1
|
Gharui S, Sengupta D, Das A. Characterization of the Conformational Hotspots of the RNA-Dependent RNA Polymerase Complex Identifies a Unique Structural Malleability of nsp8. J Phys Chem B 2024; 128:9959-9975. [PMID: 39356135 DOI: 10.1021/acs.jpcb.4c03851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Several antiviral therapeutic approaches have been targeted toward the RNA-dependent RNA polymerase (RdRp) complex that is involved in viral genome replication. In SARS-CoV-2, although the RdRp is a multiprotein complex, the focus has been on the ligand binding catalytic core (nonstructural protein nsp12), and not the multiprotein functional dynamics. In this study, we focus on the conformational ensembles of the RdRp complex and their modulation by the presence of RNA, performing comprehensive microsecond-scale atomistic simulations of the apo- and RNA-bound complex. We delineate the differential impact of RNA on the constituent proteins, such as conformational polymorphisms, dominant segment-specific fluctuations, and the switch in dynamical crosstalk within the complex. We distinguish dynamical signatures of nsp7, nsp8, and nsp12 in the apo-state that are reduced in the presence of the RNA and appear to "prime" the complex for activity. Importantly, we identify a unique structural malleability of the nsp8 protein with high conformational heterogeneity in the apo state, especially at three sites (Y71 for nsp8A, and D52 and A66 for nsp8B). Our work highlights the functional implications of the polymorphism of nsp8 structures and reveals possibilities for the development of allosteric inhibitors.
Collapse
Affiliation(s)
- Sowmomita Gharui
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Durba Sengupta
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Atanu Das
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Jhanwar A, Sharma D, Das U. Unraveling the structural and functional dimensions of SARS-CoV2 proteins in the context of COVID-19 pathogenesis and therapeutics. Int J Biol Macromol 2024; 278:134850. [PMID: 39168210 DOI: 10.1016/j.ijbiomac.2024.134850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV2) has emerged as the causative agent behind the global pandemic of Coronavirus Disease 2019 (COVID-19). As the scientific community strives to comprehend the intricate workings of this virus, a fundamental aspect lies in deciphering the myriad proteins it expresses. This knowledge is pivotal in unraveling the complexities of the viral machinery and devising targeted therapeutic interventions. The proteomic landscape of SARS-CoV2 encompasses structural, non-structural, and open-reading frame proteins, each playing crucial roles in viral replication, host interactions, and the pathogenesis of COVID-19. This comprehensive review aims to provide an updated and detailed examination of the structural and functional attributes of SARS-CoV2 proteins. By exploring the intricate molecular architecture, we have highlighted the significance of these proteins in viral biology. Insights into their roles and interplay contribute to a deeper understanding of the virus's mechanisms, thereby paving the way for the development of effective therapeutic strategies. As the global scientific community strives to combat the ongoing pandemic, this synthesis of knowledge on SARS-CoV2 proteins serves as a valuable resource, fostering informed approaches toward mitigating the impact of COVID-19 and advancing the frontier of antiviral research.
Collapse
Affiliation(s)
- Aniruddh Jhanwar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Dipika Sharma
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India.
| |
Collapse
|
3
|
Zhu M, Huang F, Sun H, Liu K, Chen Z, Yu B, Hao H, Liu H, Ding S, Zhang X, Liu L, Zhang K, Ren J, Liu Y, Liu H, Shan C, Guan W. Characterization of ACTN4 as a novel antiviral target against SARS-CoV-2. Signal Transduct Target Ther 2024; 9:243. [PMID: 39289355 PMCID: PMC11408661 DOI: 10.1038/s41392-024-01956-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
The various mutations in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pose a substantial challenge in mitigating the viral infectivity. The identification of novel host factors influencing SARS-CoV-2 replication holds potential for discovering new targets for broad-spectrum antiviral drugs that can combat future viral mutations. In this study, potential host factors regulated by SARS-CoV-2 infection were screened through different high-throughput sequencing techniques and further identified in cells. Subsequent analysis and experiments showed that the reduction of m6A modification level on ACTN4 (Alpha-actinin-4) mRNA leads to a decrease in mRNA stability and translation efficiency, ultimately inhibiting ACTN4 expression. In addition, ACTN4 was demonstrated to target nsp12 for binding and characterized as a competitor for SARS-CoV-2 RNA and the RNA-dependent RNA polymerase complex, thereby impeding viral replication. Furthermore, two ACTN4 agonists, YS-49 and demethyl-coclaurine, were found to dose-dependently inhibit SARS-CoV-2 infection in both Huh7 cells and K18-hACE2 transgenic mice. Collectively, this study unveils the pivotal role of ACTN4 in SARS-CoV-2 infection, offering novel insights into the intricate interplay between the virus and host cells, and reveals two potential candidates for future anti-SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Miao Zhu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Huang
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Huize Sun
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kunpeng Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Baocheng Yu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haojie Hao
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Haizhou Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Shuang Ding
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Xueyan Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
| | - Lishi Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kui Zhang
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jierao Ren
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Liu
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Haibin Liu
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Chao Shan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China
| | - Wuxiang Guan
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, Hubei, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, 430200, China.
| |
Collapse
|
4
|
Danda M, Klimešová A, Kušková K, Dostálková A, Pagáčová A, Prchal J, Kapisheva M, Ruml T, Rumlová M. Biochemical characterization of naturally occurring mutations in SARS-CoV-2 RNA-dependent RNA polymerase. Protein Sci 2024; 33:e5103. [PMID: 39145418 PMCID: PMC11325161 DOI: 10.1002/pro.5103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/06/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Since the emergence of SARS-CoV-2, mutations in all subunits of the RNA-dependent RNA polymerase (RdRp) of the virus have been repeatedly reported. Although RdRp represents a primary target for antiviral drugs, experimental studies exploring the phenotypic effect of these mutations have been limited. This study focuses on the phenotypic effects of substitutions in the three RdRp subunits: nsp7, nsp8, and nsp12, selected based on their occurrence rate and potential impact. We employed nano-differential scanning fluorimetry and microscale thermophoresis to examine the impact of these mutations on protein stability and RdRp complex assembly. We observed diverse impacts; notably, a single mutation in nsp8 significantly increased its stability as evidenced by a 13°C increase in melting temperature, whereas certain mutations in nsp7 and nsp8 reduced their binding affinity to nsp12 during RdRp complex formation. Using a fluorometric enzymatic assay, we assessed the overall effect on RNA polymerase activity. We found that most of the examined mutations altered the polymerase activity, often as a direct result of changes in stability or affinity to the other components of the RdRp complex. Intriguingly, a combination of nsp8 A21V and nsp12 P323L mutations resulted in a 50% increase in polymerase activity. To our knowledge, this is the first biochemical study to demonstrate the impact of amino acid mutations across all components constituting the RdRp complex in emerging SARS-CoV-2 subvariants.
Collapse
Affiliation(s)
- Matěj Danda
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Anna Klimešová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Klára Kušková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Aneta Pagáčová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Jan Prchal
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Marina Kapisheva
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology, Prague, Czech Republic
| |
Collapse
|
5
|
Jena NR, Pant S. Peptide inhibitors derived from the nsp7 and nsp8 cofactors of nsp12 targeting different substrate binding sites of nsp12 of the SARS-CoV-2. J Biomol Struct Dyn 2024; 42:7077-7089. [PMID: 37434315 DOI: 10.1080/07391102.2023.2235012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/05/2023] [Indexed: 07/13/2023]
Abstract
SARS-COV-2 is responsible for the COVID-19 pandemic, which has infected more than 767 million people worldwide including about 7 million deaths till 5 June 2023. Despite the emergency use of certain vaccines, deaths due to COVID-19 have not yet stopped completed. Therefore, it is imperative to design and develop drugs that can be used to treat patients suffering from COVID-19. Here, two peptide inhibitors derived from nsp7 and nsp8 cofactors of nsp12 have been shown to block different substrate binding sites of nsp12 that are mainly responsible for the replication of the viral genome of SARS-CoV-2. By using the docking, molecular dynamics (MD), and MM/GBSA techniques, it is shown that these inhibitors can bind to multiple binding sites of nsp12, such as the interface of nsp7 and nsp12, interface of nsp8 and nsp12, RNA primer entry site, and nucleoside triphosphate (NTP) entry site. The relative binding free energies of the most stable protein-peptide complexes are found to lie between ∼-34.20 ± 10.07 to -59.54 ± 9.96 kcal/mol. Hence, it is likely that these inhibitors may bind to different sites of nsp12 to block the access of its cofactors and the viral genome, thereby affecting the replication. It is thus proposed that these peptide inhibitors may be further developed as potential drug candidates to suppress the viral loads in COVID-19 patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- N R Jena
- Discipline of Natural Sciences, Indian Institute of Information Technology, Design, and Manufacturing, Jabalpur, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, India
| |
Collapse
|
6
|
Anderson TK, Hoferle PJ, Chojnacki KJ, Lee K, Coon J, Kirchdoerfer R. An alphacoronavirus polymerase structure reveals conserved replication factor functions. Nucleic Acids Res 2024; 52:5975-5986. [PMID: 38442273 PMCID: PMC11162792 DOI: 10.1093/nar/gkae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 03/07/2024] Open
Abstract
Coronaviruses are a diverse subfamily of viruses containing pathogens of humans and animals. This subfamily of viruses replicates their RNA genomes using a core polymerase complex composed of viral non-structural proteins: nsp7, nsp8 and nsp12. Most of our understanding of coronavirus molecular biology comes from betacoronaviruses like SARS-CoV and SARS-CoV-2, the latter of which is the causative agent of COVID-19. In contrast, members of the alphacoronavirus genus are relatively understudied despite their importance in human and animal health. Here we have used cryo-electron microscopy to determine structures of the alphacoronavirus porcine epidemic diarrhea virus (PEDV) core polymerase complex bound to RNA. One structure shows an unexpected nsp8 stoichiometry despite remaining bound to RNA. Biochemical analysis shows that the N-terminal extension of one nsp8 is not required for in vitro RNA synthesis for alpha- and betacoronaviruses. Our work demonstrates the importance of studying diverse coronaviruses in revealing aspects of coronavirus replication and identifying areas of conservation to be targeted by antiviral drugs.
Collapse
Affiliation(s)
- Thomas K Anderson
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter J Hoferle
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kennan J Chojnacki
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kenneth W Lee
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua J Coon
- Biomolecular Chemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53715, USA
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Robert N Kirchdoerfer
- Biochemistry Department, University of Wisconsin-Madison, Madison, WI 53706, USA
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706, USA
- Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Quddusi DM, Hiremath SA, Bajcinca N. Mutation prediction in the SARS-CoV-2 genome using attention-based neural machine translation. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2024; 21:5996-6018. [PMID: 38872567 DOI: 10.3934/mbe.2024264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) has been evolving rapidly after causing havoc worldwide in 2020. Since then, it has been very hard to contain the virus owing to its frequently mutating nature. Changes in its genome lead to viral evolution, rendering it more resistant to existing vaccines and drugs. Predicting viral mutations beforehand will help in gearing up against more infectious and virulent versions of the virus in turn decreasing the damage caused by them. In this paper, we have proposed different NMT (neural machine translation) architectures based on RNNs (recurrent neural networks) to predict mutations in the SARS-CoV-2-selected non-structural proteins (NSP), i.e., NSP1, NSP3, NSP5, NSP8, NSP9, NSP13, and NSP15. First, we created and pre-processed the pairs of sequences from two languages using k-means clustering and nearest neighbors for training a neural translation machine. We also provided insights for training NMTs on long biological sequences. In addition, we evaluated and benchmarked our models to demonstrate their efficiency and reliability.
Collapse
Affiliation(s)
- Darrak Moin Quddusi
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Sandesh Athni Hiremath
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| | - Naim Bajcinca
- Chair of Mechatronics in the Faculty of Mechanical and Process Engineering, Rheinland-Pfalz Technical University of Kaiserslautern-Landau, Kaiserslautern 67663, Germany
| |
Collapse
|
8
|
Balasco N, Damaggio G, Esposito L, Colonna V, Vitagliano L. A comprehensive analysis of SARS-CoV-2 missense mutations indicates that all possible amino acid replacements in the viral proteins occurred within the first two-and-a-half years of the pandemic. Int J Biol Macromol 2024; 266:131054. [PMID: 38522702 DOI: 10.1016/j.ijbiomac.2024.131054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/26/2024]
Abstract
The surveillance of COVID-19 pandemic has led to the determination of millions of genome sequences of the SARS-CoV-2 virus, with the accumulation of a wealth of information never collected before for an infectious disease. Exploring the information retrieved from the GISAID database reporting at that time >13 million genome sequences, we classified the 141,639 unique missense mutations detected in the first two-and-a-half years (up to October 2022) of the pandemic. Notably, our analysis indicates that 98.2 % of all possible conservative amino acid replacements occurred. Even non-conservative mutations were highly represented (73.9 %). For a significant number of residues (3 %), all possible replacements with the other nineteen amino acids have been observed. These observations strongly indicate that, in this time interval, the virus explored all possible alternatives in terms of missense mutations for all sites of its polypeptide chain and that those that are not observed severely affect SARS-CoV-2 integrity. The implications of the present findings go well beyond the structural biology of SARS-CoV-2 as the huge amount of information here collected and classified may be valuable for the elucidation of the sequence-structure-function relationships in proteins.
Collapse
Affiliation(s)
- Nicole Balasco
- Institute of Molecular Biology and Pathology, CNR c/o Dep. Chemistry, Sapienza University of Rome, Rome, Italy.
| | - Gianluca Damaggio
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Laboratory of Stem Cell Biology and Pharmacology of Neurodegenerative Diseases, Department of Biosciences, University of Milan, Milan, Italy; University of Naples Federico II, Naples, Italy
| | | | - Vincenza Colonna
- Institute of Genetics and Biophysics, CNR, Naples, Italy; Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | | |
Collapse
|
9
|
Ohyama T, Osawa T, Sekine SI, Ishii Y. NMR Studies of Genomic RNA in 3' Untranslated Region Unveil Pseudoknot Structure that Initiates Viral RNA Replication in SARS-CoV-2. JACS AU 2024; 4:1323-1333. [PMID: 38665648 PMCID: PMC11041675 DOI: 10.1021/jacsau.3c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/28/2024]
Abstract
In the 3' untranslated region of the SARS-CoV-2 virus RNA genome, genomic RNA replication is initiated in the highly conserved region called 3'PK, containing three stem structures (P1pk, P2, and P5). According to one proposed mechanism, P1pk and distal P2 stems switch their structure to a pseudoknot through base-pairing, thereby initiating transcription by recruiting RNA-dependent RNA polymerase complexed with nonstructural proteins (nsp)7 and nsp8. However, experimental evidence of pseudoknot formation or structural switching is unavailable. Using SARS-CoV-2 3'PK fragments, we show that 3'PK adopted stem-loop and pseudoknot forms in a mutually exclusive manner. When P1pk and P2 formed a pseudoknot, the P5 stem, which includes a sequence at the 3' end, exited from the stem-loop structure and opened up. Interaction with the nsp7/nsp8 complex destabilized the stem-loop form but did not alter the pseudoknot form. These results suggest that the interaction between the pseudoknot and nsp7/nsp8 complex transformed the 3' end of viral genomic RNA into single-stranded RNA ready for synthesis, presenting the unique pseudoknot structure as a potential pharmacological target.
Collapse
Affiliation(s)
- Takako Ohyama
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| | - Takuo Osawa
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Shun-ichi Sekine
- Laboratory for Transcription Structural Biology,
Center for Biosystems Dynamics Research, RIKEN, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa, Japan
| | - Yoshitaka Ishii
- Laboratory for Advanced NMR Application and
Development, Center for Biosystems Dynamics Research, RIKEN,
1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Kanagawa,
Japan
- School of Life Science and Technology,
Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku,
Yokohama 226-8503, Kanagawa, Japan
| |
Collapse
|
10
|
Subong BJJ, Ozawa T. Bio-Chemoinformatics-Driven Analysis of nsp7 and nsp8 Mutations and Their Effects on Viral Replication Protein Complex Stability. Curr Issues Mol Biol 2024; 46:2598-2619. [PMID: 38534781 PMCID: PMC10968879 DOI: 10.3390/cimb46030165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
The nonstructural proteins 7 and 8 (nsp7 and nsp8) of SARS-CoV-2 are highly important proteins involved in the RNA-dependent polymerase (RdRp) protein replication complex. In this study, we analyzed the global mutation of nsp7 and nsp8 in 2022 and 2023 and analyzed the effects of mutation on the viral replication protein complex using bio-chemoinformatics. Frequently occurring variants are found to be single amino acid mutations for both nsp7 and nsp8. The most frequently occurring mutations for nsp7 which include L56F, L71F, S25L, M3I, D77N, V33I and T83I are predicted to cause destabilizing effects, whereas those in nsp8 are predicted to cause stabilizing effects, with the threonine to isoleucine mutation (T89I, T145I, T123I, T148I, T187I) being a frequent mutation. A conserved domain database analysis generated critical interaction residues for nsp7 (Lys-7, His-36 and Asn-37) and nsp8 (Lys-58, Pro-183 and Arg-190), which, according to thermodynamic calculations, are prone to destabilization. Trp-29, Phe-49 of nsp7 and Trp-154, Tyr-135 and Phe-15 of nsp8 cause greater destabilizing effects to the protein complex based on a computational alanine scan suggesting them as possible new target sites. This study provides an intensive analysis of the mutations of nsp7 and nsp8 and their possible implications for viral complex stability.
Collapse
Affiliation(s)
| | - Takeaki Ozawa
- Department of Chemistry, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan;
| |
Collapse
|
11
|
Podadera A, Campo L, Rehman F, Kolobaric N, Zutic A, Ng KKS. Optimized Recombinant Expression and Purification of the SARS-CoV-2 Polymerase Complex. Curr Protoc 2024; 4:e1007. [PMID: 38511495 DOI: 10.1002/cpz1.1007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
An optimized protocol has been developed to express and purify the core RNA-dependent RNA polymerase (RdRP) complex from the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The expression and purification of active core SARS-CoV-2 RdRp complex is challenging due to the complex multidomain fold of nsp12, and the assembly of the multimeric complex involving nsp7, nsp8, and nsp12. Our approach adapts a previously published method to express the core SARS-CoV-2 RdRP complex in Escherichia coli and combines it with a procedure to express the nsp12 fusion with maltose-binding protein in insect cells to promote the efficient assembly and purification of an enzymatically active core polymerase complex. The resulting method provides a reliable platform to produce milligram amounts of the polymerase complex with the expected 1:2:1 stoichiometry for nsp7, nsp8, and nsp12, respectively, following the removal of all affinity tags. This approach addresses some of the limitations of previously reported methods to provide a reliable source of the active polymerase complex for structure, function, and inhibition studies of the SARS-CoV-2 RdRP complex using recombinant plasmid constructs that have been deposited in the widely accessible Addgene repository. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Expression and production of SARS-CoV-2 nsp7, nsp8, and nsp12 in E. coli cells Support Protocol: Establishment and maintenance of insect cell cultures Basic Protocol 2: Generation of recombinant baculovirus in Sf9 cells and production of nsp12 fusion protein in T. ni cells Basic Protocol 3: Purification of the SARS-CoV-2 core polymerase complex.
Collapse
Affiliation(s)
- Ana Podadera
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Lucas Campo
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Fasih Rehman
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Nikola Kolobaric
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Adriana Zutic
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| | - Kenneth K-S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
12
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
13
|
Lima Neto JX, Bezerra KS, Barbosa ED, Araujo RL, Galvão DS, Lyra ML, Oliveira JIN, Akash S, Jardan YAB, Nafidi HA, Bourhia M, Fulco UL. Investigation of protein-protein interactions and hotspot region on the NSP7-NSP8 binding site in NSP12 of SARS-CoV-2. Front Mol Biosci 2024; 10:1325588. [PMID: 38304231 PMCID: PMC10830813 DOI: 10.3389/fmolb.2023.1325588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/22/2023] [Indexed: 02/03/2024] Open
Abstract
Background: The RNA-dependent RNA polymerase (RdRp) complex, essential in viral transcription and replication, is a key target for antiviral therapeutics. The core unit of RdRp comprises the nonstructural protein NSP12, with NSP7 and two copies of NSP8 (NSP81 and NSP82) binding to NSP12 to enhance its affinity for viral RNA and polymerase activity. Notably, the interfaces between these subunits are highly conserved, simplifying the design of molecules that can disrupt their interaction. Methods: We conducted a detailed quantum biochemical analysis to characterize the interactions within the NSP12-NSP7, NSP12-NSP81, and NSP12-NSP82 dimers. Our objective was to ascertain the contribution of individual amino acids to these protein-protein interactions, pinpointing hotspot regions crucial for complex stability. Results: The analysis revealed that the NSP12-NSP81 complex possessed the highest total interaction energy (TIE), with 14 pairs of residues demonstrating significant energetic contributions. In contrast, the NSP12-NSP7 complex exhibited substantial interactions in 8 residue pairs, while the NSP12-NSP82 complex had only one pair showing notable interaction. The study highlighted the importance of hydrogen bonds and π-alkyl interactions in maintaining these complexes. Intriguingly, introducing the RNA sequence with Remdesivir into the complex resulted in negligible alterations in both interaction energy and geometric configuration. Conclusion: Our comprehensive analysis of the RdRp complex at the protein-protein interface provides invaluable insights into interaction dynamics and energetics. These findings can guide the design of small molecules or peptide/peptidomimetic ligands to disrupt these critical interactions, offering a strategic pathway for developing effective antiviral drugs.
Collapse
Affiliation(s)
- José Xavier Lima Neto
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Katyanna Sales Bezerra
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Emmanuel Duarte Barbosa
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Roniel Lima Araujo
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - Jonas Ivan Nobre Oliveira
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Shopnil Akash
- Department of Pharmacy, Daffodil International University, Dhaka, Bangladesh
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC, Canada
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Umberto Laino Fulco
- Department of Biophysics and Pharmacology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
14
|
Lu J, Fang J, Zhu H, Liang KL, Khudaverdyan N, Song J. Structural basis for the allosteric regulation and dynamic assembly of DNMT3B. Nucleic Acids Res 2023; 51:12476-12491. [PMID: 37941146 PMCID: PMC10711551 DOI: 10.1093/nar/gkad972] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/08/2023] [Accepted: 10/14/2023] [Indexed: 11/10/2023] Open
Abstract
Oligomerization of DNMT3B, a mammalian de novo DNA methyltransferase, critically regulates its chromatin targeting and DNA methylation activities. However, how the N-terminal PWWP and ADD domains interplay with the C-terminal methyltransferase (MTase) domain in regulating the dynamic assembly of DNMT3B remains unclear. Here, we report the cryo-EM structure of DNMT3B under various oligomerization states. The ADD domain of DNMT3B interacts with the MTase domain to form an autoinhibitory conformation, resembling the previously observed DNMT3A autoinhibition. Our combined structural and biochemical study further identifies a role for the PWWP domain and its associated ICF mutation in the allosteric regulation of DNMT3B tetramer, and a differential functional impact on DNMT3B by potential ADD-H3K4me0 and PWWP-H3K36me3 bindings. In addition, our comparative structural analysis reveals a coupling between DNMT3B oligomerization and folding of its substrate-binding sites. Together, this study provides mechanistic insights into the allosteric regulation and dynamic assembly of DNMT3B.
Collapse
Affiliation(s)
- Jiuwei Lu
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jian Fang
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Hongtao Zhu
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | | | - Nelli Khudaverdyan
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| | - Jikui Song
- Department of Biochemistry, University of California, Riverside, CA92521, USA
| |
Collapse
|
15
|
Li S, Li X, Liang H, Yu K, Zhai J, Xue M, Luo Z, Zheng C, Zhang H. SARS-CoV-2 ORF7a blocked autophagy flux by intervening in the fusion between autophagosome and lysosome to promote viral infection and pathogenesis. J Med Virol 2023; 95:e29200. [PMID: 37916857 DOI: 10.1002/jmv.29200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The coronavirus disease 2019 (COVID-19) continues to pose a major threat to public health worldwide. Although many studies have clarified the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection process, the underlying mechanisms of viral invasion and immune evasion were still unclear. This study focused on SARS-CoV-2 ORF7a (open reading frame-7a), one of the essential open reading frames (ORFs) in infection and pathogenesis. First, by analyzing its physical and chemical characteristics, SARS-CoV-2 ORF7a is an unstable hydrophobic transmembrane protein. Then, the ORF7a transmembrane domain three-dimensional crystal structure model was predicted and verified. SARS-CoV-2 ORF7a localized in the endoplasmic reticulum and participated in the autophagy-lysosome pathway via interacting with p62. In addition, we elucidated the underlying molecular mechanisms by which ORF7a intercepted autophagic flux, promoted double membrane vesicle formation, and evaded host autophagy-lysosome degradation and antiviral innate immunity. This study demonstrated that ORF7a could be a therapeutic target, and Glecaprevir may be a potential drug against SARS-CoV-2 by targeting ORF7a. A comprehensive understanding of ORF7a's functions may contribute to developing novel therapies and clinical drugs against COVID-19.
Collapse
Affiliation(s)
- Shun Li
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| | - Xiaobo Li
- Department of Respiratory, Chengdu Seventh People's Hospital (Affiliated Cancer Hospital of Chengdu Medical College), Chengdu, Sichuan, China
| | - Haowei Liang
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Kuike Yu
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhuojing Luo
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Canada
| | - Hao Zhang
- Department of Spine Surgery, People's Hospital of Longhua, Affiliated Hospital of Southern Medical University, Shenzhen, China
| |
Collapse
|
16
|
Treviño MÁ, Pantoja-Uceda D, Laurents DV, Mompeán M. SARS-CoV-2 Nsp8 N-terminal domain folds autonomously and binds dsRNA. Nucleic Acids Res 2023; 51:10041-10048. [PMID: 37665006 PMCID: PMC10570013 DOI: 10.1093/nar/gkad714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/18/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 Nsp8 protein is a critical component of the RNA replicase, as its N-terminal domain (NTD) anchors Nsp12, the RNA, and Nsp13. Whereas its C-terminal domain (CTD) structure is well resolved, there is an open debate regarding the conformation adopted by the NTD as it is predicted as disordered but found in a variety of complex-dependent conformations or missing from many other structures. Using NMR spectroscopy, we show that the SARS CoV-2 Nsp8 NTD features both well folded secondary structure and disordered segments. Our results suggest that while part of this domain corresponding to two long α-helices forms autonomously, the folding of other segments would require interaction with other replicase components. When isolated, the α-helix population progressively declines towards the C-termini but surprisingly binds dsRNA while preserving structural disorder.
Collapse
Affiliation(s)
- Miguel Á Treviño
- “Blas Cabrera” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - David Pantoja-Uceda
- “Blas Cabrera” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Douglas V Laurents
- “Blas Cabrera” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| | - Miguel Mompeán
- “Blas Cabrera” Institute for Physical Chemistry, Spanish National Research Council, Serrano 119, Madrid 28006, Spain
| |
Collapse
|
17
|
Zong S, Wu Y, Li W, You Q, Peng Q, Wang C, Wan P, Bai T, Ma Y, Sun B, Qiao J. SARS-CoV-2 Nsp8 induces mitophagy by damaging mitochondria. Virol Sin 2023; 38:520-530. [PMID: 37156297 PMCID: PMC10163945 DOI: 10.1016/j.virs.2023.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023] Open
Abstract
Autophagy plays an important role in the interaction between viruses and host cells. SARS-CoV-2 infection can disrupt the autophagy process in target cells. However, the precise molecular mechanism is still unknown. In this study, we discovered that the Nsp8 of SARS-CoV-2 could cause an increasing accumulation of autophagosomes by preventing the fusion of autophagosomes and lysosomes. From further investigation, we found that Nsp8 was present on mitochondria and can damage mitochondria to initiate mitophagy. The results of experiments with immunofluorescence revealed that Nsp8 induced incomplete mitophagy. Moreover, both domains of Nsp8 orchestrated their function during Nsp8-induced mitophagy, in which the N-terminal domain colocalized with mitochondria and the C-terminal domain induced auto/mitophagy. This novel finding expands our understanding of the function of Nsp8 in promoting mitochondrial damage and inducing incomplete mitophagy, which helps us to understand the etiology of COVID-19 as well as open up new pathways for creating SARS-CoV-2 treatment methods.
Collapse
Affiliation(s)
- Shan Zong
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Yan Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiling Li
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Qiang You
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Qian Peng
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Chenghai Wang
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Pin Wan
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China
| | - Tao Bai
- Division of Gastroenterology, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Yanling Ma
- Department of Respiratory and Critical Care Medicine, Hubei Province Clinical Research Center for Major Respiratory Diseases, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Binlian Sun
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Jialu Qiao
- Wuhan Institute of Biomedical Sciences, School of Medicine, Jianghan University, Wuhan, 430056, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
18
|
Li Y, Yu Q, Huang R, Chen H, Ren H, Ma L, He Y, Li W. SARS-CoV-2 SUD2 and Nsp5 Conspire to Boost Apoptosis of Respiratory Epithelial Cells via an Augmented Interaction with the G-Quadruplex of BclII. mBio 2023; 14:e0335922. [PMID: 36853058 PMCID: PMC10127692 DOI: 10.1128/mbio.03359-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/09/2023] [Indexed: 03/01/2023] Open
Abstract
The molecular mechanisms underlying how SUD2 recruits other proteins of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to exert its G-quadruplex (G4)-dependent pathogenic function is unknown. Herein, Nsp5 was singled out as a binding partner of the SUD2-N+M domains (SUD2core) with high affinity, through the surface located crossing these two domains. Biochemical and fluorescent assays demonstrated that this complex also formed in the nucleus of living host cells. Moreover, the SUD2core-Nsp5 complex displayed significantly enhanced selective binding affinity for the G4 structure in the BclII promoter than did SUD2core alone. This increased stability exhibited by the tertiary complex was rationalized by AlphaFold2 and molecular dynamics analysis. In line with these molecular interactions, downregulation of BclII and subsequent augmented apoptosis of respiratory cells were both observed. These results provide novel information and a new avenue to explore therapeutic strategies targeting SARS-CoV-2. IMPORTANCE SUD2, a unique protein domain closely related to the pathogenesis of SARS-CoV-2, has been reported to bind with the G-quadruplex (G4), a special noncanonical DNA structure endowed with important functions in regulating gene expression. However, the interacting partner of SUD2, among other SARS-CoV-2 Nsps, and the resulting functional consequences remain unknown. Here, a stable complex formed between SUD2 and Nsp5 was fully characterized both in vitro and in host cells. Moreover, this complex had a significantly enhanced binding affinity specifically targeting the Bcl2G4 in the promoter region of the antiapoptotic gene BclII, compared with SUD2 alone. In respiratory epithelial cells, the SUD2-Nsp5 complex promoted BclII-mediated apoptosis in a G4-dependent manner. These results reveal fresh information about matched multicomponent interactions, which can be parlayed to develop new therapeutics for future relevant viral disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Quanwei Yu
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hai Chen
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hequan Ren
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Ma
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang He
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Kandwal S, Fayne D. Genetic conservation across SARS-CoV-2 non-structural proteins - Insights into possible targets for treatment of future viral outbreaks. Virology 2023; 581:97-115. [PMID: 36940641 PMCID: PMC9999249 DOI: 10.1016/j.virol.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
The majority of SARS-CoV-2 therapeutic development work has focussed on targeting the spike protein, viral polymerase and proteases. As the pandemic progressed, many studies reported that these proteins are prone to high levels of mutation and can become drug resistant. Thus, it is necessary to not only target other viral proteins such as the non-structural proteins (NSPs) but to also target the most conserved residues of these proteins. In order to understand the level of conservation among these viruses, in this review, we have focussed on the conservation across RNA viruses, conservation across the coronaviruses and then narrowed our focus to conservation of NSPs across coronaviruses. We have also discussed the various treatment options for SARS-CoV-2 infection. A synergistic melding of bioinformatics, computer-aided drug-design and in vitro/vivo studies can feed into better understanding of the virus and therefore help in the development of small molecule inhibitors against the viral proteins.
Collapse
Affiliation(s)
- Shubhangi Kandwal
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Biochemistry & Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street, Dublin, 2, Ireland.
| |
Collapse
|
20
|
Abbasian MH, Mahmanzar M, Rahimian K, Mahdavi B, Tokhanbigli S, Moradi B, Sisakht MM, Deng Y. Global landscape of SARS-CoV-2 mutations and conserved regions. J Transl Med 2023; 21:152. [PMID: 36841805 PMCID: PMC9958328 DOI: 10.1186/s12967-023-03996-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND At the end of December 2019, a novel strain of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been identified in Wuhan, a central city in China, and then spread to every corner of the globe. As of October 8, 2022, the total number of COVID-19 cases had reached over 621 million worldwide, with more than 6.56 million confirmed deaths. Since SARS-CoV-2 genome sequences change due to mutation and recombination, it is pivotal to surveil emerging variants and monitor changes for improving pandemic management. METHODS 10,287,271 SARS-CoV-2 genome sequence samples were downloaded in FASTA format from the GISAID databases from February 24, 2020, to April 2022. Python programming language (version 3.8.0) software was utilized to process FASTA files to identify variants and sequence conservation. The NCBI RefSeq SARS-CoV-2 genome (accession no. NC_045512.2) was considered as the reference sequence. RESULTS Six mutations had more than 50% frequency in global SARS-CoV-2. These mutations include the P323L (99.3%) in NSP12, D614G (97.6) in S, the T492I (70.4) in NSP4, R203M (62.8%) in N, T60A (61.4%) in Orf9b, and P1228L (50.0%) in NSP3. In the SARS-CoV-2 genome, no mutation was observed in more than 90% of nsp11, nsp7, nsp10, nsp9, nsp8, and nsp16 regions. On the other hand, N, nsp3, S, nsp4, nsp12, and M had the maximum rate of mutations. In the S protein, the highest mutation frequency was observed in aa 508-635(0.77%) and aa 381-508 (0.43%). The highest frequency of mutation was observed in aa 66-88 (2.19%), aa 7-14, and aa 164-246 (2.92%) in M, E, and N proteins, respectively. CONCLUSION Therefore, monitoring SARS-CoV-2 proteomic changes and detecting hot spots mutations and conserved regions could be applied to improve the SARS-CoV-2 diagnostic efficiency and design safe and effective vaccines against emerging variants.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mohammadamin Mahmanzar
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA
| | - Karim Rahimian
- Department of Bioinformatics, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahar Mahdavi
- Department of Computer Science, Tarbiat Modares University, Tehran, Iran
| | - Samaneh Tokhanbigli
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Bahman Moradi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mahsa Mollapour Sisakht
- Department of Biochemistry, Erasmus University Medical Center, 2040, 3000 CA, Rotterdam, The Netherlands
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, 96813, USA.
| |
Collapse
|
21
|
Jahirul Islam M, Nawal Islam N, Siddik Alom M, Kabir M, Halim MA. A review on structural, non-structural, and accessory proteins of SARS-CoV-2: Highlighting drug target sites. Immunobiology 2023; 228:152302. [PMID: 36434912 PMCID: PMC9663145 DOI: 10.1016/j.imbio.2022.152302] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 10/30/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, is a highly transmittable and pathogenic human coronavirus that first emerged in China in December 2019. The unprecedented outbreak of SARS-CoV-2 devastated human health within a short time leading to a global public health emergency. A detailed understanding of the viral proteins including their structural characteristics and virulence mechanism on human health is very crucial for developing vaccines and therapeutics. To date, over 1800 structures of non-structural, structural, and accessory proteins of SARS-CoV-2 are determined by cryo-electron microscopy, X-ray crystallography, and NMR spectroscopy. Designing therapeutics to target the viral proteins has several benefits since they could be highly specific against the virus while maintaining minimal detrimental effects on humans. However, for ongoing and future research on SARS-CoV-2, summarizing all the viral proteins and their detailed structural information is crucial. In this review, we compile comprehensive information on viral structural, non-structural, and accessory proteins structures with their binding and catalytic sites, different domain and motifs, and potential drug target sites to assist chemists, biologists, and clinicians finding necessary details for fundamental and therapeutic research.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Division of Infectious Diseases and Division of Computer Aided Drug Design, The Red-Green Research Centre, BICCB, 16 Tejkunipara, Tejgaon, Dhaka 1215, Bangladesh
| | - Nafisa Nawal Islam
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Md Siddik Alom
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Mahmuda Kabir
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammad A Halim
- Department of Chemistry and Biochemistry, Kennesaw State University, 370 Paulding Avenue NW, Kennesaw, GA 30144, USA
| |
Collapse
|
22
|
Wang Z, Yang L, Song XQ. Oral GS-441524 derivatives: Next-generation inhibitors of SARS-CoV-2 RNA-dependent RNA polymerase. Front Immunol 2022; 13:1015355. [PMID: 36561747 PMCID: PMC9763260 DOI: 10.3389/fimmu.2022.1015355] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
GS-441524, an RNA-dependent RNA polymerase (RdRp) inhibitor, is a 1'-CN-substituted adenine C-nucleoside analog with broad-spectrum antiviral activity. However, the low oral bioavailability of GS-441524 poses a challenge to its anti-SARS-CoV-2 efficacy. Remdesivir, the intravenously administered version (version 1.0) of GS-441524, is the first FDA-approved agent for SARS-CoV-2 treatment. However, clinical trials have presented conflicting evidence on the value of remdesivir in COVID-19. Therefore, oral GS-441524 derivatives (VV116, ATV006, and GS-621763; version 2.0, targeting highly conserved viral RdRp) could be considered as game-changers in treating COVID-19 because oral administration has the potential to maximize clinical benefits, including decreased duration of COVID-19 and reduced post-acute sequelae of SARS-CoV-2 infection, as well as limited side effects such as hepatic accumulation. This review summarizes the current research related to the oral derivatives of GS-441524, and provides important insights into the potential factors underlying the controversial observations regarding the clinical efficacy of remdesivir; overall, it offers an effective launching pad for developing an oral version of GS-441524.
Collapse
Affiliation(s)
- Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, China,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Liyan Yang
- Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, School of Physics and Physical Engineering, Qufu Normal University, Qufu, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| | - Xian-qing Song
- General Surgery Department, Ningbo Fourth Hospital, Xiangshan, China,*Correspondence: Zhonglei Wang, ; Liyan Yang, ; Xian-qing Song,
| |
Collapse
|
23
|
Manan A, Pirzada RH, Haseeb M, Choi S. Toll-like Receptor Mediation in SARS-CoV-2: A Therapeutic Approach. Int J Mol Sci 2022; 23:10716. [PMID: 36142620 PMCID: PMC9502216 DOI: 10.3390/ijms231810716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 01/18/2023] Open
Abstract
The innate immune system facilitates defense mechanisms against pathogen invasion and cell damage. Toll-like receptors (TLRs) assist in the activation of the innate immune system by binding to pathogenic ligands. This leads to the generation of intracellular signaling cascades including the biosynthesis of molecular mediators. TLRs on cell membranes are adept at recognizing viral components. Viruses can modulate the innate immune response with the help of proteins and RNAs that downregulate or upregulate the expression of various TLRs. In the case of COVID-19, molecular modulators such as type 1 interferons interfere with signaling pathways in the host cells, leading to an inflammatory response. Coronaviruses are responsible for an enhanced immune signature of inflammatory chemokines and cytokines. TLRs have been employed as therapeutic agents in viral infections as numerous antiviral Food and Drug Administration-approved drugs are TLR agonists. This review highlights the therapeutic approaches associated with SARS-CoV-2 and the TLRs involved in COVID-19 infection.
Collapse
Affiliation(s)
- Abdul Manan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | | | - Muhammad Haseeb
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Korea
| |
Collapse
|
24
|
Low ZY, Zabidi NZ, Yip AJW, Puniyamurti A, Chow VTK, Lal SK. SARS-CoV-2 Non-Structural Proteins and Their Roles in Host Immune Evasion. Viruses 2022; 14:v14091991. [PMID: 36146796 PMCID: PMC9506350 DOI: 10.3390/v14091991] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 12/02/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused an unprecedented global crisis and continues to threaten public health. The etiological agent of this devastating pandemic outbreak is the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). COVID-19 is characterized by delayed immune responses, followed by exaggerated inflammatory responses. It is well-established that the interferon (IFN) and JAK/STAT signaling pathways constitute the first line of defense against viral and bacterial infections. To achieve viral replication, numerous viruses are able to antagonize or hijack these signaling pathways to attain productive infection, including SARS-CoV-2. Multiple studies document the roles of several non-structural proteins (NSPs) of SARS-CoV-2 that facilitate the establishment of viral replication in host cells via immune escape. In this review, we summarize and highlight the functions and characteristics of SARS-CoV-2 NSPs that confer host immune evasion. The molecular mechanisms mediating immune evasion and the related potential therapeutic strategies for controlling the COVID-19 pandemic are also discussed.
Collapse
Affiliation(s)
- Zheng Yao Low
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Nur Zawanah Zabidi
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashley Jia Wen Yip
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Ashwini Puniyamurti
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
| | - Vincent T. K. Chow
- Infectious Diseases Translational Research Program, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Kent Ridge, Singapore 117545, Singapore
- Correspondence: (V.T.K.C.); (S.K.L.)
| | - Sunil K. Lal
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Subang Jaya 47500, Malaysia
- Tropical Medicine & Biology Platform, Monash University, Subang Jaya 47500, Malaysia
- Correspondence: (V.T.K.C.); (S.K.L.)
| |
Collapse
|
25
|
Multiscale characterization reveals oligomerization dependent phase separation of primer-independent RNA polymerase nsp8 from SARS-CoV-2. Commun Biol 2022; 5:925. [PMID: 36071105 PMCID: PMC9451113 DOI: 10.1038/s42003-022-03892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/25/2022] [Indexed: 11/09/2022] Open
Abstract
RNA replication and transcription machinery is an important drug target for fighting against coronavirus. Non-structure protein nsp8 was proposed harboring primase activity. However, the RNA primer synthesis mechanism of nsp8 is still largely unknown. Here, we purified dimer and tetramer forms of SARS-CoV-2 nsp8. Combined with dynamic light scattering, small-angle neutron scattering and thermo-stability analysis, we found that both dimer and tetramer become loosened and destabilized with decreasing salt concentration, and the dimer form is more stable than the tetramer form. Further investigation showed that nsp8 dimer and tetramer can undergo phase separation but exhibit different phase separation behaviors. Nsp8 dimer can form liquid-like droplets in the buffer with a low concentration of NaCl; phase separation of nsp8 tetramer depends on the assistance of RNA. Our findings on different phase separation behaviors of nsp8 dimer and tetramer may provide insight into the functional studies of nsp8 in coronavirus. The phase separation behaviour of non-structure protein nsp8 of SARS CoV2 in the primer synthesis mechanism is presented, underpinning the replication of coronavirus.
Collapse
|
26
|
Campagnola G, Govindarajan V, Pelletier A, Canard B, Peersen OB. The SARS-CoV nsp12 Polymerase Active Site Is Tuned for Large-Genome Replication. J Virol 2022; 96:e0067122. [PMID: 35924919 PMCID: PMC9400494 DOI: 10.1128/jvi.00671-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/06/2022] [Indexed: 01/18/2023] Open
Abstract
Positive-strand RNA viruses replicate their genomes using virally encoded RNA-dependent RNA polymerases (RdRP) with a common active-site structure and closure mechanism upon which replication speed and fidelity can evolve to optimize virus fitness. Coronaviruses (CoV) form large multicomponent RNA replication-transcription complexes containing a core RNA synthesis machine made of the nsp12 RdRP protein with one nsp7 and two nsp8 proteins as essential subunits required for activity. We show that assembly of this complex can be accelerated 5-fold by preincubation of nsp12 with nsp8 and further optimized with the use of a novel nsp8L7 heterodimer fusion protein construct. Using rapid kinetics methods, we measure elongation rates of up to 260 nucleotides (nt)/s for the core replicase, a rate that is unusually fast for a viral polymerase. To address the origin of this fast rate, we examined the roles of two CoV-specific residues in the RdRP active site: Ala547, which replaces a conserved glutamate above the bound NTP, and Ser759, which mutates the palm domain GDD sequence to SDD. Our data show that Ala547 allows for a doubling of replication rate, but this comes at a fidelity cost that is mitigated by using a SDD sequence in the palm domain. Our biochemical data suggest that fixation of mutations in polymerase motifs F and C played a key role in nidovirus evolution by tuning replication rate and fidelity to accommodate their large genomes. IMPORTANCE Replicating large genomes represents a challenge for RNA viruses because fast RNA synthesis is needed to escape innate immunity defenses, but faster polymerases are inherently low-fidelity enzymes. Nonetheless, the coronaviruses replicate their ≈30-kb genomes using the core polymerase structure and mechanism common to all positive-strand RNA viruses. The classic explanation for their success is that the large-genome nidoviruses have acquired an exonuclease-based repair system that compensates for the high polymerase mutation rate. In this work, we establish that the nidoviral polymerases themselves also play a key role in maintaining genome integrity via mutations at two key active-site residues that enable very fast replication rates while maintaining typical mutation rates. Our findings further demonstrate the evolutionary plasticity of the core polymerase platform by showing how it has adapted during the expansion from short-genome picornaviruses to long-genome nidoviruses.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Vishnu Govindarajan
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Annelise Pelletier
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| | - Bruno Canard
- Centre National de la Recherche Scientifique, Aix-Marseille Université CNRS UMR 7257, AFMB, Marseille, France
| | - Olve B. Peersen
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
27
|
Xu G, Wang Y, Wang Q, Ma J. Studying protein-protein interaction through side-chain modeling method OPUS-Mut. Brief Bioinform 2022; 23:6663639. [PMID: 35959990 DOI: 10.1093/bib/bbac330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 12/12/2022] Open
Abstract
Protein side chains are vitally important to many biological processes such as protein-protein interaction. In this study, we evaluate the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein-protein docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side chains and provides a new and effective scoring term for studying protein-protein interaction.
Collapse
Affiliation(s)
- Gang Xu
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.,Shanghai AI Laboratory, Shanghai 200030, China
| | - Yilin Wang
- Georgetown Preparatory School, North Bethesda, MD 20852, USA
| | - Qinghua Wang
- Center for Biomolecular Innovation, Harcam Biomedicines, Shanghai, China
| | - Jianpeng Ma
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai 200433, China.,Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, China.,Shanghai AI Laboratory, Shanghai 200030, China
| |
Collapse
|
28
|
Sun C, Xie C, Bu GL, Zhong LY, Zeng MS. Molecular characteristics, immune evasion, and impact of SARS-CoV-2 variants. Signal Transduct Target Ther 2022; 7:202. [PMID: 35764603 PMCID: PMC9240077 DOI: 10.1038/s41392-022-01039-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 01/18/2023] Open
Abstract
The persistent COVID-19 pandemic since 2020 has brought an enormous public health burden to the global society and is accompanied by various evolution of the virus genome. The consistently emerging SARS-CoV-2 variants harboring critical mutations impact the molecular characteristics of viral proteins and display heterogeneous behaviors in immune evasion, transmissibility, and the clinical manifestation during infection, which differ each strain and endow them with distinguished features during populational spread. Several SARS-CoV-2 variants, identified as Variants of Concern (VOC) by the World Health Organization, challenged global efforts on COVID-19 control due to the rapid worldwide spread and enhanced immune evasion from current antibodies and vaccines. Moreover, the recent Omicron variant even exacerbated the global anxiety in the continuous pandemic. Its significant evasion from current medical treatment and disease control even highlights the necessity of combinatory investigation of the mutational pattern and influence of the mutations on viral dynamics against populational immunity, which would greatly facilitate drug and vaccine development and benefit the global public health policymaking. Hence in this review, we summarized the molecular characteristics, immune evasion, and impacts of the SARS-CoV-2 variants and focused on the parallel comparison of different variants in mutational profile, transmissibility and tropism alteration, treatment effectiveness, and clinical manifestations, in order to provide a comprehensive landscape for SARS-CoV-2 variant research.
Collapse
Affiliation(s)
- Cong Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Chu Xie
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Guo-Long Bu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lan-Yi Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Experimental Research, Sun Yat-sen University Cancer Center, Sun Yat-sen University, 510060, Guangzhou, China. .,Guangdong-Hong Kong Joint Laboratory for RNA Medicine, 510060, Guangzhou, China.
| |
Collapse
|
29
|
Sarma H, Jamir E, Sastry GN. Protein-protein interaction of RdRp with its co-factor NSP8 and NSP7 to decipher the interface hotspot residues for drug targeting: A comparison between SARS-CoV-2 and SARS-CoV. J Mol Struct 2022; 1257:132602. [PMID: 35153334 PMCID: PMC8824464 DOI: 10.1016/j.molstruc.2022.132602] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/09/2023]
Abstract
In this study we explored the molecular mechanism of RdRp (Non-Structural Protein, NSP12) interaction with its co-factors NSP7 and NSP8 which is the main toolbox for RNA replication and transcription of SARS-CoV-2 and SARS-CoV. The replication complex is a heterotetramer consists of one NSP12, one NSP7 and two NSP8. Extensive molecular dynamics (MD) simulations were applied on both the heterotetramer complexes to generate the conformations and were used to estimate the MMPBSA binding free energy (BFE) and per-residue energy decomposition of NSP12-NSP8 and NSP12-NSP7 and NSP7-NSP8 complexes. The BFE of SARS-CoV-2 heterotetramer complex with its corresponding partner protein was significantly higher as compared to SARS-CoV. Interface hotspot residues were predicted using different methods implemented in KFC (Knowledge-based FADA and Contracts), HotRegion and Robetta web servers. Per-residue energy decomposition analysis showed that the predicted interface hotspot residues contribute more energy towards the formation of complexes and most of the predicted hotspot residues are clustered together. However, there is a slight difference in the residue-wise energy contribution in the interface NSPs on heterotetramer viral replication complex of both coronaviruses. While the overall replication complex of SARS-CoV-2 was found to be slightly flexible as compared to SARS-CoV. This difference in terms of structural flexibility/stability and energetic characteristics of interface residues including hotspots at PPI interface in the viral replication complexes may be the reason of higher rate of RNA replication of SARS-CoV-2 as compared to SARS-CoV. Overall, the interaction profile at PPI interface such as, interface area, hotspot residues, nature of bonds and energies between NSPs, may provide valuable insights in designing of small molecules or peptide/peptidomimetic ligands which can fit into the PPI interface to disrupt the interaction.
Collapse
Affiliation(s)
- Himakshi Sarma
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India
| | - Esther Jamir
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - G Narahari Sastry
- Advanced Computation and Data Sciences Division, CSIR - North East Institute of Science and Technology, Jorhat, Assam, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
30
|
Wang J, Shi Y, Reiss K, Allen B, Maschietto F, Lolis E, Konigsberg WH, Lisi GP, Batista VS. Insights into Binding of Single-Stranded Viral RNA Template to the Replication-Transcription Complex of SARS-CoV-2 for the Priming Reaction from Molecular Dynamics Simulations. Biochemistry 2022; 61:424-432. [PMID: 35199520 PMCID: PMC8887646 DOI: 10.1021/acs.biochem.1c00755] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/09/2022] [Indexed: 01/18/2023]
Abstract
A minimal replication-transcription complex (RTC) of SARS-CoV-2 for synthesis of viral RNAs includes the nsp12 RNA-dependent RNA polymerase and two nsp8 RNA primase subunits for de novo primer synthesis, one nsp8 in complex with its accessory nsp7 subunit and the other without it. The RTC is responsible for faithfully copying the entire (+) sense viral genome from its first 5'-end to the last 3'-end nucleotides through a replication-intermediate (RI) template. The single-stranded (ss) RNA template for the RI is its 33-nucleotide 3'-poly(A) tail adjacent to a well-characterized secondary structure. The ssRNA template for viral transcription is a 5'-UUUAU-3' next to stem-loop (SL) 1'. We analyze the electrostatic potential distribution of the nsp8 subunit within the RTC around the template strand of the primer/template (P/T) RNA duplex in recently published cryo-EM structures to address the priming reaction using the viral poly(A) template. We carried out molecular dynamics (MD) simulations with a P/T RNA duplex, the viral poly(A) template, or a generic ssRNA template. We find evidence that the viral poly(A) template binds similarly to the template strand of the P/T RNA duplex within the RTC, mainly through electrostatic interactions, providing new insights into the priming reaction by the nsp8 subunit within the RTC, which differs significantly from the existing proposal of the nsp7/nsp8 oligomer formed outside the RTC. High-order oligomerization of nsp8 and nsp7 for SARS-CoV observed outside the RTC of SARS-CoV-2 is not found in the RTC and not likely to be relevant to the priming reaction.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - Yuanjun Shi
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Krystle Reiss
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Brandon Allen
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Federica Maschietto
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| | - Elias Lolis
- Department of Pharmacology, Yale
University, New Haven, Connecticut 06520-8066, United
States
| | - William H. Konigsberg
- Department of Molecular Biophysics and Biochemistry,
Yale University, New Haven, Connecticut 06520-8114,
United States
| | - George P. Lisi
- Department of Molecular and Cell Biology and
Biochemistry, Brown University, Providence, Rhode Island 02912,
United States
| | - Victor S. Batista
- Department of Chemistry, Yale
University, New Haven, Connecticut 06511-8499, United
States
| |
Collapse
|
31
|
Zimerman RA, Ferrareze PAG, Cadegiani FA, Wambier CG, Fonseca DDN, de Souza AR, Goren A, Rotta LN, Ren Z, Thompson CE. Comparative Genomics and Characterization of SARS-CoV-2 P.1 (Gamma) Variant of Concern From Amazonas, Brazil. Front Med (Lausanne) 2022; 9:806611. [PMID: 35242782 PMCID: PMC8885995 DOI: 10.3389/fmed.2022.806611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/12/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND P.1 lineage (Gamma) was first described in the State of Amazonas, northern Brazil, in the end of 2020, and has emerged as a very important variant of concern (VOC) of SARS-CoV-2 worldwide. P.1 has been linked to increased infectivity, higher mortality, and immune evasion, leading to reinfections and potentially reduced efficacy of vaccines and neutralizing antibodies. METHODS The samples of 276 patients from the State of Amazonas were sent to a central referral laboratory for sequencing by gold standard techniques, through Illumina MiSeq platform. Both global and regional phylogenetic analyses of the successfully sequenced genomes were conducted through maximum likelihood method. Multiple alignments were obtained including previously obtained unique human SARS-CoV-2 sequences. The evolutionary histories of spike and non-structural proteins from ORF1a of northern genomes were described and their molecular evolution was analyzed for detection of positive (FUBAR, FEL, and MEME) and negative (FEL and SLAC) selective pressures. To further evaluate the possible pathways of evolution leading to the emergence of P.1, we performed specific analysis for copy-choice recombination events. A global phylogenomic analysis with subsampled P.1 and B.1.1.28 genomes was applied to evaluate the relationship among samples. RESULTS Forty-four samples from the State of Amazonas were successfully sequenced and confirmed as P.1 (Gamma) lineage. In addition to previously described P.1 characteristic mutations, we find evidence of continuous diversification of SARS-CoV-2, as rare and previously unseen P.1 mutations were detected in spike and non-structural protein from ORF1a. No evidence of recombination was found. Several sites were demonstrated to be under positive and negative selection, with various mutations identified mostly in P.1 lineage. According to the Pango assignment, phylogenomic analyses indicate all samples as belonging to the P.1 lineage. CONCLUSION P.1 has shown continuous evolution after its emergence. The lack of clear evidence for recombination and the positive selection demonstrated for several sites suggest that this lineage emergence resulted mainly from strong evolutionary forces and progressive accumulation of a favorable signature set of mutations.
Collapse
Affiliation(s)
| | | | | | - Carlos Gustavo Wambier
- Department of Dermatology, Warren Alpert Medical School of Brown University, Providence, RI, United States
| | | | | | - Andy Goren
- Applied Biology, Inc., Irvine, CA, United States
| | - Liane Nanci Rotta
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Zhihua Ren
- Suzhou Kintor Pharmaceutical, Inc., Suzhou, China
| | - Claudia Elizabeth Thompson
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
- Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
32
|
Gusev E, Sarapultsev A, Solomatina L, Chereshnev V. SARS-CoV-2-Specific Immune Response and the Pathogenesis of COVID-19. Int J Mol Sci 2022; 23:1716. [PMID: 35163638 PMCID: PMC8835786 DOI: 10.3390/ijms23031716] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022] Open
Abstract
The review aims to consolidate research findings on the molecular mechanisms and virulence and pathogenicity characteristics of coronavirus disease (COVID-19) causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and their relevance to four typical stages in the development of acute viral infection. These four stages are invasion; primary blockade of antiviral innate immunity; engagement of the virus's protection mechanisms against the factors of adaptive immunity; and acute, long-term complications of COVID-19. The invasion stage entails the recognition of the spike protein (S) of SARS-CoV-2 target cell receptors, namely, the main receptor (angiotensin-converting enzyme 2, ACE2), its coreceptors, and potential alternative receptors. The presence of a diverse repertoire of receptors allows SARS-CoV-2 to infect various types of cells, including those not expressing ACE2. During the second stage, the majority of the polyfunctional structural, non-structural, and extra proteins SARS-CoV-2 synthesizes in infected cells are involved in the primary blockage of antiviral innate immunity. A high degree of redundancy and systemic action characterizing these pathogenic factors allows SARS-CoV-2 to overcome antiviral mechanisms at the initial stages of invasion. The third stage includes passive and active protection of the virus from factors of adaptive immunity, overcoming of the barrier function at the focus of inflammation, and generalization of SARS-CoV-2 in the body. The fourth stage is associated with the deployment of variants of acute and long-term complications of COVID-19. SARS-CoV-2's ability to induce autoimmune and autoinflammatory pathways of tissue invasion and development of both immunosuppressive and hyperergic mechanisms of systemic inflammation is critical at this stage of infection.
Collapse
Affiliation(s)
- Evgenii Gusev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Alexey Sarapultsev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 454080 Chelyabinsk, Russia
| | - Liliya Solomatina
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| | - Valeriy Chereshnev
- Laboratory of Immunology of Inflammation, Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 620049 Ekaterinburg, Russia
| |
Collapse
|
33
|
Yan W, Zheng Y, Zeng X, He B, Cheng W. Structural biology of SARS-CoV-2: open the door for novel therapies. Signal Transduct Target Ther 2022; 7:26. [PMID: 35087058 PMCID: PMC8793099 DOI: 10.1038/s41392-022-00884-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/05/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is the causative agent of the pandemic disease COVID-19, which is so far without efficacious treatment. The discovery of therapy reagents for treating COVID-19 are urgently needed, and the structures of the potential drug-target proteins in the viral life cycle are particularly important. SARS-CoV-2, a member of the Orthocoronavirinae subfamily containing the largest RNA genome, encodes 29 proteins including nonstructural, structural and accessory proteins which are involved in viral adsorption, entry and uncoating, nucleic acid replication and transcription, assembly and release, etc. These proteins individually act as a partner of the replication machinery or involved in forming the complexes with host cellular factors to participate in the essential physiological activities. This review summarizes the representative structures and typically potential therapy agents that target SARS-CoV-2 or some critical proteins for viral pathogenesis, providing insights into the mechanisms underlying viral infection, prevention of infection, and treatment. Indeed, these studies open the door for COVID therapies, leading to ways to prevent and treat COVID-19, especially, treatment of the disease caused by the viral variants are imperative.
Collapse
Affiliation(s)
- Weizhu Yan
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Yanhui Zheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Xiaotao Zeng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Bin He
- Department of Emergency Medicine, West China Hospital of Sichuan University, 610041, Chengdu, China.
- The First People's Hospital of Longquanyi District Chengdu, 610100, Chengdu, China.
| | - Wei Cheng
- Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
34
|
Wade H, Duan Q, Su Q. Interaction between Sars-CoV-2 structural proteins and host cellular receptors: From basic mechanisms to clinical perspectives. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 132:243-277. [PMID: 36088078 PMCID: PMC9182089 DOI: 10.1016/bs.apcsb.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2) has caused a global pandemic that has affected the lives of billions of individuals. Sars-CoV-2 primarily infects human cells by binding of the viral spike protein to angiotensin-converting enzyme 2 (ACE2). In addition, novel means of viral entry are currently being investigated, including Neuropillin 1, toll-like receptors (TLRs), cluster of differentiation 147 (CD147), and integrin α5β1. Enriched expression of these proteins across metabolic regulatory organs/tissues, including the circulatory system, liver, pancreas, and intestine contributes to major clinical complications among COVID-19 patients, particularly the development of hypertension, myocardial injury, arrhythmia, acute coronary syndrome and increased coagulation in the circulatory system during and post-infection. Pre-existing metabolic disease, such as cardiovascular disease, obesity, diabetes, and non-alcoholic fatty liver disease, is associated with increased risk of hospitalization, persistent post-infection complications and worse outcomes in patients with COVID-19. This review overviews the biological features of Sars-CoV-2, highlights recent findings that delineate the pathological mechanisms of COVID-19 and the consequent clinical diseases.
Collapse
|
35
|
Xu D, Biswal M, Neal A, Hai R. Review Devil's tools: SARS-CoV-2 antagonists against innate immunity. CURRENT RESEARCH IN VIROLOGICAL SCIENCE 2021; 2:100013. [PMID: 34812428 PMCID: PMC8598260 DOI: 10.1016/j.crviro.2021.100013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 04/22/2023]
Abstract
The unprecedented Coronavirus pandemic of 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Like other coronaviruses, to establish its infection, SARS-CoV-2 is required to overcome the innate interferon (IFN) response, which is the first line of host defense. SARS-CoV-2 has also developed complex antagonism approaches involving almost all its encoding viral proteins. Here, we summarize our current understanding of these different viral factors and their roles in suppressing IFN responses. Some of them are conserved IFN evasion strategies used by SARS-CoV; others are novel countermeasures only employed by SARS-CoV-2. The filling of gaps in understanding these underlying mechanisms will provide rationale guidance for applying IFN treatment against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Duo Xu
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Mahamaya Biswal
- Department of Biochemistry, University of California-Riverside, Riverside, CA, USA
| | - Arrmund Neal
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| | - Rong Hai
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, USA
| |
Collapse
|
36
|
Fan LQ, Hu XY, Chen YY, Peng XL, Fu YH, Zheng YP, Yu JM, He JS. Biological Significance of the Genomic Variation and Structural Dynamics of SARS-CoV-2 B.1.617. Front Microbiol 2021; 12:750725. [PMID: 34691002 PMCID: PMC8529246 DOI: 10.3389/fmicb.2021.750725] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can't conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jie-mei Yu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| | - Jin-sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, China
| |
Collapse
|
37
|
Halder UC. Predicted antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir can potentially bind to neutralize SARS-CoV-2 conserved proteins. JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2021; 28:18. [PMID: 34344455 PMCID: PMC8331326 DOI: 10.1186/s40709-021-00149-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/14/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Novel Coronavirus disease 2019 or COVID-19 has become a threat to human society due to fast spreading and increasing mortality. It uses vertebrate hosts and presently deploys humans. Life cycle and pathogenicity of SARS-CoV-2 have already been deciphered and possible drug target trials are on the way. RESULTS The present study was aimed to analyze Non-Structural Proteins that include conserved enzymes of SARS-CoV-2 like papain-like protease, main protease, Replicase, RNA-dependent RNA polymerase, methyltransferase, helicase, exoribonuclease and endoribonucleaseas targets to all known drugs. A bioinformatic based web server Drug ReposeER predicted several drug binding motifs in these analyzed proteins. Results revealed that anti-viral drugs Darunavir,Amprenavir, Rimantadine and Saquinavir were the most potent to have 3D-drug binding motifs that were closely associated with the active sites of the SARS-CoV-2 enzymes . CONCLUSIONS Repurposing of the antiviral drugs Darunavir, Amprenavir, Rimantadine and Saquinavir to treat COVID-19 patients could be useful that can potentially prevent human mortality.
Collapse
Affiliation(s)
- Umesh C Halder
- Department of Zoology, Raniganj Girls' College, Searsole -Rajbari, Paschim Bardhaman, Raniganj, 713358, West Bengal, India.
| |
Collapse
|
38
|
Pacl HT, Tipper JL, Sevalkar RR, Crouse A, Crowder C, Ahmad S, Ahmad A, Holder GD, Kuhlman CJ, Chinta KC, Nadeem S, Green TJ, Petit CM, Steyn AJC, Might M, Harrod KS. Water-soluble tocopherol derivatives inhibit SARS-CoV-2 RNA-dependent RNA polymerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34282419 DOI: 10.1101/2021.07.13.449251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The recent emergence of a novel coronavirus, SARS-CoV-2, has led to the global pandemic of the severe disease COVID-19 in humans. While efforts to quickly identify effective antiviral therapies have focused largely on repurposing existing drugs 1-4 , the current standard of care, remdesivir, remains the only authorized antiviral intervention of COVID-19 and provides only modest clinical benefits 5 . Here we show that water-soluble derivatives of α-tocopherol have potent antiviral activity and synergize with remdesivir as inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase (RdRp). Through an artificial-intelligence-driven in silico screen and in vitro viral inhibition assay, we identified D-α-tocopherol polyethylene glycol succinate (TPGS) as an effective antiviral against SARS-CoV-2 and β-coronaviruses more broadly that also displays strong synergy with remdesivir. We subsequently determined that TPGS and other water-soluble derivatives of α-tocopherol inhibit the transcriptional activity of purified SARS-CoV-2 RdRp and identified affinity binding sites for these compounds within a conserved, hydrophobic interface between SARS-CoV-2 nonstructural protein 7 and nonstructural protein 8 that is functionally implicated in the assembly of the SARS-CoV-2 RdRp 6 . In summary, we conclude that solubilizing modifications to α-tocopherol allow it to interact with the SARS-CoV-2 RdRp, making it an effective antiviral molecule alone and even more so in combination with remdesivir. These findings are significant given that many tocopherol derivatives, including TPGS, are considered safe for humans, orally bioavailable, and dramatically enhance the activity of the only approved antiviral for SARS-CoV-2 infection 7-9 .
Collapse
|