1
|
He S, Hao L, Chen Y, Gong B, Xu X. Chinese herbal Jianpi Jiedu formula suppressed colorectal cancer growth in vitro and in vivo via modulating hypoxia-inducible factor 1 alpha-mediated fibroblasts activation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118753. [PMID: 39209001 DOI: 10.1016/j.jep.2024.118753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jianpi Jiedu Formula (JPJDF) is a traditional Chinese medicinal decoction clinically used for its anti-cancer properties, particularly in colorectal cancer (CRC). AIM OF THE STUDY This study aims to investigate the therapeutic effects of JPJDF on CRC and elucidate its potential molecular mechanisms, with a focus on its impact on hypoxia-inducible factor 1 alpha (HIF1α) and cancer-associated fibroblasts (CAFs) both in vitro and in vivo. MATERIALS AND METHODS UPLC-Q-TOF-MS was used to identify the constituents of JPJDF. A chemical-induced colorectal cancer model was established and treated with JPJDF to evaluate its effects. Tumor size was measured, and histopathological analyses were performed to examine JPJDF's regulatory potential on CRC. The functional mechanism of JPJDF was predicted through network pharmacology, molecular docking, and transcriptomics. Co-culture techniques involving CRC cells and CCD-18Co fibroblasts were used to assess JPJDF's impact on fibroblast activation. The effects of HIF1α on CAFs were evaluated using CCK-8 proliferation, clonal formation, and apoptotic assays, with differential marker expression quantified via qPCR and Western blotting. RESULTS Pharmacodynamic assessment demonstrated that JPJDF reduced tumor size without affecting body weight, indicating its safety in the chemical-induced murine CRC model. Network pharmacology analysis, combined with molecular docking and transcriptomics, revealed that JPJDF regulates HIF-1 signaling pathways and identified HIF1α as a potential target for JPJDF's anti-CRC effect. JPJDF effectively suppressed CRC growth in vivo by attenuating fibroblast activation, reducing α-SMA expression and POSTN secretion through HIF1α inhibition. HIF1α knockdown in CRC cells inhibited fibroblast proliferation and clonal formation, while overexpression promoted these processes. Additionally, downregulating HIF1α suppressed α-SMA and POSTN expression in fibroblasts, whereas overexpression enhanced fibroblast activation. CONCLUSION JPJDF emerges as a promising therapeutic candidate for inhibiting CAFs activation by targeting HIF1α, offering potential avenues for modulating fibroblast activation towards CAFs in CRC therapy.
Collapse
Affiliation(s)
- Shenglan He
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Lixiao Hao
- Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Youlan Chen
- Institute of Integrated Traditional Chinese and Western Medicine Digestive Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Biao Gong
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Gastroenterology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xiaowen Xu
- Department of Digestive Endoscopy, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
2
|
Fang M, Yuan Y, Fox EM, Wu K, Tian X, Zhang L, Feng H, Li R, Bai L, Wang X, Yang Z, Zhang R, Wang J. Prevalence and genomic characteristics of becAB-carrying Clostridium perfringens strains. Food Microbiol 2025; 125:104640. [PMID: 39448149 DOI: 10.1016/j.fm.2024.104640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024]
Abstract
Clostridium perfringens, as a foodborne pathogen, can cause various intestinal diseases in both humans and animals according to its repertoire of toxins. In recent years, a multitude of studies have highlighted its threat to infants and young children. C. perfringens carries numerous toxins, with the newly identified BEC toxin confirmed as the second toxin to cause diarrheal illness, after CPE. However, the global dissemination of C. perfringens strains carrying becAB genes, which encode BEC toxins, has not been extensively studied. Following epidemiological surveillance of the prevalence of C. perfringens from different sources in various provinces of China, we identified two becAB-carrying strains and one strain carrying a sequence similar to becAB from distinct provinces and sources. When combined with genomic analysis of other becAB-carrying C. perfringens strains from public databases, we found that becAB was present in strains from different lineages. Our analysis of the plasmid and genetic environment corroborates previous findings on becAB-carrying strains, confirming that it currently achieves horizontal transmission through one type of evolutionarily conserved Pcp plasmid. This study provides a comprehensive analysis of the prevalence and transmission patterns of the newly emerged toxin gene locus, becAB, in C. perfringens. Despite the relatively low identification rate of becAB-carrying strains, their potential impact requires ongoing surveillance and investigation of their features, particularly their antimicrobial resistance.
Collapse
Affiliation(s)
- Mingjin Fang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Yuan Yuan
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Ke Wu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Xin Tian
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Likun Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Hang Feng
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Ruichao Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Li Bai
- Research Unit of Food Safety, Chinese Academy of Medical Sciences (No. 2019RU014), NHC Key Lab of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment (CFSA), Beijing, China
| | - Xinglong Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China
| | - Zengqi Yang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China.
| | - Rong Zhang
- Clinical Microbiology Laboratory, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Juan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China; Key Laboratory for Prevention and Control of Major Ruminant Diseases, Ministry of Agriculture and Rural Affairs, Yangling, China.
| |
Collapse
|
3
|
Liu Y, Min Z, Mo J, Ju Z, Chen J, Liang W, Zhang L, Li H, Chan GCF, Wei Y, Zhang W. ExomiRHub: A comprehensive database for hosting and analyzing human disease-related extracellular microRNA transcriptomics data. Comput Struct Biotechnol J 2024; 23:3104-3116. [PMID: 39219717 PMCID: PMC11362623 DOI: 10.1016/j.csbj.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Extracellular microRNA (miRNA) expression data generated by different laboratories exhibit heterogeneity, which poses challenges for biologists without bioinformatics expertise. To address this, we introduce ExomiRHub (http://www.biomedical-web.com/exomirhub/), a user-friendly database designed for biologists. This database incorporates 191 human extracellular miRNA expression datasets associated with 112 disease phenotypes, 62 treatments, and 24 genotypes, encompassing 29,198 and 23 sample types. ExomiRHub also integrates 16,012 miRNA transcriptomes of 156 cancer subtypes from The Cancer Genome Atlas. All the data in ExomiRHub were further standardized and curated with annotations. The platform offers 25 analytical functions, including differential expression, co-expression, Weighted Gene Co-Expression Network Analysis (WGCNA), feature selection, and functional enrichment, enabling users to select samples, define groups, and customize parameters for analyses. Moreover, ExomiRHub provides a web service that allows biologists to analyze their uploaded miRNA expression data. Four additional tools were developed to evaluate the functions and targets of miRNAs and miRNA variations. Through ExomiRHub, we identified extracellular miRNA biomarkers associated with angiogenesis for monitoring glioma progression, demonstrating its potential to significantly accelerate the discovery of extracellular miRNA biomarkers.
Collapse
Affiliation(s)
- Yang Liu
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhuochao Min
- School of Zoology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Mo
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| | - Zhen Ju
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianliang Chen
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Weiling Liang
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Lantian Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
| | - Hanguang Li
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Godfrey Chi-Fung Chan
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yanjie Wei
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- CAS Key Laboratory of Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenliang Zhang
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University; GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou 510182, China
- Center for High Performance Computing, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Pediatrics, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Bioinformatics, Outstanding Biotechnology Co., Ltd.-Shenzhen, Shenzhen 518026, China
| |
Collapse
|
4
|
Roessner C, Griep S, Becker A. A land plant phylogenetic framework for GLABROUS INFLORESCENCE STEMS (GIS), SUPERMAN, JAGGED and allies plus their TOPLESS co-repressor. Mol Phylogenet Evol 2024; 201:108195. [PMID: 39260627 DOI: 10.1016/j.ympev.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Members of the plant specific family of C1-1i zincfinger transcriptionfactors (ZF-TFs), such as SUPERMAN, JAGGED, KNUCKLES or GIS,regulatediversedevelopmental processes including sexual reproduction. C1-1is consist of one zinc-finger and one to two EAR domains, connected by large intrinsically disordered regions (IDR). While the role of C1-i1 ZF-TFs in development processes is well known for some genes in Arabidopsis, rice or tomatoa comprehensive and broadphylogenetic background is lacking, yet knowledge of orthology is a requirement for a better understanding of C1-1i-Zf-TFs diverse roles in plants. Here, we provide a fine-grained and land plant wide classification of C1-1i sub-families and their known co-repressors TOPLESS and TOPLESS RELATED. Our work combines the identification of orthologous groups with Maximum-Likelihood phylogeny reconstructions and digital gene expression analyses mining high quality land plant genomes and transcriptomes to generate a comprehensive framework of C1-1i ZF-TF evolution. We show that C1-1i's are low to moderate copy genesand that orthologous genesonly partiallyhaveconserved sub-family and life cycle stage dependent expression pattern across land plants while others are highly diverged. Our workprovides the phylogenetic framework for C1-1i ZF-TFs, s and strengthen C1-1 ZF-TFs as a potential model for IDR-research in plants.
Collapse
Affiliation(s)
| | - Sven Griep
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
5
|
Luna-Cerralbo D, Blasco-Machín I, Adame-Pérez S, Lampaya V, Larraga A, Alejo T, Martínez-Oliván J, Broset E, Bruscolini P. A statistical-physics approach for codon usage optimisation. Comput Struct Biotechnol J 2024; 23:3050-3064. [PMID: 39188969 PMCID: PMC11345917 DOI: 10.1016/j.csbj.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
The concept of "codon optimisation" involves adjusting the coding sequence of a target protein to account for the inherent codon preferences of a host species and maximise protein expression in that species. However, there is still a lack of consensus on the most effective approach to achieve optimal results. Existing methods typically depend on heuristic combinations of different variables, leaving the user with the final choice of the sequence hit. In this study, we propose a new statistical-physics model for codon optimisation. This model, called the Nearest-Neighbour interaction (NN) model, links the probability of any given codon sequence to the "interactions" between neighbouring codons. We used the model to design codon sequences for different proteins of interest, and we compared our sequences with the predictions of some commercial tools. In order to assess the importance of the pair interactions, we additionally compared the NN model with a simpler method (Ind) that disregards interactions. It was observed that the NN method yielded similar Codon Adaptation Index (CAI) values to those obtained by other commercial algorithms, despite the fact that CAI was not explicitly considered in the algorithm. By utilising both the NN and Ind methods to optimise the reporter protein luciferase, and then analysing the translation performance in human cell lines and in a mouse model, we found that the NN approach yielded the highest protein expression in vivo. Consequently, we propose that the NN model may prove advantageous in biotechnological applications, such as heterologous protein expression or mRNA-based therapies.
Collapse
Affiliation(s)
- David Luna-Cerralbo
- Department of Theoretical Physics, Faculty of Science, University of Zaragoza, c/ Pedro Cerbuna s/n, Zaragoza, 50009, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, c/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| | - Irene Blasco-Machín
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Susana Adame-Pérez
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Verónica Lampaya
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Ana Larraga
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Teresa Alejo
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Juan Martínez-Oliván
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Esther Broset
- Certest Pharma, Certest Biotec S.L, Polígono Industrial Río Gallego II, Calle J, 1, San Mateo de Gállego, 50840, Spain
| | - Pierpaolo Bruscolini
- Department of Theoretical Physics, Faculty of Science, University of Zaragoza, c/ Pedro Cerbuna s/n, Zaragoza, 50009, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, c/ Mariano Esquillor s/n, Zaragoza, 50018, Spain
| |
Collapse
|
6
|
Butterfield ER, Obado SO, Scutts SR, Zhang W, Chait BT, Rout MP, Field MC. A lineage-specific protein network at the trypanosome nuclear envelope. Nucleus 2024; 15:2310452. [PMID: 38605598 PMCID: PMC11018031 DOI: 10.1080/19491034.2024.2310452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 04/13/2024] Open
Abstract
The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.
Collapse
Affiliation(s)
| | - Samson O. Obado
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Simon R. Scutts
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Wenzhu Zhang
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Mark C. Field
- School of Life Sciences, University of Dundee, Dundee, UK
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Bai X, Goher F, Qu C, Guo J, Liu S, Pu L, Zhan G, Kang Z, Guo J. Soybean transcription factor GmNF-YB20 confers resistance to stripe rust in transgenic wheat by regulating nonspecific lipid transfer protein genes. PLANT, CELL & ENVIRONMENT 2024; 47:4932-4944. [PMID: 39115239 DOI: 10.1111/pce.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/18/2024] [Accepted: 07/26/2024] [Indexed: 11/06/2024]
Abstract
Worldwide food security is severely threatened by the devastating wheat stripe rust disease. The utilization of resistant wheat cultivars represents the most cost-effective and efficient strategy for combating this disease. However, the lack of resistant resources has been a major bottleneck in breeding for wheat disease resistance. Therefore, revealing novel gene resources for combating stripe rust and elucidating the underlying resistance mechanism is of utmost urgency. In this study, we identified that the soybean NF-YB transcription factor GmNF-YB20 in wheat provides resistance to the stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst). Wheat lines with stable overexpression of the GmNF-YB20 enhanced resistance against multiple Pst races. Transcriptome profiling of GmNF-YB20 transgenic wheat under Pst infection unveiled its involvement in the lipid signaling pathway. RT-qPCR assays suggested that GmNF-YB20 increased transcript levels of multiple nonspecific lipid transfer protein (LTP) genes during wheat-Pst interaction, luciferase reporter analysis illustrates that it activates the transcription of TaLTP1.50 in wheat protoplast, and GmNF-YB20 overexpressed wheat plants had higher total LTP content in vivo during Pst infection. Overexpression of TaLTP1.50 in wheat significantly increased resistance to Pst, whereas knockdown of TaLTP1.50 exhibited the opposite trends, indicating that TaLTP1.50 plays a positive role in wheat resistance. Taken together, our findings provide perspective regarding the molecular mechanism of GmNF-YB20 in wheat and highlight the potential use for wheat breeding.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Farhan Goher
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Chenfei Qu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jia Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Shuai Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Lefan Pu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Gangming Zhan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Zhang W, Li Y, Wang Q, Yu Q, Ma Y, Huang L, Zhang C, Yang Z, Wang J, Xiao H. Chromosome-level genome assembly of the medicinal insect Blaps rhynchopetera using Nanopore and Hi-C technologies. DNA Res 2024; 31:dsae027. [PMID: 39250428 DOI: 10.1093/dnares/dsae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/08/2024] [Accepted: 09/08/2024] [Indexed: 09/11/2024] Open
Abstract
Blaps rhynchopetera Fairmaire is a significant medicinal resource in southwestern China. We utilized Nanopore and Hi-C technologies in combination to generate a high-quality, chromosome-level assembly of the B. rhynchopetera genome and described its genetic features. Genome surveys revealed that B. rhynchopetera is a highly heterozygous species. The assembled genome was 379.24 Mb in size, of which 96.03% was assigned to 20 pseudochromosomes. A total of 212.93 Mb of repeat sequences were annotated, and 26,824 protein-coding genes and 837 noncoding RNAs were identified. Phylogenetic analysis indicated the divergence of the ancestors of B. rhynchopetera and its closely related species Tenebrio molitor at about 85.6 million years ago. The colinearity analysis showed that some chromosomes of B. rhynchopetera may have had fission events, and it has a good synteny relationship with Tribolium castaneum. Furthermore, in the enrichment analyses, the gene families related to detoxification and immunity of B. rhynchopetera facilitated the understanding of its environmental adaptations, which will serve as a valuable research resource for pest control strategies and conservation efforts of beneficial insects. This high-quality reference genome will also contribute to the conservation of insect species diversity and genetic resources.
Collapse
Affiliation(s)
- Wei Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Yue Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Qi Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Qun Yu
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Yuchen Ma
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Lei Huang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Zizhong Yang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Jiapeng Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| | - Huai Xiao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, Dali 671000, Yunnan Province, People's Republic of China
- National-Local Joint Engineering Research Center of Entomoceutics, Dali 671000, Yunnan Province, People's Republic of China
- College of Pharmacy, Dali University, Dali 671000, Yunnan Province, People's Republic of China
- School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, People's Republic of China
| |
Collapse
|
9
|
Dick JK, Sangala JA, Krishna VD, Khaimraj A, Hamel L, Erickson SM, Hicks D, Soigner Y, Covill LE, Johnson AK, Ehrhardt MJ, Ernste K, Brodin P, Koup RA, Khaitan A, Baehr C, Thielen BK, Henzler CM, Skipper C, Miller JS, Bryceson YT, Wu J, John CC, Panoskaltsis-Mortari A, Orioles A, Steiner ME, Cheeran MCJ, Pravetoni M, Hart GT. NK Cell and Monocyte Dysfunction in Multisystem Inflammatory Syndrome in Children. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1452-1466. [PMID: 39392378 PMCID: PMC11533154 DOI: 10.4049/jimmunol.2400395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024]
Abstract
Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection characterized by multiorgan involvement and inflammation. Testing of cellular function ex vivo to understand the aberrant immune response in MIS-C is limited. Despite strong Ab production in MIS-C, SARS-CoV-2 nucleic acid testing can remain positive for 4-6 wk postinfection. Therefore, we hypothesized that dysfunctional cell-mediated Ab responses downstream of Ab production may be responsible for delayed clearance of viral products in MIS-C. In MIS-C, monocytes were hyperfunctional for phagocytosis and cytokine production, whereas NK cells were hypofunctional for both killing and cytokine production. The decreased NK cell cytotoxicity correlated with an NK exhaustion marker signature and systemic IL-6 levels. Potentially providing a therapeutic option, cellular engagers of CD16 and SARS-CoV-2 proteins were found to rescue NK cell function in vitro. Taken together, our results reveal dysregulation in Ab-mediated cellular responses of myeloid and NK cells that likely contribute to the immune pathology of this disease.
Collapse
Affiliation(s)
- Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | - Jules A. Sangala
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| | | | - Aaron Khaimraj
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Lydia Hamel
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Spencer M. Erickson
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Yvette Soigner
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Laura E. Covill
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
| | - Alexander K. Johnson
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Michael J. Ehrhardt
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Keenan Ernste
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Petter Brodin
- Unit for Clinical Pediatrics, Department of Women’s and Children’s Health, Karolinska Institute, Solna, Sweden
- Department of Immunology and Inflammation, Imperial College London, London, United Kingdom
| | - Richard A. Koup
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Alka Khaitan
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
| | - Beth K. Thielen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | | | - Caleb Skipper
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Jeffrey S. Miller
- Center for Immunology, University of Minnesota, Minneapolis, MN
- Division of Hematology, Oncology, and Transplant, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - Yenan T. Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Division of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
- Broegelmann Laboratory, Department of Clinical Sciences, University of Bergen, Bergen, Norway
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Diseases & Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN
| | - Angela Panoskaltsis-Mortari
- Division of Bone Marrow Transplantation and Cellular Therapy, Department of Pediatrics, M Health Fairview Masonic Children’s Hospital, Minneapolis, MN
| | - Alberto Orioles
- Division of Critical Care, Children’s Hospital and Clinics of Minnesota, Minneapolis, MN
| | - Marie E. Steiner
- Divisions of Pediatric Critical Care and Pediatric Hematology/Oncology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN
| | - Maxim C. J. Cheeran
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN
| | - Marco Pravetoni
- Department of Pharmacology, University of Minnesota, Minneapolis, MN
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN
- Center for Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
10
|
Lan S, Zhai T, Zhang X, Xu L, Gao J, Lai C, Chen Y, Lai Z, Lin Y. Genome-wide identification and expression analysis of the GAD family reveal their involved in embryogenesis and hormones responses in Dimocarpus longan Lour. Gene 2024; 927:148698. [PMID: 38908456 DOI: 10.1016/j.gene.2024.148698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Glutamate decarboxylase (GAD) is involved in GABA metabolism and plays an essential regulatory role in plant growth, abiotic stresses, and hormone response. This study investigated the expression mechanism of the GAD family during longan early somatic embryogenesis (SE) and identified 6 GAD genes based on the longan genome. Homology analysis indicated that DlGAD genes had a closer relationship with dicotyledonous plants. The analysis of cis-acting elements in the promoter region suggests that the GAD genes were associated with various stress responses and hormones. RNA sequencing (RNA-Seq) and the qRT-PCR data indicated that most DlGAD genes were highly expressed in the incomplete compact pro-embryogenic cultures (ICpEC) and upregulated in longan embryogenic callus (EC) after treatments with 2,4-D, high temperature (35 °C), IAA, and ABA. Moreover, the RNA-Seq analysis also revealed that DlGADs exhibit different expression patterns in various tissues and organs. The subcellular localization results showed that DlGAD5 was localized in the cytoplasm, suggesting that it played a role in the cytoplasm. Transient overexpression of DlGAD5 enhanced the expression levels of DlGADs and increased the activity of glutamate decarboxylase in longan embryogenic callus (EC), while the content of glutamic acid decreased. Thus, the DlGAD gene can play an important role in the early somatic embryogenesis of longan by responding to hormones such as IAA and ABA. DlGAD5 can affect the growth and development of longan by stimulating the expression of the DlGAD gene family, thereby increasing the GAD activity in the early SE of longan, participating in hormone synthesis and signaling pathways.
Collapse
Affiliation(s)
- Shuoxian Lan
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Tingkai Zhai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xueying Zhang
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Luzhen Xu
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Jie Gao
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Chunwang Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yan Chen
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Yuling Lin
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| |
Collapse
|
11
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024; 15:e0199424. [PMID: 39373534 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-Yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
12
|
Pasquarelli RR, Quan JJ, Cheng ES, Yang V, Britton TA, Sha J, Wohlschlegel JA, Bradley PJ. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. mBio 2024; 15:e0238024. [PMID: 39345210 DOI: 10.1128/mbio.02380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles, which play essential roles in the parasite's lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here, we identify a Golgi-localizing protein (ULP1), which is structurally similar to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness that is the result of defects in microneme secretion, invasion, replication, and egress. Using ULP1 as bait for TurboID proximity labeling and immunoprecipitation, we identify 11 more Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii-conserved oligomeric Golgi (COG) complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these 11 proteins on parasite fitness. Together, this work reveals a diverse set of T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. IMPORTANCE Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world's population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite fitness and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labeling to identify 11 additional Golgi-associated proteins, which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Justin J Quan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily S Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Vivian Yang
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Timmie A Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - Peter J Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| |
Collapse
|
13
|
Castellanos LR, Chaffee R, Kumar H, Mezgebo BK, Kassau P, Peirano G, Pitout JDD, Kim K, Pillai DR. A novel machine-learning aided platform for rapid detection of urine ESBLs and carbapenemases: URECA-LAMP. J Clin Microbiol 2024; 62:e0086924. [PMID: 39445836 DOI: 10.1128/jcm.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/22/2024] [Indexed: 10/25/2024] Open
Abstract
Pathogenic gram-negative bacteria frequently carry genes encoding extended-spectrum beta-lactamases (ESBL) and/or carbapenemases. Of great concern are carbapenem resistant Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite the need for rapid AMR diagnostics globally, current molecular detection methods often require expensive equipment and trained personnel. Here, we present a novel machine-learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The platform consists of (i) an affordable device for sample lysis, LAMP amplification, and visual fluorometric detection; (ii) a LAMP screening panel to detect the most common ESBL and carbapenemase genes; and (iii) a smartphone application for automated interpretation of results. Validation studies on clinical isolates and urine samples demonstrated percent positive and negative agreements above 95% for all targets. Accuracy, precision, and recall values of the machine learning model deployed in the smartphone application were all above 92%. Providing a simplified workflow, minimal operation training, and results in less than an hour, this study demonstrated the platform's feasibility for near-patient testing in resource-limited settings.IMPORTANCEExtended-spectrum beta-lactamases (ESBL) and carbapenemases confer resistance to third-generation cephalosporins and carbapenems in pathogenic Gram-negative bacteria such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. Conventional antimicrobial susceptibility testing is based on phenotypic methods, and results can take several days to be obtained. Current genotypic detection methods can be rapid but require expensive equipment and trained personnel. In this study, we present a novel machine learning-aided platform for the rapid detection of ESBLs and carbapenemases using Loop-mediated isothermal Amplification (LAMP). The validation of the platform demonstrated percent positive and negative agreements above 95% for all targets. The newly developed platform provided a simplified workflow, minimal technical training, and results in less than an hour. This study demonstrated the platform's feasibility for rapid testing of ESBL and carbapenemases in bacteria and urine specimens.
Collapse
Affiliation(s)
- L Ricardo Castellanos
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Ryan Chaffee
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Hitendra Kumar
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore (IIT Indore), Indore, Madhya Pradesh, India
| | - Biniyam Kahsay Mezgebo
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Pawulos Kassau
- Amhara Public Health Institute, Amhara Bahir Dar, Ethiopia
| | - Gisele Peirano
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Johann D D Pitout
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| | - Keekyoung Kim
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, Alberta, Canada
| | - Dylan R Pillai
- Department of Pathology & Laboratory Medicine, Medicine, and Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Alberta Precision Laboratories, Calgary, Alberta, Canada
| |
Collapse
|
14
|
Ramarajan M, Devilla R, Dow L, Walsh N, Mead O, Zakeel MC, Gallart M, Richardson AE, Thatcher LF. Genomic and Untargeted Metabolomic Analysis of Secondary Metabolites in the Streptomyces griseoaurantiacus Strain MH191 Shows Media-Based Dependency for the Production of Bioactive Compounds with Potential Antifungal Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24432-24448. [PMID: 39440812 PMCID: PMC11544706 DOI: 10.1021/acs.jafc.4c04989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Streptomyces species can form beneficial relationships with hosts as endophytes, including the phytopathogen-inhibiting strain, Streptomyces griseoaurantiacusMH191, isolated from wheat plants. Using genomic characterization and untargeted metabolomics, we explored the capacity of strain MH191 to inhibit a range of fungal phytopathogens through the production of secondary metabolites. Complete genome assembly of strain MH191 predicted 24 biosynthetic gene clusters. Secondary metabolite production was assessed following culture on six different media, with the detection of 205 putative compounds. Members of the manumycin family, undecylprodigiosin, and desferrioxamine were identified as the predominant metabolites. Antifungal activity was validated for undecylprodigiosin and manumycin. These compounds were produced from different BGCs, which showed similarity to asukamycin, undecylprodigiosin, and FW0622 gene clusters, respectively. The growth of strain MH191 on different media illustrated the metabolic regulation of these gene clusters and the strain's extended chemical potential, with the asukamycin gene cluster alone, producing a variety of antifungal metabolites. The study highlights the extended chemical capability of strain MH191, which could be exploited as a biological control agent for designing future crop protection solutions.
Collapse
Affiliation(s)
- Margaret Ramarajan
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
| | - Rosangela Devilla
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
| | - Lachlan Dow
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
- CSIRO
Microbiomes for One Systems Health Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| | - Ned Walsh
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
- CSIRO
Microbiomes for One Systems Health Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| | - Oliver Mead
- CSIRO
Environment, PO Box 1700, Acton, ACT, Canberra 2601, Australia
- CSIRO
Advanced Engineering Biology Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| | | | - Marta Gallart
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
- CSIRO
Advanced Engineering Biology Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| | - Alan E. Richardson
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
- CSIRO
Microbiomes for One Systems Health Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| | - Louise F. Thatcher
- CSIRO
Agriculture and Food, PO Box 1700, Acton, ACT, Acton 2601, Australia
- CSIRO
Microbiomes for One Systems Health Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
- CSIRO
Advanced Engineering Biology Future Science Platform, PO Box 1700, Acton, ACT, Canberra 2601, Australia
| |
Collapse
|
15
|
Yates TM, Ansari M, Thompson L, Hunt SE, Uhalte EC, Hobson RJ, Marsh JA, Wright CF, Firth HV. Curating genomic disease-gene relationships with Gene2Phenotype (G2P). Genome Med 2024; 16:127. [PMID: 39506859 PMCID: PMC11539801 DOI: 10.1186/s13073-024-01398-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Genetically determined disorders are highly heterogenous in clinical presentation and underlying molecular mechanism. The evidence underpinning these conditions in the peer-reviewed literature requires robust critical evaluation for diagnostic use. Here, we present a structured curation process for Gene2Phenotype (G2P). This draws on multiple lines of clinical, bioinformatic and functional evidence. The process utilises and extends existing terminologies, allows for precise definition of the molecular basis of disease, and confidence levels to be attributed to a given gene-disease assertion. In-depth disease curation using this process will prove useful in applications including in diagnostics, research and development of targeted therapeutics. G2P: www.ebi.ac.uk/gene2phenotype .
Collapse
Affiliation(s)
- T Michael Yates
- School of Informatics, University of Edinburgh, Edinburgh, UK
- West of Scotland Clinical Genetics Service, Queen Elizabeth University Hospital, Glasgow, Queen, UK
| | - Morad Ansari
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | - Louise Thompson
- South East Scotland Genetic Service, Western General Hospital, Edinburgh, UK
| | - Sarah E Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Elena Cibrian Uhalte
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rachel J Hobson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Caroline F Wright
- Institute of Clinical and Biomedical Clinical Sciences, University of Exeter, Exeter, UK
| | - Helen V Firth
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- East Anglian Medical Genetics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| |
Collapse
|
16
|
Leifer VP, Fang F, Song L, Kim J, Papanikolaou JF, Smeeton J, Thomopoulos S. Single-cell RNA-sequencing analysis of immune and mesenchymal cell crosstalk in the developing enthesis. Sci Rep 2024; 14:26839. [PMID: 39500962 PMCID: PMC11538517 DOI: 10.1038/s41598-024-77958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autoimmunity underlies many painful disorders, such as enthesopathies, which localize to the enthesis. From infiltration of the synovium and axial skeleton by B cells, to disturbances in the ratio of M1/M2 enthesis macrophages, to CD8 + T cell mediated inflammation, autoimmune dysregulation is becoming increasingly well characterized in enthesopathies. Tissue resident B cells, macrophages, neutrophils, and T cells have also been localized in healthy human entheses. However, the potential developmental origins, presence, and role of immune cells (ICs) in enthesis development is not known. Here, we use single-cell RNA-sequencing analysis to describe IC subtypes present in the enthesis before, during, and after mineralization, and to infer regulatory interactions between ICs and mesenchymal cells (MCs). We report the presence of nine phenotypically distinct IC subtypes, including B cells, macrophages, neutrophils, and T cells. We find that specific IC subtypes may promote MC-proliferation and differentiation, and that MCs may regulate IC phenotype and autoimmunity. Our findings suggest that bidirectional regulatory interactions between ICs and MCs may be important to enthesis mineralization, and suggest that progenitor MCs have a unique ability to limit autoimmunity during development.
Collapse
Affiliation(s)
- Valia P Leifer
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Fei Fang
- Department Orthopedics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lee Song
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Jieon Kim
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - John F Papanikolaou
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA
| | - Joanna Smeeton
- Department of Rehabilitation and Regenerative Medicine, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
- Department of Genetics and Development, Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Columbia University, New York, NY, 10032, USA.
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
17
|
Johnston J, Jeon H, Choi YY, Kim G, Shi T, Khong C, Chang HC, Myung NV, Wang Y. Stimulative piezoelectric nanofibrous scaffolds for enhanced small extracellular vesicle production in 3D cultures. Biomater Sci 2024; 12:5728-5741. [PMID: 39403853 PMCID: PMC11474809 DOI: 10.1039/d4bm00504j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Small extracellular vesicles (sEVs) have great promise as effective carriers for drug delivery. However, the challenges associated with the efficient production of sEVs hinder their clinical applications. Herein, we report a stimulative 3D culture platform for enhanced sEV production. The proposed platform consists of a piezoelectric nanofibrous scaffold (PES) coupled with acoustic stimulation to enhance sEV production of cells in a 3D biomimetic microenvironment. Combining cell stimulation with a 3D culture platform in this stimulative PES enables a 15.7-fold increase in the production rate per cell with minimal deviations in particle size and protein composition compared with standard 2D cultures. We find that the enhanced sEV production is attributable to the activation and upregulation of crucial sEV production steps through the synergistic effect of stimulation and the 3D microenvironment. Moreover, changes in cell morphology lead to cytoskeleton redistribution through cell-matrix interactions in the 3D cultures. This in turn facilitates intracellular EV trafficking, which impacts the production rate. Overall, our work provides a promising 3D cell culture platform based on piezoelectric biomaterials for enhanced sEV production. This platform is expected to accelerate the potential use of sEVs for drug delivery and broad biomedical applications.
Collapse
Affiliation(s)
- James Johnston
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hyunsu Jeon
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yun Young Choi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Gaeun Kim
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Tiger Shi
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Courtney Khong
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Nosang Vincent Myung
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Yichun Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
18
|
Herrmannová A, Jelínek J, Pospíšilová K, Kerényi F, Vomastek T, Watt K, Brábek J, Mohammad MP, Wagner S, Topisirovic I, Valášek LS. Perturbations in eIF3 subunit stoichiometry alter expression of ribosomal proteins and key components of the MAPK signaling pathways. eLife 2024; 13:RP95846. [PMID: 39495207 PMCID: PMC11534336 DOI: 10.7554/elife.95846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Protein synthesis plays a major role in homeostasis and when dysregulated leads to various pathologies including cancer. To this end, imbalanced expression of eukaryotic translation initiation factors (eIFs) is not only a consequence but also a driver of neoplastic growth. eIF3 is the largest, multi-subunit translation initiation complex with a modular assembly, where aberrant expression of one subunit generates only partially functional subcomplexes. To comprehensively study the effects of eIF3 remodeling, we contrasted the impact of eIF3d, eIF3e or eIF3h depletion on the translatome of HeLa cells using Ribo-seq. Depletion of eIF3d or eIF3e, but not eIF3h reduced the levels of multiple components of the MAPK signaling pathways. Surprisingly, however, depletion of all three eIF3 subunits increased MAPK/ERK pathway activity. Depletion of eIF3e and partially eIF3d also increased translation of TOP mRNAs that encode mainly ribosomal proteins and other components of the translational machinery. Moreover, alterations in eIF3 subunit stoichiometry were often associated with changes in translation of mRNAs containing short uORFs, as in the case of the proto-oncogene MDM2 and the transcription factor ATF4. Collectively, perturbations in eIF3 subunit stoichiometry exert specific effect on the translatome comprising signaling and stress-related transcripts with complex 5' UTRs that are implicated in homeostatic adaptation to stress and cancer.
Collapse
Affiliation(s)
- Anna Herrmannová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Jan Jelínek
- Laboratory of Bioinformatics, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Klára Pospíšilová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Farkas Kerényi
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Tomáš Vomastek
- Laboratory of Cell Signaling, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Kathleen Watt
- Science for Life Laboratory, Department of Oncology-Pathology, Karolinska InstitutetSolnaSweden
| | - Jan Brábek
- Lady Davis Institute, Laboratory of Cancer Cell Invasion, Faculty of Science, Charles UniversityPragueCzech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Susan Wagner
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| | - Ivan Topisirovic
- Lady Davis Institute, Gerald Bronfman Department of Oncology, Department of Biochemistry, Division of Experimental Medicine, McGill UniversityMontréalCanada
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
19
|
Noguchi M, Toju H. Mycorrhizal and endophytic fungi structure forest below-ground symbiosis through contrasting but interdependent assembly processes. ENVIRONMENTAL MICROBIOME 2024; 19:84. [PMID: 39488693 PMCID: PMC11531145 DOI: 10.1186/s40793-024-00628-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Interactions between plants and diverse root-associated fungi are essential drivers of forest ecosystem dynamics. The symbiosis is potentially dependent on multiple ecological factors/processes such as host/symbiont specificity, background soil microbiome, inter-root dispersal of symbionts, and fungus-fungus interactions within roots. Nonetheless, it has remained a major challenge to reveal the mechanisms by which those multiple factors/processes determine the assembly of root-associated fungal communities. Based on the framework of joint species distribution modeling, we examined 1,615 root-tips samples collected in a cool-temperate forest to reveal how root-associated fungal community structure was collectively formed through filtering by host plants, associations with background soil fungi, spatial autocorrelation, and symbiont-symbiont interactions. In addition, to detect fungi that drive the assembly of the entire root-associated fungal community, we inferred networks of direct fungus-fungus associations by a statistical modeling that could account for implicit environmental effects. RESULTS The fine-scale community structure of root-associated fungi were best explained by the statistical model including the four ecological factors/processes. Meanwhile, among partial models, those including background soil fungal community structure and within-root fungus-fungus interactions showed the highest performance. When fine-root distributions were examined, ectomycorrhizal fungi tended to show stronger associations with background soil community structure and spatially autocorrelated patterns than other fungal guilds. In contrast, the distributions of root-endophytic fungi were inferred to depend greatly on fungus-fungus interactions. An additional statistical analysis further suggested that some endophytic fungi, such as Phialocephala and Leptodontidium, were placed at the core positions within the web of direct associations with other root-associated fungi. CONCLUSION By applying emerging statistical frameworks to intensive datasets of root-associated fungal communities, we demonstrated background soil fungal community structure and fungus-fungus associations within roots, as well as filtering by host plants and spatial autocorrelation in ecological processes, could collectively drive the assembly of root-associated fungi. We also found that basic assembly rules could differ between mycorrhizal and endophytic fungi, both of which were major components of forest ecosystems. Consequently, knowledge of how multiple ecological factors/processes differentially drive the assembly of multiple fungal guilds is indispensable for comprehensively understanding the mechanisms by which terrestrial ecosystem dynamics are organized by plant-fungal symbiosis.
Collapse
Affiliation(s)
- Mikihito Noguchi
- Center for Ecological Research, Kyoto University, Otsu, 520-2133, Shiga, Japan.
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan.
| | - Hirokazu Toju
- Laboratory of Ecosystems and Coevolution, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
- Center for Living Systems Information Science (CeLiSIS), Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
20
|
Schacksen PS, Østergaard SK, Eskildsen MH, Nielsen JL. Complete pipeline for Oxford Nanopore Technology amplicon sequencing (ONT-AmpSeq): from pre-processing to creating an operational taxonomic unit table. FEBS Open Bio 2024; 14:1779-1787. [PMID: 39109544 PMCID: PMC11532972 DOI: 10.1002/2211-5463.13868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 11/05/2024] Open
Abstract
Amplicon sequencing has long served as a robust method for characterising microbial communities, and despite inherent resolution limitations, it remains a preferred technique, offering cost- and time-effective insights into bacterial compositions. Here, we introduce ONT-AmpSeq, a user-friendly pipeline designed for processing amplicon sequencing data generated from Oxford Nanopore Technology (ONT) devices. Our pipeline enables efficient creation of taxonomically annotated operational taxonomic unit (OTU) tables from ONT sequencing data, with the flexibility to multiplex amplicons on the same barcode. The pipeline encompasses six main steps-statistics, quality filtering, alignment, clustering, polishing, and taxonomic classification-integrating various state-of-the-art software tools. We provide a detailed description of each step, along with performance tests and robustness evaluations using both test data and a ZymoBIOMICS® Microbial Community Standard mock community dataset. Our results demonstrate the ability of ONT-AmpSeq to effectively process ONT amplicon data, offering valuable insights into microbial community composition. Additionally, we discuss the influence of polishing tools on taxonomic insight and the impact of taxonomic annotation methods on the derived microbial composition. Overall, ONT-AmpSeq represents a comprehensive solution for analysing ONT amplicon sequencing data, facilitating streamlined and reliable microbial community analysis. The pipeline, along with test data, is freely available for public use.
Collapse
Affiliation(s)
| | | | | | - Jeppe Lund Nielsen
- Department of Chemistry and BioscienceAalborg UniversityAalborg EastDenmark
| |
Collapse
|
21
|
Nelson CH, Pandey UB. Function and dysfunction of GEMIN5: understanding a novel neurodevelopmental disorder. Neural Regen Res 2024; 19:2377-2386. [PMID: 38526274 PMCID: PMC11090446 DOI: 10.4103/nrr.nrr-d-23-01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/06/2023] [Accepted: 12/10/2023] [Indexed: 03/26/2024] Open
Abstract
The recent identification of a neurodevelopmental disorder with cerebellar atrophy and motor dysfunction (NEDCAM) has resulted in an increased interest in GEMIN5, a multifunction RNA-binding protein. As the largest member of the survival motor neuron complex, GEMIN5 plays a key role in the biogenesis of small nuclear ribonucleoproteins while also exhibiting translational regulatory functions as an independent protein. Although many questions remain regarding both the pathogenesis and pathophysiology of this new disorder, considerable progress has been made in the brief time since its discovery. In this review, we examine GEMIN5 within the context of NEDCAM, focusing on the structure, function, and expression of the protein specifically in regard to the disorder itself. Additionally, we explore the current animal models of NEDCAM, as well as potential molecular pathways for treatment and future directions of study. This review provides a comprehensive overview of recent advances in our understanding of this unique member of the survival motor neuron complex.
Collapse
Affiliation(s)
- Charles H. Nelson
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Udai B. Pandey
- Department of Pediatrics, Division of Child Neurology, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Children’s Neuroscience Institute, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Mabrouk I, Song Y, Liu Q, Ma J, Zhou Y, Yu J, Hou J, Hu X, Li X, Xue G, Cao H, Ma X, Xu J, Wang J, Pan H, Hua G, Hu J, Sun Y. Novel insights into the mechanisms of seasonal cyclicity of testicles by proteomics and transcriptomics analyses in goose breeder lines. Poult Sci 2024; 103:104213. [PMID: 39190991 PMCID: PMC11396066 DOI: 10.1016/j.psj.2024.104213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/08/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Spermatogenesis is a crucial indicator of geese reproduction performance and production. The testis is the main organ responsible for sperm production, and the egg-laying cycle in geese is a complex physiological process that demands precise orchestration of hormonal cues and cellular events within the testes, however, the seasonal changes in the transcriptomic and proteomic profiles of goose testicles remain unclear. To explore various aspects of the mechanisms of the seasonal cyclicity of testicles in different goose breeds, in this study, we used an integrative transcriptomic and proteomic approach to screen the key genes and proteins in the testes of 2 goose males, the Hungarian white goose and the Wanxi white goose, at 3 different periods of the laying cycle: beginning of laying cycle (BLC), peak of laying cycle (PLC), and end of laying cycle (ELC). The results showed that a total of 9,273 differentially expressed genes and 4,543 differentially expressed proteins were identified in the geese testicles among the comparison groups. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis suggested that the DEGs, in the comparison groups, were mainly enrichment in metabolic pathways, neuroactive ligand-receptor interaction, cyctokine-cyctokine receptor interaction, calcium signaling pathway, apelin signaling pathway, ether lipid metabolism, cysteine, and methionine metabolism. While the DEPs, in the 3 comparison groups, were mainly involved in the ribosome, metabolic pathways, carbon metabolism, proteasome, endocytosis, lysosome, regulation of actin cytoskeleton, oxidative phosphorylation, nucleocytoplasmic transport, and tight junction. The protein-protein interaction network analysis (PPI) indicated that selected DEPs, such as CHD1L, RAB18, FANCM, TAF5, TSC1/2, PHLDB2, DNAJA2, NCOA5, DEPTOR, TJP1, and RAPGEF2, were highly associated with male reproductive regulation. Further, the expression trends of 4 identified DEGs were validated by qRT-PCR. In conclusion, this work offers a new perspective on comprehending the molecular mechanisms and pathways involved in the seasonal cyclicity of testicles in the Hungarian white goose and the Wanxi white goose, as well as contributing to improving goose reproductive performance.
Collapse
Affiliation(s)
- Ichraf Mabrouk
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yupu Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Qiuyuan Liu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingyun Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yuxuan Zhou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jin Yu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jiahui Hou
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiangman Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xinyue Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guizhen Xue
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Heng Cao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Xiaoming Ma
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Xu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingbo Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Hongxiao Pan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Guoqing Hua
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Jingtao Hu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
| | - Yongfeng Sun
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Jilin Agricultural University, Ministry of Education, Changchun, 130118, China; Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
23
|
Leugger F, Schmidlin M, Lüthi M, Kontarakis Z, Pellissier L. Scanning amplicons with CRISPR-Dx detects endangered amphibians in environmental DNA. Mol Ecol Resour 2024; 24:e14009. [PMID: 39152661 DOI: 10.1111/1755-0998.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/25/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
More efficient methods for extensive biodiversity monitoring are required to support rapid measures to address the biodiversity crisis. While environmental DNA (eDNA) metabarcoding and quantitative PCR (qPCR) methods offer advantages over traditional monitoring approaches, their large-scale application is limited by the time and labour required for developing assays and/or for analysis. CRISPR (clustered regularly interspaced short palindromic repeats) diagnostic technologies (Dx) may overcome some of these limitations, but they have been used solely with species-specific primers, restricting their versatility for biodiversity monitoring. Here, we demonstrate the feasibility of designing species-specific CRISPR-Dx assays in silico within a short metabarcoding fragment using a general primer set, a methodology we term 'ampliscanning', for 18 of the 22 amphibian species in Switzerland. We sub-selected nine species, including three classified as regionally endangered, to test the methodology using eDNA sampled from ponds at nine sites. We compared the ampliscanning detections to data from traditional monitoring at these sites. Ampliscanning was successful at detecting target species with different prevalences across the landscape. With only one visit, we detected more species per site than three traditional monitoring visits (visual and acoustic detections by trained experts), in particular more elusive species and previously undocumented but expected populations. Ampliscanning detected 25 species/site combinations compared to 12 with traditional monitoring. Sensitivity analyses showed that larger numbers of field visits and PCR replicates are more important for reliable detection than many technical replicates at the CRISPR-Dx assay level. Given the reduced sampling and analysis effort, our results highlight the benefits of eDNA and CRISPR-Dx combined with universal primers for large-scale monitoring of multiple endangered species across landscapes to inform conservation measures.
Collapse
Affiliation(s)
- Flurin Leugger
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Michel Schmidlin
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Martina Lüthi
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Zacharias Kontarakis
- Genome Engineering and Measurement Lab, Functional Genomic Center Zurich, ETH Zürich, Zürich, Switzerland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, ETH Zürich, Zürich, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| |
Collapse
|
24
|
Harding-Crooks R, Jones AL, Smith DL, Fanning S, Fox EM. Profiling the Enterobacterales Community Isolated from Retail Foods in England. J Food Prot 2024; 87:100369. [PMID: 39366658 DOI: 10.1016/j.jfp.2024.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 08/21/2024] [Accepted: 09/28/2024] [Indexed: 10/06/2024]
Abstract
Enterobacterales include foodborne pathogens of importance to public health and are often targeted in food surveillance programs as both safety and hygiene indicators. Furthermore, Enterobacterales are important in the context of antimicrobial resistance dissemination, also impacting infection treatment efficacy. In this study, the prevalence and characteristics of Enterobacterales in UK retail foods were examined. From 110 retail food samples, 253 Enterobacterales were recovered, with 16S rRNA sequencing revealing a diverse species community, including enteropathogens; the most common were Proteus mirabilis and Escherichia coli (18% each). Antimicrobial resistance was common, with 160/253 (63%) isolates being resistant to at least 1 antimicrobial. Resistance to all tested antimicrobials was observed. Thirteen percent of isolates were multidrug resistant, including 2 isolates each resistant to 8 or 9 of 9 antimicrobials tested. Klebsiella isolates possessed relatively higher levels of antimicrobial resistance to other species. Hafnia, Kluyvera, and Proteus isolates produced significantly higher biofilm biomass than Klebsiella (p = 0.038, 0.028, and 0.042, respectively) or Escherichia (p = 0.001, 0.008, and 0.001, respectively). Simultaneous curli fimbriae and cellulose production was noted in 7% of isolates at 37 °C, but not at 15 °C. This research demonstrates a high diversity of Enterobacterales within UK retail foods, alongside notable antimicrobial resistance phenotypes in enteropathogenic species, highlighting the need for effective surveillance and interventions.
Collapse
Affiliation(s)
- Richard Harding-Crooks
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Amanda L Jones
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Darren L Smith
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Dublin D04 N2E5, Ireland; Institute for Global Food Security, Queen's University Belfast, Chlorine Gardens, Belfast BT5 6AG, United Kingdom
| | - Edward M Fox
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, United Kingdom.
| |
Collapse
|
25
|
Nino Barreat JG, Katzourakis A. Deep mining reveals the diversity of endogenous viral elements in vertebrate genomes. Nat Microbiol 2024; 9:3013-3024. [PMID: 39438719 PMCID: PMC11521997 DOI: 10.1038/s41564-024-01825-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/06/2024] [Indexed: 10/25/2024]
Abstract
Integration of viruses into host genomes can give rise to endogenous viral elements (EVEs), which provide insights into viral diversity, host range and evolution. A systematic search for EVEs is becoming computationally challenging given the available genomic data. We used a cloud-computing approach to perform a comprehensive search for EVEs in the kingdoms Shotokuvirae and Orthornavirae across vertebrates. We identified 2,040 EVEs in 295 vertebrate genomes and provide evidence for EVEs belonging to the families Chuviridae, Paramyxoviridae, Nairoviridae and Benyviridae. We also find an EVE from the Hepacivirus genus of flaviviruses with orthology across murine rodents. In addition, our analyses revealed that reptarenaviruses and filoviruses probably acquired their glycoprotein ectodomains three times independently from retroviral elements. Taken together, these findings encourage the addition of 4 virus families and the Hepacivirus genus to the growing virus fossil record of vertebrates, providing key insights into their natural history and evolution.
Collapse
|
26
|
Vajente M, Clerici R, Ballerstedt H, Blank LM, Schmidt S. Using Cupriavidus necator H16 to Provide a Roadmap for Increasing Electroporation Efficiency in Nonmodel Bacteria. ACS Synth Biol 2024. [PMID: 39482869 DOI: 10.1021/acssynbio.4c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Bacteria are a treasure trove of metabolic reactions, but most industrial biotechnology applications rely on a limited set of established host organisms. In contrast, adopting nonmodel bacteria for the production of various chemicals of interest is often hampered by their limited genetic amenability coupled with their low transformation efficiency. In this study, we propose a series of steps that can be taken to increase electroporation efficiency in nonmodel bacteria. As a test strain, we use Cupriavidus necator H16, a lithoautotrophic bacterium that has been engineered to produce a wide range of products from CO2 and hydrogen. However, its low electroporation efficiency hampers the high-throughput genetic engineering required to develop C. necator into an industrially relevant host organism. Thus, conjugation has often been the method of choice for introducing exogenous DNA, especially when introducing large plasmids or suicide plasmids. We first propose a species-independent technique based on natively methylated DNA and Golden Gate assembly to increase one-pot cloning and electroporation efficiency by 70-fold. Second, bioinformatic tools were used to predict defense systems and develop a restriction avoidance strategy that was used to introduce suicide plasmids by electroporation to obtain a domesticated strain. The results are discussed in the context of metabolic engineering of nonmodel bacteria.
Collapse
Affiliation(s)
- Matteo Vajente
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Riccardo Clerici
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Hendrik Ballerstedt
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Lars M Blank
- Institute of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
27
|
Liu K, Xie N. Full-length transcriptome assembly of black amur bream (Megalobrama terminalis) as a reference resource. Mol Biol Rep 2024; 51:1101. [PMID: 39470845 DOI: 10.1007/s11033-024-10056-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND The genus Megalobrama holds significant economic value in China, with M. terminalis (Black Amur bream) ranking second in production within this group. However, lacking comprehensive genomic and transcriptomic data has impeded research progress. This study aims to fill this gap through an extensive transcriptomic analysis of M. terminalis. METHODS AND RESULTS We utilized PacBio Isoform Sequencing to generate 558,998 subreads, totaling 45.52 Gb, which yielded 22,141 transcripts after rigorous filtering and clustering. Complementary Illumina short-read sequencing corrected 967,114 errors across these transcripts. Our analysis identified 12,426 non-redundant isoforms, with 11,872 annotated in various databases. Functional annotation indicated 11,841 isoforms matched entries in the NCBI non-redundant protein sequences database. Gene Ontology analysis categorized 10,593 isoforms, revealing strong associations with cellular processes and binding functions. Additionally, 8203 isoforms were mapped to pathways in the Kyoto Encyclopedia of Genes and Genomes, highlighting significant involvement in immune system processes and complement cascades. We notably identified key immune molecules such as alpha-2-macroglobulin and complement component 3, each with multiple isoforms, underscoring their potential roles in the immune response. Our analysis also uncovered 853 alternative splicing events, predominantly involving retained introns, along with 672 transcription factors and 426 long non-coding RNAs. CONCLUSIONS The high-quality reference transcriptome generated in this study provides a valuable resource for comparative genomic studies within the Megalobrama genus, supporting future research to enhance aquaculture stocks.
Collapse
Affiliation(s)
- Kai Liu
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China.
| | - Nan Xie
- Institute of Fishery Science, Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| |
Collapse
|
28
|
Zhan K, Chen S, Ji L, Xu L, Zhang Y, Zhang Q, Dai Q, Wu S. Network pharmacology to unveil the mechanism of Astragali Radix in the treatment of lupus nephritis via PI3K/AKT/mTOR pathway. Sci Rep 2024; 14:25983. [PMID: 39472740 PMCID: PMC11522298 DOI: 10.1038/s41598-024-77897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
We used network pharmacology, molecular docking, and in vitro experiments to explore the mechanisms of Astragali Radix in the treatment of lupus nephritis. We screened compounds and targets of Astragali Radix, as well as related genes of lupus nephritis from databases. We identified 211 common genes and 44 compounds between the herb and the disease, and constructed global, narrowed, hierarchical Compound-Target Interaction networks to illustrate the possible mechanism. We found that the PI3K/AKT/mTOR pathway is a core target gene set identified through enrichment analysis, PPI analysis and MCODE analysis. In vitro experiments showed that freeze-dried Astragali powder inhibits activation of PI3K, AKT1 and mTOR in TGF-β1 stimulated HK-2 cells. Molecular docking demonstrated that (R)-isomucronulatol, 3,9,10-trimethoxypterocarpan and astrapterocarpan exhibited promising binding affinity to PI3K, AKT, and mTOR proteins.
Collapse
Affiliation(s)
- Kuijun Zhan
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuo Chen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lina Ji
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Liping Xu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Yan Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qi Zhang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Qiaoding Dai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| | - Shan Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
| |
Collapse
|
29
|
Mogollón García HD, de Andrade Ferrazza R, Ochoa JC, de Athayde FF, Vidigal PMP, Wiltbank M, Kastelic JP, Sartori R, Ferreira JCP. Landscape transcriptomic analysis of bovine follicular cells during key phases of ovarian follicular development. Biol Res 2024; 57:76. [PMID: 39468655 PMCID: PMC11514973 DOI: 10.1186/s40659-024-00558-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND There are many gaps in our understanding of the mechanisms involved in ovarian follicular development in cattle, particularly regarding follicular deviation, acquisition of ovulatory capacity, and preovulatory changes. Molecular evaluations of ovarian follicular cells during follicular development in cattle, especially serial transcriptomic analyses across key growth phases, have not been reported. This study aims to address this gap by analyzing gene expression using RNA-seq in granulosa and antral cells recovered from ovarian follicular fluid during critical phases of ovarian follicular development in Holstein cows. RESULTS Integrated analysis of gene ontology (GO), gene set enrichment (GSEA), protein-protein interaction (PPI), and gene topology identified that differentially expressed genes (DEGs) in the largest ovarian follicles at deviation (Dev) were primarily involved in FSH-negative feedback, steroidogenesis, cell proliferation, apoptosis, and the prevention of early follicle rupture. In contrast, DEGs in the second largest follicles (DevF2) were mainly related to loss of cell viability, apoptosis, and immune cell invasion. In the dominant (PostDev) and preovulatory (PreOv) follicles, DEGs were associated with vascular changes and inflammatory responses. CONCLUSIONS The transcriptome of ovarian follicular fluid cells had a predominance of granulosa cells in the dominant follicle at deviation, with upregulation of genes involved in cell viability, steroidogenesis, and apoptosis prevention, whereas in the non-selected follicle there was upregulation of cell death-related transcripts. Immune cell transcripts increased significantly after deviation, particularly in preovulatory follicles, indicating strong intrafollicular chemotactic activity. We inferred that immune cell invasion occurred despite an intact basal lamina, contributing to follicular maturation.
Collapse
Affiliation(s)
- Henry David Mogollón García
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
- Department of Genetic, Evolution, Microbiology and Immunology. Biology Institute, Campinas State University, Campinas, São Paulo, Brazil
- Computational Systems Biology Laboratory (CSBL), Institut Pasteur, University of São Paulo (USP), São Paulo, Brazil
| | | | - Julian Camilo Ochoa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil
| | - Flávia Florencio de Athayde
- Department of Animal Production and Health, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | | | - Milo Wiltbank
- Department of Animal & Dairy Sciences, University of Wisconsin-Madison, Madison, USA
| | | | - Roberto Sartori
- Department of Animal Science, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Carlos Pinheiro Ferreira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Rua Prof. Doutor Walter Mauricio Correa, s/n, Botucatu, São Paulo, 18618-681, Brazil.
| |
Collapse
|
30
|
Filipek K, Blanchet S, Molestak E, Zaciura M, Wu CCC, Horbowicz-Drożdżal P, Grela P, Zalewski M, Kmiecik S, González-Ibarra A, Krokowski D, Latoch P, Starosta AL, Mołoń M, Shao Y, Borkiewicz L, Michalec-Wawiórka B, Wawiórka L, Kubiński K, Socała K, Wlaź P, Cunningham KW, Green R, Rodnina MV, Tchórzewski M. Phosphorylation of P-stalk proteins defines the ribosomal state for interaction with auxiliary protein factors. EMBO Rep 2024:10.1038/s44319-024-00297-1. [PMID: 39468350 DOI: 10.1038/s44319-024-00297-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/03/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
Ribosomal action is facilitated by the orchestrated work of trans-acting factors and ribosomal elements, which are subject to regulatory events, often involving phosphorylation. One such element is the ribosomal P-stalk, which plays a dual function: it activates translational GTPases, which support basic ribosomal functions, and interacts with the Gcn2 kinase, linking the ribosomes to the ISR pathway. We show that P-stalk proteins, which form a pentamer, exist in the cell exclusively in a phosphorylated state at five C-terminal domains (CTDs), ensuring optimal translation (speed and accuracy) and may play a role in the timely regulation of the Gcn2-dependent stress response. Phosphorylation of the CTD induces a structural transition from a collapsed to a coil-like structure, and the CTD gains conformational freedom, allowing specific but transient binding to various protein partners, optimizing the ribosome action. The report reveals a unique feature of the P-stalk proteins, indicating that, unlike most ribosomal proteins, which are regulated by phosphorylation in an on/off manner, the P-stalk proteins exist in a constantly phosphorylated state, which optimizes their interaction with auxiliary factors.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sandra Blanchet
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute for Integrative Biology of the Cell, I2BC, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eliza Molestak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Monika Zaciura
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Colin Chih-Chien Wu
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Section of Translational Control of Gene Expression, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Patrycja Horbowicz-Drożdżal
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Grela
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Mateusz Zalewski
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Alan González-Ibarra
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Dawid Krokowski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Przemysław Latoch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agata L Starosta
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Mołoń
- Institute of Biology, University of Rzeszow, Rzeszow, Poland
| | - Yutian Shao
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Lidia Borkiewicz
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Aleje Racławickie 1, 20-059, Lublin, Poland
| | - Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Leszek Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Konrad Kubiński
- Department of Molecular Biology, Institute of Biological Sciences, John Paul II Catholic University of Lublin, Lublin, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Kyle W Cunningham
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| | - Rachel Green
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland.
| |
Collapse
|
31
|
Egan JP, Simons AM, Alavi-Yeganeh MS, Hammer MP, Tongnunui P, Arcila D, Betancur-R R, Bloom DD. Phylogenomics, Lineage Diversification Rates, and the Evolution of Diadromy in Clupeiformes (Anchovies, Herrings, Sardines, and Relatives). Syst Biol 2024; 73:683-703. [PMID: 38756097 DOI: 10.1093/sysbio/syae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024] Open
Abstract
Migration independently evolved numerous times in animals, with a myriad of ecological and evolutionary implications. In fishes, perhaps the most extreme form of migration is diadromy, the migration between marine and freshwater environments. Key and long-standing questions are: how many times has diadromy evolved in fishes, how frequently do diadromous clades give rise to non-diadromous species, and does diadromy influence lineage diversification rates? Many diadromous fishes have large geographic ranges with constituent populations that use isolated freshwater habitats. This may limit gene flow between some populations, increasing the likelihood of speciation in diadromous lineages relative to nondiadromous lineages. Alternatively, diadromy may reduce lineage diversification rates if migration is associated with enhanced dispersal capacity that facilitates gene flow within and between populations. Clupeiformes (herrings, sardines, shads, and anchovies) is a model clade for testing hypotheses about the evolution of diadromy because it includes an exceptionally high proportion of diadromous species and several independent evolutionary origins of diadromy. However, relationships among major clupeiform lineages remain unresolved, and existing phylogenies sparsely sampled diadromous species, limiting the resolution of phylogenetically informed statistical analyses. We assembled a phylogenomic dataset and used multi-species coalescent and concatenation-based approaches to generate the most comprehensive, highly resolved clupeiform phylogeny to date, clarifying associations among several major clades and identifying recalcitrant relationships needing further examination. We determined that variation in rates of sequence evolution (heterotachy) and base-composition (nonstationarity) had little impact on our results. Using this phylogeny, we characterized evolutionary patterns of diadromy and tested for differences in lineage diversification rates between diadromous, marine, and freshwater lineages. We identified 13 transitions to diadromy, all during the Cenozoic Era (10 origins of anadromy, 2 origins of catadromy, and 1 origin of amphidromy), and 7 losses of diadromy. Two diadromous lineages rapidly generated nondiadromous species, demonstrating that diadromy is not an evolutionary dead end. We discovered considerably faster transition rates out of diadromy than to diadromy. The largest lineage diversification rate increase in Clupeiformes was associated with a transition to diadromy, but we uncovered little statistical support for categorically faster lineage diversification rates in diadromous versus nondiadromous fishes. We propose that diadromy may increase the potential for accelerated lineage diversification, particularly in species that migrate long distances. However, this potential may only be realized in certain biogeographic contexts, such as when diadromy allows access to ecosystems in which there is limited competition from incumbent species.
Collapse
Affiliation(s)
- Joshua P Egan
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
| | - Andrew M Simons
- Bell Museum of Natural History, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, Saint Paul, MN 55108, USA
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, 2003 Upper Buford Circle, Saint Paul, MN 55108, USA
| | | | - Michael P Hammer
- Museum and Art Gallery of the Northern Territory, GPO Box 4646, Darwin, NT 0801, Australia
| | - Prasert Tongnunui
- Department of Marine Science and Environment, Faculty of Science and Fisheries Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang 92150, Thailand
| | - Dahiana Arcila
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Ricardo Betancur-R
- Scripps Institution of Oceanography, University of California - San Diego, La Jolla, CA 92093, USA
| | - Devin D Bloom
- Department of Biological Sciences, Western Michigan University, 1903 W Michigan Ave., Kalamazoo, MI 49008, USA
- School of the Environment, Geography, and Sustainability, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI 49008, USA
| |
Collapse
|
32
|
Sullivan A, Lombardo MN, Pasha A, Lau V, Zhuang JY, Christendat A, Pereira B, Zhao T, Li Y, Wong R, Qureshi FZ, Provart NJ. 20 years of the Bio-Analytic Resource for Plant Biology. Nucleic Acids Res 2024:gkae920. [PMID: 39441075 DOI: 10.1093/nar/gkae920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The Bio-Analytic Resource for Plant Biology ('the BAR', at https://bar.utoronto.ca) is celebrating its 20th year in operation in 2025. The BAR encompasses and provides visualization tools for large 'omics data sets from plants. The BAR covers data from Arabidopsis, tomato, wheat, barley and 29 other plant species (with data for 2 others to be released soon). These data include nucleotide and protein sequence data, gene expression data, protein-protein and protein-DNA interactions, protein structures, subcellular localizations, and polymorphisms. The data are stored in more than 200 relational databases holding 186 GB of data and are presented to the researchers via web apps. These web apps provide data analysis and visualization tools. Some of the most popular tools are eFP ('electronic fluorescent pictograph') Browsers, ePlants and ThaleMine (an Arabidopsis-specific instance of InterMine). The BAR was designated a Global Core Biodata Resource in 2023. Like other GCBRs, the BAR has excellent operational stability, provides access without login requirement, and provides an API for researchers to be able to access BAR data programmatically. We present in this update a new overarching search tool called Gaia that permits easy access to all BAR data, powered by machine learning and artificial intelligence.
Collapse
Affiliation(s)
- Alexander Sullivan
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Michael N Lombardo
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Vincent Lau
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Jian Yun Zhuang
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Ashley Christendat
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Bruno Pereira
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Tianhui Zhao
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Youyang Li
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Rachel Wong
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| | - Faisal Z Qureshi
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa ON L1G OC5, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology/Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks Street, Toronto, ON M5S 3B2, Canada
| |
Collapse
|
33
|
Bullows JE, Kanak A, Shedrick L, Kiessling C, Aklujkar M, Kostka J, Chin KJ. Anaerobic benzene oxidation in Geotalea daltonii involves activation by methylation and is regulated by the transition state regulator AbrB. Appl Environ Microbiol 2024; 90:e0085624. [PMID: 39287397 PMCID: PMC11497800 DOI: 10.1128/aem.00856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/18/2024] [Indexed: 09/19/2024] Open
Abstract
Benzene is a widespread groundwater contaminant that persists under anoxic conditions. The aim of this study was to more accurately investigate anaerobic microbial degradation pathways to predict benzene fate and transport. Preliminary genomic analysis of Geotalea daltonii strain FRC-32, isolated from contaminated groundwater, revealed the presence of putative aromatic-degrading genes. G. daltonii was subsequently shown to conserve energy for growth on benzene as the sole electron donor and fumarate or nitrate as the electron acceptor. The hbs gene, encoding for 3-hydroxybenzylsuccinate synthase (Hbs), a homolog of the radical-forming, toluene-activating benzylsuccinate synthase (Bss), was upregulated during benzene oxidation in G. daltonii, while the bss gene was upregulated during toluene oxidation. Addition of benzene to the G. daltonii whole-cell lysate resulted in toluene formation, indicating that methylation of benzene was occurring. Complementation of σ54- (deficient) E. coli transformed with the bss operon restored its ability to grow in the presence of toluene, revealing bss to be regulated by σ54. Binding sites for σ70 and the transition state regulator AbrB were identified in the promoter region of the σ54-encoding gene rpoN, and binding was confirmed. Induced expression of abrB during benzene and toluene degradation caused G. daltonii cultures to transition to the death phase. Our results suggested that G. daltonii can anaerobically oxidize benzene by methylation, which is regulated by σ54 and AbrB. Our findings further indicated that the benzene, toluene, and benzoate degradation pathways converge into a single metabolic pathway, representing a uniquely efficient approach to anaerobic aromatic degradation in G. daltonii. IMPORTANCE The contamination of anaerobic subsurface environments including groundwater with toxic aromatic hydrocarbons, specifically benzene, toluene, ethylbenzene, and xylene, has become a global issue. Subsurface groundwater is largely anoxic, and further study is needed to understand the natural attenuation of these compounds. This study elucidated a metabolic pathway utilized by the bacterium Geotalea daltonii capable of anaerobically degrading the recalcitrant molecule benzene using a unique activation mechanism involving methylation. The identification of aromatic-degrading genes and AbrB as a regulator of the anaerobic benzene and toluene degradation pathways provides insights into the mechanisms employed by G. daltonii to modulate metabolic pathways as necessary to thrive in anoxic contaminated groundwater. Our findings contribute to the understanding of novel anaerobic benzene degradation pathways that could potentially be harnessed to develop improved strategies for bioremediation of groundwater contaminants.
Collapse
Affiliation(s)
- James E. Bullows
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Alison Kanak
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | - Lawrence Shedrick
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| | | | - Muktak Aklujkar
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Joel Kostka
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kuk-Jeong Chin
- Department of Biology, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
34
|
Eberwein M, Hellmold N, Frank R, Deobald D, Adrian L. Reductive dehalogenase of Dehalococcoides mccartyi strain CBDB1 reduces cobalt- containing metal complexes enabling anodic respiration. Front Microbiol 2024; 15:1457014. [PMID: 39507334 PMCID: PMC11537884 DOI: 10.3389/fmicb.2024.1457014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024] Open
Abstract
Microorganisms capable of direct or mediated extracellular electron transfer (EET) have garnered significant attention for their various biotechnological applications, such as bioremediation, metal recovery, wastewater treatment, energy generation in microbial fuel cells, and microbial or enzymatic electrosynthesis. One microorganism of particular interest is the organohalide-respiring bacterium Dehalococcoides mccartyi strain CBDB1, known for its ability to reductively dehalogenate toxic and persistent halogenated organic compounds through organohalide respiration (OHR), using halogenated organics as terminal electron acceptors. A membrane-bound OHR protein complex couples electron transfer to proton translocation across the membrane, generating a proton motive force, which enables metabolism and proliferation. In this study we show that the halogenated compounds can be replaced with redox mediators that can putatively shuttle electrons between the OHR complex and the anode, coupling D. mccartyi cells to an electrode via mediated EET. We identified cobalt-containing metal complexes, referred to as cobalt chelates, as promising mediators using a photometric high throughput methyl viologen-based enzyme activity assay. Through various biochemical approaches, we show that cobalt chelates are specifically reduced by CBDB1 cells, putatively by the reductive dehalogenase subunit (RdhA) of the OHR complex. Using cyclic voltammetry, we also demonstrate that cobalt chelates exchange electrons with a gold electrode, making them promising candidates for bioelectrochemical cultivation. Furthermore, using the AlphaFold 2-calculated RdhA structure and molecular docking, we found that one of the identified cobalt chelates exhibits favorable binding to RdhA, with a binding energy of approximately -28 kJ mol-1. Taken together, our results indicate that bioelectrochemical cultivation of D. mccartyi with cobalt chelates as anode mediators, instead of toxic halogenated compounds, is feasible, which opens new perspectives for bioremediation and other biotechnological applications of strain CBDB1.
Collapse
Affiliation(s)
- Marie Eberwein
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Nadine Hellmold
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Ronny Frank
- Centre for Biotechnology and Biomedicine, Biochemical Cell Technology, Leipzig University, Leipzig, Germany
| | - Darja Deobald
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
| | - Lorenz Adrian
- Department Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany
- Department of Geobiotechnology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
35
|
Mahdeen AA, Hossain I, Masum MHU, Islam S, Rabbi TMF. Designing novel multiepitope mRNA vaccine targeting Hendra virus (HeV): An integrative approach utilizing immunoinformatics, reverse vaccinology, and molecular dynamics simulation. PLoS One 2024; 19:e0312239. [PMID: 39441880 PMCID: PMC11498705 DOI: 10.1371/journal.pone.0312239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Human and animal health is threatened by Hendra virus (HeV), which has few treatments. This in-silico vaccine design study focuses on HeV G (glycoprotein), F (fusion protein), and M (matrix protein). These proteins were computationally assessed for B and T-cell epitopes after considering HeV strain conservation, immunogenicity, and antigenicity. To improve vaccination immunogenicity, these epitopes were selectively ligated into a multiepitope construct. To improve vaccination longevity and immunological response, adjuvants and linkers were ligated. G, F, and M epitopes were used to create an mRNA HeV vaccine. Cytotoxic, helper, and linear B-lymphocytes' epitopes are targeted by this vaccine. The population coverage analysis demonstrates that multi-epitope vaccination covers 91.81 percent of CTL and 98.55 percent of HTL epitopes worldwide. GRAVY evaluated the vaccine's well-characterized physicochemical properties -0.503, indicating solubility and functional stability. Structure analysis showed well-stabilized 2° and 3° structures in the vaccine, with alpha helix, beta sheet, and coil structures (Ramachandran score of 88.5% and Z score of -3.44). There was a strong affinity as shown by docking tests with TLR-4 (central score of -1139.4 KJ/mol) and TLR-2 (center score of -1277.9 KJ/mol). The coupled V-apo, V-TLR2, and V-TLR4 complexes were tested for binding using molecular dynamics simulation where extremely stable complexes were found. The predicted mRNA structures provided significant stability. Codon optimization for Escherichia. coli synthesis allowed the vaccine to attain a GC content of 46.83% and a CAI score of 1.0, which supports its significant expression. Immunological simulations indicated vaccine-induced innate and adaptive immune reactions. Finally, this potential HeV vaccine needs more studies to prove its efficacy and safety.
Collapse
Affiliation(s)
- Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Imam Hossain
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md. Habib Ullah Masum
- Faculty of Biotechnology and Genetic Engineering, Department of Genomics and Bioinformatics, Chattogram Veterinary and Animal Sciences University (CVASU), Chattogram, Bangladesh
| | - Sajedul Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - T. M. Fazla Rabbi
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
36
|
Maday SDM, Kingsbury JM, Weaver L, Pantos O, Wallbank JA, Doake F, Masterton H, Hopkins M, Dunlop R, Gaw S, Theobald B, Risani R, Abbel R, Smith D, Handley KM, Lear G. Taxonomic variation, plastic degradation, and antibiotic resistance traits of plastisphere communities in the maturation pond of a wastewater treatment plant. Appl Environ Microbiol 2024; 90:e0071524. [PMID: 39329490 PMCID: PMC11497791 DOI: 10.1128/aem.00715-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Wastewater treatment facilities can filter out some plastics before they reach the open environment, yet microplastics often persist throughout these systems. As they age, microplastics in wastewater may both leach and sorb pollutants and fragment to provide an increased surface area for bacterial attachment and conjugation, possibly impacting antimicrobial resistance (AMR) traits. Despite this, little is known about the effects of persistent plastic pollution on microbial functioning. To address this knowledge gap, we deployed five different artificially weathered plastic types and a glass control into the final maturation pond of a municipal wastewater treatment plant in Ōtautahi-Christchurch, Aotearoa/New Zealand. We sampled the plastic-associated biofilms (plastisphere) at 2, 6, 26, and 52 weeks, along with the ambient pond water, at three different depths (20, 40, and 60 cm from the pond water surface). We investigated the changes in plastisphere microbial diversity and functional potential through metagenomic sequencing. Bacterial 16S ribosomal RNA genes composition did not vary among plastic types and glass controls (P = 0.997) but varied among sampling times [permutational multivariate analysis of variance (PERMANOVA), P = 0.001] and depths (PERMANOVA, P = 0.011). Overall, there was no polymer-substrate specificity evident in the total composition of genes (PERMANOVA, P = 0.67), but sampling time (PERMANOVA, P = 0.002) and depth were significant factors (PERMANOVA, P = 0.001). The plastisphere housed diverse AMR gene families, potentially influenced by biofilm-meditated conjugation. The plastisphere also harbored an increased abundance of genes associated with the biodegradation of nylon, or nylon-associated substances, including nylon oligomer-degrading enzymes and hydrolases.IMPORTANCEPlastic pollution is pervasive and ubiquitous. Occurrences of plastics causing entanglement or ingestion, the leaching of toxic additives and persistent organic pollutants from environmental plastics, and their consequences for marine macrofauna are widely reported. However, little is known about the effects of persistent plastic pollution on microbial functioning. Shotgun metagenomics sequencing provides us with the necessary tools to examine broad-scale community functioning to further investigate how plastics influence microbial communities. This study provides insight into the functional consequence of continued exposure to waste plastic by comparing the prokaryotic functional potential of biofilms on five types of plastic [linear low-density polyethylene (LLDPE), nylon-6, polyethylene terephthalate, polylactic acid, and oxygen-degradable LLDPE], glass, and ambient pond water over 12 months and at different depths (20, 40, and 60 cm) within a tertiary maturation pond of a municipal wastewater treatment plant.
Collapse
Affiliation(s)
- Stefan D. M. Maday
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Louise Weaver
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Jessica A. Wallbank
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch, New Zealand
| | - Maisie Hopkins
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Rosa Dunlop
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | | | | | | | | | - Kim M. Handley
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Zheludev IN, Edgar RC, Lopez-Galiano MJ, de la Peña M, Babaian A, Bhatt AS, Fire AZ. Viroid-like colonists of human microbiomes. Cell 2024:S0092-8674(24)01091-2. [PMID: 39481381 DOI: 10.1016/j.cell.2024.09.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 07/03/2024] [Accepted: 09/18/2024] [Indexed: 11/02/2024]
Abstract
Here, we describe "obelisks," a class of heritable RNA elements sharing several properties: (1) apparently circular RNA ∼1 kb genome assemblies, (2) predicted rod-like genome-wide secondary structures, and (3) open reading frames encoding a novel "Oblin" protein superfamily. A subset of obelisks includes a variant hammerhead self-cleaving ribozyme. Obelisks form their own phylogenetic group without detectable similarity to known biological agents. Surveying globally, we identified 29,959 distinct obelisks (clustered at 90% sequence identity) from diverse ecological niches. Obelisks are prevalent in human microbiomes, with detection in ∼7% (29/440) and ∼50% (17/32) of queried stool and oral metatranscriptomes, respectively. We establish Streptococcus sanguinis as a cellular host of a specific obelisk and find that this obelisk's maintenance is not essential for bacterial growth. Our observations identify obelisks as a class of diverse RNAs of yet-to-be-determined impact that have colonized and gone unnoticed in human and global microbiomes.
Collapse
Affiliation(s)
- Ivan N Zheludev
- Stanford University, Department of Biochemistry, Stanford, CA, USA.
| | | | - Maria Jose Lopez-Galiano
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-CSIC, Valencia, Spain
| | - Artem Babaian
- University of Toronto, Department of Molecular Genetics, Toronto, ON, Canada; University of Toronto, Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Ami S Bhatt
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Medicine, Division of Hematology, Stanford, CA, USA
| | - Andrew Z Fire
- Stanford University, Department of Genetics, Stanford, CA, USA; Stanford University, Department of Pathology, Stanford, CA, USA.
| |
Collapse
|
38
|
Wan L, Xie B, Shuda M, Delgoffe G, Chang Y, Moore PS. Engineered protein destabilization reverses intrinsic immune evasion for candidate vaccine pan-strain KSHV and SARS-CoV-2 antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619692. [PMID: 39484438 PMCID: PMC11526888 DOI: 10.1101/2024.10.22.619692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Both Kaposi sarcoma herpesvirus LANA and SARS coronavirus 2 RdRp/nsp12 are highly conserved replication proteins that evade immune processing. By deleting the LANA central repeat 1 domain (LANA ΔCR1 ) or by dividing RdRp into two separated fragments (RdRp Frag ) to maximize nascent protein mis-folding, cis peptide presentation was increased. Native LANA or RdRp SIINFEKL fusion proteins expressed in MC38 cancer cells were not recognized by activated OT-1 CD8 + cells against SIINFEKL but cytotoxic recognition was restored by expression of the corresponding modified proteins. Immunocompetent syngeneic mice injected with LANA- or RdRp-SIINFEKL MC38 cells developed rapidly-growing tumors with short median survival times. Mice injected with LANA ΔCR1 - or RdRp Frag -SIINFEKL had partial tumor regression, slower tumor growth, longer median survival, as well as increased effector-specific tumor-infiltrating lymphocytes. These mice developed robust T cell responses lasting at least 90 days post-injection that recognized native viral protein epitopes. Engineered vaccine candidate antigens can unmask virus-specific CTL responses that are typically suppressed during native viral infection.
Collapse
|
39
|
van Heerden A, Pham NQ, Wingfield BD, Wingfield MJ, Wilken PM. Six type-I PKS classes and highly conserved melanin and elsinochrome gene clusters found in diverse Elsinoë species. BMC Genomics 2024; 25:990. [PMID: 39438784 PMCID: PMC11515665 DOI: 10.1186/s12864-024-10920-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024] Open
Abstract
Elsinoë species are phytopathogenic fungi that cause serious scab diseases on economically important plants. The disease symptoms arise from the effects of a group of phytotoxins known as elsinochromes, produced via a type-I polyketide synthase (PKS) biosynthetic pathway. The elsinochrome gene cluster was first annotated in Elsinoë fawcettii where the main type-I PKS gene was characterized as EfPKS1. A later study showed that this gene and the associated cluster had not been correctly annotated, and that EfPKS1 was actually the anchor gene of the melanin biosynthetic pathway. A new type-I PKS gene EfETB1 associated with elsinochrome production was also identified. The aim of this study was to identify all type-I PKS genes in the genomes of seven Elsinoë species with the goal of independently verifying the PKS containing clusters for both melanin and elsinochrome production. A total of six type-I PKS classes were identified, although there was variation between the species in the number and type of classes present. Genes similar to the E. fawcettii EfPKS1 and EfETB1 type-I PKS genes were associated with melanin and elsinochrome production respectively in all species. The complete melanin and elsinochrome PKS containing clusters were subsequently annotated in all the species with high levels of synteny across Elsinoë species. This study provides a genus-level overview of type-I PKS distribution in Elsinoë species, including an additional line of support for the annotation of the melanin and elsinochrome PKS containing clusters in these important plant pathogens.
Collapse
Affiliation(s)
- Alishia van Heerden
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Nam Q Pham
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Brenda D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Michael J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - P Markus Wilken
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
40
|
Xu B, Huang JP, Peng G, Cao W, Liu Z, Chen Y, Yao J, Wang YJ, Li J, Zhang G, Chen S, Huang SX. Total biosynthesis of the medicinal triterpenoid saponin astragalosides. NATURE PLANTS 2024:10.1038/s41477-024-01827-4. [PMID: 39433972 DOI: 10.1038/s41477-024-01827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/23/2024] [Indexed: 10/23/2024]
Abstract
Astragalus membranaceus has been used in traditional Chinese medicine for over 2,000 years. Its major active triterpenoid saponins, astragalosides, have attracted great attention due to their multiple health benefits and applications in medicine. Despite this, the biosynthetic machinery for astragalosides remains enigmatic. Here a chromosome-level genome assembly of A. membranaceus was generated. The identification of two tailoring enzymes required for astragaloside biosynthesis enabled the discovery of a triterpenoid biosynthetic gene cluster, leading to elucidation of the complete astragaloside biosynthetic pathway. This pathway is characterized by a sequence of selective hydroxylation, epoxidation and glycosylation reactions, which are mediated by three cytochrome P450s, one 2-oxoglutarate-dependent dioxygenase and two glycosyltransferases. Reconstitution of this biosynthetic machinery in Nicotiana benthamiana allowed for heterologous production of astragaloside IV. These findings build a solid foundation for addressing the sourcing issues associated with astragalosides and broaden our understanding of the diversity of terpene biosynthetic gene clusters.
Collapse
Affiliation(s)
- Bingyan Xu
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jian-Ping Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guoqing Peng
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenying Cao
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Chemistry, Westlake University, Hangzhou, China
| | - Zhong Liu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yin Chen
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Yong-Jiang Wang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jie Li
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Guimin Zhang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi, China
| | - Shilin Chen
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sheng-Xiong Huang
- Key Laboratory of Phytochemistry and Natural Medicines and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
- Institute of Herbgenomics, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
41
|
Janssen AB, Gibson PS, Bravo AM, de Bakker V, Slager J, Veening JW. PneumoBrowse 2: an integrated visual platform for curated genome annotation and multiomics data analysis of Streptococcus pneumoniae. Nucleic Acids Res 2024:gkae923. [PMID: 39436044 DOI: 10.1093/nar/gkae923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024] Open
Abstract
Streptococcus pneumoniae is an opportunistic human pathogen responsible for high morbidity and mortality rates. Extensive genome sequencing revealed its large pangenome, serotype diversity, and provided insight into genome dynamics. However, functional genome analysis has lagged behind, as that requires detailed and time-consuming manual curation of genome annotations and integration of genomic and phenotypic data. To remedy this, PneumoBrowse was presented in 2018, a user-friendly interactive online platform, which provided the detailed annotation of the S. pneumoniae D39V genome, alongside transcriptomic data. Since 2018, many new studies on S. pneumoniae genome biology and protein functioning have been performed. Here, we present PneumoBrowse 2 (https://veeninglab.com/pneumobrowse), fully rebuilt in JBrowse 2. We updated annotations for transcribed and transcriptional regulatory features in the D39V genome. We added genome-wide data tracks for high-resolution chromosome conformation capture (Hi-C) data, chromatin immunoprecipitation coupled to high-throughput sequencing (ChIP-Seq), ribosome profiling, CRISPRi-seq gene essentiality data and more. Additionally, we included 18 phylogenetically diverse S. pneumoniae genomes and their annotations. By providing easy access to diverse high-quality genome annotations and links to other databases (including UniProt and AlphaFold), PneumoBrowse 2 will further accelerate research and development into preventive and treatment strategies, through increased understanding of the pneumococcal genome.
Collapse
Affiliation(s)
- Axel B Janssen
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Afonso M Bravo
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| | - Jelle Slager
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Biophore Building, 1015, Lausanne, Switzerland
| |
Collapse
|
42
|
Darnell SS, Overall RW, Guarracino A, Colonna V, Villani F, Garrison E, Isaac A, Muli P, Muriithi FM, Kabui A, Kilyungi M, Lisso F, Kibet A, Muhia B, Nijveen H, Yousefi S, Ashbrook D, Huang P, Suh GE, Umar M, Batten C, Chen H, Sen Ś, Williams RW, Prins P. Creating a biomedical knowledge base by addressing GPT inaccurate responses and benchmarking context. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618663. [PMID: 39463999 PMCID: PMC11507946 DOI: 10.1101/2024.10.16.618663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
We created GNQA, a generative pre-trained transformer (GPT) knowledge base driven by a performant retrieval augmented generation (RAG) with a focus on aging, dementia, Alzheimer's and diabetes. We uploaded a corpus of three thousand peer reviewed publications on these topics into the RAG. To address concerns about inaccurate responses and GPT 'hallucinations', we implemented a context provenance tracking mechanism that enables researchers to validate responses against the original material and to get references to the original papers. To assess the effectiveness of contextual information we collected evaluations and feedback from both domain expert users and 'citizen scientists' on the relevance of GPT responses. A key innovation of our study is automated evaluation by way of a RAG assessment system (RAGAS). RAGAS combines human expert assessment with AI-driven evaluation to measure the effectiveness of RAG systems. When evaluating the responses to their questions, human respondents give a "thumbs-up" 76% of the time. Meanwhile, RAGAS scores 90% on answer relevance on questions posed by experts. And when GPT-generates questions, RAGAS scores 74% on answer relevance. With RAGAS we created a benchmark that can be used to continuously assess the performance of our knowledge base. Full GNQA functionality is embedded in the free GeneNetwork.org web service, an open-source system containing over 25 years of experimental data on model organisms and human. The code developed for this study is published under a free and open-source software license at https://git.genenetwork.org/gn-ai/tree/README.md.
Collapse
Affiliation(s)
| | - Rupert W Overall
- University of Tennessee Health Science Center, Memphis, TN, USA
- Humboldt University, Institute of Biology, Berlin, Germany
| | | | - Vicenza Colonna
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Flavia Villani
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Erik Garrison
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Priscilla Muli
- GeneNetwork Systems Genetics Software Development Team, Nairobi, Kenya
| | - Frederick Muriuki Muriithi
- University of Tennessee Health Science Center, Memphis, TN, USA
- GeneNetwork Systems Genetics Software Development Team, Nairobi, Kenya
| | - Alexander Kabui
- GeneNetwork Systems Genetics Software Development Team, Nairobi, Kenya
| | - Munyoki Kilyungi
- GeneNetwork Systems Genetics Software Development Team, Nairobi, Kenya
| | - Felix Lisso
- GeneNetwork Systems Genetics Software Development Team, Nairobi, Kenya
- Pwani University, Kilifi, Kenya
| | | | | | - Harm Nijveen
- Wageningen University, Bioinformatics, Wageningen, The Netherlands
| | - Siamak Yousefi
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - David Ashbrook
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Pengzhi Huang
- Cornell University, School of Electrical and Computer Engineering, Ithaca, USA
| | - G Edward Suh
- Cornell University, School of Electrical and Computer Engineering, Ithaca, USA
- NVIDIA Research, USA
| | - Muhammad Umar
- Cornell University, School of Electrical and Computer Engineering, Ithaca, USA
| | - Christopher Batten
- Cornell University, School of Electrical and Computer Engineering, Ithaca, USA
| | - Hao Chen
- University of Tennessee Health Science Center, Memphis, TN, USA
| | - Śaunak Sen
- University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Pjotr Prins
- University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
43
|
Cheriyan BV, Shanmugasundaram J, Ramakrishnan P, Ramasamy K, Karthikeyan R, Venkataraman S, Roy A, Parthasarathy PR. Exploring the potential therapeutic benefits of 7-methoxy coumarin for neuropathy pain: an in vivo, in vitro, and in silico approach. Mol Biol Rep 2024; 51:1066. [PMID: 39422771 DOI: 10.1007/s11033-024-09991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
BACK GROUND 7-Methoxycoumarin (7-MC) is well recognized for its anti-inflammatory and anti-nociceptive actions. Its capacity to lessen neuropathic pain hasn't been documented yet. Hence the impact of 7-MC on vincristine-induced peripheral neuropathic pain in rodents was investigated. The investigation also looked at the impact of 7-MC in reducing neuropathic pain via voltage-gated calcium channels and phospholipase enzyme inhibition using pertinent in vitro and in silico methods. METHODS AND RESULTS Vincristine (0.1 mg/kg, i.p., daily) was administered continuously for 7 days to induce peripheral neuropathic pain in mice, with cold allodynia and thermal hyperalgesia and evaluated on the 8th day using the acetone bubble test and hot water tail immersion test. In order to derive the mechanistic approach for ameliorating neuropathic pain, the role of 7-MC in the inhibition of the phospholipase enzyme, gene expression studies on voltage-gated calcium channels using mouse BV2 microglial cells and in silico studies for its calcium channel binding affinity were also performed. The test compounds reduced vincristine-induced cold allodynia and thermal hyperalgesia in mice in a dose-dependent experiments. In vitro studies on phospholipase inhibition by 7-MC showed an IC50 of 27.08 µg/ml and down-regulated the gene expression of calcium channels in the BV2 microglial cell line. In silico docking scores for 7-MCwere higher than the standard drug gabapentin. CONCLUSION The compound 7-MC has shown promise in alleviating vincristine-induced peripheral neuropathicin mice. Studies conducted in parallel, both in silico and in vitro have demonstrated that 7-MC effectively reduces neuropathic pain. This pain reduction is achieved through two mechanisms: inhibiting the phospholipase enzyme and blocking voltage-gated calcium channels.
Collapse
Affiliation(s)
- Binoy Varghese Cheriyan
- Department of Pharmaceutical Chemistry, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India.
| | - Jaikumar Shanmugasundaram
- Department of Pharmacology, Panimalar Medical College Hospital and Research Institute, Poonamallee, Chennai, Tamil Nadu, 600123, India
| | - Prakash Ramakrishnan
- Department of Pharmacology, Crescent School of Pharmacy B. S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, Tamil Nadu, 600048, India
| | - Kavitha Ramasamy
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600116, India
| | - R Karthikeyan
- Department of Pharmacognosy, School of Pharmacy, Sri Balaji Vidyapeeth, SBV Campus, Pillayar Kuppam, Puducherry, 607402, India
| | - Sowmyalakshmi Venkataraman
- Department of Pharmaceutical Chemistry, Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, 600116, India
| | - Anitha Roy
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India
| | - Parameswari Royapuram Parthasarathy
- Molecular Biochemistry Lab, Centre for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu, 602105, India
| |
Collapse
|
44
|
Fandilolu P, Kumar C, Palia D, Idicula-Thomas S. Investigating role of positively selected genes and mutation sites of ERG11 in drug resistance of Candida albicans. Arch Microbiol 2024; 206:437. [PMID: 39422772 DOI: 10.1007/s00203-024-04159-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The steep increase in acquired drug resistance in Candida isolates has posed a great challenge in the clinical management of candidiasis globally. Information of genes and codon sites that are positively selected during evolution can provide insights into the mechanisms driving antifungal resistance in Candida. This study aimed to create a manually curated list of genes of Candida spp. reported to be associated with antifungal resistance in literature, and further investigate the structure-function implications of positively selected genes and mutation sites. Sequence analysis of antifungal drug resistance associated gene sequences from various species and strains of Candida revealed that ERG11 and MRR1 of C. albicans were positively selected during evolution. Four sites in ERG11 and two sites in MRR1 of C. albicans were positively selected and associated with drug resistance. These four sites (132, 405, 450, and 464) of ERG11 are predictive markers for azole resistance and have evolved over time. A well-characterized crystal structure of sterol-14-α-demethylase (CYP51) encoded by ERG11 is available in PDB. Therefore, the stability of CYP51 in complex with fluconazole was evaluated using MD simulations and molecular docking studies for two mutations (Y132F and Y132H) reported to be associated with azole resistance in literature. These mutations induced high flexibility in functional motifs of CYP51. It was also observed that residues such as I304, G308, and I379 of CYP51 play a critical role in fluconazole binding affinity. The insights gained from this study can further guide drug design strategies addressing antimicrobial resistance.
Collapse
Affiliation(s)
- Prayagraj Fandilolu
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Chandan Kumar
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Dushyant Palia
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, ICMR-National Institute for Research in Reproductive and Child Health, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
45
|
Pita S, Myers PN, Johansen J, Russel J, Nielsen MC, Eklund AC, Nielsen HB. CHAMP delivers accurate taxonomic profiles of the prokaryotes, eukaryotes, and bacteriophages in the human microbiome. Front Microbiol 2024; 15:1425489. [PMID: 39483755 PMCID: PMC11524946 DOI: 10.3389/fmicb.2024.1425489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/25/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Accurate taxonomic profiling of the human microbiome composition is crucial for linking microbial species to health outcomes. Therefore, we created the Clinical Microbiomics Human Microbiome Profiler (CHAMP), a comprehensive tool designed for the profiling of prokaryotes, eukaryotes, and viruses across all body sites. Methods CHAMP uses a reference database derived from 30,382 human microbiome samples, covering 6,567 prokaryotic and 244 eukaryotic species, as well as 64,003 viruses. We benchmarked CHAMP against established profiling tools (MetaPhlAn 4, Bracken 2, mOTUs 3, and Phanta) using a diverse set of in silico metagenomes and DNA mock communities. Results CHAMP demonstrated unparalleled species recall, F1 score, and significantly reduced false positives compared to all other tools benchmarked. The false positive relative abundance (FPRA) for CHAMP was, on average, 50-fold lower than the second-best performing profiler. CHAMP also proved to be more robust than other tools at low sequencing depths, highlighting its application for low biomass samples. Discussion Taken together, this establishes CHAMP as a best-in-class human microbiome profiler of prokaryotes, eukaryotes, and viruses in diverse and complex communities across low and high biomass samples. CHAMP profiling is offered as a service by Clinical Microbiomics A/S and is available for a fee at https://cosmosidhub.com.
Collapse
Affiliation(s)
- Sara Pita
- Clinical Microbiomics, Copenhagen, Denmark
- Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
46
|
Tripp A, Braun M, Wieser F, Oberdorfer G, Lechner H. Click, Compute, Create: A Review of Web-based Tools for Enzyme Engineering. Chembiochem 2024; 25:e202400092. [PMID: 38634409 DOI: 10.1002/cbic.202400092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/19/2024]
Abstract
Enzyme engineering, though pivotal across various biotechnological domains, is often plagued by its time-consuming and labor-intensive nature. This review aims to offer an overview of supportive in silico methodologies for this demanding endeavor. Starting from methods to predict protein structures, to classification of their activity and even the discovery of new enzymes we continue with describing tools used to increase thermostability and production yields of selected targets. Subsequently, we discuss computational methods to modulate both, the activity as well as selectivity of enzymes. Last, we present recent approaches based on cutting-edge machine learning methods to redesign enzymes. With exception of the last chapter, there is a strong focus on methods easily accessible via web-interfaces or simple Python-scripts, therefore readily useable for a diverse and broad community.
Collapse
Affiliation(s)
- Adrian Tripp
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Markus Braun
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Florian Wieser
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| | - Horst Lechner
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/2, 8010, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
47
|
Nuanmuang N, Leekitcharoenphon P, Njage PMK, Thorn AV, Aarestrup FM. The dynamics of bla TEM resistance genes in Salmonella Typhi. Sci Rep 2024; 14:24311. [PMID: 39414800 PMCID: PMC11484844 DOI: 10.1038/s41598-024-74321-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Salmonella Typhi (S. Typhi) is an important pathogen causing typhoid fever worldwide. The emergence of antibiotic resistance, including that of blaTEM genes encoding to TEM [Formula: see text]-lactamases has been observed. This study aimed to investigate the dynamics of blaTEM genes in S. Typhi by analyzing the phylogeny and flanking region patterns and phylogenetic associating them with metadata (year, country) and genomic data (genotypes, antibiotic resistance genes (ARGs), plasmids). Genomic sequences of publicly available S. Typhi harboring blaTEM (n = 6079), spanning from 1983 to 2023, were downloaded and analyzed using CSIPhylogeny for phylogeny, Flankophile for identifying genetic contexts around blaTEM genes and GenoTyphi for determining genotypes, ARGs and plasmid replicons. We found that blaTEM-positive isolates occurred most commonly in specific location, especially in Asia and Africa and clustered among a limited number of genotypes. Flankophile identified 740 isolates (12.2%) with distinct flanking region patterns, which were categorized into 13 patterns. Notably, 7 patterns showed a predominantly phylogenetic association with genotypes. Additionally, these 7 patterns exhibited relation to the country, ARGs and plasmid replicons. Further examination of the flanking region patterns provided association with mobile genetic elements (MGEs). Taken together, this study suggests that blaTEM has been acquired by S. Typhi isolates a limited number of times and subsequently spread clonally with specific genotypes.
Collapse
Affiliation(s)
- Narong Nuanmuang
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| | - Pimlapas Leekitcharoenphon
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Patrick Murigu Kamau Njage
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alix Vincent Thorn
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Research Group for Genomic Epidemiology, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
48
|
Martelossi J, Iannello M, Ghiselli F, Luchetti A. Widespread HCD-tRNA derived SINEs in bivalves rely on multiple LINE partners and accumulate in genic regions. Mob DNA 2024; 15:22. [PMID: 39415259 PMCID: PMC11481361 DOI: 10.1186/s13100-024-00332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Short interspersed nuclear elements (SINEs) are non-autonomous non-LTR retrotransposons widespread across eukaryotes. They exist both as lineage-specific, fast-evolving elements and as ubiquitous superfamilies characterized by highly conserved domains (HCD). Several of these superfamilies have been described in bivalves, however their overall distribution and impact on host genome evolution are still unknown due to the extreme scarcity of transposon libraries for the clade. In this study, we examined more than 40 bivalve genomes to uncover the distribution of HCD-tRNA-related SINEs, discover novel SINE-LINE partnerships, and understand their possible role in shaping bivalve genome evolution. RESULTS We found that bivalve HCD SINEs have an ancient origin, and they can rely on at least four different LINE clades. According to a "mosaic" evolutionary scenario, multiple LINE partner can promote the amplification of the same HCD SINE superfamilies while homologues LINE-derived tails are present between different superfamilies. Multiple SINEs were found to be highly similar between phylogenetically related species but separated by extremely long evolutionary timescales, up to ~ 400 million years. Studying their genomic distribution in a subset of five species, we observed different patterns of SINE enrichment in various genomic compartments as well as differences in the tendency of SINEs to form tandem-like and palindromic structures also within intronic sequences. Despite these differences, we observed that SINEs, especially older ones, tend to accumulate preferentially within genes, or in their close proximity, consistently with a model of survival bias for less harmful, short non-coding transposons in euchromatic genomic regions. CONCLUSION Here we conducted a wide characterization of tRNA-related SINEs in bivalves revealing their taxonomic distribution and LINE partnerships across the clade. Moreover, through the study of their genomic distribution in five species, we highlighted commonalities and differences with other previously studied eukaryotes, thus extending our understanding of SINE evolution across the tree of life.
Collapse
Affiliation(s)
- Jacopo Martelossi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Mariangela Iannello
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Fabrizio Ghiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy.
| | - Andrea Luchetti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
49
|
Liang JJ, Pitsillou E, Karagiannis TC. Investigation of RNA-binding protein NOVA1 in silico: Comparison of the modern human V197 with the archaic I197 variant present in Neanderthals. Comput Biol Med 2024; 183:109278. [PMID: 39413624 DOI: 10.1016/j.compbiomed.2024.109278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/14/2024] [Indexed: 10/18/2024]
Abstract
By comparing the high-coverage archaic genome sequences to those of modern humans, specific genetic differences have been identified. For example, a human-specific substitution has been found in neuro-oncological ventral antigen 1 (NOVA1) - an RNA-binding protein that regulates the alternative splicing of neuronal pre-mRNA. The amino acid substitution results in an isoleucine-to-valine change at position 197 in NOVA1 (archaic: I197, modern human: V197). Previous studies have utilised gene editing technology to compare the archaic and modern human forms of NOVA1 in cortical organoids, however, the structural and molecular details require further investigation. Using an in silico approach, the modern human (WT) and archaic (V197I) structures of NOVA1 were generated. Moreover, the structure of NOVA1 containing a glycine-to-valine substitution at position 68 (G68V), which occurs at the RNA-binding interface, was examined for comparison. Protein-RNA docking was subsequently performed to model the interaction of NOVA1 variants with RNA and the complexes were evaluated further using classical molecular dynamics (MD) simulations. Based on the MM-PBSA analysis, the binding free energies were similar between the WT (-956.8 ± 32.6 kcal/mol), V197I (-975.4 ± 65.6 kcal/mol), and G68V (-946.7 ± 34.3 kcal/mol) complexes. The findings highlight the binding and stability of protein-RNA complexes with only modest structural changes observed in the archaic and G68V variants compared to the WT NOVA1 protein. Further clarification is required to enhance our understanding of the impact of NOVA1 mutations on alternative splicing and disease development. In particular, delineating the effect of multiple mutations in the NOVA1 gene is of importance.
Collapse
Affiliation(s)
- Julia J Liang
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; yΘμ Study Group, ProspED Polytechnic, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Eleni Pitsillou
- yΘμ Study Group, ProspED Polytechnic, Carlton, VIC, 3053, Australia; School of Science, STEM College, RMIT University, VIC, 3001, Australia
| | - Tom C Karagiannis
- Epigenetics in Human Health and Disease Program, Baker Heart and Diabetes Institute, 75 Commercial Road, Prahran, VIC, 3004, Australia; yΘμ Study Group, ProspED Polytechnic, Carlton, VIC, 3053, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|
50
|
Kim J, Jo J, Cho S, Kim H. Genomic insights and functional evaluation of Lacticaseibacillus paracasei EG005: a promising probiotic with enhanced antioxidant activity. Front Microbiol 2024; 15:1477152. [PMID: 39469458 PMCID: PMC11513463 DOI: 10.3389/fmicb.2024.1477152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024] Open
Abstract
Introduction Probiotics, such as Lacticaseibacillus paracasei EG005, are gaining attention for their health benefits, particularly in reducing oxidative stress. The goal of this study was to reinforce the antioxidant capacity of EG005, along with comprehensive genomic analysis, with a focus on assessing superoxide dismutase (SOD) activity, acid resistance and bile tolerance, and safety. Methods EG005 was screened for SOD activity and change of SOD activity was tested under various pH conditions. Its survival rates were assessed in acidic (pH 2.5) and bile salt (0.3%) conditions and the antibiotic MIC test and hemolysis test were performed to evaluate safety. Genetic analyses including functional identification and phylogenetic tree construction were performed. The SOD overexpression system was constructed using Ptuf, Pldh1, Plhd2, and Pldh3 strong promoters. Results EG005 demonstrated higher SOD activity compared to Lacticaseibacillus rhamnosus GG, with optimal activity at pH 7.0. It showed significant acid and bile tolerance, with survival rates recovering to 100% after 3 h in acidic conditions. Phylogenetic analysis confirmed that EG005 is closely related to other L. paracasei strains with ANI values above 98%. Overexpression of SOD using the Ptuf promoter resulted in a two-fold increase in activity compared to the controls. Additionally, EG005 exhibited no hemolytic activity and showed antibiotic susceptibility within safe limits. Discussion Our findings highlight EG005's potential as a probiotic with robust antioxidant activity and high tolerance to gastrointestinal conditions. Its unique genetic profile and enhanced SOD activity through strong promoter support its application in probiotic therapies and functional foods. Further research should be investigated to find the in vivo effects of EG005 on gut health and oxidative stress reduction. In addition, attB and attP-based recombination, combined with CRISPR-Cas9 technologies, could offer a more stable alternative for long-term sodA gene expression in commercial and medical applications.
Collapse
Affiliation(s)
- Jisu Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Jinchul Jo
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- eGnome Inc., Seoul, Republic of Korea
| | - Seoae Cho
- eGnome Inc., Seoul, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|