1
|
Borjabad A, Brooks AI, Volsky DJ. Gene expression profiles of HIV-1-infected glia and brain: toward better understanding of the role of astrocytes in HIV-1-associated neurocognitive disorders. J Neuroimmune Pharmacol 2010; 5:44-62. [PMID: 19697136 PMCID: PMC3107560 DOI: 10.1007/s11481-009-9167-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/27/2009] [Indexed: 12/17/2022]
Abstract
Astrocytes are the major cellular component of the central nervous system (CNS), and they play multiple roles in brain development, normal brain function, and CNS responses to pathogens and injury. The functional versatility of astrocytes is linked to their ability to respond to a wide array of biological stimuli through finely orchestrated changes in cellular gene expression. Dysregulation of gene expression programs, generally by chronic exposure to pathogenic stimuli, may lead to dysfunction of astrocytes and contribute to neuropathogenesis. Here, we review studies that employ functional genomics to characterize the effects of HIV-1 and viral pathogenic proteins on cellular gene expression in astrocytes in vitro. We also present the first microarray analysis of primary mouse astrocytes exposed to HIV-1 in culture. In spite of different experimental conditions and microarray platforms used, comparison of the astrocyte array data sets reveals several common gene-regulatory changes that may underlie responses of these cells to HIV-1 and its proteins. We also compared the transcriptional profiles of astrocytes with those obtained in analyses of brain tissues of patients with HIV-1 dementia and macaques infected with simian immunodeficiency virus (SIV). Notably, many of the gene characteristics of responses to HIV-1 in cultured astrocytes were also altered in HIV-1 or SIV-infected brains. Functional genomics, in conjunction with other approaches, may help clarify the role of astrocytes in HIV-1 neuropathogenesis.
Collapse
Affiliation(s)
- Alejandra Borjabad
- Molecular Virology Division, St. Luke's-Roosevelt Hospital Center, 432 West 58th Street, Antenucci Building, Room 709, New York, NY 10019, USA
| | | | | |
Collapse
|
2
|
The p38 signaling pathway upregulates expression of the Epstein-Barr virus LMP1 oncogene. J Virol 2010; 84:2787-97. [PMID: 20053736 DOI: 10.1128/jvi.01052-09] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Epstein-Barr virus (EBV)-encoded LMP1 oncogene has a role in transformation, proliferation, and metastasis of several EBV-associated tumors. Furthermore, LMP1 is critically involved in transformation and growth of EBV-immortalized B cells in vitro. The oncogenic properties of LMP1 are attributed to its ability to upregulate anti-apoptotic proteins and growth signals. The transcriptional regulation of LMP1 is dependent on the context of cellular and viral proteins present in the cell. Here, we investigated the effect of several signaling pathways on the regulation of LMP1 expression. Inhibition of p38 signaling, using p38-specific inhibitors SB203580 and SB202190, downregulated LMP1 in estrogen-induced EREB2.5 cells. Similarly, p38 inhibition decreased trichostatin A-induced LMP1 expression in P3HR1 cells. Exogenous expression of p38 in lymphoblastoid cell lines (LCLs) led to an increase in LMP1 promoter activity in reporter assays, and this activation was mediated by the previously identified CRE site in the promoter. Inhibition of p38 by SB203580 and p38-specific small interfering RNA (siRNA) also led to a modest decrease in endogenous LMP1 expression in LCLs. Chromatin immunoprecipitation indicated decreased binding of CREB-ATF1 to the CRE site in the LMP1 promoter after inhibition of the p38 pathway in EREB2.5 cells. Taken together, our results suggest that an increase in p38 activation upregulates LMP1 expression. Since p38 is activated in response to stimuli such as stress or possibly primary infection, a transient upregulation of LMP1 in response to p38 may allow the cells to escape apoptosis. Since the p38 pathway itself is activated by LMP1, our results also suggest the presence of an autoregulatory loop in LMP1 upregulation.
Collapse
|
3
|
Forsman A, Rüetschi U, Ekholm J, Rymo L. Identification of intracellular proteins associated with the EBV-encoded nuclear antigen 5 using an efficient TAP procedure and FT-ICR mass spectrometry. J Proteome Res 2008; 7:2309-19. [PMID: 18457437 DOI: 10.1021/pr700769e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Epstein-Barr virus nuclear antigen 5 (EBNA5) is one of the first viral proteins detected after primary EBV infection and has been shown to be required for efficient transformation of B lymphocytes. EBNA5 is a protein that has many suggested functions but the underlying biology remains to be clarified. To gain further insight into the biological roles of the proposed multifunctional EBNA5, we isolated EBNA5 containing protein complexes using a modified tandem affinity purification (TAP) method and identified the protein components by LC-MS/MS analysis of tryptic digests on a LTQ-FT-ICR mass spectrometer. The modified TAP tag contained a Protein A domain and a StrepTagII sequence separated by two Tobacco Etch Virus protease cleavage sites and was fused to the C-terminus of EBNA5. Our results confirmed the wide applicability of this two-step affinity purification strategy for purification of protein complexes in mammalian cells. A total of 147 novel putative EBNA5 interaction partners were identified, 37 of which were validated with LC-MS/MS in split-tag experiments or in co-immuno precipitates from HEK293 cell extracts. This subgroup included the Bcl2-associated Athanogene 2 (BAG2) co-chaperone involved in protein folding and renaturation, the 26S proteasome subunit 2 involved in regulation of ubiquitin/proteasome protein degradation, and the heterogeneous ribonucleoprotein M (hnRNP M) involved in pre-mRNA processing. These EBNA5 interactors were further verified by co-immunoprecipitations from cell extracts of three EBV-positive lymphoblastoid lines. The combination of the Hsp70, Hsc70, BAG2 and 26S proteasome subunit 2 interactors suggests that EBNA5 might have a functional relationship with protein quality control systems that recognize proteins with abnormal structures and either refold them to normal conformation or target them for degradation. Our study also confirms previously identified interactors including HA95, Hsp70, Hsc70, Hsp27, HAX-1, Prolyl 4-hydroxylase, S3a, and alpha- and beta-tubulin.
Collapse
Affiliation(s)
- Alma Forsman
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | | | | |
Collapse
|
4
|
Yoshikawa D, Kopacek J, Yamaguchi N, Ishibashi D, Yamanaka H, Yamaguchi Y, Katamine S, Sakaguchi S. Newly established in vitro system with fluorescent proteins shows that abnormal expression of downstream prion protein-like protein in mice is probably due to functional disconnection between splicing and 3' formation of prion protein pre-mRNA. Gene 2006; 386:139-46. [PMID: 17034959 DOI: 10.1016/j.gene.2006.08.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/08/2006] [Accepted: 08/25/2006] [Indexed: 11/18/2022]
Abstract
We and others previously showed that, in some lines of prion protein (PrP)-knockout mice, the downstream PrP-like protein (PrPLP/Dpl) was abnormally expressed in brains partly due to impaired cleavage/polyadenylation of the residual PrP promoter-driven pre-mRNA despite the presence of a poly(A) signal. In this study, we newly established an in vitro transient transfection system in which abnormal expression of PrPLP/Dpl can be visualized by expression of the green fluorescence protein, EGFP, in cultured cells. No EGFP was detected in cells transfected by a vector carrying a PrP genomic fragment including the region targeted in the knockout mice intact upstream of the PrPLP/Dpl gene. In contrast, deletion of the targeted region from the vector caused expression of EGFP. By employing this system with other vectors carrying various deletions or point mutations in the targeted region, we identified that disruption of the splicing elements in the PrP terminal intron caused the expression of EGFP. Recent lines of evidence indicate that terminal intron splicing and cleavage/polyadenylation of pre-mRNA are functionally linked to each other. Taken together, our newly established system shows that the abnormal expression of PrPLP/Dpl in PrP-knockout mice caused by the impaired cleavage/polyadenylation of the PrP promoter-driven pre-mRNA is due to the functional dissociation between the pre-mRNA machineries, in particular those of cleavage/polyadenylation and splicing. Our newly established in vitro system, in which the functional dissociation between the pre-mRNA machineries can be visualized by EGFP green fluorescence, may be useful for studies of the functional connection of pre-mRNA machineries.
Collapse
Affiliation(s)
- Daisuke Yoshikawa
- Department of Molecular Microbiology and Immunology, Nagasaki University Graduate School of Biomedical Sciences, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Reisinger J, Rumpler S, Lion T, Ambros PF. Visualization of episomal and integrated Epstein-Barr virus DNA by fiber fluorescencein situ hybridization. Int J Cancer 2006; 118:1603-8. [PMID: 16217752 DOI: 10.1002/ijc.21498] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For many Epstein-Barr virus (EBV)-associated malignancies, it is still a matter of controversy whether infected cells harbor episomal or chromosomally integrated EBV genomes or both. It is well established that the expression of EBV genes per se carries oncogenic potential, but the discrimination between episomal and integrated forms is of great relevance because integration events can contribute to the oncogenic properties of EBV, whereas host cells that exclusively harbor viral episomes may not carry the risks mediated by chromosomal integration. This notion prompted us to establish a reliable technique that not only allows to unequivocally discriminate episomal from integrated EBV DNA, but also provides detailed insights into the genomic organization of the virus. Here, we show that dynamic molecular combing of host cell DNA combined with fluorescence in situ hybridization (FISH) using EBV-specific DNA probes facilitate unambiguous discrimination of episomal from integrated viral DNA. Furthermore, the detection of highly elongated internal repeat 1 (IR1) sequences provides evidence that this method permits detection of major genomic alterations within the EBV genome. Thus, fiber FISH may also provide valuable insights into the genomic organization of viral genomes other than EBV.
Collapse
Affiliation(s)
- Jürgen Reisinger
- Children's Cancer Research Institute, St. Anna Kinderspital, Kinderspitalgasse 6, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
6
|
Shaku F, Matsuda G, Furuya R, Kamagata C, Igarashi M, Tanaka M, Kanamori M, Nishiyama Y, Yamamoto N, Kawaguchi Y. Development of a monoclonal antibody against Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) that can detect EBNA-LP expressed in P3HR1 cells. Microbiol Immunol 2005; 49:477-83. [PMID: 15905610 DOI: 10.1111/j.1348-0421.2005.tb03743.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mouse monoclonal antibody, LP4D3, was raised against purified Epstein-Barr virus nuclear antigen leader protein (EBNA-LP) fused to glutathione-S-transferase. The antibody detected endogenous and exogenous EBNA-LP in immunoblotting, immunofluorescence and immunoprecipitation assays, and the epitope of the antibody was mapped in the W2 domain of EBNA-LP. While another monoclonal antibody to EBNA-LP, JF186, which is widely used for analyses of the viral protein, did not react with truncated forms of EBNA-LP expressed in P3HR1 cells, as reported earlier, the LP4D3 antibody did. The LP4D3 antibody will be a useful tool for further studies of EBNA-LP, especially investigations into the phenotypes of mutant EBNA-LP expressed in P3HR1 cells.
Collapse
Affiliation(s)
- Fumio Shaku
- Department of Cell Regulation, Medical Research Institute, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Peng R, Moses SC, Tan J, Kremmer E, Ling PD. The Epstein-Barr virus EBNA-LP protein preferentially coactivates EBNA2-mediated stimulation of latent membrane proteins expressed from the viral divergent promoter. J Virol 2005; 79:4492-505. [PMID: 15767449 PMCID: PMC1061541 DOI: 10.1128/jvi.79.7.4492-4505.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanistic contribution of the Epstein-Barr virus (EBV) EBNA-LP protein to B-cell immortalization remains an enigma. However, previous studies have indicated that EBNA-LP may contribute to immortalization by enhancing EBNA2-mediated transcriptional activation of the LMP-1 gene. To gain further insight into the potential role EBNA-LP has in EBV-mediated B-cell immortalization, we asked whether it is a global or gene-specific coactivator of EBNA2 and whether coactivation requires interaction between these proteins. In type I Burkitt's lymphoma cells, we found that EBNA-LP strongly coactivated EBNA2 stimulation of LMP-1 and LMP2B RNAs, which are expressed from the viral divergent promoter. Surprisingly, the viral LMP2A gene and cellular CD21 and Hes-1 genes were induced by EBNA2 but showed no further induction after EBNA-LP coexpression. We also found that EBNA-LP did not stably interact with EBNA2 in coimmunoprecipitation assays, even though the conditions were adequate to observe specific interactions between EBNA2 and its cellular cofactor, CBF1. Colocalization between EBNA2 and EBNA-LP was not detectable in EBV-transformed cell lines or transfected type I Burkitt's cells. Finally, no significant interactions between EBNA2 and EBNA-LP were found with mammalian two-hybrid assays. From this data, we conclude that EBNA-LP is not a global coactivator of EBNA2 targets, but it preferentially coactivates EBNA2 stimulation of the viral divergent promoter. While this may require specific transient interactions between these proteins that only occur in the context of the divergent promoter, our data strongly suggest that EBNA-LP also cooperates with EBNA2 through mechanisms that do not require direct or indirect complex formation between these proteins.
Collapse
Affiliation(s)
- Rongsheng Peng
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
8
|
Kanamori M, Watanabe S, Honma R, Kuroda M, Imai S, Takada K, Yamamoto N, Nishiyama Y, Kawaguchi Y. Epstein-Barr virus nuclear antigen leader protein induces expression of thymus- and activation-regulated chemokine in B cells. J Virol 2004; 78:3984-93. [PMID: 15047814 PMCID: PMC374277 DOI: 10.1128/jvi.78.8.3984-3993.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen leader protein (EBNA-LP) plays a critical role in transformation of primary B lymphocytes to continuously proliferating lymphoblastoid cell lines (LCLs). To identify cellular genes in B cells whose expression is regulated by EBNA-LP, we performed microarray expression profiling on an EBV-negative human B-cell line, BJAB cells, that were transduced by a retroviral vector expressing the EBV EBNA-LP (BJAB-LP cells) and on BJAB cells that were transduced with a control vector (BJAB-vec cells). Microarray analysis led to the identification of a cellular gene encoding the CC chemokine TARC as a novel target gene that was induced by EBNA-LP. The levels of TARC mRNA expression and TARC secretion were significantly up-regulated in BJAB-LP compared with BJAB-vec cells. Induction of TARC was also observed when a subline of BJAB cells was converted by a recombinant EBV. Among the EBV-infected B-cell lines with the latency III phenotype that were tested, the LCLs especially secreted significantly high levels of TARC. The level of TARC secretion appeared to correlate with the level of full-length EBNA-LP expression. These results indicate that EBV infection induces TARC expression in B cells and that EBNA-LP is one of the viral gene products responsible for the induction.
Collapse
Affiliation(s)
- Mikiko Kanamori
- Department of Virology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Isaksson A, Berggren M, Ricksten A. Epstein-Barr virus U leader exon contains an internal ribosome entry site. Oncogene 2003; 22:572-81. [PMID: 12555070 DOI: 10.1038/sj.onc.1206149] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Eukaryotic translation can be initiated either by a cap-dependent mechanism or by internal ribosome entry, a process by which ribosomes are directly recruited to structured regions of mRNA upstream of the initiation codon. Here we report the finding of an internal ribosome entry site (IRES) in the untranslated region of the Epstein-Barr nuclear antigen 1 (EBNA1) gene. EBNA1 is the only nuclear protein expressed in all known states of Epstein-Barr virus (EBV) latency and in the virus lytic cycle, and is required for the maintenance of the EBV episome. Using cDNA reporter constructs and in vitro transfection assays, we found that sequences contained in the 5' untranslated region (UTR) of the Fp and Qp initiated EBNA1 mRNA increased the expression level 4-14- fold in different Burkitt lymphoma cell lines. The U leader exon, located within the 5' UTR, included in all known EBNA1 transcripts and also contained in the EBNA3, 4 and 6 mRNAs, was demonstrated by bicistronic expression analyses to contain an IRES. The EBNA IRES initiates translation more efficiently than the encephalomyocarditis virus IRES in EBV-positive lymphoma cells. We propose that the EBNA IRES constitute a novel mechanism, whereby EBV regulates latent gene expression.
Collapse
Affiliation(s)
- Asa Isaksson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Laboratory Medicine, Sahlgrenska University Hospital, Göteburg University, Sweden
| | | | | |
Collapse
|