact, however, is only minor; it increases patients' survival just by 12 to 14 months. Multiple highly selective compounds that affect specific proteins and have performed well in other types of cancer have proved ineffective against glioblastoma. Hence, there is an urgent need for novel methods that could help achieve the long-awaited progress in glioblastoma treatment. One of the potentially promising approaches is the targeting of non-coding RNAs (ncRNAs). These molecules are characterized by extremely high multifunctionality and often act as integrators by coordinating multiple key signaling pathways within the cell. Thus, the impact on ncRNAs has the potential to lead to a broader and stronger impact on cells, as opposed to the more focused action of inhibitors targeting specific proteins. In this review, we summarize the functions of long noncoding RNAs, circular RNAs, as well as microRNAs, PIWI-interacting RNAs, small nuclear and small nucleolar RNAs. We provide a classification of these transcripts and describe their role in various signaling pathways and physiological processes. We also provide examples of oncogenic and tumor suppressor ncRNAs belonging to each of these classes in the context of their involvement in the pathogenesis of gliomas and glioblastomas. In conclusion, we considered the potential use of ncRNAs as diagnostic markers and therapeutic targets for the treatment of glioblastoma.
Collapse
Affiliation(s)
- T. F. Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - T. D. Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - N. V. Antipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. I. Shakhparonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| | - M. S. Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, 117997 Russia
| |
Collapse
|
6
|
Thiedig K, Weisshaar B, Stracke R. Functional and evolutionary analysis of the Arabidopsis 4R-MYB protein SNAPc4 as part of the SNAP complex. PLANT PHYSIOLOGY 2021; 185:1002-1020. [PMID: 33693812 PMCID: PMC8133616 DOI: 10.1093/plphys/kiaa067] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Transcription initiation of the genes coding for small nuclear RNA (snRNA) has been extensively analyzed in humans and fruit fly, but only a single ortholog of a snRNA-activating protein complex (SNAPc) subunit has so far been characterized in plants. The genome of the model plant Arabidopsis thaliana encodes orthologs of all three core SNAPc subunits, including A. thaliana SNAP complex 4 (AtSNAPc4)-a 4R-MYB-type protein with four-and-a-half adjacent MYB repeat units. We report the conserved role of AtSNAPc4 as subunit of a protein complex involved in snRNA gene transcription and present genetic evidence that AtSNAPc4 is an essential gene in gametophyte and zygote development. We present experimental evidence that the three A. thaliana SNAPc subunits assemble into a SNAP complex and demonstrate the binding of AtSNAPc4 to snRNA promoters. In addition, co-localization studies show a link between AtSNAPc4 accumulation and Cajal bodies, known to aggregate at snRNA gene loci in humans. Moreover, we show the strong evolutionary conservation of single-copy 4R-MYB/SNAPc4 genes in a broad range of eukaryotes and present additional shared protein features besides the MYB domain, suggesting a conservation of the snRNA transcription initiation machinery along the course of the eukaryotic evolution.
Collapse
Affiliation(s)
- Katharina Thiedig
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Bernd Weisshaar
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, Sequenz 1, Bielefeld 33615, Germany
| |
Collapse
|
7
|
Marygold SJ, Alic N, Gilmour DS, Grewal SS. In silico identification of Drosophila melanogaster genes encoding RNA polymerase subunits. MICROPUBLICATION BIOLOGY 2020; 2020. [PMID: 33274328 PMCID: PMC7704258 DOI: 10.17912/micropub.biology.000320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Steven J Marygold
- FlyBase, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, U.K
| | - Nazif Alic
- Institute of Healthy Ageing and the Research Department of Genetics, Evolution, and Environment, University College London, London, U.K
| | - David S Gilmour
- Pennsylvania State University, Center for Eukaryotic Gene Regulation, University Park, PA, U.S.A
| | - Savraj S Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, & Department of Biochemistry and Molecular Biology, University of Calgary, Alberta, Canada
| |
Collapse
|
8
|
Abstract
In all living organisms, the flow of genetic information is a two-step process: first DNA is transcribed into RNA, which is subsequently used as template for protein synthesis during translation. In bacteria, archaea and eukaryotes, transcription is carried out by multi-subunit RNA polymerases (RNAPs) sharing a conserved architecture of the RNAP core. RNAPs catalyse the highly accurate polymerisation of RNA from NTP building blocks, utilising DNA as template, being assisted by transcription factors during the initiation, elongation and termination phase of transcription. The complexity of this highly dynamic process is reflected in the intricate network of protein-protein and protein-nucleic acid interactions in transcription complexes and the substantial conformational changes of the RNAP as it progresses through the transcription cycle.In this chapter, we will first briefly describe the early work that led to the discovery of multisubunit RNAPs. We will then discuss the three-dimensional organisation of RNAPs from the bacterial, archaeal and eukaryotic domains of life, highlighting the conserved nature, but also the domain-specific features of the transcriptional apparatus. Another section will focus on transcription factors and their role in regulating the RNA polymerase throughout the different phases of the transcription cycle. This includes a discussion of the molecular mechanisms and dynamic events that govern transcription initiation, elongation and termination.
Collapse
|
9
|
Szatkowska R, Garcia-Albornoz M, Roszkowska K, Holman SW, Furmanek E, Hubbard SJ, Beynon RJ, Adamczyk M. Glycolytic flux in Saccharomyces cerevisiae is dependent on RNA polymerase III and its negative regulator Maf1. Biochem J 2019; 476:1053-1082. [PMID: 30885983 PMCID: PMC6448137 DOI: 10.1042/bcj20180701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/07/2023]
Abstract
Protein biosynthesis is energetically costly, is tightly regulated and is coupled to stress conditions including glucose deprivation. RNA polymerase III (RNAP III)-driven transcription of tDNA genes for production of tRNAs is a key element in efficient protein biosynthesis. Here we present an analysis of the effects of altered RNAP III activity on the Saccharomyces cerevisiae proteome and metabolism under glucose-rich conditions. We show for the first time that RNAP III is tightly coupled to the glycolytic system at the molecular systems level. Decreased RNAP III activity or the absence of the RNAP III negative regulator, Maf1 elicit broad changes in the abundance profiles of enzymes engaged in fundamental metabolism in S. cerevisiae In a mutant compromised in RNAP III activity, there is a repartitioning towards amino acids synthesis de novo at the expense of glycolytic throughput. Conversely, cells lacking Maf1 protein have greater potential for glycolytic flux.
Collapse
Affiliation(s)
- Roza Szatkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Manuel Garcia-Albornoz
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Katarzyna Roszkowska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Stephen W Holman
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Emil Furmanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Simon J Hubbard
- Division of Evolution & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, U.K
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, U.K
| | - Malgorzata Adamczyk
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
10
|
Fernández-Pérez J, Nantón A, Méndez J. Sequence characterization of the 5S ribosomal DNA and the internal transcribed spacer (ITS) region in four European Donax species (Bivalvia: Donacidae). BMC Genet 2018; 19:97. [PMID: 30367592 PMCID: PMC6204057 DOI: 10.1186/s12863-018-0684-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 10/11/2018] [Indexed: 01/04/2023] Open
Abstract
Background The whole repeat unit of 5S rDNA and the internal transcribed spacer (ITS) of four European Donax species were analysed. After amplifying, cloning and sequencing several 5S and ITS units, their basic features and their variation were described. The phylogenetic usefulness of 5S and ITS sequences in the inference of evolutionary relationships among these wedge clams was also investigated. Results The length of the 5S repeat presented little variation among species, except D. trunculus that differed from the rest of the Donax species in 170–210 bp. The deduced coding region covered 120 bp, and showed recognizable internal control regions (ICRs) involved in the transcription. The length of non-transcribed spacer region (NTS) ranged from 157 bp to 165 bp in Donax trunculus and from 335 bp to 367 bp in the other three species. The conservation degree of transcriptional regulatory regions was analysed revealing a conserved TATA-like box in the upstream region. Regarding ITS sequences, the four Donax species showed slight size differences among clones due to the variation occurring in the ITS1 and ITS2, except Donax variegatus did not display size differences in the ITS2. The total length of the ITS sequence ranged between 814 and 1014 bp. Resulting phylogenetic trees display that the two ribosomal DNA regions provide well-resolved phylogenies where the four European Donax species form a single clade receiving high support in nodes. The topology obtained with 5S sequences was in agreement with Donax evolutionary relationships inferred from several sequences of different nature in previous studies. Conclusions This is not only a basic research work, where new data and new knowledge is provided about Donax species, but also have allowed the authentication of these wedge clams and offers future applications to provide other genetic resources. Electronic supplementary material The online version of this article (10.1186/s12863-018-0684-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jenyfer Fernández-Pérez
- Grupo Xenomar, Departamento de Bioloxía, Facultade de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain.
| | - Ana Nantón
- Grupo Xenomar, Departamento de Bioloxía, Facultade de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain
| | - Josefina Méndez
- Grupo Xenomar, Departamento de Bioloxía, Facultade de Ciencias and Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, Campus de A Zapateira, 15071, A Coruña, Spain
| |
Collapse
|
11
|
Song L, Ouedraogo JP, Kolbusz M, Nguyen TTM, Tsang A. Efficient genome editing using tRNA promoter-driven CRISPR/Cas9 gRNA in Aspergillus niger. PLoS One 2018; 13:e0202868. [PMID: 30142205 PMCID: PMC6108506 DOI: 10.1371/journal.pone.0202868] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/11/2018] [Indexed: 11/18/2022] Open
Abstract
As a powerful tool for fast and precise genome editing, the CRISPR/Cas9 system has been applied in filamentous fungi to improve the efficiency of genome alteration. However, the method of delivering guide RNA (gRNA) remains a bottleneck in performing CRISPR mutagenesis in Aspergillus species. Here we report a gRNA transcription driven by endogenous tRNA promoters which include a tRNA gene plus 100 base pairs of upstream sequence. Co-transformation of a cas9-expressing plasmid with a linear DNA coding for gRNA demonstrated that 36 of the 37 tRNA promoters tested were able to generate the intended mutation in A. niger. When gRNA and cas9 were expressed in a single extra-chromosomal plasmid, the efficiency of gene mutation was as high as 97%. Co-transformation with DNA template for homologous recombination, the CRISPR/Cas9 system resulted ~42% efficiency of gene replacement in a strain with a functioning non-homologous end joining machinery (kusA+), and an efficiency of >90% gene replacement in a kusA- background. Our results demonstrate that tRNA promoter-mediated gRNA expressions are reliable and efficient in genome editing in A. niger.
Collapse
Affiliation(s)
- Letian Song
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Jean-Paul Ouedraogo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Magdalena Kolbusz
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Thi Truc Minh Nguyen
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Canada
| |
Collapse
|
12
|
Otsubo Y, Matsuo T, Nishimura A, Yamamoto M, Yamashita A. tRNA production links nutrient conditions to the onset of sexual differentiation through the TORC1 pathway. EMBO Rep 2018; 19:embr.201744867. [PMID: 29330317 DOI: 10.15252/embr.201744867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 11/30/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022] Open
Abstract
Target of rapamycin (TOR) kinase controls cell growth and metabolism in response to nutrient availability. In the fission yeast Schizosaccharomyces pombe, TOR complex 1 (TORC1) promotes vegetative growth and inhibits sexual differentiation in the presence of ample nutrients. Here, we report the isolation and characterization of mutants with similar phenotypes as TORC1 mutants, in that they initiate sexual differentiation even in nutrient-rich conditions. In most mutants identified, TORC1 activity is downregulated and the mutated genes are involved in tRNA expression or modification. Expression of tRNA precursors decreases when cells undergo sexual differentiation. Furthermore, overexpression of tRNA precursors prevents TORC1 downregulation upon nitrogen starvation and represses the initiation of sexual differentiation. Based on these observations, we propose that tRNA precursors operate in the S. pombe TORC1 pathway to switch growth mode from vegetative to reproductive.
Collapse
Affiliation(s)
- Yoko Otsubo
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Tomohiko Matsuo
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Akiko Nishimura
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masayuki Yamamoto
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan.,Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan.,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Akira Yamashita
- Laboratory of Cell Responses, National Institute for Basic Biology, Okazaki, Aichi, Japan .,Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| |
Collapse
|
13
|
Soprano AS, Smetana JHC, Benedetti CE. Regulation of tRNA biogenesis in plants and its link to plant growth and response to pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1861:344-353. [PMID: 29222070 DOI: 10.1016/j.bbagrm.2017.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/29/2017] [Accepted: 12/03/2017] [Indexed: 12/23/2022]
Abstract
The field of tRNA biology, encompassing the functional and structural complexity of tRNAs, has fascinated scientists over the years and is continuously growing. Besides their fundamental role in protein translation, new evidence indicates that tRNA-derived molecules also regulate gene expression and protein synthesis in all domains of life. This review highlights some of the recent findings linking tRNA transcription and modification with plant cell growth and response to pathogens. In fact, mutations in proteins directly involved in tRNA synthesis and modification most often lead to pleiotropic effects on plant growth and immunity. As plants need to optimize and balance their energy and nutrient resources towards growth and defense, regulatory pathways that play a central role in integrating tRNA transcription and protein translation with cell growth control and organ development, such as the auxin-TOR signaling pathway, also influence the plant immune response against pathogens. As a consequence, distinct pathogens employ an array of effector molecules including tRNA fragments to target such regulatory pathways to exploit the plant's translational capacity, gain access to nutrients and evade defenses. An example includes the RNA polymerase III repressor MAF1, a conserved component of the TOR signaling pathway that controls ribosome biogenesis and tRNA synthesis required for plant growth and which is targeted by a pathogen effector molecule to promote disease. This article is part of a Special Issue entitled: SI: Regulation of tRNA synthesis and modification in physiological conditions and disease edited by Dr. Boguta Magdalena.
Collapse
Affiliation(s)
- Adriana Santos Soprano
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Juliana Helena Costa Smetana
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil
| | - Celso Eduardo Benedetti
- Brazilian Nacional Biosciences Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-100 Campinas, SP, Brazil.
| |
Collapse
|
14
|
Ahuja R, Kumar V. Stimulation of Pol III-dependent 5S rRNA and U6 snRNA gene expression by AP-1 transcription factors. FEBS J 2017; 284:2066-2077. [PMID: 28488757 DOI: 10.1111/febs.14104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 04/15/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022]
Abstract
RNA polymerase III transcribes structurally diverse group of essential noncoding RNAs including 5S ribosomal RNA (5SrRNA) and U6 snRNA. These noncoding RNAs are involved in RNA processing and ribosome biogenesis, thus, coupling Pol III activity to the rate of protein synthesis, cell growth, and proliferation. Even though a few Pol II-associated transcription factors have been reported to participate in Pol III-dependent transcription, its activation by activator protein 1 (AP-1) factors, c-Fos and c-Jun, has remained unexplored. Here, we show that c-Fos and c-Jun bind to specific sites in the regulatory regions of 5S rRNA (type I) and U6 snRNA (type III) gene promoters and stimulate their transcription. Our chromatin immunoprecipitation studies suggested that endogenous AP-1 factors bind to their cognate promoter elements during the G1/S transition of cell cycle apparently synchronous with Pol III transcriptional activity. Furthermore, the interaction of c-Jun with histone acetyltransferase p300 promoted the recruitment of p300/CBP complex on the promoters and facilitated the occupancy of Pol III transcriptional machinery via histone acetylation and chromatin remodeling. The findings of our study, together, suggest that AP-1 factors are novel regulators of Pol III-driven 5S rRNA and U6 snRNA expression with a potential role in cell proliferation.
Collapse
Affiliation(s)
- Richa Ahuja
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Vijay Kumar
- Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
15
|
Gander MW, Vrana JD, Voje WE, Carothers JM, Klavins E. Digital logic circuits in yeast with CRISPR-dCas9 NOR gates. Nat Commun 2017; 8:15459. [PMID: 28541304 PMCID: PMC5458518 DOI: 10.1038/ncomms15459] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/31/2017] [Indexed: 12/17/2022] Open
Abstract
Natural genetic circuits enable cells to make sophisticated digital decisions. Building equally complex synthetic circuits in eukaryotes remains difficult, however, because commonly used components leak transcriptionally, do not arbitrarily interconnect or do not have digital responses. Here, we designed dCas9-Mxi1-based NOR gates in Saccharomyces cerevisiae that allow arbitrary connectivity and large genetic circuits. Because we used the chromatin remodeller Mxi1, our gates showed minimal leak and digital responses. We built a combinatorial library of NOR gates that directly convert guide RNA (gRNA) inputs into gRNA outputs, enabling the gates to be 'wired' together. We constructed logic circuits with up to seven gRNAs, including repression cascades with up to seven layers. Modelling predicted the NOR gates have effectively zero transcriptional leak explaining the limited signal degradation in the circuits. Our approach enabled the largest, eukaryotic gene circuits to date and will form the basis for large, synthetic, cellular decision-making systems.
Collapse
Affiliation(s)
- Miles W. Gander
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Justin D. Vrana
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - William E. Voje
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
| | - James M. Carothers
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| | - Eric Klavins
- Department of Electrical Engineering, University of Washington, Seattle, Washington 98195, USA
- Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
16
|
Ohtani M. Transcriptional regulation of snRNAs and its significance for plant development. JOURNAL OF PLANT RESEARCH 2017; 130:57-66. [PMID: 27900551 DOI: 10.1007/s10265-016-0883-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Small nuclear RNA (snRNA) represents a distinct class of non-coding RNA molecules. As these molecules have fundamental roles in RNA metabolism, including pre-mRNA splicing and ribosomal RNA processing, it is essential that their transcription be tightly regulated in eukaryotic cells. The genome of each organism contains hundreds of snRNA genes. Although the structures of these genes are highly diverse among organisms, the trans-acting factors that regulate snRNA transcription are evolutionarily conserved. Recent studies of the Arabidopsis thaliana srd2-1 mutant, which is defective in the snRNA transcription factor, provide insight into the physiological significance of snRNA regulation in plant development. Here, I review the current understanding of the molecular mechanisms underlying snRNA transcription.
Collapse
Affiliation(s)
- Misato Ohtani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192, Japan.
- Biomass Engineering Program Cooperation Division, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
| |
Collapse
|
17
|
McDonald KR, Guise AJ, Pourbozorgi-Langroudi P, Cristea IM, Zakian VA, Capra JA, Sabouri N. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity. PLoS Genet 2016; 12:e1006238. [PMID: 27611590 PMCID: PMC5017727 DOI: 10.1371/journal.pgen.1006238] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/11/2016] [Indexed: 12/27/2022] Open
Abstract
Replicative DNA helicases expose the two strands of the double helix to the replication apparatus, but accessory helicases are often needed to help forks move past naturally occurring hard-to-replicate sites, such as tightly bound proteins, RNA/DNA hybrids, and DNA secondary structures. Although the Schizosaccharomyces pombe 5’-to-3’ DNA helicase Pfh1 is known to promote fork progression, its genomic targets, dynamics, and mechanisms of action are largely unknown. Here we address these questions by integrating genome-wide identification of Pfh1 binding sites, comprehensive analysis of the effects of Pfh1 depletion on replication and DNA damage, and proteomic analysis of Pfh1 interaction partners by immunoaffinity purification mass spectrometry. Of the 621 high confidence Pfh1-binding sites in wild type cells, about 40% were sites of fork slowing (as marked by high DNA polymerase occupancy) and/or DNA damage (as marked by high levels of phosphorylated H2A). The replication and integrity of tRNA and 5S rRNA genes, highly transcribed RNA polymerase II genes, and nucleosome depleted regions were particularly Pfh1-dependent. The association of Pfh1 with genomic integrity at highly transcribed genes was S phase dependent, and thus unlikely to be an artifact of high transcription rates. Although Pfh1 affected replication and suppressed DNA damage at discrete sites throughout the genome, Pfh1 and the replicative DNA polymerase bound to similar extents to both Pfh1-dependent and independent sites, suggesting that Pfh1 is proximal to the replication machinery during S phase. Consistent with this interpretation, Pfh1 co-purified with many key replisome components, including the hexameric MCM helicase, replicative DNA polymerases, RPA, and the processivity clamp PCNA in an S phase dependent manner. Thus, we conclude that Pfh1 is an accessory DNA helicase that interacts with the replisome and promotes replication and suppresses DNA damage at hard-to-replicate sites. These data provide insight into mechanisms by which this evolutionarily conserved helicase helps preserve genome integrity. Progression of the DNA replication machinery is challenged in every S phase by active transcription, tightly bound protein complexes, and formation of stable DNA secondary structures. Using genome-wide analyses, we show that the evolutionarily conserved fission yeast Pfh1 DNA helicase promotes fork progression and suppresses DNA damage at natural sites of fork pausing, which occur at “hard-to-replicate” sites. Our data suggest that Pfh1 interacts with the replication apparatus. First, mass spectrometry revealed that Pfh1 interacts with many components of the replication machinery. Second, Pfh1 and the leading strand DNA polymerase occupy many common regions genome-wide, not only hard-to-replicate sites, but also sites whose replication is not Pfh1-dependent. The human genome encodes a Pfh1 homolog, hPIF1, and contains all of the same hard-to-replicate features that make fission yeast DNA replication dependent upon Pfh1. Thus, human cells likely also require replicative accessory DNA helicases to facilitate replication at hard-to-replicate sites, and hPIF1 is a good candidate for this role.
Collapse
Affiliation(s)
- Karin R. McDonald
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Amanda J. Guise
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | | | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Virginia A. Zakian
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt Genetics Institute, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail: (JAC); (NS)
| | - Nasim Sabouri
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail: (JAC); (NS)
| |
Collapse
|
18
|
Carlsten JO, Zhu X, Dávila López M, Samuelsson T, Gustafsson CM. Loss of the Mediator subunit Med20 affects transcription of tRNA and other non-coding RNA genes in fission yeast. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:339-47. [DOI: 10.1016/j.bbagrm.2015.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022]
|
19
|
Charton R, Guintini L, Peyresaubes F, Conconi A. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III). DNA Repair (Amst) 2015; 36:49-58. [PMID: 26411875 DOI: 10.1016/j.dnarep.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In fast growing eukaryotic cells, a subset of rRNA genes are transcribed at very high rates by RNA polymerase I (RNAPI). Nuclease digestion-assays and psoralen crosslinking have shown that they are open; that is, largely devoid of nucleosomes. In the yeast Saccharomyces cerevisae, nucleotide excision repair (NER) and photolyase remove UV photoproducts faster from open rRNA genes than from closed and nucleosome-loaded inactive rRNA genes. After UV irradiation, rRNA transcription declines because RNAPI halt at UV photoproducts and are then displaced from the transcribed strand. When the DNA lesion is quickly recognized by NER, it is the sub-pathway transcription-coupled TC-NER that removes the UV photoproduct. If dislodged RNAPI are replaced by nucleosomes before NER recognizes the lesion, then it is the sub-pathway global genome GG-NER that removes the UV photoproducts from the transcribed strand. Also, GG-NER maneuvers in the non-transcribed strand of open genes and in both strands of closed rRNA genes. After repair, transcription resumes and elongating RNAPI reopen the rRNA gene. In higher eukaryotes, NER in rRNA genes is inefficient and there is no evidence for TC-NER. Moreover, TC-NER does not occur in RNA polymerase III transcribed genes of both, yeast and human fibroblast.
Collapse
Affiliation(s)
- Romain Charton
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laetitia Guintini
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Peyresaubes
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
20
|
Iwasaki O, Tanizawa H, Kim KD, Yokoyama Y, Corcoran CJ, Tanaka A, Skordalakes E, Showe LC, Noma KI. Interaction between TBP and Condensin Drives the Organization and Faithful Segregation of Mitotic Chromosomes. Mol Cell 2015; 59:755-67. [PMID: 26257282 DOI: 10.1016/j.molcel.2015.07.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/16/2015] [Accepted: 07/01/2015] [Indexed: 10/25/2022]
Abstract
Genome/chromosome organization is highly ordered and controls various nuclear events, although the molecular mechanisms underlying the functional organization remain largely unknown. Here, we show that the TATA box-binding protein (TBP) interacts with the Cnd2 kleisin subunit of condensin to mediate interphase and mitotic chromosomal organization in fission yeast. TBP recruits condensin onto RNA polymerase III-transcribed (Pol III) genes and highly transcribed Pol II genes; condensin in turn associates these genes with centromeres. Inhibition of the Cnd2-TBP interaction disrupts condensin localization across the genome and the proper assembly of mitotic chromosomes, leading to severe defects in chromosome segregation and eventually causing cellular lethality. We propose that the Cnd2-TBP interaction coordinates transcription with chromosomal architecture by linking dispersed gene loci with centromeres. This chromosome arrangement can contribute to the efficient transmission of physical force at the kinetochore to chromosomal arms, thereby supporting the fidelity of chromosome segregation.
Collapse
|
21
|
Steglich B, Strålfors A, Khorosjutina O, Persson J, Smialowska A, Javerzat JP, Ekwall K. The Fun30 chromatin remodeler Fft3 controls nuclear organization and chromatin structure of insulators and subtelomeres in fission yeast. PLoS Genet 2015; 11:e1005101. [PMID: 25798942 PMCID: PMC4370569 DOI: 10.1371/journal.pgen.1005101] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 02/25/2015] [Indexed: 12/21/2022] Open
Abstract
In eukaryotic cells, local chromatin structure and chromatin organization in the nucleus both influence transcriptional regulation. At the local level, the Fun30 chromatin remodeler Fft3 is essential for maintaining proper chromatin structure at centromeres and subtelomeres in fission yeast. Using genome-wide mapping and live cell imaging, we show that this role is linked to controlling nuclear organization of its targets. In fft3∆ cells, subtelomeres lose their association with the LEM domain protein Man1 at the nuclear periphery and move to the interior of the nucleus. Furthermore, genes in these domains are upregulated and active chromatin marks increase. Fft3 is also enriched at retrotransposon-derived long terminal repeat (LTR) elements and at tRNA genes. In cells lacking Fft3, these sites lose their peripheral positioning and show reduced nucleosome occupancy. We propose that Fft3 has a global role in mediating association between specific chromatin domains and the nuclear envelope. In the genome of eukaryotic cells, domains of active and repressive chromatin alternate along the chromosome arms. Insulator elements are necessary to shield these different environments from each other. In the fission yeast Schizosaccharomyces pombe, the chromatin remodeler Fft3 is required to maintain the repressed subtelomeric chromatin. Here we show that Fft3 maintains nucleosome structure of insulator elements at the subtelomeric borders. We also observe that subtelomeres and insulator elements move away from the nuclear envelope in cells lacking Fft3. The nuclear periphery is known to harbor repressive chromatin in many eukaryotes and has been implied in insulator function. Our results suggest that chromatin remodeling through Fft3 is required to maintain proper chromatin structure and nuclear organization of insulator elements.
Collapse
Affiliation(s)
- Babett Steglich
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Annelie Strålfors
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Olga Khorosjutina
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Jenna Persson
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Agata Smialowska
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
| | - Jean-Paul Javerzat
- Univ. Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Bordeaux, France
| | - Karl Ekwall
- Department of Biosciences and Nutrition; Center for Innovative Medicine, Karolinska Institutet, Novum Building, Huddinge, Sweden
- * E-mail:
| |
Collapse
|
22
|
Maeshima K, Kaizu K, Tamura S, Nozaki T, Kokubo T, Takahashi K. The physical size of transcription factors is key to transcriptional regulation in chromatin domains. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064116. [PMID: 25563431 DOI: 10.1088/0953-8984/27/6/064116] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Genetic information, which is stored in the long strand of genomic DNA as chromatin, must be scanned and read out by various transcription factors. First, gene-specific transcription factors, which are relatively small (∼50 kDa), scan the genome and bind regulatory elements. Such factors then recruit general transcription factors, Mediators, RNA polymerases, nucleosome remodellers, and histone modifiers, most of which are large protein complexes of 1-3 MDa in size. Here, we propose a new model for the functional significance of the size of transcription factors (or complexes) for gene regulation of chromatin domains. Recent findings suggest that chromatin consists of irregularly folded nucleosome fibres (10 nm fibres) and forms numerous condensed domains (e.g., topologically associating domains). Although the flexibility and dynamics of chromatin allow repositioning of genes within the condensed domains, the size exclusion effect of the domain may limit accessibility of DNA sequences by transcription factors. We used Monte Carlo computer simulations to determine the physical size limit of transcription factors that can enter condensed chromatin domains. Small gene-specific transcription factors can penetrate into the chromatin domains and search their target sequences, whereas large transcription complexes cannot enter the domain. Due to this property, once a large complex binds its target site via gene-specific factors it can act as a 'buoy' to keep the target region on the surface of the condensed domain and maintain transcriptional competency. This size-dependent specialization of target-scanning and surface-tethering functions could provide novel insight into the mechanisms of various DNA transactions, such as DNA replication and repair/recombination.
Collapse
Affiliation(s)
- Kazuhiro Maeshima
- Biological Macromolecules Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan. Department of Genetics, School of Life Science, Graduate University for Advanced Studies (Sokendai), Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Wang Q, Nowak CM, Korde A, Oh DH, Dassanayake M, Donze D. Compromised RNA polymerase III complex assembly leads to local alterations of intergenic RNA polymerase II transcription in Saccharomyces cerevisiae. BMC Biol 2014; 12:89. [PMID: 25348158 PMCID: PMC4228148 DOI: 10.1186/s12915-014-0089-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/17/2014] [Indexed: 12/26/2022] Open
Abstract
Background Assembled RNA polymerase III (Pol III) complexes exert local effects on chromatin processes, including influencing transcription of neighboring RNA polymerase II (Pol II) transcribed genes. These properties have been designated as ‘extra-transcriptional’ effects of the Pol III complex. Previous coding sequence microarray studies using Pol III factor mutants to determine global effects of Pol III complex assembly on Pol II promoter activity revealed only modest effects that did not correlate with the proximity of Pol III complex binding sites. Results Given our recent results demonstrating that tDNAs block progression of intergenic Pol II transcription, we hypothesized that extra-transcriptional effects within intergenic regions were not identified in the microarray study. To reconsider global impacts of Pol III complex binding, we used RNA sequencing to compare transcriptomes of wild type versus Pol III transcription factor TFIIIC depleted mutants. The results reveal altered intergenic Pol II transcription near TFIIIC binding sites in the mutant strains, where we observe readthrough of upstream transcripts that normally terminate near these sites, 5′- and 3′-extended transcripts, and de-repression of adjacent genes and intergenic regions. Conclusions The results suggest that effects of assembled Pol III complexes on transcription of neighboring Pol II promoters are of greater magnitude than previously appreciated, that such effects influence expression of adjacent genes at transcriptional start site and translational levels, and may explain a function of the conserved ETC sites in yeast. The results may also be relevant to synthetic biology efforts to design a minimal yeast genome. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0089-x) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
25
|
Intergenic transcriptional interference is blocked by RNA polymerase III transcription factor TFIIIB in Saccharomyces cerevisiae. Genetics 2013; 196:427-38. [PMID: 24336746 PMCID: PMC3914616 DOI: 10.1534/genetics.113.160093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins.
Collapse
|
26
|
Taylor NMI, Baudin F, von Scheven G, Müller CW. RNA polymerase III-specific general transcription factor IIIC contains a heterodimer resembling TFIIF Rap30/Rap74. Nucleic Acids Res 2013; 41:9183-96. [PMID: 23921640 PMCID: PMC3799434 DOI: 10.1093/nar/gkt664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Transcription of tRNA-encoding genes by RNA polymerase (Pol) III requires the six-subunit general transcription factor IIIC that uses subcomplexes τA and τB to recognize two gene-internal promoter elements named A- and B-box. The Schizosaccharomyces pombe τA subcomplex comprises subunits Sfc1, Sfc4 and Sfc7. The crystal structure of the Sfc1/Sfc7 heterodimer reveals similar domains and overall domain architecture to the Pol II-specific general transcription factor TFIIF Rap30/Rap74. The N-terminal Sfc1/Sfc7 dimerization module consists of a triple β-barrel similar to the N-terminal TFIIF Rap30/Rap74 dimerization module, whereas the C-terminal Sfc1 DNA-binding domain contains a winged-helix domain most similar to the TFIIF Rap30 C-terminal winged-helix domain. Sfc1 DNA-binding domain recognizes single and double-stranded DNA by an unknown mechanism. Several features observed for A-box recognition by τA resemble the recognition of promoters by bacterial RNA polymerase, where σ factor unfolds double-stranded DNA and stabilizes the non-coding DNA strand in an open conformation. Such a function has also been proposed for TFIIF, suggesting that the observed structural similarity between Sfc1/Sfc7 and TFIIF Rap30/Rap74 might also reflect similar functions.
Collapse
Affiliation(s)
- Nicholas M I Taylor
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany and UJF-EMBL-CNRS UMI 3265, Unit of Virus Host-Cell Interactions, 38042 Grenoble Cedex 9, France
| | | | | | | |
Collapse
|
27
|
Nagarajavel V, Iben JR, Howard BH, Maraia RJ, Clark DJ. Global 'bootprinting' reveals the elastic architecture of the yeast TFIIIB-TFIIIC transcription complex in vivo. Nucleic Acids Res 2013; 41:8135-43. [PMID: 23856458 PMCID: PMC3783186 DOI: 10.1093/nar/gkt611] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
TFIIIB and TFIIIC are multi-subunit factors required for transcription by RNA polymerase III. We present a genome-wide high-resolution footprint map of TFIIIB–TFIIIC complexes in Saccharomyces cerevisiae, obtained by paired-end sequencing of micrococcal nuclease-resistant DNA. On tRNA genes, TFIIIB and TFIIIC form stable complexes with the same distinctive occupancy pattern but in mirror image, termed ‘bootprints’. Global analysis reveals that the TFIIIB–TFIIIC transcription complex exhibits remarkable structural elasticity: tRNA genes vary significantly in length but remain protected by TFIIIC. Introns, when present, are markedly less protected. The RNA polymerase III transcription terminator is flexibly accommodated within the transcription complex and, unexpectedly, plays a major structural role by delimiting its 3′-boundary. The ETC sites, where TFIIIC binds without TFIIIB, exhibit different bootprints, suggesting that TFIIIC forms complexes involving other factors. We confirm six ETC sites and report a new site (ETC10). Surprisingly, TFIIIC, but not TFIIIB, interacts with some centromeric nucleosomes, suggesting that interactions between TFIIIC and the centromere may be important in the 3D organization of the nucleus.
Collapse
Affiliation(s)
- V Nagarajavel
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | |
Collapse
|
28
|
Systematic analysis and evolution of 5S ribosomal DNA in metazoans. Heredity (Edinb) 2013; 111:410-21. [PMID: 23838690 DOI: 10.1038/hdy.2013.63] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 04/09/2013] [Accepted: 05/17/2013] [Indexed: 11/08/2022] Open
Abstract
Several studies on 5S ribosomal DNA (5S rDNA) have been focused on a subset of the following features in mostly one organism: number of copies, pseudogenes, secondary structure, promoter and terminator characteristics, genomic arrangements, types of non-transcribed spacers and evolution. In this work, we systematically analyzed 5S rDNA sequence diversity in available metazoan genomes, and showed organism-specific and evolutionary-conserved features. Putatively functional sequences (12,766) from 97 organisms allowed us to identify general features of this multigene family in animals. Interestingly, we show that each mammal species has a highly conserved (housekeeping) 5S rRNA type and many variable ones. The genomic organization of 5S rDNA is still under debate. Here, we report the occurrence of several paralog 5S rRNA sequences in 58 of the examined species, and a flexible genome organization of 5S rDNA in animals. We found heterogeneous 5S rDNA clusters in several species, supporting the hypothesis of an exchange of 5S rDNA from one locus to another. A rather high degree of variation of upstream, internal and downstream putative regulatory regions appears to characterize metazoan 5S rDNA. We systematically studied the internal promoters and described three different types of termination signals, as well as variable distances between the coding region and the typical termination signal. Finally, we present a statistical method for detection of linkage among noncoding RNA (ncRNA) gene families. This method showed no evolutionary-conserved linkage among 5S rDNAs and any other ncRNA genes within Metazoa, even though we found 5S rDNA to be linked to various ncRNAs in several clades.
Collapse
|
29
|
Kushwaha B, Nagpure NS. Characterization and physical mapping of 18S and 5S ribosomal genes in Indian major carps (Pisces, Cyprinidae). Micron 2013; 49:40-5. [PMID: 23587674 DOI: 10.1016/j.micron.2013.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/07/2013] [Accepted: 03/10/2013] [Indexed: 11/17/2022]
|
30
|
Bywater MJ, Pearson RB, McArthur GA, Hannan RD. Dysregulation of the basal RNA polymerase transcription apparatus in cancer. Nat Rev Cancer 2013; 13:299-314. [PMID: 23612459 DOI: 10.1038/nrc3496] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutations that directly affect transcription by RNA polymerases rank among the most central mediators of malignant transformation, but the frequency of new anticancer drugs that selectively target defective transcription apparatus entering the clinic has been limited. This is because targeting the large protein-protein and protein-DNA interfaces that control both generic and selective aspects of RNA polymerase transcription has proved extremely difficult. However, recent technological advances have led to a 'quantum leap' in our comprehension of the structure and function of the core RNA polymerase components, how they are dysregulated in a broad range of cancers and how they may be targeted for 'transcription therapy'.
Collapse
Affiliation(s)
- Megan J Bywater
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne 8006, Victoria, Australia
| | | | | | | |
Collapse
|
31
|
Lu M, Tian H, Yue W, Li L, Li S, Qi L, Hu W, Gao C, Si L. Overexpression of TFIIB-related factor 2 is significantly correlated with tumor angiogenesis and poor survival in patients with esophageal squamous cell cancer. Med Oncol 2013; 30:553. [DOI: 10.1007/s12032-013-0553-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
32
|
Missbach S, Weis BL, Martin R, Simm S, Bohnsack MT, Schleiff E. 40S ribosome biogenesis co-factors are essential for gametophyte and embryo development. PLoS One 2013; 8:e54084. [PMID: 23382868 PMCID: PMC3559688 DOI: 10.1371/journal.pone.0054084] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/05/2012] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis is well described in Saccharomyces cerevisiae. In contrast only very little information is available on this pathway in plants. This study presents the characterization of five putative protein co-factors of ribosome biogenesis in Arabidopsis thaliana, namely Rrp5, Pwp2, Nob1, Enp1 and Noc4. The characterization of the proteins in respect to localization, enzymatic activity and association with pre-ribosomal complexes is shown. Additionally, analyses of T-DNA insertion mutants aimed to reveal an involvement of the plant co-factors in ribosome biogenesis. The investigated proteins localize mainly to the nucleolus or the nucleus, and atEnp1 and atNob1 co-migrate with 40S pre-ribosomal complexes. The analysis of T-DNA insertion lines revealed that all proteins are essential in Arabidopsis thaliana and mutant plants show alterations of rRNA intermediate abundance already in the heterozygous state. The most significant alteration was observed in the NOB1 T-DNA insertion line where the P-A3 fragment, a 23S-like rRNA precursor, accumulated. The transmission of the T-DNA through the male and female gametophyte was strongly inhibited indicating a high importance of ribosome co-factor genes in the haploid stages of plant development. Additionally impaired embryogenesis was observed in some mutant plant lines. All results support an involvement of the analyzed proteins in ribosome biogenesis but differences in rRNA processing, gametophyte and embryo development suggested an alternative regulation in plants.
Collapse
Affiliation(s)
- Sandra Missbach
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Benjamin L. Weis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Roman Martin
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Stefan Simm
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
| | - Markus T. Bohnsack
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
- Cluster of Excellence Frankfurt; Goethe University, Frankfurt/Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Frankfurt/Main, Germany
- Cluster of Excellence Frankfurt; Goethe University, Frankfurt/Main, Germany
- Center of Membrane Proteomics, Goethe University, Frankfurt/Main, Germany
- * E-mail:
| |
Collapse
|
33
|
Pascali C, Teichmann M. RNA polymerase III transcription - regulated by chromatin structure and regulator of nuclear chromatin organization. Subcell Biochem 2013; 61:261-287. [PMID: 23150255 DOI: 10.1007/978-94-007-4525-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RNA polymerase III (Pol III) transcription is regulated by modifications of the chromatin. DNA methylation and post-translational modifications of histones, such as acetylation, phosphorylation and methylation have been linked to Pol III transcriptional activity. In addition to being regulated by modifications of DNA and histones, Pol III genes and its transcription factors have been implicated in the organization of nuclear chromatin in several organisms. In yeast, the ability of the Pol III transcription system to contribute to nuclear organization seems to be dependent on direct interactions of Pol III genes and/or its transcription factors TFIIIC and TFIIIB with the structural maintenance of chromatin (SMC) protein-containing complexes cohesin and condensin. In human cells, Pol III genes and transcription factors have also been shown to colocalize with cohesin and the transcription regulator and genome organizer CCCTC-binding factor (CTCF). Furthermore, chromosomal sites have been identified in yeast and humans that are bound by partial Pol III machineries (extra TFIIIC sites - ETC; chromosome organizing clamps - COC). These ETCs/COC as well as Pol III genes possess the ability to act as boundary elements that restrict spreading of heterochromatin.
Collapse
Affiliation(s)
- Chiara Pascali
- Institut Européen de Chimie et Biologie (IECB), Université Bordeaux Segalen / INSERM U869, 2, rue Robert Escarpit, 33607, Pessac, France
| | | |
Collapse
|
34
|
Yeast Gene Expression. Yeast 2012. [DOI: 10.1002/9783527659180.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
35
|
An integrated approach for identification and target validation of antifungal compounds active against Erg11p. Antimicrob Agents Chemother 2012; 56:4233-40. [PMID: 22615293 DOI: 10.1128/aac.06332-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Systemic life-threatening fungal infections represent a significant unmet medical need. Cell-based, phenotypic screening can be an effective means of discovering potential novel antifungal compounds, but it does not address target identification, normally required for compound optimization by medicinal chemistry. Here, we demonstrate a combination of screening, genetic, and biochemical approaches to identify and characterize novel antifungal compounds. We isolated a set of novel non-azole antifungal compounds for which no target or mechanism of action is known, using a screen for inhibition of Saccharomyces cerevisiae proliferation. Haploinsufficiency profiling of these compounds in S. cerevisiae suggests that they target Erg11p, a cytochrome P450 family member, which is the target of azoles. Consistent with this, metabolic profiling in S. cerevisiae revealed a buildup of the metabolic intermediates prior to Erg11p activity, following compound treatment. Further, human cytochrome P450 is also inhibited in in vitro assays by these compounds. We modeled the Erg11p protein based on the human CYP51 crystal structure, and in silico docking of these compounds suggests that they interact with the heme center in a manner similar to that of azoles. Consistent with these docking observations, Candida strains carrying azole-resistant alleles of ERG11 are also resistant to the compounds in this study. Thus, we have identified non-azole Erg11p inhibitors, using a systematic approach for ligand and target characterization.
Collapse
|
36
|
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:930-8. [PMID: 22353467 DOI: 10.1016/j.bbagrm.2012.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 02/03/2023]
Abstract
Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors. The mtRNAPs are remarkably similar in sequence and structure to single-subunit bacteriophage T7 RNAP but they require accessory transcription factors for promoter-specific initiation. Comparison of the mechanisms of T7 RNAP and mtRNAP provides a framework to better understand how mtRNAP and the transcription factors work together to facilitate promoter selection, DNA melting, initiating nucleotide binding, and promoter clearance. This review focuses primarily on the mechanistic characterization of transcription initiation by the yeast Saccharomyces cerevisiae mtRNAP (Rpo41) and its transcription factor (Mtf1) drawing insights from the homologous T7 and the human mitochondrial transcription systems. We discuss regulatory mechanisms of mitochondrial transcription and the idea that the mtRNAP acts as the in vivo ATP "sensor" to regulate gene expression. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
37
|
Silencing of amyloid precursor protein expression using a new engineered delta ribozyme. Int J Alzheimers Dis 2012; 2012:947147. [PMID: 22482079 PMCID: PMC3296272 DOI: 10.1155/2012/947147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 11/01/2011] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) etiological studies suggest that an elevation in amyloid-β peptides (Aβ) level contributes to aggregations of the peptide and subsequent development of the disease. The major constituent of these amyloid peptides is the 1 to 40–42 residue peptide (Aβ40−42) derived from amyloid protein precursor (APP). Most likely, reducing Aβ levels in the brain may block both its aggregation and neurotoxicity and would be beneficial for patients with AD. Among the several possible ways to lower Aβ accumulation in the cells, we have selectively chosen to target the primary step in the Aβ cascade, namely, to reduce APP gene expression. Toward this end, we engineered specific SOFA-HDV ribozymes, a new generation of catalytic RNA tools, to decrease APP mRNA levels. Additionally, we demonstrated that APP-ribozymes are effective at decreasing APP mRNA and protein levels as well as Aβ levels in neuronal cells. Our results could lay the groundwork for a new protective treatment for AD.
Collapse
|
38
|
Qi X, Daily K, Nguyen K, Wang H, Mayhew D, Rigor P, Forouzan S, Johnston M, Mitra RD, Baldi P, Sandmeyer S. Retrotransposon profiling of RNA polymerase III initiation sites. Genome Res 2012; 22:681-92. [PMID: 22287102 DOI: 10.1101/gr.131219.111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although retroviruses are relatively promiscuous in choice of integration sites, retrotransposons can display marked integration specificity. In yeast and slime mold, some retrotransposons are associated with tRNA genes (tDNAs). In the Saccharomyces cerevisiae genome, the long terminal repeat retrotransposon Ty3 is found at RNA polymerase III (Pol III) transcription start sites of tDNAs. Ty1, 2, and 4 elements also cluster in the upstream regions of these genes. To determine the extent to which other Pol III-transcribed genes serve as genomic targets for Ty3, a set of 10,000 Ty3 genomic retrotranspositions were mapped using high-throughput DNA sequencing. Integrations occurred at all known tDNAs, two tDNA relics (iYGR033c and ZOD1), and six non-tDNA, Pol III-transcribed types of genes (RDN5, SNR6, SNR52, RPR1, RNA170, and SCR1). Previous work in vitro demonstrated that the Pol III transcription factor (TF) IIIB is important for Ty3 targeting. However, seven loci that bind the TFIIIB loader, TFIIIC, were not targeted, underscoring the unexplained absence of TFIIIB at those sites. Ty3 integrations also occurred in two open reading frames not previously associated with Pol III transcription, suggesting the existence of a small number of additional sites in the yeast genome that interact with Pol III transcription complexes.
Collapse
Affiliation(s)
- Xiaojie Qi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Raab JR, Chiu J, Zhu J, Katzman S, Kurukuti S, Wade PA, Haussler D, Kamakaka RT. Human tRNA genes function as chromatin insulators. EMBO J 2011; 31:330-50. [PMID: 22085927 DOI: 10.1038/emboj.2011.406] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 10/07/2011] [Indexed: 11/09/2022] Open
Abstract
Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes.
Collapse
Affiliation(s)
- Jesse R Raab
- Department of MCD Biology, University of California, Santa Cruz, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Extra-transcriptional functions of RNA Polymerase III complexes: TFIIIC as a potential global chromatin bookmark. Gene 2011; 493:169-75. [PMID: 21986035 DOI: 10.1016/j.gene.2011.09.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/21/2011] [Accepted: 09/22/2011] [Indexed: 11/21/2022]
Abstract
RNA polymerase III (Pol III) is one of three eukaryotic transcription complexes, and was identified as the complex responsible for production of transfer RNA and a limited number of other small RNAs. Pol III transcription at tRNA genes (tDNAs) requires the binding of two transcription factor complexes, TFIIIC and TFIIIB. Recent evidence points to a larger role for the Pol III transcription system in various other nuclear processes, including effects on nucleosome positioning, global genome and sub-nuclear organization, and direct effects on RNA polymerase II (Pol II) transcription. These effects are perhaps mediated by recruitment of a host of other chromatin proteins, including Pol II transcription factors and chromatin enzymes. Extra-TFIIIC sites (ETC sites) are chromosomal locations bound by TFIIIC without the rest of the Pol III complex, and bound TFIIIC alone is also able to mediate additional functions. These so called "extra-transcriptional effects" of the Pol III system are reviewed here, and a model is put forth suggesting that the TFIIIC transcription factor may act as a stably bound, global "bookmark" within chromatin to establish, maintain, or demarcate chromatin states as cells divide or change gene expression patterns.
Collapse
|
41
|
Lunyak VV, Atallah M. Genomic relationship between SINE retrotransposons, Pol III-Pol II transcription, and chromatin organization: the journey from junk to jewel. Biochem Cell Biol 2011; 89:495-504. [PMID: 21916613 DOI: 10.1139/o11-046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A typical eukaryotic genome harbors a rich variety of repetitive elements. The most abundant are retrotransposons, mobile retroelements that utilize reverse transcriptase and an RNA intermediate to relocate to a new location within the cellular genomes. A vast majority of the repetitive mammalian genome content has originated from the retrotransposition of SINE (100-300 bp short interspersed nuclear elements that are derived from the structural 7SL RNA or tRNA), LINE (7kb long interspersed nuclear element), and LTR (2-3 kb long terminal repeats) transposable element superfamilies. Broadly labeled as "evolutionary junkyard" or "fossils", this enigmatic "dark matter" of the genome possesses many yet to be discovered properties.
Collapse
|
42
|
Fernández-Tajes J, Méndez J. Two different size classes of 5S rDNA units coexisting in the same tandem array in the razor clam Ensis macha: is this region suitable for phylogeographic studies? Biochem Genet 2011; 47:775-88. [PMID: 19633947 DOI: 10.1007/s10528-009-9276-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 01/05/2009] [Indexed: 11/29/2022]
Abstract
For a study of 5S ribosomal genes (rDNA) in the razor clam Ensis macha, the 5S rDNA region was amplified and sequenced. Two variants, so-called type I or short repeat (approximately 430 bp) and type II or long repeat (approximately 735 bp), appeared to be the main components of the 5S rDNA of this species. Their spacers differed markedly, both in length and nucleotide composition. The organization of the two variants was investigated by amplifying the genomic DNA with primers based on the sequence of the type I and type II spacers. PCR amplification products with primers EMLbF and EMSbR showed that the long and short repeats are associated within the same tandem array, suggesting an intermixed arrangement of both spacers. Nevertheless, amplifications carried out with inverse primers EMSinvF/R and EMLinvF/R revealed that some short and long repeats are contiguous in the same tandem array. This is the first report of the coexistence of two variable spacers in the same tandem array in bivalve mollusks.
Collapse
Affiliation(s)
- Juan Fernández-Tajes
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, Spain.
| | | |
Collapse
|
43
|
Ehara H, Sekine SI, Yokoyama S. Crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe RNA polymerase III. Protein Sci 2011; 20:1558-65. [PMID: 21714024 DOI: 10.1002/pro.682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/09/2022]
Abstract
Eukaryotic RNA polymerase III (Pol III) is a multisubunit enzyme responsible for transcribing tRNA, 5S rRNA, and several small RNAs. Of the 17 subunits in Pol III, the C17 (Rpc17) and C25 (Rpc25) subunits form a stable subcomplex that protrudes from the core polymerase. In this study, we determined the crystal structure of the C17/25 subcomplex from Schizosaccharomyces pombe. The subcomplex adopts an elongated shape, and each subunit has two domains. The two subunits in the subcomplex are tightly packed and extensively interact, with a contact area of 2080 Å(2) . The overall conformation of S. pombe C17/25 is considerably different from the previously reported structure of C17/25 from Saccharomyces cerevisiae, with respect to the position of the C17 HRDC domain, a helix bundle essential for cell viability. In contrast, the S. pombe C17/25 structure is quite similar to those of the Pol II and archaeal counterparts, Rpb4/7 and RpoE/F, respectively, despite the low sequence similarity. A phylogenetic comparison of the C17 subunits among eukaryotes revealed that they can be classified into three groups, according to the length of the interdomain linker. S. pombe C17, as well as Rpb4 and RpoF, belongs to the largest group, with the short linker. On the other hand, S. cerevisiae C17 belongs to the smallest group, with the long linker, which probably enables the subcomplex to assume the alternative conformation.
Collapse
Affiliation(s)
- Haruhiko Ehara
- RIKEN Systems and Structural Biology Center, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | | | | |
Collapse
|
44
|
Winckler T, Schiefner J, Spaller T, Siol O. Dictyostelium transfer RNA gene-targeting retrotransposons: Studying mobile element-host interactions in a compact genome. Mob Genet Elements 2011; 1:145-150. [PMID: 22016864 DOI: 10.4161/mge.1.2.17369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/14/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022] Open
Abstract
The model species of social amoebae, Dictyostelium discoideum, has a compact genome consisting of about two thirds protein-coding regions, with intergenic regions that are rarely larger than 1,000 bp. We hypothesize that the haploid state of D. discoideum cells provides defense against the amplification of mobile elements whose transposition activities would otherwise lead to the accumulation of heterozygous, potentially lethal mutations in diploid populations. We further speculate that complex transposon clusters found on D. discoideum chromosomes do not a priori result from integration preferences of these transposons, but that the clusters instead result from negative selection against cells harboring insertional mutations in genes. D. discoideum cells contain a fraction of retrotransposons that are found in the close vicinity of tRNA genes. Growing evidence suggests that these retrotransposons use active recognition mechanisms to determine suitable integration sites. However, the question remains whether these retrotransposons also cause insertional mutagenesis of genes, resulting in their enrichment at tRNA genes, which are relatively safe sites in euchromatic regions. Recently developed in vivo retrotransposition assays will allow a detailed, genome-wide analysis of de novo integration events in the D. discoideum genome.
Collapse
Affiliation(s)
- Thomas Winckler
- Universität Jena; Institut für Pharmazie; Lehrstuhl für Pharmazeutische Biologie; Jena, Germany
| | | | | | | |
Collapse
|
45
|
Autoregulation of an RNA polymerase II promoter by the RNA polymerase III transcription factor III C (TF(III)C) complex. Proc Natl Acad Sci U S A 2011; 108:8385-9. [PMID: 21536876 DOI: 10.1073/pnas.1019175108] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Extra TF(III)C (ETC) sites are chromosomal locations bound in vivo by the RNA polymerase III (Pol III) transcription factor III C (TF(III)C) complex, but are not necessarily associated with Pol III transcription. Although the location of ETC sequences are conserved in budding yeast, and similar sites are found in other organisms, their functions are largely unstudied. One such site, ETC6 in Saccharomyces cerevisiae, lies upstream of TFC6, a gene encoding a subunit of the TF(III)C complex itself. Promoter analysis shows that the ETC6 B-box sequence is involved in autoregulation of the TFC6 promoter. Mutation of ETC6 increases TFC6 mRNA levels, whereas mutation immediately upstream severely weakens promoter activity. A temperature-sensitive mutation in TFC3 that weakens DNA binding of TF(III)C also results in increased TFC6 mRNA levels; however, no increase is observed in mutants of TF(III)B or Pol III subunits, demonstrating a specific role for the TF(III)C complex in TFC6 promoter regulation. Chromatin immunoprecipitation shows an inverse relationship of TF(III)C occupancy at ETC6 versus TFC6 mRNA levels. Overexpression of TFC6 increases association of TF(III)C at ETC6 (and other loci) and results in reduced expression of a TFC6 promoter-URA3 reporter gene. Both of these effects are dependent on the ETC6 B-box. These results demonstrate that the TFC6 promoter is directly regulated by the TF(III)C complex, a demonstration of an RNA polymerase II promoter being directly responsive to a core Pol III transcription factor complex. This regulation could have implications in controlling global tRNA expression levels.
Collapse
|
46
|
Cabarcas S, Schramm L. RNA polymerase III transcription in cancer: the BRF2 connection. Mol Cancer 2011; 10:47. [PMID: 21518452 PMCID: PMC3098206 DOI: 10.1186/1476-4598-10-47] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 04/25/2011] [Indexed: 12/13/2022] Open
Abstract
RNA polymerase (pol) III transcription is responsible for the transcription of small, untranslated RNAs involved in fundamental metabolic processes such mRNA processing (U6 snRNA) and translation (tRNAs). RNA pol III transcription contributes to the regulation of the biosynthetic capacity of a cell and a direct link exists between cancer cell proliferation and deregulation of RNA pol III transcription. Accurate transcription by RNA pol III requires TFIIIB, a known target of regulation by oncogenes and tumor suppressors. There have been significant advances in our understanding of how TFIIIB-mediated transcription is deregulated in a variety of cancers. Recently, BRF2, a component of TFIIIB required for gene external RNA pol III transcription, was identified as an oncogene in squamous cell carcinomas of the lung through integrative genomic analysis. In this review, we focus on recent advances demonstrating how BRF2-TFIIIB mediated transcription is regulated by tumor suppressors and oncogenes. Additionally, we present novel data further confirming the role of BRF2 as an oncogene, extracted from the Oncomine database, a cancer microarray database containing datasets derived from patient samples, providing evidence that BRF2 has the potential to be used as a biomarker for patients at risk for metastasis. This data further supports the idea that BRF2 may serve as a potential therapeutic target in a variety of cancers.
Collapse
Affiliation(s)
- Stephanie Cabarcas
- National Cancer Institute, Laboratory of Cancer Prevention, Cancer Stem Cell Section, 1050 Boyles Street, Building 560, Room 21-81, Frederick, MD 21702, USA
| | | |
Collapse
|
47
|
Fischer U, Englbrecht C, Chari A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:718-31. [PMID: 21823231 DOI: 10.1002/wrna.87] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, University of Wuerzburg, Germany.
| | | | | |
Collapse
|
48
|
Iben JR, Mazeika JK, Hasson S, Rijal K, Arimbasseri AG, Russo AN, Maraia RJ. Point mutations in the Rpb9-homologous domain of Rpc11 that impair transcription termination by RNA polymerase III. Nucleic Acids Res 2011; 39:6100-13. [PMID: 21450810 PMCID: PMC3152337 DOI: 10.1093/nar/gkr182] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase III recognizes and pauses at its terminator, an oligo(dT) tract in non-template DNA, terminates 3' oligo(rU) synthesis within this sequence, and releases the RNA. The pol III subunit Rpc11p (C11) mediates RNA 3'-5' cleavage in the catalytic center of pol III during pausing. The amino and carboxyl regions of C11 are homologous to domains of the pol II subunit Rpb9p, and the pol II elongation and RNA cleavage factor, TFIIS, respectively. We isolated C11 mutants from Schizosaccharomyces pombe that cause pol III to readthrough terminators in vivo. Mutant RNA confirmed the presence of terminator readthrough transcripts. A predominant mutation site, F32, resides in the C11 Rpb9-like domain. Another mutagenic approach confirmed the F32 mutation and also isolated I34 and Y30 mutants. Modeling Y30, F32 and I34 of C11 in available cryoEM pol III structures predicts a hydrophobic patch that may interface with C53/37. Another termination mutant, Rpc2-T455I, appears to reside internally, near the RNA-DNA hybrid. We show that the Rpb9 and TFIIS homologous mutants of C11 reflect distinct activities, that differentially affect terminator recognition and RNA 3' cleavage. We propose that these C11 domains integrate action at the upper jaw and center of pol III during termination.
Collapse
Affiliation(s)
- James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Commissioned Corps, US Public Health Service, Bethesda, MD, USA. 20892
| | | | | | | | | | | | | |
Collapse
|
49
|
Vierna J, Jensen KT, Martínez-Lage A, González-Tizón AM. The linked units of 5S rDNA and U1 snDNA of razor shells (Mollusca: Bivalvia: Pharidae). Heredity (Edinb) 2011; 107:127-42. [PMID: 21364693 DOI: 10.1038/hdy.2010.174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The linkage between 5S ribosomal DNA and other multigene families has been detected in many eukaryote lineages, but whether it provides any selective advantage remains unclear. In this work, we report the occurrence of linked units of 5S ribosomal DNA (5S rDNA) and U1 small nuclear DNA (U1 snDNA) in 10 razor shell species (Mollusca: Bivalvia: Pharidae) from four different genera. We obtained several clones containing partial or complete repeats of both multigene families in which both types of genes displayed the same orientation. We provide a comprehensive collection of razor shell 5S rDNA clones, both with linked and nonlinked organisation, and the first bivalve U1 snDNA sequences. We predicted the secondary structures and characterised the upstream and downstream conserved elements, including a region at -25 nucleotides from both 5S rDNA and U1 snDNA transcription start sites. The analysis of 5S rDNA showed that some nontranscribed spacers (NTSs) are more closely related to NTSs from other species (and genera) than to NTSs from the species they were retrieved from, suggesting birth-and-death evolution and ancestral polymorphism. Nucleotide conservation within the functional regions suggests the involvement of purifying selection, unequal crossing-overs and gene conversions. Taking into account this and other studies, we discuss the possible mechanisms by which both multigene families could have become linked in the Pharidae lineage. The reason why 5S rDNA is often found linked to other multigene families seems to be the result of stochastic processes within genomes in which its high copy number is determinant.
Collapse
Affiliation(s)
- J Vierna
- Department of Molecular and Cell Biology, Evolutionary Biology Group (GIBE), Universidade da Coruña, La Coruña, Spain.
| | | | | | | |
Collapse
|
50
|
Global genome organization mediated by RNA polymerase III-transcribed genes in fission yeast. Gene 2010; 493:195-200. [PMID: 21195141 DOI: 10.1016/j.gene.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Accepted: 12/22/2010] [Indexed: 12/27/2022]
Abstract
Eukaryotic genomes exist as an elaborate three-dimensional structure in the nucleus. Recent studies have shown that this higher-order organization of the chromatin fiber is coupled to various nuclear processes including transcription. In fission yeast, we demonstrated that RNA polymerase III (Pol III)-transcribed genes such as tRNA and 5S rRNA genes, dispersed throughout chromosomal arm regions, localize to centromeres in interphase. This centromeric association of Pol III genes, mediated by the condensin complex, becomes prominent during mitosis. Here, we discuss potential roles of the Pol III gene-mediated genome organization during interphase and mitosis, and hypothesize that the interphase genome structure serves as a scaffold for the efficient assembly of condensed mitotic chromosomes and that tethering of chromosomal arm regions to centromeres allows chromosomes to properly segregate along the spindle microtubules during anaphase.
Collapse
|