1
|
Wang H, Tang J, Yan S, Li C, Li Z, Xiong Z, Li Z, Tu C. Liquid-liquid Phase Separation in Aging: Novel Insights in the Pathogenesis and Therapeutics. Ageing Res Rev 2024; 102:102583. [PMID: 39566743 DOI: 10.1016/j.arr.2024.102583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
The intricate organization of distinct cellular compartments is paramount for the maintenance of normal biological functions and the orchestration of complex biochemical reactions. These compartments, whether membrane-bound organelles or membraneless structures like Cajal bodies and RNA transport granules, play crucial roles in cellular function. Liquid-liquid phase separation (LLPS) serves as a reversible process that elucidates the genesis of membranelles structures through the self-assembly of biomolecules. LLPS has been implicated in a myriad of physiological and pathological processes, encompassing immune response and tumor genesis. But the association between LLPS and aging has not been clearly clarified. A recent advancement in the realm of aging research involves the introduction of a new edition outlining the twelve hallmarks of aging, categorized into three distinct groups. By delving into the role and mechanism of LLPS in the formation of membraneless structures at a molecular level, this review encapsulates an exploration of the interaction between LLPS and these aging hallmarks, aiming to offer novel perspectives of the intricate mechanisms underlying the aging process and deeper insights into aging therapeutics.
Collapse
Affiliation(s)
- Hua Wang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Jinxin Tang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Shuxiang Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, Institute of Nephrology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Chenbei Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhaoqi Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zijian Xiong
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Hunan Key Laboratory of Tumor Models and Individualized Medicine, Engineering Research Center of Artificial Intelligence-Driven Medical Device, The Second Xiangya Hospital of Central South University Changsha 410011, China, Changsha 410011, China; Shenzhen Research Institute of Central South University, Shenzhen 518063, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University Changsha 410011, China; Changsha Medical University, Changsha 410219, China
| |
Collapse
|
2
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
3
|
Huang Y, Zhu S, Yao S, Zhai H, Liu C, Han JDJ. Unraveling aging from transcriptomics. Trends Genet 2024:S0168-9525(24)00214-2. [PMID: 39424502 DOI: 10.1016/j.tig.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/21/2024]
Abstract
Research into aging constitutes a pivotal endeavor aimed at elucidating the underlying biological mechanisms governing aging and age-associated diseases, as well as promoting healthy longevity. Recent advances in transcriptomic technologies, such as bulk RNA sequencing (RNA-seq), single-cell transcriptomics, and spatial transcriptomics, have revolutionized our ability to study aging at unprecedented resolution and scale. These technologies present novel opportunities for the discovery of biomarkers, elucidation of molecular pathways, and development of targeted therapeutic strategies for age-related disorders. This review surveys recent breakthroughs in different types of transcripts on aging, such as mRNA, long noncoding (lnc)RNA, tRNA, and miRNA, highlighting key findings and discussing their potential implications for future studies in this field.
Collapse
Affiliation(s)
- Yuanfang Huang
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shouxuan Zhu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Shuai Yao
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Haotian Zhai
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chenyang Liu
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology (CQB), Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, China.
| |
Collapse
|
4
|
Lokanathan Balaji S, De Bragança S, Balaguer-Pérez F, Northall S, Wilkinson OJ, Aicart-Ramos C, Seetaloo N, Sobott F, Moreno-Herrero F, Dillingham MS. DNA binding and bridging by human CtIP in the healthy and diseased states. Nucleic Acids Res 2024; 52:8303-8319. [PMID: 38922686 DOI: 10.1093/nar/gkae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
The human DNA repair factor CtIP helps to initiate the resection of double-stranded DNA breaks for repair by homologous recombination, in part through its ability to bind and bridge DNA molecules. However, CtIP is a natively disordered protein that bears no apparent similarity to other DNA-binding proteins and so the structural basis for these activities remains unclear. In this work, we have used bulk DNA binding, single molecule tracking, and DNA bridging assays to study wild-type and variant CtIP proteins to better define the DNA binding domains and the effects of mutations associated with inherited human disease. Our work identifies a monomeric DNA-binding domain in the C-terminal region of CtIP. CtIP binds non-specifically to DNA and can diffuse over thousands of nucleotides. CtIP-mediated bridging of distant DNA segments is observed in single-molecule magnetic tweezers experiments. However, we show that binding alone is insufficient for DNA bridging, which also requires tetramerization via the N-terminal domain. Variant CtIP proteins associated with Seckel and Jawad syndromes display impaired DNA binding and bridging activities. The significance of these findings in the context of facilitating DNA break repair is discussed.
Collapse
Affiliation(s)
- Shreya Lokanathan Balaji
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Francisco Balaguer-Pérez
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Sarah Northall
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver John Wilkinson
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Neeleema Seetaloo
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Frank Sobott
- Astbury Centre for Structural Molecular Biology and School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049, Spain
| | - Mark Simon Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
5
|
Wang S, Yang R, Song M, Li J, Zhou Y, Dai C, Song T. Current understanding of the role of DDX21 in orchestrating gene expression in health and diseases. Life Sci 2024; 349:122716. [PMID: 38762067 DOI: 10.1016/j.lfs.2024.122716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/30/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
RNA helicases are involved in almost all biological events, and the DDXs family is one of the largest subfamilies of RNA helicases. Recently, studies have reported that RNA helicase DDX21 is involved in several biological events, specifically in orchestrating gene expression. Hence, in this review, we provide a comprehensive overview of the function of DDX21 in health and diseases. In the genome, DDX21 contributes to genome stability by promoting DNA damage repair and resolving R-loops. It also facilitates transcriptional regulation by directly binding to promoter regions, interacting with transcription factors, and enhancing transcription through non-coding RNA. Moreover, DDX21 is involved in various RNA metabolism such as RNA processing, translation, and decay. Interestingly, the activity and function of DDX21 are regulated by post-translational modifications, which affect the localization and degradation of DDX21. Except for its role of RNA helicase, DDX21 also acts as a non-enzymatic function in unwinding RNA, regulating transcriptional modifications and promoting transcription. Next, we discuss the potential application of DDX21 as a clinical predictor for diseases, which may facilitate providing novel pharmacological targets for molecular therapy.
Collapse
Affiliation(s)
- Shaoshuai Wang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruiqi Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhen Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Li
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; City of Hope Medical Center, Duarte, CA 91010, USA; Division of Stem Cell Biology Research, Department of Developmental and Stem Cell Biology, Beckman Research Institute of City of Hope, 1500 E. Duarte Rd, Duarte, CA 91010, USA
| | - Yanrong Zhou
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chen Dai
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China.
| | - Tongxing Song
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
6
|
De Bragança S, Dillingham MS, Moreno-Herrero F. Recent insights into eukaryotic double-strand DNA break repair unveiled by single-molecule methods. Trends Genet 2023; 39:924-940. [PMID: 37806853 DOI: 10.1016/j.tig.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Genome integrity and maintenance are essential for the viability of all organisms. A wide variety of DNA damage types have been described, but double-strand breaks (DSBs) stand out as one of the most toxic DNA lesions. Two major pathways account for the repair of DSBs: homologous recombination (HR) and non-homologous end joining (NHEJ). Both pathways involve complex DNA transactions catalyzed by proteins that sequentially or cooperatively work to repair the damage. Single-molecule methods allow visualization of these complex transactions and characterization of the protein:DNA intermediates of DNA repair, ultimately allowing a comprehensive breakdown of the mechanisms underlying each pathway. We review current understanding of the HR and NHEJ responses to DSBs in eukaryotic cells, with a particular emphasis on recent advances through the use of single-molecule techniques.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Mark S Dillingham
- DNA:Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
7
|
Zhang L, Xu J, Li M, Chen X. The role of long noncoding RNAs in liquid-liquid phase separation. Cell Signal 2023; 111:110848. [PMID: 37557974 DOI: 10.1016/j.cellsig.2023.110848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Long noncoding RNAs (lncRNAs), which are among the most well-characterized noncoding RNAs, have attracted much attention due to their regulatory functions and potential therapeutic options in many types of disease. Liquid-liquid phase separation (LLPS), the formation of droplet condensates, is involved in various cellular processes, but the molecular interactions of lncRNAs in LLPS are unclear. In this review, we describe the research development on LLPS, including descriptions of various methods established to identify LLPS, summarize the physiological and pathological functions of LLPS, identify the molecular interactions of lncRNAs in LLPS, and present the potential applications of leveraging LLPS in the clinic. The aim of this review is to update the knowledge on the association between LLPS and lncRNAs, which might provide a new direction for the treatment of LLPS-mediated disease.
Collapse
Affiliation(s)
- Le Zhang
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Jinjin Xu
- Department of Imaging Medicine, The People's Hospital of the Inner Mongolia Autonomous Region, Hohhot 010017, Inner Mongolia, China
| | - Muxuan Li
- The First Clinical Medical College of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China
| | - Xiujuan Chen
- Center for Reproductive Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia, China.
| |
Collapse
|
8
|
Loparo JJ. Holding it together: DNA end synapsis during non-homologous end joining. DNA Repair (Amst) 2023; 130:103553. [PMID: 37572577 PMCID: PMC10530278 DOI: 10.1016/j.dnarep.2023.103553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
DNA double strand breaks (DSBs) are common lesions whose misrepair are drivers of oncogenic transformations. The non-homologous end joining (NHEJ) pathway repairs the majority of these breaks in vertebrates by directly ligating DNA ends back together. Upon formation of a DSB, a multiprotein complex is assembled on DNA ends which tethers them together within a synaptic complex. Synapsis is a critical step of the NHEJ pathway as loss of synapsis can result in mispairing of DNA ends and chromosome translocations. As DNA ends are commonly incompatible for ligation, the NHEJ machinery must also process ends to enable rejoining. This review describes how recent progress in single-molecule approaches and cryo-EM have advanced our molecular understanding of DNA end synapsis during NHEJ and how synapsis is coordinated with end processing to determine the fidelity of repair.
Collapse
Affiliation(s)
- Joseph J Loparo
- Dept. of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
Yadav VK, Jalmi SK, Tiwari S, Kerkar S. Deciphering shared attributes of plant long non-coding RNAs through a comparative computational approach. Sci Rep 2023; 13:15101. [PMID: 37699996 PMCID: PMC10497521 DOI: 10.1038/s41598-023-42420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/10/2023] [Indexed: 09/14/2023] Open
Abstract
Over the past decade, long non-coding RNA (lncRNA), which lacks protein-coding potential, has emerged as an essential regulator of the genome. The present study examined 13,599 lncRNAs in Arabidopsis thaliana, 11,565 in Oryza sativa, and 32,397 in Zea mays for their characteristic features and explored the associated genomic and epigenomic features. We found lncRNAs were distributed throughout the chromosomes and the Helitron family of transposable elements (TEs) enriched, while the terminal inverted repeat depleted in lncRNA transcribing regions. Our analyses determined that lncRNA transcribing regions show rare or weak signals for most epigenetic marks except for H3K9me2 and cytosine methylation in all three plant species. LncRNAs showed preferential localization in the nucleus and cytoplasm; however, the distribution ratio in the cytoplasm and nucleus varies among the studied plant species. We identified several conserved endogenous target mimic sites in the lncRNAs among the studied plants. We found 233, 301, and 273 unique miRNAs, potentially targeting the lncRNAs of A. thaliana, O. sativa, and Z. mays, respectively. Our study has revealed that miRNAs, which interact with lncRNAs, target genes that are involved in a diverse array of biological and molecular processes. The miRNA-targeted lncRNAs displayed a strong affinity for several transcription factors, including ERF and BBR-BPC, mutually present in all three plants, advocating their conserved functions. Overall, the present study showed that plant lncRNAs exhibit conserved genomic and epigenomic characteristics and potentially govern the growth and development of plants.
Collapse
Affiliation(s)
- Vikash Kumar Yadav
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Siddhi Kashinath Jalmi
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Shalini Tiwari
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Savita Kerkar
- School of Biological Sciences and Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| |
Collapse
|
11
|
Singh D, Desai N, Shah V, Datta B. In Silico Identification of Potential Quadruplex Forming Sequences in LncRNAs of Cervical Cancer. Int J Mol Sci 2023; 24:12658. [PMID: 37628839 PMCID: PMC10454738 DOI: 10.3390/ijms241612658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as auxiliary regulators of gene expression influencing tumor microenvironment, metastasis and radio-resistance in cancer. The presence of lncRNA in extracellular fluids makes them promising diagnostic markers. LncRNAs deploy higher-order structures to facilitate a complex range of functions. Among such structures, G-quadruplexes (G4s) can be detected or targeted by small molecular probes to drive theranostic applications. The in vitro identification of G4 formation in lncRNAs can be a tedious and expensive proposition. Bioinformatics-driven strategies can provide comprehensive and economic alternatives in conjunction with suitable experimental validation. We propose a pipeline to identify G4-forming sequences, protein partners and biological functions associated with dysregulated lncRNAs in cervical cancer. We identified 17 lncRNA clusters which possess transcripts that can fold into a G4 structure. We confirmed in vitro G4 formation in the four biologically active isoforms of SNHG20, MEG3, CRNDE and LINP1 by Circular Dichroism spectroscopy and Thioflavin-T-assisted fluorescence spectroscopy and reverse-transcriptase stop assay. Gene expression data demonstrated that these four lncRNAs can be potential prognostic biomarkers of cervical cancer. Two approaches were employed for identifying G4 specific protein partners for these lncRNAs and FMR2 was a potential interacting partner for all four clusters. We report a detailed investigation of G4 formation in lncRNAs that are dysregulated in cervical cancer. LncRNAs MEG3, CRNDE, LINP1 and SNHG20 are shown to influence cervical cancer progression and we report G4 specific protein partners for these lncRNAs. The protein partners and G4s predicted in lncRNAs can be exploited for theranostic objectives.
Collapse
Affiliation(s)
- Deepshikha Singh
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Nakshi Desai
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Viraj Shah
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India; (D.S.); (N.D.); (V.S.)
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Gandhinagar 382355, India
| |
Collapse
|
12
|
Refaat AM, Nakata M, Husain A, Kosako H, Honjo T, Begum NA. HNRNPU facilitates antibody class-switch recombination through C-NHEJ promotion and R-loop suppression. Cell Rep 2023; 42:112284. [PMID: 36943867 DOI: 10.1016/j.celrep.2023.112284] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 10/23/2022] [Accepted: 03/03/2023] [Indexed: 03/22/2023] Open
Abstract
B cells generate functionally different classes of antibodies through class-switch recombination (CSR), which requires classical non-homologous end joining (C-NHEJ) to join the DNA breaks at the donor and acceptor switch (S) regions. We show that the RNA-binding protein HNRNPU promotes C-NHEJ-mediated S-S joining through the 53BP1-shieldin DNA-repair complex. Notably, HNRNPU binds to the S region RNA/DNA G-quadruplexes, contributing to regulating R-loop and single-stranded DNA (ssDNA) accumulation. HNRNPU is an intrinsically disordered protein that interacts with both C-NHEJ and R-loop complexes in an RNA-dependent manner. Strikingly, recruitment of HNRNPU and the C-NHEJ factors is highly sensitive to liquid-liquid phase separation inhibitors, suggestive of DNA-repair condensate formation. We propose that HNRNPU facilitates CSR by forming and stabilizing the C-NHEJ ribonucleoprotein complex and preventing excessive R-loop accumulation, which otherwise would cause persistent DNA breaks and aberrant DNA repair, leading to genomic instability.
Collapse
Affiliation(s)
- Ahmed M Refaat
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan; Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Mikiyo Nakata
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Afzal Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh 202002, India
| | - Hidetaka Kosako
- Division of Cell Signaling, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima 770-8503, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.
| | - Nasim A Begum
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
13
|
Zhu C, Jiang J, Feng G, Fan S. The exciting encounter between lncRNAs and radiosensitivity in IR-induced DNA damage events. Mol Biol Rep 2023; 50:1829-1843. [PMID: 36507968 DOI: 10.1007/s11033-022-07966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| |
Collapse
|
14
|
De Bragança S, Aicart-Ramos C, Arribas-Bosacoma R, Rivera-Calzada A, Unfried JP, Prats-Mari L, Marin-Baquero M, Fortes P, Llorca O, Moreno-Herrero F. APLF and long non-coding RNA NIHCOLE promote stable DNA synapsis in non-homologous end joining. Cell Rep 2023; 42:111917. [PMID: 36640344 DOI: 10.1016/j.celrep.2022.111917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 01/01/2023] Open
Abstract
The synapsis of DNA ends is a critical step for the repair of double-strand breaks by non-homologous end joining (NHEJ). This is performed by a multicomponent protein complex assembled around Ku70-Ku80 heterodimers and regulated by accessory factors, including long non-coding RNAs, through poorly understood mechanisms. Here, we use magnetic tweezers to investigate the contributions of core NHEJ proteins and APLF and lncRNA NIHCOLE to DNA synapsis. APLF stabilizes DNA end bridging and, together with Ku70-Ku80, establishes a minimal complex that supports DNA synapsis for several minutes under piconewton forces. We find the C-terminal acidic region of APLF to be critical for bridging. NIHCOLE increases the dwell time of the synapses by Ku70-Ku80 and APLF. This effect is further enhanced by a small and structured RNA domain within NIHCOLE. We propose a model where Ku70-Ku80 can simultaneously bind DNA, APLF, and structured RNAs to promote the stable joining of DNA ends.
Collapse
Affiliation(s)
- Sara De Bragança
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Angel Rivera-Calzada
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Juan Pablo Unfried
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel; Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Mikel Marin-Baquero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Spanish Network for Advanced Therapies (TERAV ISCIII), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Programme, Spanish National Cancer Research Center (CNIO), Madrid, Spain.
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain.
| |
Collapse
|
15
|
Wu S, Zhu H, Wu Y, Wang C, Duan X, Xu T. Molecular mechanisms of long noncoding RNAs associated with cervical cancer radiosensitivity. Front Genet 2023; 13:1093549. [PMID: 36685972 PMCID: PMC9846343 DOI: 10.3389/fgene.2022.1093549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Despite advances in cervical cancer screening and human papilloma virus (HPV) vaccines, cervical cancer remains a global health burden. The standard treatment of cervical cancer includes surgery, radiation therapy, and chemotherapy. Radiotherapy (RT) is the primary treatment for advanced-stage disease. However, due to radioresistance, most patients in the advanced stage have an adverse outcome. Recent studies have shown that long noncoding RNAs (lncRNAs) participate in the regulation of cancer radiosensitivity by regulating DNA damage repair, apoptosis, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT). In this review, we summarize the molecular mechanisms of long noncoding RNAs in cervical cancer and radiosensitivity, hoping to provide a theoretical basis and a new molecular target for the cervical cancer RT in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Sun L, Liu XP, Yan X, Wu S, Tang X, Chen C, Li G, Hu H, Wang D, Li S. Identification of molecular subtypes based on liquid-liquid phase separation and cross-talk with immunological phenotype in bladder cancer. Front Immunol 2022; 13:1059568. [PMID: 36518754 PMCID: PMC9742536 DOI: 10.3389/fimmu.2022.1059568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background Mounting evidence has demonstrated that an imbalance in liquid-liquid phase separation (LLPS) can induce alteration in the spatiotemporal coordination of biomolecular condensates, which plays a role in carcinogenesis and cachexia. However, the role of LLPS in the occurrence and progression of bladder cancer (BLCA) remains to be elucidated. Identifying the role of LLPS in carcinogenesis may aid in cancer therapeutics. Methods A total of 1,351 BLCA samples from six cohorts were retrieved from publicly available databases like The Cancer Genome Atlas, Gene Expression Omnibus, and ArrayExpress. The samples were divided into three distinct clusters, and their multi-dimensional heterogeneities were explored. The LLPS patterns of all patients were determined based on the LLPS-related risk score (LLPSRS), and its multifaceted landscape was depicted and experimentally validated at the multi-omics level. Finally, a cytotoxicity-related and LLPSRS-based classifier was established to predict the patient's response to immune checkpoint blockade (ICB) treatment. Results Three LLPS-related subtypes were identified and validated. The differences in prognosis, tumor microenvironment (TME) features, cancer hallmarks, and certain signatures of the three LLPS-related subtypes were validated. LLPSRS was calculated, which could be used as a prognostic biomarker. A close correlation was observed between clinicopathological features, genomic variations, biological mechanisms, immune infiltration in TME, chemosensitivity, and LLPSRS. Furthermore, our classifier could effectively predict immunotherapy response in patients with BLCA. Conclusions Our study identified a novel categorization of BLCA patients based on LLPS. The LLPSRS could predict the prognosis of patients and aid in designing personalized medicine. Further, our binary classifier could effectively predict patients' sensitivity to immunotherapy.
Collapse
Affiliation(s)
- Le Sun
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiao-Ping Liu
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xin Yan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shaojie Wu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xiaoyu Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Chen
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Li
- Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hankun Hu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Du Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Sheng Li
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China,Department of Biological Repositories, Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China,*Correspondence: Sheng Li,
| |
Collapse
|
17
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
18
|
Locatelli M, Lawrimore J, Lin H, Sanaullah S, Seitz C, Segall D, Kefer P, Salvador Moreno N, Lietz B, Anderson R, Holmes J, Yuan C, Holzwarth G, Bloom KS, Liu J, Bonin K, Vidi PA. DNA damage reduces heterogeneity and coherence of chromatin motions. Proc Natl Acad Sci U S A 2022; 119:e2205166119. [PMID: 35858349 PMCID: PMC9304018 DOI: 10.1073/pnas.2205166119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
Chromatin motions depend on and may regulate genome functions, in particular the DNA damage response. In yeast, DNA double-strand breaks (DSBs) globally increase chromatin diffusion, whereas in higher eukaryotes the impact of DSBs on chromatin dynamics is more nuanced. We mapped the motions of chromatin microdomains in mammalian cells using diffractive optics and photoactivatable chromatin probes and found a high level of spatial heterogeneity. DNA damage reduces heterogeneity and imposes spatially defined shifts in motions: Distal to DNA breaks, chromatin motions are globally reduced, whereas chromatin retains higher mobility at break sites. These effects are driven by context-dependent changes in chromatin compaction. Photoactivated lattices of chromatin microdomains are ideal to quantify microscale coupling of chromatin motion. We measured correlation distances up to 2 µm in the cell nucleus, spanning chromosome territories, and speculate that this correlation distance between chromatin microdomains corresponds to the physical separation of A and B compartments identified in chromosome conformation capture experiments. After DNA damage, chromatin motions become less correlated, a phenomenon driven by phase separation at DSBs. Our data indicate tight spatial control of chromatin motions after genomic insults, which may facilitate repair at the break sites and prevent deleterious contacts of DSBs, thereby reducing the risk of genomic rearrangements.
Collapse
Affiliation(s)
- Maëlle Locatelli
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Josh Lawrimore
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hua Lin
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
| | - Sarvath Sanaullah
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Clayton Seitz
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
| | - Dave Segall
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Paul Kefer
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Naike Salvador Moreno
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Benton Lietz
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Rebecca Anderson
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Julia Holmes
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907
| | - George Holzwarth
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
| | - Kerry S. Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jing Liu
- Department of Physics, Indiana University–Purdue University Indianapolis, Indianapolis, IN 46202
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, IN 46202
- Center for Computational Biology and Bioinformatics, Indiana University, Indianapolis, IN 46202
| | - Keith Bonin
- Department of Physics, Wake Forest University, Winston-Salem, NC 27109
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157
| | - Pierre-Alexandre Vidi
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
- Atrium Health Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC 27157
- Laboratoire InGenO, Institut de Cancérologie de l’Ouest, 49055 Angers, France
| |
Collapse
|
19
|
Brahme A. Quantifying Cellular Repair, Misrepair and Apoptosis Induced by Boron Ions, Gamma Rays and PRIMA-1 Using the RHR Formulation. Radiat Res 2022; 198:271-296. [PMID: 35834822 DOI: 10.1667/rade-22-00011.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
The recent interaction cross-section-based formulation for radiation-induced direct cellular inactivation, mild and severe sublethal damage, DNA-repair and cell survival have been developed to accurately describe cellular repair, misrepair and apoptosis in TP53 wild-type and mutant cells. The principal idea of this new non-homologous repairable-homologous repairable (RHR) damage formulation is to separately describe the mild damage that can be rapidly handled by the most basic repair processes including the non-homologous end joining (NHEJ), and more complex damage requiring longer repair times and high-fidelity homologous recombination (HR) repair. Taking the interaction between these two key mammalian DNA repair processes more accurately into account has significantly improved the method as indicated in the original publication. Based on the principal mechanisms of 7 repair and 8 misrepair processes presently derived, it has been possible to quite accurately describe the probability that some of these repair processes when unsuccessful can induce cellular apoptosis with increasing doses of γrays, boron ions and PRIMA-1. Interestingly, for all LETs studied (≈0.3-160 eV/nm) the increase in apoptosis saturates when the cell survival reaches about 10% and the fraction of un-hit cells is well below the 1% level. It is shown that most of the early cell kill for low-to-medium LETs are due to apoptosis since the cell survival as well as the non-apoptotic cells agree very well at low doses and other death processes dominate beyond D > 1 Gy. The low-dose apoptosis is due to the fact that the full activation of the checkpoint kinases ATM and Chk2 requires >8 and >18 DSBs per cell to phosphorylate p53 at serine 15 and 20. Therefore, DNA repair is not fully activated until well after 1/2 Gy, and the cellular response may be apoptotic by default before the low-dose hyper sensitivity (LDHS) is replaced by an increased radiation tolerance as the DNA repair processes get maximal efficiency. In effect, simultaneously explaining the LDHS and inverse dose rate phenomena. The partial contributions by the eight newly derived misrepair processes was determined so they together accurately described the experimental apoptosis induction data for γ rays and boron ions. Through these partial misrepair contributions it was possible to predict the apoptotic response based solely on carefully analyzed cell survival data, demonstrating the usefulness of an accurate DNA repair-based cell survival approach. The peak relative biological effectiveness (RBE) of the boron ions was 3.5 at 160 eV/nm whereas the analogous peak relative apoptotic effectiveness (RAE) was 3.4 but at 40 eV/nm indicating the clinical value of the lower LET light ion (15 \le {\rm{LET}} \le 55{\rm{\ eV}}/{\rm{nm}},{\rm{\ }}2 \le Z \le 5) in therapeutic applications to maximize tumor apoptosis and senescence. The new survival expressions were also applied on mouse embryonic fibroblasts with key knocked-out repair genes, showing a good agreement between the principal non-homologous and homologous repair terms and also a reasonable prediction of the associated apoptotic induction. Finally, the formulation was used to estimate the increase in DNA repair and apoptotic response in combination with the mutant p53 reactivating compound PRIMA-1 and γ rays, indicating a 10-2 times increase in apoptosis with 5 μM of the compound reaching apoptosis levels not far from peak apoptosis boron ions in a TP53 mutant cell line. To utilize PRIMA-1 induced apoptosis and cellular sensitization for reactive oxygen species (ROS), concomitant biologically optimized radiation therapy is proposed to maximize the complication free tumor cure for the multitude of TP53 mutant tumors seen in the clinic. The experimental data also indicated the clinically very important high-absorbed dose ROS effect of PRIMA-1.
Collapse
Affiliation(s)
- Anders Brahme
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
20
|
Metabolic modeling-based drug repurposing in Glioblastoma. Sci Rep 2022; 12:11189. [PMID: 35778411 PMCID: PMC9249780 DOI: 10.1038/s41598-022-14721-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The manifestation of intra- and inter-tumor heterogeneity hinders the development of ubiquitous cancer treatments, thus requiring a tailored therapy for each cancer type. Specifically, the reprogramming of cellular metabolism has been identified as a source of potential drug targets. Drug discovery is a long and resource-demanding process aiming at identifying and testing compounds early in the drug development pipeline. While drug repurposing efforts (i.e., inspecting readily available approved drugs) can be supported by a mechanistic rationale, strategies to further reduce and prioritize the list of potential candidates are still needed to facilitate feasible studies. Although a variety of ‘omics’ data are widely gathered, a standard integration method with modeling approaches is lacking. For instance, flux balance analysis is a metabolic modeling technique that mainly relies on the stoichiometry of the metabolic network. However, exploring the network’s topology typically neglects biologically relevant information. Here we introduce Transcriptomics-Informed Stoichiometric Modelling And Network analysis (TISMAN) in a recombinant innovation manner, allowing identification and validation of genes as targets for drug repurposing using glioblastoma as an exemplar.
Collapse
|
21
|
Jiang T, Luo ZB. LOC102724163 promotes breast cancer cell proliferation and invasion by stimulating MUC19 expression. Oncol Lett 2022; 23:100. [PMID: 35154431 PMCID: PMC8822485 DOI: 10.3892/ol.2022.13220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/23/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a malignant disease and the most commonly diagnosed cancer in women. Numerous studies have previously verified the important role of long non-coding RNAs in a number of biological processes in BC. In the present study, analysis of The Cancer Genome Atlas database and reverse transcription-quantitative PCR demonstrated that LOC102724163 expression levels were significantly upregulated in BC tissues compared to matched adjacent normal tissues and were associated with an unfavorable prognosis in patients with BC. Gain or loss of function assays indicated that overexpression of LOC102724163 significantly increased tumorgenicity in vivo and cell migration, proliferation and invasion in vitro. In the mechanistical aspect, LOC102724163 sponged microRNA (miR)-508-5p to elevate MUC19 expression. Additionally, rescue assays ascertained the function of the LOC102724163/miR-508-5p/MUC19 axis in the proliferation and invasion of BC cells. To the best of our knowledge, this is the first study to have demonstrated that LOC102724163 may act as a competing endogenous RNA to control MUC19 expression levels by competitively sponging miR-508-5p to modulate BC progression. Therefore, the present study has provided new insights into BC diagnosis and treatment.
Collapse
Affiliation(s)
- Tao Jiang
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Zhong-Bing Luo
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
22
|
Bergstrand S, O'Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, Dhanjal S, Pederiva C, Siggens L, Mortusewicz O, O'Rourke JJ, Farnebo M. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun 2022; 13:1015. [PMID: 35197472 PMCID: PMC8866460 DOI: 10.1038/s41467-022-28646-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53β, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR. Proper repair of DNA double-strand breaks is essential for genomic stability. Here, the authors report that a long non-coding RNA, scaRNA2, inhibits DNA-PK and thereby regulates the choice between error-prone NHEJ and error-free HR DNA repair.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dominika Hrossova
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sandro Schmidli
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Dhanjal
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Pederiva
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lee Siggens
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Department of Oncology and Pathology, SciLife, Karolinska Institutet, Stockholm, Sweden
| | - Julienne J O'Rourke
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden. .,Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
23
|
Mondal A, Bhattacharya A, Singh V, Pandita S, Bacolla A, Pandita RK, Tainer JA, Ramos KS, Pandita TK, Das C. Stress Responses as Master Keys to Epigenomic Changes in Transcriptome and Metabolome for Cancer Etiology and Therapeutics. Mol Cell Biol 2022; 42:e0048321. [PMID: 34748401 PMCID: PMC8773053 DOI: 10.1128/mcb.00483-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From initiation through progression, cancer cells are subjected to a magnitude of endogenous and exogenous stresses, which aid in their neoplastic transformation. Exposure to these classes of stress induces imbalance in cellular homeostasis and, in response, cancer cells employ informative adaptive mechanisms to rebalance biochemical processes that facilitate survival and maintain their existence. Different kinds of stress stimuli trigger epigenetic alterations in cancer cells, which leads to changes in their transcriptome and metabolome, ultimately resulting in suppression of growth inhibition or induction of apoptosis. Whether cancer cells show a protective response to stress or succumb to cell death depends on the type of stress and duration of exposure. A thorough understanding of epigenetic and molecular architecture of cancer cell stress response pathways can unveil a plethora of information required to develop novel anticancer therapeutics. The present view highlights current knowledge about alterations in epigenome and transcriptome of cancer cells as a consequence of exposure to different physicochemical stressful stimuli such as reactive oxygen species (ROS), hypoxia, radiation, hyperthermia, genotoxic agents, and nutrient deprivation. Currently, an anticancer treatment scenario involving the imposition of stress to target cancer cells is gaining traction to augment or even replace conventional therapeutic regimens. Therefore, a comprehensive understanding of stress response pathways is crucial for devising and implementing novel therapeutic strategies.
Collapse
Affiliation(s)
- Atanu Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Apoorva Bhattacharya
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| | - Shruti Pandita
- Division of Hematology and Medical Oncology, St. Louis University, St. Louis, Missouri, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Raj K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Tej K. Pandita
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, Texas, USA
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Kolkata, India
- Homi Bhaba National Institute, Mumbai, India
| |
Collapse
|
24
|
Liu Z, Zhang Z, Song G, Wang X, Xing H, Wang C. Resveratrol Alleviates Skeletal Muscle Insulin Resistance by Downregulating Long Noncoding RNA. Int J Endocrinol 2022; 2022:2539519. [PMID: 35096054 PMCID: PMC8791716 DOI: 10.1155/2022/2539519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/15/2021] [Accepted: 01/04/2022] [Indexed: 01/04/2023] Open
Abstract
Long noncoding RNA (lncRNA) is a crucial factor in the progression of insulin resistance (IR). Resveratrol (RSV) exhibits promising therapeutic potential for IR. However, there are few studies on whether RSV improves IR through lncRNA. This study aimed to determine whether RSV could influence the expression of lncRNA and to elucidate the underlying mechanism. Mice were divided into three groups: control group, high-fat diet (HFD) group, and HFD + RSV group. We conducted a high-throughput sequencing analysis to detect lncRNA and mRNA expression signatures and the ceRNA-network in the skeletal muscles of mice that were fed an HFD to induce IR. Hierarchical clustering, gene enrichment, and gene ceRNA-network analyses were subsequently conducted. Differentially expressed lncRNAs were selected and validated via reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The biological functions of the selected lncRNAs were investigated by silencing the target genes via lentivirus transfection of C2C12 mouse myotube cells. RSV treatment reversed the expression of 338 mRNAs and 629 lncRNAs in the skeletal muscles of mice with HFD-induced IR. The results of the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes database analyses indicated that the differentially expressed mRNAs modulated type II diabetes mellitus. After validating randomly selected lncRNAs via RT-qPCR, we identified a novel lncRNA, NONMMUT044897.2, which was upregulated in the HFD group and reversed with RSV treatment. Additionally, NONMMUT044897.2 was proven to function as a ceRNA of microRNA- (miR-) 7051-5p. Suppressor of Cytokine Signaling 1 (SOCS1) was confirmed as a target of miR-7051-5p. We further performed lentivirus transfection to knock down NONMMUT044897.2 in vitro and found that NONMMUT044897.2 silenced SOCS1 and potentiated the insulin signaling pathway. Hence, RSV mimicked the silencing effect of lentivirus transfection on NONMMUT044897.2. Our study revealed that RSV reduced IR in mouse skeletal muscles via the regulation of NONMMUT044897.2.
Collapse
Affiliation(s)
- Zhihong Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang 050051, China
- Endocrinology Department, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Zhimei Zhang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang 050051, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang 050017, China
- Endocrinology Department, Hebei General Hospital, Shijiazhuang 050051, China
| | - Xing Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang 050051, China
| | - Hanying Xing
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang 050051, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang 050051, China
| |
Collapse
|
25
|
Rosenberg DJ, Syed A, Tainer JA, Hura GL. Monitoring Nuclease Activity by X-Ray Scattering Interferometry Using Gold Nanoparticle-Conjugated DNA. Methods Mol Biol 2022; 2444:183-205. [PMID: 35290639 PMCID: PMC9512051 DOI: 10.1007/978-1-0716-2063-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The biologically critical, exquisite specificity and efficiency of nucleases, such as those acting in DNA repair and replication, often emerge in the context of multiple other macromolecules. The evolved complexity also makes biologically relevant nuclease assays challenging and low-throughput. Meiotic recombination 11 homolog 1 (MRE11) is an exemplary nuclease that initiates DNA double-strand break (DSB) repair and processes stalled DNA replication forks. Thus, DNA resection by MRE11 nuclease activity is critical for multiple DSB repair pathways as well as in replication. Traditionally, in vitro nuclease activity of purified enzymes is studied either through gel-based assays or fluorescence-based assays like fluorescence resonance energy transfer (FRET). However, adapting these methods for a high-throughput application such as inhibitor screening can be challenging. Gel-based approaches are slow, and FRET assays can suffer from interference and distance limitations. Here we describe an alternative methodology to monitor nuclease activity by measuring the small-angle X-ray scattering (SAXS) interference pattern from gold nanoparticles (Au NPs) conjugated to 5'-ends of dsDNA using X-ray scattering interferometry (XSI). In addition to reporting on the enzyme activity, XSI can provide insight into DNA-protein interactions, aiding in the development of inhibitors that trap enzymes on the DNA substrate. Enabled by efficient access to synchrotron beamlines, sample preparation, and the feasibility of high-throughput XSI data collection and processing pipelines, this method allows for far greater speeds with less sample consumption than conventional SAXS techniques. The reported metrics and methods can be generalized to monitor not only other nucleases but also most other DNA-protein interactions.
Collapse
Affiliation(s)
- Daniel J Rosenberg
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
| | - Aleem Syed
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Greg L Hura
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Chemistry and Biochemistry Department, University of California Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
26
|
Gao Y, Liu C, Wu T, Liu R, Mao W, Gan X, Lu X, Liu Y, Wan L, Xu B, Chen M. Current status and perspectives of non-coding RNA and phase separation interactions. Biosci Trends 2022; 16:330-345. [DOI: 10.5582/bst.2022.01304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yue Gao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Chunhui Liu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Tiange Wu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Ruiji Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Weipu Mao
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xinqiang Gan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Xun Lu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yifan Liu
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Lilin Wan
- Surgical Research Center, Institute of Urology, Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
27
|
Ye Z, Shi Y, Lees-Miller SP, Tainer JA. Function and Molecular Mechanism of the DNA Damage Response in Immunity and Cancer Immunotherapy. Front Immunol 2021; 12:797880. [PMID: 34970273 PMCID: PMC8712645 DOI: 10.3389/fimmu.2021.797880] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
The DNA damage response (DDR) is an organized network of multiple interwoven components evolved to repair damaged DNA and maintain genome fidelity. Conceptually the DDR includes damage sensors, transducer kinases, and effectors to maintain genomic stability and accurate transmission of genetic information. We have recently gained a substantially improved molecular and mechanistic understanding of how DDR components are interconnected to inflammatory and immune responses to stress. DDR shapes both innate and adaptive immune pathways: (i) in the context of innate immunity, DDR components mainly enhance cytosolic DNA sensing and its downstream STimulator of INterferon Genes (STING)-dependent signaling; (ii) in the context of adaptive immunity, the DDR is needed for the assembly and diversification of antigen receptor genes that is requisite for T and B lymphocyte development. Imbalances between DNA damage and repair impair tissue homeostasis and lead to replication and transcription stress, mutation accumulation, and even cell death. These impacts from DDR defects can then drive tumorigenesis, secretion of inflammatory cytokines, and aberrant immune responses. Yet, DDR deficiency or inhibition can also directly enhance innate immune responses. Furthermore, DDR defects plus the higher mutation load in tumor cells synergistically produce primarily tumor-specific neoantigens, which are powerfully targeted in cancer immunotherapy by employing immune checkpoint inhibitors to amplify immune responses. Thus, elucidating DDR-immune response interplay may provide critical connections for harnessing immunomodulatory effects plus targeted inhibition to improve efficacy of radiation and chemotherapies, of immune checkpoint blockade, and of combined therapeutic strategies.
Collapse
Affiliation(s)
- Zu Ye
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yin Shi
- Department of Immunology, Zhejiang University School of Medicine, Hangzhou, China
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Susan P. Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada
| | - John A. Tainer
- Department of Molecular and Cellular Oncology, and Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
28
|
Schellenbauer A, Guilly MN, Grall R, Le Bars R, Paget V, Kortulewski T, Sutcu H, Mathé C, Hullo M, Biard D, Leteurtre F, Barroca V, Corre Y, Irbah L, Rass E, Theze B, Bertrand P, Demmers JAA, Guirouilh-Barbat J, Lopez BS, Chevillard S, Delic J. Phospho-Ku70 induced by DNA damage interacts with RNA Pol II and promotes the formation of phospho-53BP1 foci to ensure optimal cNHEJ. Nucleic Acids Res 2021; 49:11728-11745. [PMID: 34718776 PMCID: PMC8599715 DOI: 10.1093/nar/gkab980] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/15/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022] Open
Abstract
Canonical non-homologous end-joining (cNHEJ) is the prominent mammalian DNA double-strand breaks (DSBs) repair pathway operative throughout the cell cycle. Phosphorylation of Ku70 at ser27-ser33 (pKu70) is induced by DNA DSBs and has been shown to regulate cNHEJ activity, but the underlying mechanism remained unknown. Here, we established that following DNA damage induction, Ku70 moves from nucleoli to the sites of damage, and once linked to DNA, it is phosphorylated. Notably, the novel emanating functions of pKu70 are evidenced through the recruitment of RNA Pol II and concomitant formation of phospho-53BP1 foci. Phosphorylation is also a prerequisite for the dynamic release of Ku70 from the repair complex through neddylation-dependent ubiquitylation. Although the non-phosphorylable ala-Ku70 form does not compromise the formation of the NHEJ core complex per se, cells expressing this form displayed constitutive and stress-inducible chromosomal instability. Consistently, upon targeted induction of DSBs by the I-SceI meganuclease into an intrachromosomal reporter substrate, cells expressing pKu70, rather than ala-Ku70, are protected against the joining of distal DNA ends. Collectively, our results underpin the essential role of pKu70 in the orchestration of DNA repair execution in living cells and substantiated the way it paves the maintenance of genome stability.
Collapse
Affiliation(s)
- Amelie Schellenbauer
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie-Noelle Guilly
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Grall
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Romain Le Bars
- Light Microscopy Facility, Imagerie-Gif, Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Vincent Paget
- IRS[N]/PSE-SANTE/SERAMED/LRMed, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Thierry Kortulewski
- Laboratoire de Radiopathologie, UMR Stabilité Génétique Cellules Souches et Radiations, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18 Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Haser Sutcu
- IRS[N]/PSE-SANTE/SERAMED/LRAcc, 31, Av. De la Division Leclerc, 92260 Fontenay aux Roses, France
| | - Cécile Mathé
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Marie Hullo
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Denis Biard
- Service d'étude des prions et maladies atypiques (SEPIA), DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - François Leteurtre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Vilma Barroca
- Laboratoire Réparation et Transcription dans les cellules Souches, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Youenn Corre
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Lamya Irbah
- Plateforme de Microscopie, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U12745, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Emilie Rass
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Benoit Theze
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Pascale Bertrand
- Laboratoire de Réparation et Vieillissement; Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, UMRE008-U1274, 18, Av. du Panorama, 92265 Fontenay aux Roses, France
| | - Jeroen A A Demmers
- Proteomics Center, Room Ee-679A | Faculty Building, Erasmus University Medical Center Wytemaweg 80, 3015 CN Rotterdam, The Netherlands
| | - Josée Guirouilh-Barbat
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Bernard S Lopez
- Université de Paris, INSERM U1016, UMR 8104 CNRS, Institut Cochin, Equipe Labellisée Ligue Contre le Cancer, 24 rue du Faubourg St Jacques, 75014 Paris, France
| | - Sylvie Chevillard
- Laboratoire de Cancérologie Expérimentale, Commissariat à l’Energie Atomique et aux Energies Alternatives (CEA), Université Paris-Saclay, DRF, Institut de Biologie François Jacob (IBFJ), IRCM, 18, Av. du Panorama, 92265 Fontenay aux Roses, *Université Paris Descartes, 75006 Paris, France
| | - Jozo Delic
- To whom correspondence should be addressed. Tel: +33 1 4654 7552;
| |
Collapse
|
29
|
Sui H, Hao M, Chang W, Imamichi T. The Role of Ku70 as a Cytosolic DNA Sensor in Innate Immunity and Beyond. Front Cell Infect Microbiol 2021; 11:761983. [PMID: 34746031 PMCID: PMC8566972 DOI: 10.3389/fcimb.2021.761983] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Human Ku70 is a well-known endogenous nuclear protein involved in the non-homologous end joining pathway to repair double-stranded breaks in DNA. However, Ku70 has been studied in multiple contexts and grown into a multifunctional protein. In addition to the extensive functional study of Ku70 in DNA repair process, many studies have emphasized the role of Ku70 in various other cellular processes, including apoptosis, aging, and HIV replication. In this review, we focus on discussing the role of Ku70 in inducing interferons and proinflammatory cytokines as a cytosolic DNA sensor. We explored the unique structure of Ku70 binding with DNA; illustrated, with evidence, how Ku70, as a nuclear protein, responds to extracellular DNA stimulation; and summarized the mechanisms of the Ku70-involved innate immune response pathway. Finally, we discussed several new strategies to modulate Ku70-mediated innate immune response and highlighted some potential physiological insights based on the role of Ku70 in innate immunity.
Collapse
Affiliation(s)
- Hongyan Sui
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | | | | | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| |
Collapse
|
30
|
Long Noncoding RNAs Regulate the Radioresistance of Breast Cancer. Anal Cell Pathol (Amst) 2021; 2021:9005073. [PMID: 34595090 PMCID: PMC8478560 DOI: 10.1155/2021/9005073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer (BRCA) has severely threatened women's health worldwide. Radiotherapy is a treatment for BRCA, which applies high doses of ionizing radiation to induce cancer cell death and reduce disease recurrence. Radioresistance is one of the most important elements that affect the therapeutic efficacy of radiotherapy. Long noncoding RNAs (lncRNAs) are suggested to dominate crucial roles in regulating the biological behavior of BRCA. Currently, some studies indicate that overexpression or inhibition of lncRNAs can greatly alter the radioresistance of BRCA. In this review, we summarized the knowledge on the classification and function of lncRNAs and the molecular mechanism of BRCA radioresistance, listed lncRNAs related to the BRCA radioresistance, highlighted their underlying mechanisms, and discussed the potential application of these lncRNAs in regulating BRCA radioresistance.
Collapse
|
31
|
Unfried JP, Marín-Baquero M, Rivera-Calzada Á, Razquin N, Martín-Cuevas EM, de Bragança S, Aicart-Ramos C, McCoy C, Prats-Mari L, Arribas-Bosacoma R, Lee L, Caruso S, Zucman-Rossi J, Sangro B, Williams G, Moreno-Herrero F, Llorca O, Lees-Miller SP, Fortes P. Long Noncoding RNA NIHCOLE Promotes Ligation Efficiency of DNA Double-Strand Breaks in Hepatocellular Carcinoma. Cancer Res 2021; 81:4910-4925. [PMID: 34321241 PMCID: PMC8488005 DOI: 10.1158/0008-5472.can-21-0463] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability. SIGNIFICANCE: This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.See related commentary by Barcena-Varela and Lujambio, p. 4899.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Models, Biological
- Nucleic Acid Conformation
- Nucleotide Motifs
- Prognosis
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
Collapse
Affiliation(s)
- Juan P Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
| | - Mikel Marín-Baquero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ángel Rivera-Calzada
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Eva M Martín-Cuevas
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sara de Bragança
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Christopher McCoy
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Bruno Sangro
- University of Navarra Clinic (CUN), Liver Unit, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Gareth Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| |
Collapse
|
32
|
Saha J, Bae J, Wang SY, Lu H, Chappell LJ, Gopal P, Davis AJ. Ablating putative Ku70 phosphorylation sites results in defective DNA damage repair and spontaneous induction of hepatocellular carcinoma. Nucleic Acids Res 2021; 49:9836-9850. [PMID: 34428289 PMCID: PMC8464062 DOI: 10.1093/nar/gkab743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/31/2022] Open
Abstract
Multiple pathways mediate the repair of DNA double-strand breaks (DSBs), with numerous mechanisms responsible for driving choice between the pathways. Previously, we reported that mutating five putative phosphorylation sites on the non-homologous end joining (NHEJ) factor, Ku70, results in sustained retention of human Ku70/80 at DSB ends and attenuation of DSB repair via homologous recombination (HR). In this study, we generated a knock-in mouse, in which the three conserved putative phosphorylation sites of Ku70 were mutated to alanine to ablate potential phosphorylation (Ku703A/3A), in order to examine if disrupting DSB repair pathway choice by modulating Ku70/80 dynamics at DSB ends results in enhanced genomic instability and tumorigenesis. The Ku703A/3A mice developed spontaneous and have accelerated chemical-induced hepatocellular carcinoma (HCC) compared to wild-type (Ku70+/+) littermates. The HCC tumors from the Ku703A/3A mice have increased γH2AX and 8-oxo-G staining, suggesting decreased DNA repair. Spontaneous transformed cell lines from Ku703A/3A mice are more radiosensitive, have a significant decrease in DNA end resection, and are more sensitive to the DNA cross-linking agent mitomycin C compared to cells from Ku70+/+ littermates. Collectively, these findings demonstrate that mutating the putative Ku70 phosphorylation sites results in defective DNA damage repair and disruption of this process drives genomic instability and accelerated development of HCC.
Collapse
Affiliation(s)
- Janapriya Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jinsung Bae
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Shih-Ya Wang
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Huiming Lu
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Purva Gopal
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Anthony J Davis
- Division of Molecular Radiation Biology, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
33
|
Shaw A, Gullerova M. Home and Away: The Role of Non-Coding RNA in Intracellular and Intercellular DNA Damage Response. Genes (Basel) 2021; 12:1475. [PMID: 34680868 PMCID: PMC8535248 DOI: 10.3390/genes12101475] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
Non-coding RNA (ncRNA) has recently emerged as a vital component of the DNA damage response (DDR), which was previously believed to be solely regulated by proteins. Many species of ncRNA can directly or indirectly influence DDR and enhance DNA repair, particularly in response to double-strand DNA breaks, which may hold therapeutic potential in the context of cancer. These include long non-coding RNA (lncRNA), microRNA, damage-induced lncRNA, DNA damage response small RNA, and DNA:RNA hybrid structures, which can be categorised as cis or trans based on the location of their synthesis relative to DNA damage sites. Mechanisms of RNA-dependent DDR include the recruitment or scaffolding of repair factors at DNA break sites, the regulation of repair factor expression, and the stabilisation of repair intermediates. DDR can also be communicated intercellularly via exosomes, leading to bystander responses in healthy neighbour cells to generate a population-wide response to damage. Many microRNA species have been directly implicated in the propagation of bystander DNA damage, autophagy, and radioresistance, which may prove significant for enhancing cancer treatment via radiotherapy. Here, we review recent developments centred around ncRNA and their contributions to intracellular and intercellular DDR mechanisms.
Collapse
Affiliation(s)
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK;
| |
Collapse
|
34
|
Peng PH, Hsu KW, Wu KJ. Liquid-liquid phase separation (LLPS) in cellular physiology and tumor biology. Am J Cancer Res 2021; 11:3766-3776. [PMID: 34522448 PMCID: PMC8414392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 06/13/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) has emerged as a mechanism that has been used to explain the formation of known organelles (e.g. nucleoli, promyelocytic leukemia nuclear bodies (PML NBs), etc) as well as other membraneless condensates (e.g. nucleosome arrays, DNA damage foci, X-chromosome inactivation (XCI) center, paraspeckles, stress granules, proteasomes, autophagosomes, etc). The formation of membraneless condensates could be triggered by proteins containing modular domains or intrinsically disordered regions (IDRs) and nucleic acids. Multiple biological processes including transcription, chromatin organization, X-chromosome inactivation (XCI), DNA damage, tumorigenesis, autophagy, etc have been shown to utilize the principle of LLPS to facilitate these processes. This review will summarize the principle and components of LLPS, and describe how LLPS regulate these numerous biological processes and disruption of LLPS would cause disease formation. The role of LLPS in regulating normal cellular physiology and contributing to tumorigenesis will be discussed.
Collapse
Affiliation(s)
- Pei-Hua Peng
- Cancer Genome Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan 333, Taiwan
| | - Kai-Wen Hsu
- Research Center for Cancer Biology, Inst. of New Drug Development, China Medical UniversityTaichung 404, Taiwan
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at LinkouTaoyuan 333, Taiwan
- Institute of Cellular and Organismic Biology, Academia SinicaTaipei 115, Taiwan
- Inst. of Clinical Medical Sciences, Chang Gung UniversityTaoyuan 333, Taiwan
| |
Collapse
|
35
|
Zhang X, Blundell T, Tainer JA. The renaissance in biophysics and molecular biology enabled by the interface of DNA repair and replication with cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:1-4. [PMID: 33798567 PMCID: PMC11314391 DOI: 10.1016/j.pbiomolbio.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Xiaodong Zhang
- Imperial College London South Kensington, London, SW7 2AZ, UK.
| | - Tom Blundell
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Holcombe Blvd., Houston, TX, 77030, United States.
| |
Collapse
|
36
|
Audoynaud C, Vagner S, Lambert S. Non-homologous end-joining at challenged replication forks: an RNA connection? Trends Genet 2021; 37:973-985. [PMID: 34238592 DOI: 10.1016/j.tig.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022]
Abstract
Defective DNA replication, known as 'replication stress', is a source of DNA damage, a hallmark of numerous human diseases, including cancer, developmental defect, neurological disorders, and premature aging. Recent work indicates that non-homologous end-joining (NHEJ) is unexpectedly active during DNA replication to repair replication-born DNA lesions and to safeguard replication fork integrity. However, erroneous NHEJ events are deleterious to genome stability. RNAs are novel regulators of NHEJ activity through their ability to modulate the assembly of repair complexes in trans. At DNA damage sites, RNAs and DNA-embedded ribonucleotides modulate repair efficiency and fidelity. We discuss here how RNAs and associated proteins, including RNA binding proteins, may regulate NHEJ to sustain genome stability during DNA replication.
Collapse
Affiliation(s)
- Charlotte Audoynaud
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Stéphan Vagner
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France
| | - Sarah Lambert
- Institut Curie, Université PSL, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Université Paris-Saclay, CNRS UMR3348, INSERM U1278, 91400 Orsay, France; Equipes Labélisées Ligue Nationale Contre Le Cancer, 91400 Orsay, France.
| |
Collapse
|
37
|
Fijen C, Rothenberg E. The evolving complexity of DNA damage foci: RNA, condensates and chromatin in DNA double-strand break repair. DNA Repair (Amst) 2021; 105:103170. [PMID: 34256335 DOI: 10.1016/j.dnarep.2021.103170] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023]
Abstract
Formation of biomolecular condensates is increasingly recognized as a mechanism employed by cells to deal with stress and to optimize enzymatic reactions. Recent studies have characterized several DNA repair foci as phase-separated condensates, behaving like liquid droplets. Concomitantly, the apparent importance of long non-coding RNAs and RNA-binding proteins for the repair of double-strand breaks has raised many questions about their exact contribution to the repair process. Here we discuss how RNA molecules can participate in condensate formation and how RNA-binding proteins can act as molecular scaffolds. We furthermore summarize our current knowledge about how properties of condensates can influence the choice of repair pathway (homologous recombination or non-homologous end joining) and identify the open questions in this field of emerging importance.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, USA.
| |
Collapse
|
38
|
Hammel M, Tainer JA. X-ray scattering reveals disordered linkers and dynamic interfaces in complexes and mechanisms for DNA double-strand break repair impacting cell and cancer biology. Protein Sci 2021; 30:1735-1756. [PMID: 34056803 PMCID: PMC8376411 DOI: 10.1002/pro.4133] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/17/2022]
Abstract
Evolutionary selection ensures specificity and efficiency in dynamic metastable macromolecular machines that repair DNA damage without releasing toxic and mutagenic intermediates. Here we examine non‐homologous end joining (NHEJ) as the primary conserved DNA double‐strand break (DSB) repair process in human cells. NHEJ has exemplary key roles in networks determining the development, outcome of cancer treatments by DSB‐inducing agents, generation of antibody and T‐cell receptor diversity, and innate immune response for RNA viruses. We determine mechanistic insights into NHEJ structural biochemistry focusing upon advanced small angle X‐ray scattering (SAXS) results combined with X‐ray crystallography (MX) and cryo‐electron microscopy (cryo‐EM). SAXS coupled to atomic structures enables integrated structural biology for objective quantitative assessment of conformational ensembles and assemblies in solution, intra‐molecular distances, structural similarity, functional disorder, conformational switching, and flexibility. Importantly, NHEJ complexes in solution undergo larger allosteric transitions than seen in their cryo‐EM or MX structures. In the long‐range synaptic complex, X‐ray repair cross‐complementing 4 (XRCC4) plus XRCC4‐like‐factor (XLF) form a flexible bridge and linchpin for DNA ends bound to KU heterodimer (Ku70/80) and DNA‐PKcs (DNA‐dependent protein kinase catalytic subunit). Upon binding two DNA ends, auto‐phosphorylation opens DNA‐PKcs dimer licensing NHEJ via concerted conformational transformations of XLF‐XRCC4, XLF–Ku80, and LigIVBRCT–Ku70 interfaces. Integrated structures reveal multifunctional roles for disordered linkers and modular dynamic interfaces promoting DSB end processing and alignment into the short‐range complex for ligation by LigIV. Integrated findings define dynamic assemblies fundamental to designing separation‐of‐function mutants and allosteric inhibitors targeting conformational transitions in multifunctional complexes.
Collapse
Affiliation(s)
- Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - John A Tainer
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
39
|
Klaric JA, Wüst S, Panier S. New Faces of old Friends: Emerging new Roles of RNA-Binding Proteins in the DNA Double-Strand Break Response. Front Mol Biosci 2021; 8:668821. [PMID: 34026839 PMCID: PMC8138124 DOI: 10.3389/fmolb.2021.668821] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions. To protect genomic stability and ensure cell homeostasis, cells mount a complex signaling-based response that not only coordinates the repair of the broken DNA strand but also activates cell cycle checkpoints and, if necessary, induces cell death. The last decade has seen a flurry of studies that have identified RNA-binding proteins (RBPs) as novel regulators of the DSB response. While many of these RBPs have well-characterized roles in gene expression, it is becoming increasingly clear that they also have non-canonical functions in the DSB response that go well beyond transcription, splicing and mRNA processing. Here, we review the current understanding of how RBPs are integrated into the cellular response to DSBs and describe how these proteins directly participate in signal transduction, amplification and repair at damaged chromatin. In addition, we discuss the implications of an RBP-mediated DSB response for genome instability and age-associated diseases such as cancer and neurodegeneration.
Collapse
Affiliation(s)
- Julie A Klaric
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stas Wüst
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Stephanie Panier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD) Research Center, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Abbasi S, Parmar G, Kelly RD, Balasuriya N, Schild-Poulter C. The Ku complex: recent advances and emerging roles outside of non-homologous end-joining. Cell Mol Life Sci 2021; 78:4589-4613. [PMID: 33855626 PMCID: PMC11071882 DOI: 10.1007/s00018-021-03801-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022]
Abstract
Since its discovery in 1981, the Ku complex has been extensively studied under multiple cellular contexts, with most work focusing on Ku in terms of its essential role in non-homologous end-joining (NHEJ). In this process, Ku is well-known as the DNA-binding subunit for DNA-PK, which is central to the NHEJ repair process. However, in addition to the extensive study of Ku's role in DNA repair, Ku has also been implicated in various other cellular processes including transcription, the DNA damage response, DNA replication, telomere maintenance, and has since been studied in multiple contexts, growing into a multidisciplinary point of research across various fields. Some advances have been driven by clarification of Ku's structure, including the original Ku crystal structure and the more recent Ku-DNA-PKcs crystallography, cryogenic electron microscopy (cryoEM) studies, and the identification of various post-translational modifications. Here, we focus on the advances made in understanding the Ku heterodimer outside of non-homologous end-joining, and across a variety of model organisms. We explore unique structural and functional aspects, detail Ku expression, conservation, and essentiality in different species, discuss the evidence for its involvement in a diverse range of cellular functions, highlight Ku protein interactions and recent work concerning Ku-binding motifs, and finally, we summarize the clinical Ku-related research to date.
Collapse
Affiliation(s)
- Sanna Abbasi
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Gursimran Parmar
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Rachel D Kelly
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Nileeka Balasuriya
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada
| | - Caroline Schild-Poulter
- Robarts Research Institute and Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, N6A 5B7, Canada.
| |
Collapse
|
41
|
Guiducci G, Stojic L. Long Noncoding RNAs at the Crossroads of Cell Cycle and Genome Integrity. Trends Genet 2021; 37:528-546. [PMID: 33685661 DOI: 10.1016/j.tig.2021.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
The cell cycle is controlled by guardian proteins that coordinate the process of cell growth and cell division. Alterations in these processes lead to genome instability, which has a causal link to many human diseases. Beyond their well-characterized role of influencing protein-coding genes, an increasing body of evidence has revealed that long noncoding RNAs (lncRNAs) actively participate in regulation of the cell cycle and safeguarding of genome integrity. LncRNAs are versatile molecules that act via a wide array of mechanisms. In this review, we discuss how lncRNAs are implicated in control of the cell cycle and maintenance of genome stability and how changes in lncRNA-regulatory networks lead to proliferative diseases such as cancer.
Collapse
Affiliation(s)
- Giulia Guiducci
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK
| | - Lovorka Stojic
- Barts Cancer Institute, Centre for Cancer Cell and Molecular Biology, John Vane Science Centre, Charterhouse Square, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
42
|
Desai N, Shah V, Datta B. Assessing G4-Binding Ligands In Vitro and in Cellulo Using Dimeric Carbocyanine Dye Displacement Assay. Molecules 2021; 26:molecules26051400. [PMID: 33807659 PMCID: PMC7961521 DOI: 10.3390/molecules26051400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/31/2021] [Accepted: 02/24/2021] [Indexed: 12/05/2022] Open
Abstract
G-quadruplexes (G4) are the most actively studied non-canonical secondary structures formed by contiguous repeats of guanines in DNA or RNA strands. Small molecule mediated targeting of G-quadruplexes has emerged as an attractive tool for visualization and stabilization of these structures inside the cell. Limited number of DNA and RNA G4-selective assays have been reported for primary ligand screening. A combination of fluorescence spectroscopy, AFM, CD, PAGE, and confocal microscopy have been used to assess a dimeric carbocyanine dye B6,5 for screening G4-binding ligands in vitro and in cellulo. The dye B6,5 interacts with physiologically relevant DNA and RNA G4 structures, resulting in fluorescence enhancement of the molecule as an in vitro readout for G4 selectivity. Interaction of the dye with G4 is accompanied by quadruplex stabilization that extends its use in primary screening of G4 specific ligands. The molecule is cell permeable and enables visualization of quadruplex dominated cellular regions of nucleoli using confocal microscopy. The dye is displaced by quarfloxin in live cells. The dye B6,5 shows remarkable duplex to quadruplex selectivity in vitro along with ligand-like stabilization of DNA G4 structures. Cell permeability and response to RNA G4 structures project the dye with interesting theranostic potential. Our results validate that B6,5 can serve the dual purpose of visualization of DNA and RNA G4 structures and screening of G4 specific ligands, and adds to the limited number of probes with such potential.
Collapse
Affiliation(s)
- Nakshi Desai
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Viraj Shah
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
| | - Bhaskar Datta
- Department of Biological Engineering, Indian Institute of Technology, Gandhinagar 382355, India; (N.D.); (V.S.)
- Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gandhinagar 382355, India
- Correspondence: ; Tel.: +91-79-2395-2427; Fax: +91-79-2397-2622
| |
Collapse
|
43
|
Regulation of DNA break repair by RNA. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:23-33. [PMID: 33385412 DOI: 10.1016/j.pbiomolbio.2020.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
Genomic stability is critical for cell survival and its effective repair when damaged is a vital process for preserving genetic information. Failure to correctly repair the genome can lead to the accumulation of mutations that ultimately drives carcinogenesis. Life has evolved sophisticated surveillance, repair pathways, and mechanisms to recognize and mend genomic lesions to preserve its integrity. Many of these pathways involve a cascade of protein effectors that act to identify the type of damage, such as double-strand (ds) DNA breaks, propagate the damage signal, and recruit an array of other protein factors to resolve the damage without loss of genetic information. It is now becoming increasingly clear that there are a number of RNA processing factors, such as the transcriptional machinery, and microRNA biogenesis components, as well as RNA itself, that facilitate the repair of DNA damage. Here, some of the recent work unravelling the role of RNA in the DNA Damage Response (DDR), in particular the dsDNA break repair pathway, will be reviewed.
Collapse
|