1
|
Chowdhury M, John A, Hudson RHE. Breaking the blue barrier of nucleobase fluorescence emission with dicyanovinyl-based uracil molecular rotor probes. RSC Adv 2024; 14:37605-37609. [PMID: 39588240 PMCID: PMC11586925 DOI: 10.1039/d4ra07000c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
Dicyanovinyl-modified uracil produces fluorescent molecular rotors (FMR) that display massively red-shifted emission and huge Stokes shifts. They are exemplified by DCVSU - an intrinsically fluorescent nucleobase analog (IFNA) with the longest emission wavelength of 592 nm (DMSO) reported thus far which also shows strong polarity sensitivity and large Stokes shift (λ = 181 nm). The IFNAs exhibited typical molecular rotor response to solvent viscosity with brightnesses (ε × φ) of up to 8700 cm-1 M-1. 1H NMR titration confirmed the expected association of the IFNA with the complementary nucleobase adenine-9-ethyl acetate.
Collapse
Affiliation(s)
- Mria Chowdhury
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Akym John
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| | - Robert H E Hudson
- Department of Chemistry, Western University London Ontario N6A 5B7 Canada
| |
Collapse
|
2
|
Konttinen O, Carmody J, Kurnik M, Johnson KA, Reich N. High fidelity DNA strand-separation is the major specificity determinant in DNA methyltransferase CcrM's catalytic mechanism. Nucleic Acids Res 2023; 51:6883-6898. [PMID: 37326016 PMCID: PMC10359602 DOI: 10.1093/nar/gkad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023] Open
Abstract
Strand-separation is emerging as a novel DNA recognition mechanism but the underlying mechanisms and quantitative contribution of strand-separation to fidelity remain obscure. The bacterial DNA adenine methyltransferase, CcrM, recognizes 5'GANTC'3 sequences through a DNA strand-separation mechanism with unusually high selectivity. To explore this novel recognition mechanism, we incorporated Pyrrolo-dC into cognate and noncognate DNA to monitor the kinetics of strand-separation and used tryptophan fluorescence to follow protein conformational changes. Both signals are biphasic and global fitting showed that the faster phase of DNA strand-separation was coincident with the protein conformational transition. Non-cognate sequences did not display strand-separation and methylation was reduced > 300-fold, providing evidence that strand-separation is a major determinant of selectivity. Analysis of an R350A mutant showed that the enzyme conformational step can occur without strand-separation, so the two events are uncoupled. A stabilizing role for the methyl-donor (SAM) is proposed; the cofactor interacts with a critical loop which is inserted between the DNA strands, thereby stabilizing the strand-separated conformation. The results presented here are broadly applicable to the study of other N6-adenine methyltransferases that contain the structural features implicated in strand-separation, which are found widely dispersed across many bacterial phyla, including human and animal pathogens, and some Eukaryotes.
Collapse
Affiliation(s)
- Olivia Konttinen
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Jason Carmody
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Martin Kurnik
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Kenneth A Johnson
- Life Sciences Interdisciplinary Graduate Program, Department of Molecular Biosciences, University of Texas, Austin, TX, USA
| | - Norbert Reich
- Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA, USA
- Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Konttinen O, Carmody J, Pathuri S, Anderson K, Zhou X, Reich N. Cell cycle regulated DNA methyltransferase: fluorescent tracking of a DNA strand-separation mechanism and identification of the responsible protein motif. Nucleic Acids Res 2020; 48:11589-11601. [PMID: 33053173 PMCID: PMC7672430 DOI: 10.1093/nar/gkaa844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/23/2022] Open
Abstract
DNA adenine methylation by Caulobacter crescentus Cell Cycle Regulated Methyltransferase (CcrM) is an important epigenetic regulator of gene expression. The recent CcrM-DNA cocrystal structure shows the CcrM dimer disrupts four of the five base pairs of the (5'-GANTC-3') recognition site. We developed a fluorescence-based assay by which Pyrrolo-dC tracks the strand separation event. Placement of Pyrrolo-dC within the DNA recognition site results in a fluorescence increase when CcrM binds. Non-cognate sequences display little to no fluorescence changes, showing that strand separation is a specificity determinant. Conserved residues in the C-terminal segment interact with the phospho-sugar backbone of the non-target strand. Replacement of these residues with alanine results in decreased methylation activity and changes in strand separation. The DNA recognition mechanism appears to occur with the Type II M.HinfI DNA methyltransferase and an ortholog of CcrM, BabI, but not with DNA methyltransferases that lack the conserved C-terminal segment. The C-terminal segment is found broadly in N4/N6-adenine DNA methyltransferases, some of which are human pathogens, across three Proteobacteria classes, three other phyla and in Thermoplasma acidophilum, an Archaea. This Pyrrolo-dC strand separation assay should be useful for the study of other enzymes which likely rely on a strand separation mechanism.
Collapse
Affiliation(s)
- Olivia Konttinen
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA 93103, USA
| | - Jason Carmody
- Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93103, USA
| | - Sarath Pathuri
- Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93103, USA
| | - Kyle Anderson
- Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93103, USA
| | - Xiaofeng Zhou
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Norbert Reich
- Biomolecular Science and Engineering, University of California Santa Barbara, Santa Barbara, CA 93103, USA
- Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA 93103, USA
| |
Collapse
|
4
|
Kotandeniya D, Rogers MS, Fernandez J, Kanugula S, Hudson RHE, Rodriguez F, Lipscomb JD, Tretyakova N. 6-phenylpyrrolocytosine as a fluorescent probe to examine nucleotide flipping catalyzed by a DNA repair protein. Biopolymers 2020; 112:e23405. [PMID: 33098572 DOI: 10.1002/bip.23405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 11/05/2022]
Abstract
Cellular exposure to tobacco-specific nitrosamines causes formation of promutagenic O6 -[4-oxo-4-(3-pyridyl)but-1-yl]guanine (O6 -POB-G) and O6 -methylguanine (O6 -Me-G) adducts in DNA. These adducts can be directly repaired by O6 -alkylguanine-DNA alkyltransferase (AGT). Repair begins by flipping the damaged base out of the DNA helix. AGT binding and base-flipping have been previously studied using pyrrolocytosine as a fluorescent probe paired to the O6 -alkylguanine lesion, but low fluorescence yield limited the resolution of steps in the repair process. Here, we utilize the highly fluorescent 6-phenylpyrrolo-2'-deoxycytidine (6-phenylpyrrolo-C) to investigate AGT-DNA interactions. Synthetic oligodeoxynucleotide duplexes containing O6 -POB-G and O6 -Me-G adducts were placed within the CpG sites of codons 158, 245, and 248 of the p53 tumor suppressor gene and base-paired to 6-phenylpyrrolo-C in the opposite strand. Neighboring cytosine was either unmethylated or methylated. Stopped-flow fluorescence measurements were performed by mixing the DNA duplexes with C145A or R128G AGT variants. We observe a rapid, two-step, nearly irreversible binding of AGT to DNA followed by two slower steps, one of which is base-flipping. Placing 5-methylcytosine immediately 5' to the alkylated guanosine causes a reduction in rate constant of nucleotide flipping. O6 -POB-G at codon 158 decreased the base flipping rate constant by 3.5-fold compared with O6 -Me-G at the same position. A similar effect was not observed at other codons.
Collapse
Affiliation(s)
- Delshanee Kotandeniya
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Melanie S Rogers
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jenna Fernandez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sreenivas Kanugula
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Robert H E Hudson
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | - Freddys Rodriguez
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and the Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Röthlisberger P, Hollenstein M. Aptamer chemistry. Adv Drug Deliv Rev 2018; 134:3-21. [PMID: 29626546 DOI: 10.1016/j.addr.2018.04.007] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/28/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
Aptamers are single-stranded DNA or RNA molecules capable of tightly binding to specific targets. These functional nucleic acids are obtained by an in vitro Darwinian evolution method coined SELEX (Systematic Evolution of Ligands by EXponential enrichment). Compared to their proteinaceous counterparts, aptamers offer a number of advantages including a low immunogenicity, a relative ease of large-scale synthesis at affordable costs with little or no batch-to-batch variation, physical stability, and facile chemical modification. These alluring properties have propelled aptamers into the forefront of numerous practical applications such as the development of therapeutic and diagnostic agents as well as the construction of biosensing platforms. However, commercial success of aptamers still proceeds at a weak pace. The main factors responsible for this delay are the susceptibility of aptamers to degradation by nucleases, their rapid renal filtration, suboptimal thermal stability, and the lack of functional group diversity. Here, we describe the different chemical methods available to mitigate these shortcomings. Particularly, we describe the chemical post-SELEX processing of aptamers to include functional groups as well as the inclusion of modified nucleoside triphosphates into the SELEX protocol. These methods will be illustrated with successful examples of chemically modified aptamers used as drug delivery systems, in therapeutic applications, and as biosensing devices.
Collapse
|
6
|
Ro JJ, Go GH, Wilhelmsson LM, Kim BH. Fluorescence properties of 6-aryl-2'-deoxy-furanouridine and -pyrrolocytidine and their derivatives. Methods Appl Fluoresc 2017; 6:015004. [PMID: 28933349 DOI: 10.1088/2050-6120/aa8e19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
2'-deoxyfuranouridine derivatives presenting various aryl groups have been synthesized through Cu(I)-catalyzed intramolecular cyclizations. Moreover, corresponding pyrrolo-dC derivatives have been synthesized and both families of compounds thoroughly characterized using UV/vis and fluorescence spectroscopy as well as time-dependent density functional theory calculations. The photophysical characterization, show that our newly synthesized derivatives of the important pyrrolo-dC family have high fluorescence quantum yields (QYs) and brightness values. Pyrrolo-dC derivative, 3a, shows an environment sensitive QY of up to >60% and brightness of almost 3000, in low polarity solvents and excitation and emission maxima between 365-381 nm and 479-510 nm, respectively, in solvents of different polarities. Two other derivatives, 3b and 3c, show high QYs and brightness values of up to 3300 that are fairly insensitive to their microenvironment. These promising photophysical features suggest future applicability as fluorescent nucleobase analogs.
Collapse
Affiliation(s)
- Jong Jin Ro
- Department of Chemistry, Division of Advanced Materials Science, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | | | | | | |
Collapse
|
7
|
Figiel M, Krepl M, Park S, Poznański J, Skowronek K, Gołąb A, Ha T, Šponer J, Nowotny M. Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase. J Biol Chem 2017; 293:191-202. [PMID: 29122886 PMCID: PMC5766924 DOI: 10.1074/jbc.m117.798256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/02/2017] [Indexed: 12/27/2022] Open
Abstract
HIV-1 reverse transcriptase (RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical cross-linking method together with molecular dynamics simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly(rA/dT) tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly(rA/dT) tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the poly(rA/dT) segment and help advance our understanding of the mechanisms in viral RNA reverse transcription.
Collapse
Affiliation(s)
- Małgorzata Figiel
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Sangwoo Park
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Krzysztof Skowronek
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Agnieszka Gołąb
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University, Baltimore, Maryland 21205; Howard Hughes Medical Institute, Baltimore, Maryland 21205; Department of Biophysics, The Johns Hopkins University, Baltimore, Maryland 21205; Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, Maryland 21205
| | - Jiří Šponer
- Biophysics Core Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 771 46 Olomouc, Czech Republic
| | - Marcin Nowotny
- Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
| |
Collapse
|
8
|
Jahnz-Wechmann Z, Lisowiec-Wachnicka J, Framski G, Kosman J, Boryski J, Pasternak A. Thermodynamic, structural and fluorescent characteristics of DNA hairpins containing functionalized pyrrolo-2′-deoxycytidines. Bioorg Chem 2017; 71:294-298. [DOI: 10.1016/j.bioorg.2017.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/30/2017] [Accepted: 02/26/2017] [Indexed: 12/22/2022]
|
9
|
Perez-Gonzalez C, Lafontaine DA, Penedo JC. Fluorescence-Based Strategies to Investigate the Structure and Dynamics of Aptamer-Ligand Complexes. Front Chem 2016; 4:33. [PMID: 27536656 PMCID: PMC4971091 DOI: 10.3389/fchem.2016.00033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/11/2016] [Indexed: 12/11/2022] Open
Abstract
In addition to the helical nature of double-stranded DNA and RNA, single-stranded oligonucleotides can arrange themselves into tridimensional structures containing loops, bulges, internal hairpins and many other motifs. This ability has been used for more than two decades to generate oligonucleotide sequences, so-called aptamers, that can recognize certain metabolites with high affinity and specificity. More recently, this library of artificially-generated nucleic acid aptamers has been expanded by the discovery that naturally occurring RNA sequences control bacterial gene expression in response to cellular concentration of a given metabolite. The application of fluorescence methods has been pivotal to characterize in detail the structure and dynamics of these aptamer-ligand complexes in solution. This is mostly due to the intrinsic high sensitivity of fluorescence methods and also to significant improvements in solid-phase synthesis, post-synthetic labeling strategies and optical instrumentation that took place during the last decade. In this work, we provide an overview of the most widely employed fluorescence methods to investigate aptamer structure and function by describing the use of aptamers labeled with a single dye in fluorescence quenching and anisotropy assays. The use of 2-aminopurine as a fluorescent analog of adenine to monitor local changes in structure and fluorescence resonance energy transfer (FRET) to follow long-range conformational changes is also covered in detail. The last part of the review is dedicated to the application of fluorescence techniques based on single-molecule microscopy, a technique that has revolutionized our understanding of nucleic acid structure and dynamics. We finally describe the advantages of monitoring ligand-binding and conformational changes, one molecule at a time, to decipher the complexity of regulatory aptamers and summarize the emerging folding and ligand-binding models arising from the application of these single-molecule FRET microscopy techniques.
Collapse
Affiliation(s)
- Cibran Perez-Gonzalez
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
| | - Daniel A. Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de SherbrookeSherbrooke, QC, Canada
| | - J. Carlos Penedo
- Laboratory for Biophysics and Biomolecular Dynamics, SUPA School of Physics and Astronomy, University of St. AndrewsSt Andrews, UK
- Laboratory for Biophysics and Biomolecular Dynamics, Biomedical Sciences Research Complex, School of Biology, University of St. AndrewsSt. Andrews, UK
| |
Collapse
|
10
|
Abstract
The enzyme reverse transcriptase (RT) was discovered in retroviruses almost 50 years ago. The demonstration that other types of viruses, and what are now called retrotransposons, also replicated using an enzyme that could copy RNA into DNA came a few years later. The intensity of the research in both the process of reverse transcription and the enzyme RT was greatly stimulated by the recognition, in the mid-1980s, that human immunodeficiency virus (HIV) was a retrovirus and by the fact that the first successful anti-HIV drug, azidothymidine (AZT), is a substrate for RT. Although AZT monotherapy is a thing of the past, the most commonly prescribed, and most successful, combination therapies still involve one or both of the two major classes of anti-RT drugs. Although the basic mechanics of reverse transcription were worked out many years ago, and the first high-resolution structures of HIV RT are now more than 20 years old, we still have much to learn, particularly about the roles played by the host and viral factors that make the process of reverse transcription much more efficient in the cell than in the test tube. Moreover, we are only now beginning to understand how various host factors that are part of the innate immunity system interact with the process of reverse transcription to protect the host-cell genome, the host cell, and the whole host, from retroviral infection, and from unwanted retrotransposition.
Collapse
|
11
|
Masaoka T, Zhao H, Hirsch DR, D'Erasmo MP, Meck C, Varnado B, Gupta A, Meyers MJ, Baines J, Beutler JA, Murelli RP, Tang L, Le Grice SFJ. Characterization of the C-Terminal Nuclease Domain of Herpes Simplex Virus pUL15 as a Target of Nucleotidyltransferase Inhibitors. Biochemistry 2016; 55:809-19. [PMID: 26829613 DOI: 10.1021/acs.biochem.5b01254] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The natural product α-hydroxytropolones manicol and β-thujaplicinol inhibit replication of herpes simplex viruses 1 and 2 (HSV-1 and HSV-2, respectively) at nontoxic concentrations. Because these were originally developed as divalent metal-sequestering inhibitors of the ribonuclease H activity of HIV-1 reverse transcriptase, α-hydroxytropolones likely target related HSV proteins of the nucleotidyltransferase (NTase) superfamily, which share an "RNase H-like" fold. One potential candidate is pUL15, a component of the viral terminase molecular motor complex, whose C-terminal nuclease domain, pUL15C, has recently been crystallized. Crystallography also provided a working model for DNA occupancy of the nuclease active site, suggesting potential protein-nucleic acid contacts over a region of ∼ 14 bp. In this work, we extend crystallographic analysis by examining pUL15C-mediated hydrolysis of short, closely related DNA duplexes. In addition to defining a minimal substrate length, this strategy facilitated construction of a dual-probe fluorescence assay for rapid kinetic analysis of wild-type and mutant nucleases. On the basis of its proposed role in binding the phosphate backbone, studies with pUL15C variant Lys700Ala showed that this mutation affected neither binding of duplex DNA nor binding of small molecule to the active site but caused a 17-fold reduction in the turnover rate (kcat), possibly by slowing conversion of the enzyme-substrate complex to the enzyme-product complex and/or inhibiting dissociation from the hydrolysis product. Finally, with a view of pUL15-associated nuclease activity as an antiviral target, the dual-probe fluorescence assay, in combination with differential scanning fluorimetry, was used to demonstrate inhibition by several classes of small molecules that target divalent metal at the active site.
Collapse
Affiliation(s)
- Takashi Masaoka
- Basic Research Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Haiyan Zhao
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Danielle R Hirsch
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Michael P D'Erasmo
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Christine Meck
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Brittany Varnado
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Ankit Gupta
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Marvin J Meyers
- Department of Chemistry, St. Louis University , St. Louis, Missouri 63103, United States
| | - Joel Baines
- School of Veterinary Medicine, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - John A Beutler
- Molecular Targets Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| | - Ryan P Murelli
- Department of Chemistry, Brooklyn College, City University of New York , Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York , New York, New York 10016, United States
| | - Liang Tang
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Stuart F J Le Grice
- Basic Research Laboratory, National Cancer Institute , Frederick, Maryland 21702, United States
| |
Collapse
|
12
|
Sharma KK, Przybilla F, Restle T, Boudier C, Godet J, Mély Y. Reverse Transcriptase in Action: FRET-Based Assay for Monitoring Flipping and Polymerase Activity in Real Time. Anal Chem 2015; 87:7690-7. [PMID: 26125954 DOI: 10.1021/acs.analchem.5b01126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Reverse transcriptase (RT) of human immunodeficiency virus-1 (HIV-1) is a multifunctional enzyme that catalyzes the conversion of the single stranded viral RNA genome into double-stranded DNA, competent for host-cell integration. RT is endowed with RNA- and DNA-dependent DNA polymerase activity and DNA-directed RNA hydrolysis (RNase H activity). As a key enzyme of reverse transcription, RT is a key target of currently used highly active antiretroviral therapy (HAART), though RT inhibitors offer generally a poor resistance profile, urging new RT inhibitors to be developed. Using single molecule fluorescence approaches, it has been recently shown that RT binding orientation and dynamics on its substrate play a critical role in its activity. Currently, most in vitro RT activity assays, inherently end-point measurements, are based on the detection of reaction products by using radio-labeled or chemically modified nucleotides. Here, we propose a simple and continuous real-time Förster resonance energy transfer (FRET) based-assay for the direct measurement of RT's binding orientation and polymerase activity, with the use of conventional steady-state fluorescence spectroscopy. Under our working conditions, the change in binding orientation and the primer elongation step can be visualized separately on the basis of their opposite fluorescence changes and their different kinetics. The assay presented can easily discriminate non-nucleoside RT inhibitors from nucleoside RT inhibitors and determine reliably their potency. This one-step and one-pot assay constitutes an improved alternative to the currently used screening assays to disclose new anti-RT drugs and identify at the same time the class to which they belong.
Collapse
Affiliation(s)
- K K Sharma
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - F Przybilla
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - T Restle
- ‡Institute für Molekulare Medizin, Universitätsklinikum Schleswig-Holstein, Universität zu Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Schleswig-Holstein, Germany
| | - C Boudier
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| | - J Godet
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France.,§Département d'Information Médicale et de Biostatistiques, Hôpitaux Universitaires de Strasbourg, 1, pl de l'Hôpital, 67400 Strasbourg, France
| | - Y Mély
- †Laboratoire de Biophotonique et Pharmacologie, UMR 7213 CNRS, Université de Strasbourg, Faculté de pharmacie, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
13
|
Hein PP, Kolb KE, Windgassen T, Bellecourt MJ, Darst SA, Mooney RA, Landick R. RNA polymerase pausing and nascent-RNA structure formation are linked through clamp-domain movement. Nat Struct Mol Biol 2014; 21:794-802. [PMID: 25108353 PMCID: PMC4156911 DOI: 10.1038/nsmb.2867] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/03/2014] [Indexed: 12/11/2022]
Abstract
The rates of RNA synthesis and the folding of nascent RNA into biologically active structures are linked via pausing by RNA polymerase (RNAP). Structures that form within the RNA-exit channel can either increase pausing by interacting with RNAP or decrease pausing by preventing backtracking. Conversely, pausing is required for proper folding of some RNAs. Opening of the RNAP clamp domain has been proposed to mediate some effects of nascent-RNA structures. However, the connections among RNA structure formation and RNAP clamp movement and catalytic activity remain uncertain. Here, we assayed exit-channel structure formation in Escherichia coli RNAP with disulfide cross-links that favor closed- or open-clamp conformations and found that clamp position directly influences RNA structure formation and RNAP catalytic activity. We report that exit-channel RNA structures slow pause escape by favoring clamp opening through interactions with the flap that slow translocation.
Collapse
Affiliation(s)
- Pyae P. Hein
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Kellie E. Kolb
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Tricia Windgassen
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Michael J. Bellecourt
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Rachel A. Mooney
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin – Madison, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin – Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
St-Pierre P, McCluskey K, Shaw E, Penedo JC, Lafontaine DA. Fluorescence tools to investigate riboswitch structural dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1005-1019. [PMID: 24863161 DOI: 10.1016/j.bbagrm.2014.05.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 05/14/2014] [Accepted: 05/15/2014] [Indexed: 11/15/2022]
Abstract
Riboswitches are novel regulatory elements that respond to cellular metabolites to control gene expression. They are constituted of highly conserved domains that have evolved to recognize specific metabolites. Such domains, so-called aptamers, are folded into intricate structures to enable metabolite recognition. Over the years, the development of ensemble and single-molecule fluorescence techniques has allowed to probe most of the mechanistic aspects of aptamer folding and ligand binding. In this review, we summarize the current fluorescence toolkit available to study riboswitch structural dynamics. We fist describe those methods based on fluorescent nucleotide analogues, mostly 2-aminopurine (2AP), to investigate short-range conformational changes, including some key steady-state and time-resolved examples that exemplify the versatility of fluorescent analogues as structural probes. The study of long-range structural changes by Förster resonance energy transfer (FRET) is mostly discussed in the context of single-molecule studies, including some recent developments based on the combination of single-molecule FRET techniques with controlled chemical denaturation methods. This article is part of a Special Issue entitled: Riboswitches.
Collapse
Affiliation(s)
- Patrick St-Pierre
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
| | - Kaley McCluskey
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - Euan Shaw
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom
| | - J C Penedo
- SUPA, School of Physics and Astronomy University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom; Biomedical Sciences Research Complex, University of St Andrews, St Andrews, Fife KY16 9SS, United Kingdom.
| | - D A Lafontaine
- RNA Group, Department of Biology, Faculty of Science, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
15
|
Rodgers BJ, Elsharif NA, Vashisht N, Mingus MM, Mulvahill MA, Stengel G, Kuchta RD, Purse BW. Functionalized tricyclic cytosine analogues provide nucleoside fluorophores with improved photophysical properties and a range of solvent sensitivities. Chemistry 2013; 20:2010-5. [PMID: 24311229 DOI: 10.1002/chem.201303410] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Indexed: 12/11/2022]
Abstract
Tricyclic cytosines (tC and tC(O) frameworks) have emerged as a unique class of fluorescent nucleobase analogues that minimally perturb the structure of B-form DNA and that are not quenched in duplex nucleic acids. Systematic derivatization of these frameworks is a likely approach to improve on and diversify photophysical properties, but has not so far been examined. Synthetic methods were refined to improve on tolerance for electron-donating and electron-withdrawing groups, resulting in a series of eight new, fluorescent cytidine analogues. Photophysical studies show that substitution of the framework results in a pattern of effects largely consistent across tC and tC(O) and provides nucleoside fluorophores that are brighter than either parent. Moreover, a range of solvent sensitivities is observed, offering promise that this family of probes can be extended to new applications that require reporting on the local environment.
Collapse
Affiliation(s)
- Brittney J Rodgers
- Department of Chemistry and Biochemistry, University of Denver, 2199 S. University Blvd., Denver, CO 80208 (USA)
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Dyakonova ES, Koval VV, Ishchenko AA, Saparbaev MK, Kaptein R, Fedorova OS. Kinetic mechanism of the interaction of Saccharomyces cerevisiae AP-endonuclease 1 with DNA substrates. BIOCHEMISTRY (MOSCOW) 2012; 77:1162-71. [DOI: 10.1134/s0006297912100082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
Reverse transcription and integration are the defining features of the Retroviridae; the common name "retrovirus" derives from the fact that these viruses use a virally encoded enzyme, reverse transcriptase (RT), to convert their RNA genomes into DNA. Reverse transcription is an essential step in retroviral replication. This article presents an overview of reverse transcription, briefly describes the structure and function of RT, provides an introduction to some of the cellular and viral factors that can affect reverse transcription, and discusses fidelity and recombination, two processes in which reverse transcription plays an important role. In keeping with the theme of the collection, the emphasis is on HIV-1 and HIV-1 RT.
Collapse
Affiliation(s)
- Wei-Shau Hu
- Viral Recombination Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
18
|
Ming X, Seela F. A Nucleobase-Discriminating Pyrrolo-dC Click Adduct Designed for DNA Fluorescence Mismatch Sensing. Chemistry 2012; 18:9590-600. [DOI: 10.1002/chem.201103385] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 04/17/2012] [Indexed: 11/10/2022]
|
19
|
Walsh JM, Beuning PJ. Synthetic nucleotides as probes of DNA polymerase specificity. J Nucleic Acids 2012; 2012:530963. [PMID: 22720133 PMCID: PMC3377560 DOI: 10.1155/2012/530963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
The genetic code is continuously expanding with new nucleobases designed to suit specific research needs. These synthetic nucleotides are used to study DNA polymerase dynamics and specificity and may even inhibit DNA polymerase activity. The availability of an increasing chemical diversity of nucleotides allows questions of utilization by different DNA polymerases to be addressed. Much of the work in this area deals with the A family DNA polymerases, for example, Escherichia coli DNA polymerase I, which are DNA polymerases involved in replication and whose fidelity is relatively high, but more recent work includes other families of polymerases, including the Y family, whose members are known to be error prone. This paper focuses on the ability of DNA polymerases to utilize nonnatural nucleotides in DNA templates or as the incoming nucleoside triphosphates. Beyond the utility of nonnatural nucleotides as probes of DNA polymerase specificity, such entities can also provide insight into the functions of DNA polymerases when encountering DNA that is damaged by natural agents. Thus, synthetic nucleotides provide insight into how polymerases deal with nonnatural nucleotides as well as into the mutagenic potential of nonnatural nucleotides.
Collapse
Affiliation(s)
- Jason M. Walsh
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
| | - Penny J. Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Avenue, 102 Hurtig Hall, Boston, MA 02115, USA
- Center for Interdisciplinary Research on Complex Systems, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
20
|
Probing Retroviral and Retrotransposon Genome Structures: The "SHAPE" of Things to Come. Mol Biol Int 2012; 2012:530754. [PMID: 22685659 PMCID: PMC3362945 DOI: 10.1155/2012/530754] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/13/2012] [Indexed: 11/28/2022] Open
Abstract
Understanding the nuances of RNA structure as they pertain to biological function remains a formidable challenge for retrovirus research and development of RNA-based therapeutics, an area of particular importance with respect to combating HIV infection. Although a variety of chemical and enzymatic RNA probing techniques have been successfully employed for more than 30 years, they primarily interrogate small (100–500 nt) RNAs that have been removed from their biological context, potentially eliminating long-range tertiary interactions (such as kissing loops and pseudoknots) that may play a critical regulatory role. Selective 2′ hydroxyl acylation analyzed by primer extension (SHAPE), pioneered recently by Merino and colleagues, represents a facile, user-friendly technology capable of interrogating RNA structure with a single reagent and, combined with automated capillary electrophoresis, can analyze an entire 10,000-nucleotide RNA genome in a matter of weeks. Despite these obvious advantages, SHAPE essentially provides a nucleotide “connectivity map,” conversion of which into a 3-D structure requires a variety of complementary approaches. This paper summarizes contributions from SHAPE towards our understanding of the structure of retroviral genomes, modifications to which technology that have been developed to address some of its limitations, and future challenges.
Collapse
|
21
|
Sukackaite R, Grazulis S, Tamulaitis G, Siksnys V. The recognition domain of the methyl-specific endonuclease McrBC flips out 5-methylcytosine. Nucleic Acids Res 2012; 40:7552-62. [PMID: 22570415 PMCID: PMC3424535 DOI: 10.1093/nar/gks332] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in prokaryotes. Here we report the crystal structure of the N-terminal DNA-binding domain (McrB-N) of the methyl-specific endonuclease McrBC from Escherichia coli. The McrB-N protein shows a novel DNA-binding fold adapted for 5mC-recognition. In the McrB-N structure in complex with methylated DNA, the 5mC base is flipped out from the DNA duplex and positioned within a binding pocket. Base flipping elegantly explains why McrBC system restricts only T4-even phages impaired in glycosylation [Luria, S.E. and Human, M.L. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol., 64, 557–569]: flipped out 5-hydroxymethylcytosine is accommodated in the binding pocket but there is no room for the glycosylated base. The mechanism for 5mC recognition employed by McrB-N is highly reminiscent of that for eukaryotic SRA domains, despite the differences in their protein folds.
Collapse
Affiliation(s)
- Rasa Sukackaite
- Department of Protein-DNA Interactions, Institute of Biotechnology, Vilnius University, Graiciuno 8, 02241 Vilnius, Lithuania
| | | | | | | |
Collapse
|
22
|
Buskiewicz IA, Burke JM. Folding of the hammerhead ribozyme: pyrrolo-cytosine fluorescence separates core folding from global folding and reveals a pH-dependent conformational change. RNA (NEW YORK, N.Y.) 2012; 18:434-448. [PMID: 22274955 PMCID: PMC3285932 DOI: 10.1261/rna.030999.111] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/09/2011] [Indexed: 05/30/2023]
Abstract
The catalytic activity of the hammerhead ribozyme is limited by its ability to fold into the native tertiary structure. Analysis of folding has been hampered by a lack of assays that can independently monitor the environment of nucleobases throughout the ribozyme-substrate complex in real time. Here, we report the development and application of a new folding assay in which we use pyrrolo-cytosine (pyC) fluorescence to (1) probe active-site formation, (2) examine the ability of peripheral ribozyme domains to support native folding, (3) identify a pH-dependent conformational change within the ribozyme, and (4) explore its influence on the equilibrium between the folded and unfolded core of the hammerhead ribozyme. We conclude that the natural ribozyme folds in two distinct noncooperative steps and the pH-dependent correlation between core folding and activity is linked to formation of the G8-C3 base pair.
Collapse
Affiliation(s)
- Iwona A Buskiewicz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA.
| | | |
Collapse
|
23
|
Abstract
Fluorescent sensors that make use of DNA structures have become widely useful in monitoring enzymatic activities. Early studies focused primarily on enzymes that naturally use DNA or RNA as the substrate. However, recent advances in molecular design have enabled the development of nucleic acid sensors for a wider range of functions, including enzymes that do not normally bind DNA or RNA. Nucleic acid sensors present some potential advantages over classical small-molecule sensors, including water solubility and ease of synthesis. An overview of the multiple strategies under recent development is presented in this critical review, and expected future developments in microarrays, single molecule analysis, and in vivo sensing are discussed (160 references).
Collapse
Affiliation(s)
- Nan Dai
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Eric T. Kool
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
24
|
Greco NJ, Sinkeldam RW, Tor Y. An emissive C analog distinguishes between G, 8-oxoG, and T. Org Lett 2010; 11:1115-8. [PMID: 19196162 DOI: 10.1021/ol802656n] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A minimally disruptive fluorescent dC analog provides a rapid and non-destructive method for in vitro detection of G, 8-oxoG, and T, the downstream transverse mutation product.
Collapse
Affiliation(s)
- Nicholas J Greco
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | |
Collapse
|
25
|
Ahmadibeni Y, Dash C, Le Grice SFJ, Parang K. Solid-Phase Synthesis of 5'-O-β,γ-Methylenetriphosphate Derivatives of Nucleosides and Evaluation of Their Inhibitory Activity Against HIV-1 Reverse Transcriptase. Tetrahedron Lett 2010; 51:3010-3013. [PMID: 20454539 DOI: 10.1016/j.tetlet.2010.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Bis(dichlorophosphino)methane was converted to a β,γ-methylenetriphosphitylating reagent. The reagent was immobilized on aminomethyl polystyrene resin-bound linker of 4-acetoxy-3-phenylbenzyl alcohol to afford a polymer-bound β,γ-methylenetriphosphitylating reagent, which was reacted with unprotected nucleosides followed by oxidation with tert-butyl hydroperoxide, deprotection of cyanoethoxy groups with DBU, and acidic cleavage, to produce 5'-O-β,γ-methylene triphosphate nucleosides in 53-82% overall yields. Among all the compounds, cytidine 5'-O-β,γ-methylenetriphosphate inhibited completely RNase H activity of HIV-1 reverse transcriptase at 700 μM.
Collapse
Affiliation(s)
- Yousef Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The use of fluorescent nucleic acid base analogues is becoming increasingly important in the fields of biology, biochemistry and biophysical chemistry as well as in the field of DNA nanotechnology. The advantage of being able to incorporate a fluorescent probe molecule close to the site of examination in the nucleic acid-containing system of interest with merely a minimal perturbation to the natural structure makes fluorescent base analogues highly attractive. In recent years, there has been a growing interest in developing novel candidates in this group of fluorophores for utilization in various investigations. This review describes the different classes of fluorophores that can be used for studying nucleic acid-containing systems, with an emphasis on choosing the right kind of probe for the system under investigation. It describes the characteristics of the large group of base analogues that has an emission that is sensitive to the surrounding microenvironment and gives examples of investigations in which this group of molecules has been used so far. Furthermore, the characterization and use of fluorescent base analogues that are virtually insensitive to changes in their microenvironment are described in detail. This group of base analogues can be used in several fluorescence investigations of nucleic acids, especially in fluorescence anisotropy and fluorescence resonance energy transfer (FRET) measurements. Finally, the development and characterization of the first nucleic base analogue FRET pair, tC(O)-tC(nitro), and its possible future uses are discussed.
Collapse
|
27
|
Sinkeldam RW, Greco NJ, Tor Y. Fluorescent analogs of biomolecular building blocks: design, properties, and applications. Chem Rev 2010; 110:2579-619. [PMID: 20205430 PMCID: PMC2868948 DOI: 10.1021/cr900301e] [Citation(s) in RCA: 674] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Renatus W. Sinkeldam
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| | | | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive, La Jolla, California 92093-0358
| |
Collapse
|
28
|
Götte M, Rausch JW, Marchand B, Sarafianos S, Le Grice SF. Reverse transcriptase in motion: conformational dynamics of enzyme-substrate interactions. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1202-12. [PMID: 19665597 PMCID: PMC2930377 DOI: 10.1016/j.bbapap.2009.07.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Accepted: 07/28/2009] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) catalyzes synthesis of integration-competent, double-stranded DNA from the single-stranded viral RNA genome, combining both polymerizing and hydrolytic functions to synthesize approximately 20,000 phosphodiester bonds. Despite a wealth of biochemical studies, the manner whereby the enzyme adopts different orientations to coordinate its DNA polymerase and ribonuclease (RNase) H activities has remained elusive. Likewise, the lower processivity of HIV-1 RT raises the issue of polymerization site targeting, should the enzyme re-engage its nucleic acid substrate several hundred nucleotides from the primer terminus. Although X-ray crystallography has clearly contributed to our understanding of RT-containing nucleoprotein complexes, it provides a static picture, revealing few details regarding motion of the enzyme on the substrate. Recent development of site-specific footprinting and the application of single molecule spectroscopy have allowed us to follow individual steps in the reverse transcription process with significantly greater precision. Progress in these areas and the implications for investigational and established inhibitors that interfere with RT motion on nucleic acid is reviewed here.
Collapse
Affiliation(s)
- Matthias Götte
- Department of Microbiology & Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| | - Jason W. Rausch
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD, USA
| | - Bruno Marchand
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Stefan Sarafianos
- Christopher Bond Life Sciences Center, Department of Molecular Microbiology & Immunology, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Stuart F.J. Le Grice
- RT Biochemistry Section, HIV Drug Resistance Program, National Cancer Institute, Frederick, MD, USA
| |
Collapse
|
29
|
Li T, Fu R, Park HG. Pyrrolo-dC based fluorescent aptasensors for the molecular recognition of targets. Chem Commun (Camb) 2010; 46:3271-3. [PMID: 20442883 DOI: 10.1039/b923462d] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel signal-on fluorescent aptasensors based on unlabeled aptamers and pyrrolo-dC have been developed for the detection of several targets with great specificity and sensitivity.
Collapse
Affiliation(s)
- Taihua Li
- Department of Chemical and Biomolecular Engineering, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | |
Collapse
|
30
|
Ahmadibeni Y, Dash C, Hanley MJ, Le Grice SFJ, Agarwal HK, Parang K. Synthesis of nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates and evaluation of their potency towards inhibition of HIV-1 reverse transcriptase. Org Biomol Chem 2010; 8:1271-4. [PMID: 20204192 PMCID: PMC2928660 DOI: 10.1039/b922846b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A polymer-bound alpha,beta-methylene-beta-triphosphitylating reagent was synthesized and subjected to reactions with unprotected nucleosides, followed by oxidation, deprotection of cyanoethoxy groups, and acidic cleavage to afford nucleoside 5'-O-alpha,beta-methylene-beta-triphosphates. Among all the compounds, cytidine 5'-O-alpha,beta-methylene-beta-triphosphate inhibited RNase H activity of HIV-1 reverse transcriptase with a K(i) value of 225 microM.
Collapse
Affiliation(s)
- Y. Ahmadibeni
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
- Department of Chemistry, Columbus State University, Columbus, Georgia 31907, USA
| | - C. Dash
- Centre for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN 37208, USA
| | - M. J. Hanley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| | - S. F. J. Le Grice
- Resistance Mechanism Laboratory, HIV Drug Resistance Program, National Cancer Institute at Frederick, National Institute of Health, Frederick, Maryland 21702, USA
| | - H. K. Agarwal
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| | - K. Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, Kingston, Rhode Island 02881, USA; Fax: +1-401-874-5787; Tel: +1-401-874-4471
| |
Collapse
|
31
|
Preus S, Börjesson K, Kilså K, Albinsson B, Wilhelmsson LM. Characterization of nucleobase analogue FRET acceptor tCnitro. J Phys Chem B 2010; 114:1050-6. [PMID: 20039634 DOI: 10.1021/jp909471b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent nucleobase analogues of the tricyclic cytosine (tC) family, tC and tC(O), possess high fluorescence quantum yields and single fluorescence lifetimes, even after incorporation into double-stranded DNA, which make these base analogues particularly useful as fluorescence resonance energy transfer (FRET) probes. Recently, we reported the first all-nucleobase FRET pair consisting of tC(O) as the donor and the novel tC(nitro) as the acceptor. The rigid and well-defined position of this FRET pair inside the DNA double helix, and consequently excellent control of the orientation factor in the FRET efficiency, are very promising features for future studies of nucleic acid structures. Here, we provide the necessary spectroscopic and photophysical characterization of tC(nitro) needed in order to utilize this probe as a FRET acceptor in nucleic acids. The lowest energy absorption band from 375 to 525 nm is shown to be the result of a single in-plane polarized electronic transition oriented approximately 27 degrees from the molecular long axis. This band overlaps the emission bands of both tC and tC(O), and the Forster characteristics of these donor-acceptor pairs are calculated for double-stranded DNA scenarios. In addition, the UV-vis absorption of tC(nitro) is monitored in a broad pH range and the neutral form is found to be totally predominant under physiological conditions with a pK(a) of 11.1. The structure and electronic spectrum of tC(nitro) is further characterized by density functional theory calculations.
Collapse
Affiliation(s)
- Søren Preus
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
32
|
Wahba AS, Esmaeili A, Damha MJ, Hudson RHE. A single-label phenylpyrrolocytidine provides a molecular beacon-like response reporting HIV-1 RT RNase H activity. Nucleic Acids Res 2010; 38:1048-56. [PMID: 19933258 PMCID: PMC2817455 DOI: 10.1093/nar/gkp1022] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/19/2009] [Accepted: 10/19/2009] [Indexed: 12/12/2022] Open
Abstract
6-Phenylpyrrolocytidine (PhpC), a structurally conservative and highly fluorescent cytidine analog, was incorporated into oligoribonucleotides. The PhpC-containing RNA formed native-like duplex structures with complementary DNA or RNA. The PhpC-modification was found to act as a sensitive reporter group being non-disruptive to structure and the enzymatic activity of RNase H. A RNA/DNA hybrid possessing a single PhpC insert was an excellent substrate for HIV-1 RT Ribonuclease H and rapidly reported cleavage of the RNA strand with a 14-fold increase in fluorescence intensity. The PhpC-based assay for RNase H was superior to the traditional molecular beacon approach in terms of responsiveness, rapidity and ease (single label versus dual). Furthermore, the PhpC-based assay is amenable to high-throughput microplate assay format and may form the basis for a new screen for inhibitors of HIV-RT RNase H.
Collapse
Affiliation(s)
- Alexander S. Wahba
- Department of Chemistry, McGill University, Montreal, QC, H3A 2K6 Canada, Department of Chemistry, University of Birjand, Birjand, Iran and Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 Canada
| | - Abbasali Esmaeili
- Department of Chemistry, McGill University, Montreal, QC, H3A 2K6 Canada, Department of Chemistry, University of Birjand, Birjand, Iran and Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 Canada
| | - Masad J. Damha
- Department of Chemistry, McGill University, Montreal, QC, H3A 2K6 Canada, Department of Chemistry, University of Birjand, Birjand, Iran and Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 Canada
| | - Robert H. E. Hudson
- Department of Chemistry, McGill University, Montreal, QC, H3A 2K6 Canada, Department of Chemistry, University of Birjand, Birjand, Iran and Department of Chemistry, University of Western Ontario, London, ON, N6A 5B7 Canada
| |
Collapse
|
33
|
Mizuta M, Seio K, Ohkubo A, Sekine M. Fluorescence properties of pyrimidopyrimidoindole nucleoside dC(PPI) incorporated into oligodeoxynucleotides. J Phys Chem B 2009; 113:9562-9. [PMID: 19537698 DOI: 10.1021/jp807562c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of oligodeoxynucleotides labeled by a pyrimidopyrimidoindole deoxynucleoside (1a: dC(PPI)) and its derivatives 2a and 3a substituted with electron-donating and -withdrawing groups, respectively, were synthesized according to the phosphoramidite approach. The photophysical properties and quenching efficiencies of oligonucleotides incorporating dC(PPI) derivatives were studied in detail. The thermal denaturation experiments and molecular dynamics simulation of DNA duplexes incorporating dC(PPI) suggested that a modified base of dC(PPI) could form base pairs with guanine and adenine in canonical Watson-Crick and reverse-wobble geometries, respectively. The fluorescence of oligonucleotides incorporating dC(PPI) derivatives increased upon binding to the counter strands, except when dC(PPI) and guanine formed a base pair. It was revealed that dGMP quenched the fluorescence of the cyano derivative 3a most effectively, whereas it affected that of the methoxy derivative 2a least effectively. The involvement of the electron transfer from guanine to the dC(PPI) derivatives in the fluorescence quenching was supported by energy considerations.
Collapse
Affiliation(s)
- Masahiro Mizuta
- Department of Life Science, Tokyo Institute of Technology, Nagatsuta, Midoriku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
34
|
Zhang X, Wadkins RM. DNA hairpins containing the cytidine analog pyrrolo-dC: structural, thermodynamic, and spectroscopic studies. Biophys J 2009; 96:1884-91. [PMID: 19254547 DOI: 10.1016/j.bpj.2008.12.3890] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/01/2008] [Indexed: 11/16/2022] Open
Abstract
Structures formed by single-strand DNA have become increasingly interesting because of their roles in a number of biological processes, particularly transcription and its regulation. Of particular importance is the fact that antitumor drugs such as Actinomycin D can selectively bind DNA hairpins over fully paired, double-strand DNA. A new fluorescent base analog, pyrrolo-deoxycytidine (PdC), can now be routinely incorporated into single-strand DNA. The fluorescence of PdC is particularly useful for studying the formation of single-strand DNA in regions of double-strand DNA. The fluorescence is quenched when PdC is paired with a complementary guanine residue, and thus is greatly enhanced upon formation of single-strand DNA. Hence, any process that results in melting or opening of DNA strands produces an increase in the fluorescence intensity of this base analog. In this study we measured the structural effects of incorporating PdC into DNA hairpins, and the effect of this incorporation on the binding of the hairpins by a fluorescent analog of the drug Actinomycin D. Two hairpin DNAs were used: one with PdC in the stem (basepaired) and one with PdC in the loop (unpaired). The thermal stability, 7-aminoactinomycin D binding, and three-dimensional structures of PdC incorporated into these DNA hairpins were all quite similar as compared to the hairpins containing an unmodified dC residue. Fluorescence lifetime measurements indicate that two lifetimes are present in PdC, and that the increase in fluorescence of the unpaired PdC residue compared to the basepaired PdC is due to an increase in the contribution of the longer lifetime to the average fluorescence lifetime. Our data indicate that PdC can be used effectively to differentiate paired and unpaired bases in DNA hairpin secondary structures, and should be similarly applicable for related structures such as cruciforms and quadruplexes. Further, our data indicate that PdC can act as a fluorescence resonance energy transfer donor for the fluorescent drug 7-aminoactinomycin D.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Chemistry and Biochemistry, University of Mississippi, University, Mississippi, USA
| | | |
Collapse
|
35
|
Abstract
The enzymatic incorporation of a series of emissive pyrimidine analogues into RNA oligonucleotides is explored. T7 RNA polymerase is challenged with accepting three non-natural, yet related, triphosphates as substrates and incorporating them into diverse RNA transcripts. The three ribonucleoside triphosphates differ only in the modification of their uracil nucleus and include a thieno[3,2-d]pyrimidine nucleoside, a thieno[3,4-d]pyrimidine derivative, and a uridine containing a thiophene ring conjugated at its 5-position. All thiophene-containing uridine triphosphates (UTPs) get incorporated into RNA oligonucleotides at positions that are remote to the promoter, although the yields of the transcripts vary compared with the transcript obtained with only native triphosphates. Among the three derivatives, the 5-modified UTP is found to be the most "polymerase-friendly" and is well accommodated by T7 RNA polymerase. Although the fused thiophene analogues cannot be incorporated next to the promoter region, the 5-modified non-natural UTP gets incorporated near the promoter (albeit in relatively low yields) and even in multiple copies. Labeling experiments shed light on the mediocre incorporation of the fused analogues, suggesting the enzyme frequently pauses at the incorporation position. When incorporation does take place, the enzyme fails to elongate the modified oligonucleotide and yields aborted transcripts. Taken together, these results highlight the versatility and robustness, as well as the scope and limitation, of T7 RNA polymerase in accepting and incorporating reporter nucleotides into modified RNA transcripts.
Collapse
Affiliation(s)
- Seergazhi G Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
36
|
Ends free and self-quenched molecular beacon with pyrene labeled pyrrolocytidine in the middle of the stem. Tetrahedron 2009. [DOI: 10.1016/j.tet.2008.10.093] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Dash C, Scarth BJ, Badorrek C, Götte M, Le Grice SFJ. Examining the ribonuclease H primer grip of HIV-1 reverse transcriptase by charge neutralization of RNA/DNA hybrids. Nucleic Acids Res 2008; 36:6363-71. [PMID: 18836193 PMCID: PMC2582618 DOI: 10.1093/nar/gkn678] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The crystal structure of human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) bound to an RNA/DNA hybrid reveals an extensive network of contacts with the phosphate backbone of the DNA strand ∼4–9 bp downstream from the ribonuclease H (RNase H) catalytic center. Collectively designated as ‘the RNase H primer grip’, this motif contains a phosphate binding pocket analogous to the human and Bacillus halodurans RNases H. The notion that the RNase H primer grip mediates the trajectory of RNA/DNA hybrids accessing the RNase H active site suggests that locally neutralizing the phosphate backbone may be exploited to manipulate nucleic acid flexibility. To examine this, we introduced single and tandem methylphosphonate substitutions through the region of the DNA primer contacted by the RNase H primer grip and into the RNase H catalytic center. The ability of mutant hybrids to support RNase H and DNA polymerase activity was thereafter examined. In addition, site-specific chemical footprinting was used to evaluate movement of the DNA polymerase and RNase H domains. We show here that minor alteration to the RNase H primer can have a dramatic effect on enzyme positioning, and discuss these findings in light of recent crystallography of human RNase H containing an RNA/DNA hybrid.
Collapse
Affiliation(s)
- Chandravanu Dash
- HIV Drug Resistance Program, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | | | | | | | | |
Collapse
|
38
|
Integration of rous sarcoma virus DNA: a CA dinucleotide is not required for integration of the U3 end of viral DNA. J Virol 2008; 82:11480-3. [PMID: 18768972 DOI: 10.1128/jvi.01353-08] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The two ends of RSV linear DNA are independently inserted into host DNA by integrase in vivo. We previously showed that the range of U3 sequences that are acceptable substrates for integrase appeared to be greater than the range of acceptable U5 sequences in vivo. We have done additional experiments to determine which U3 sequences are good integrase substrates. On the U3 end, there does not appear to be a stringent requirement for the canonical CA, integrase can efficiently remove three nucleotides, and six nucleotides are sufficient to allow integration with reasonable, albeit reduced, efficiency.
Collapse
|
39
|
Sniady A, Durham A, Morreale MS, Marcinek A, Szafert S, Lis T, Brzezinska KR, Iwasaki T, Ohshima T, Mashima K, Dembinski R. Zinc-Catalyzed Cycloisomerizations. Synthesis of Substituted Furans and Furopyrimidine Nucleosides. J Org Chem 2008; 73:5881-9. [PMID: 18597532 DOI: 10.1021/jo8007995] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Adam Sniady
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Audrey Durham
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Marco S. Morreale
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Andrzej Marcinek
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Slawomir Szafert
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tadeusz Lis
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Krystyna R. Brzezinska
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takanori Iwasaki
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Takashi Ohshima
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Roman Dembinski
- Department of Chemistry, Oakland University, 2200 N. Squirrel Rd., Rochester, Michigan 48309-4477, Institute of Applied Radiation Chemistry, Technical University of Lodz, Zeromskiego 116, 90-924 Lodz, Poland, Department of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland, Materials Research Laboratory, University of California, Santa Barbara, California 93106, and Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
40
|
The effects of alternate polypurine tracts (PPTs) and mutations of sequences adjacent to the PPT on viral replication and cleavage specificity of the Rous sarcoma virus reverse transcriptase. J Virol 2008; 82:8592-604. [PMID: 18562520 DOI: 10.1128/jvi.00499-08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously reported that a mutant Rous sarcoma virus (RSV) with an alternate polypurine tract (PPT), DuckHepBFlipPPT, had unexpectedly high titers and that the PPT was miscleaved primarily at one position following a GA dinucleotide by the RNase H of reverse transcriptase (RT). This miscleavage resulted in a portion of the 3' end of the PPT (5'-ATGTA) being added to the end of U3 of the linear viral DNA. To better understand the RNase H cleavage by RSV RT, we made a number of mutations within the DuckHepBFlipPPT and in the sequences adjacent to the PPT. Deleting the entire ATGTA sequence from the DuckHepBFlipPPT increased the relative titer to wild-type levels, while point mutations within the ATGTA sequence reduced the relative titer but had minimal effects on the cleavage specificity. However, mutating a sequence 5' of ATGTA affected the relative titer of the virus and caused the RNase H of RSV RT to lose the ability to cleave the PPT specifically. In addition, although mutations in the conserved stretch of thymidine residues upstream of the PPT did not affect the relative titer or cleavage specificity, the mutation of some of the nucleotides immediately upstream of the PPT did affect the titer and cleavage specificity. Taken together, our studies show that the structure of the PPT in the context of the cognate RT, rather than a specific sequence, is important for the proper cleavage by RSV RT.
Collapse
|
41
|
Abstract
During reverse transcription, an RNA polypurine tract (PPT) resists digestion by reverse transcriptase (RT) and primes plus-strand DNA synthesis. In this issue of Chemistry & Biology, Yi-Brunozzi et al. (2008) report structural studies of PPTs, illuminating how they are recognized by RT.
Collapse
Affiliation(s)
- Megan E Fitzgerald
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
42
|
Yi-Brunozzi HY, Brinson RG, Brabazon DM, Lener D, Le Grice SFJ, Marino JP. High-resolution NMR analysis of the conformations of native and base analog substituted retroviral and LTR-retrotransposon PPT primers. ACTA ACUST UNITED AC 2008; 15:254-62. [PMID: 18355725 DOI: 10.1016/j.chembiol.2008.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 01/24/2008] [Accepted: 01/30/2008] [Indexed: 11/17/2022]
Abstract
A purine-rich region of the plus-strand RNA genome of retroviruses and long terminal repeat (LTR)-containing retrotransposons, known as the polypurine tract (PPT), is resistant to hydrolysis by the RNase H domain of reverse transcriptase (RT) and ultimately serves as a primer for plus-strand DNA synthesis. The mechanisms underlying PPT resistance and selective processing remain largely unknown. Here, two RNA/DNA hybrids derived from the PPTs of HIV-1 and Ty3 were probed using high-resolution NMR for preexisting structural distortions in the absence of RT. The PPTs were selectively modified through base-pair changes or by incorporation of the thymine isostere, 2,4-difluoro-5-methylbenzene (dF), into the DNA strand. Although both wild-type (WT) and mutated hybrids adopted global A-form-like helical geometries, observed structural perturbations in the base-pair and dF-modified hybrids suggested that the PPT hybrids may function as structurally coupled domains.
Collapse
Affiliation(s)
- Hye Young Yi-Brunozzi
- HIV Drug Resistance Program, NCI-Frederick National Institutes of Health, Frederick, MD 21702, USA
| | | | | | | | | | | |
Collapse
|
43
|
Turner KB, Brinson RG, Yi-Brunozzi HY, Rausch JW, Miller JT, Le Grice SFJ, Marino JP, Fabris D. Structural probing of the HIV-1 polypurine tract RNA:DNA hybrid using classic nucleic acid ligands. Nucleic Acids Res 2008; 36:2799-810. [PMID: 18400780 PMCID: PMC2377446 DOI: 10.1093/nar/gkn129] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The interactions of archetypical nucleic acid ligands with the HIV-1 polypurine tract (PPT) RNA:DNA hybrid, as well as analogous DNA:DNA, RNA:RNA and swapped hybrid substrates, were used to probe structural features of the PPT that contribute to its specific recognition and processing by reverse transcriptase (RT). Results from intercalative and groove-binding ligands indicate that the wild-type PPT hybrid does not contain any strikingly unique groove geometries and/or stacking arrangements that might contribute to the specificity of its interaction with RT. In contrast, neomycin bound preferentially and selectively to the PPT near the 5′(rA)4:(dT)4 tract and the 3′ PPT-U3 junction. Nuclear magnetic resonance data from a complex between HIV-1 RT and the PPT indicate RT contacts within the same regions highlighted on the PPT by neomycin. These observations, together with the fact that the sites are correctly spaced to allow interaction with residues in the ribonuclease H (RNase H) active site and thumb subdomain of the p66 RT subunit, suggest that despite the long cleft employed by RT to make contact with nucleic acids substrates, these sites provide discrete binding units working in concert to determine not only specific PPT recognition, but also its orientation on the hybrid structure.
Collapse
Affiliation(s)
- Kevin B Turner
- University of Maryland Baltimore County, Baltimore, MD, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Seela F, Sirivolu VR. Pyrrolo-dC oligonucleotides bearing alkynyl side chains with terminal triple bonds: synthesis, base pairing and fluorescent dye conjugates prepared by the azide-alkyne "click" reaction. Org Biomol Chem 2008; 6:1674-87. [PMID: 18421402 DOI: 10.1039/b719459e] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
5-(Octa-1,7-diynyl)-2'-deoxyuridine was converted into the furano-dU derivative 7 by copper-catalyzed cyclization; the pyrolodC-derivative 3 was formed upon ammonolysis. The bicyclic nucleosides 3 and 7 as well as the corresponding non-cyclic precursors 4 and 6 all containing terminal C[triple bond]C bonds were conjugated with the non-fluorescent 3-azido-7-hydroxycoumarin 5 employing the copper(I)-catalyzed Huisgen-Sharpless-Meldal cycloaddition "click reaction". Strongly fluorescent 1H-1,2,3-triazole conjugates (30-33) are formed incorporating two fluorescent reporters-the pyrdC nucleoside and the coumarin moiety. Oligonucleotides incorporating 6-alkynyl and 6-alkyl 7H-pyrrolo[2,3-d]pyrimidin-2(3H)-one nucleosides (3 and 2f) have been prepared by solid-phase synthesis using the phosphoramidite building blocks 10 and 13 ; the pyrrolo-dC oligonucleotides are formed during ammonia treatment. The duplex stability of oligonucleotides containing 3 and related derivatives was studied. Oligonucleotides with terminal triple bonded nucleosides such as 3 are more stabilizing than those lacking a side chain with terminal unsaturation; open-chain derivatives (4) are even more efficient. The click reaction was also performed on oligonucleotides containing the pyrdC-derivative and the fluorescence properties of nucleosides, oligonucleotides and their coumarin conjugates were studied.
Collapse
Affiliation(s)
- Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Heisenbergstrasse 11, 4814, Münster, Germany.
| | | |
Collapse
|
45
|
Hudson RHE, Choghamarani AG. The 6-methoxymethyl derivative of pyrrolo-dC for selective fluorometric detection of guanosine-containing sequences. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2008; 26:533-7. [PMID: 18066851 DOI: 10.1080/15257770701489839] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The beta-cyanoethyl phosphosphoramidite derivatives of 6-methyl- and 6-methoxymethyl-3-(2-deoxy-beta-D-ribofuranosyl)-3H-pyrrolo[2,3-d]pyrimidin-2-one have been synthesized. These monomers have been employed for oligodeoxynucleotide synthesis to evaluate their effect on duplex stability and ability to fluorometrically report on hybridization. The structurally conservative 6-methoxymethyl-substitution results in a pyrrolocytidine that is stabilizing toward hybrid formation (Delta Tm = +1.3 degrees C) whereas the known 6-methylpyrrolocytidine is destabilizing (Delta Tm = -4.7 degrees C), in the sequence examined. The 6-methoxymethylpyrrolocytidine retains excellent mismatch discrimination and its fluorescence is selectively quenched when hybridized to a match oligodeoxynucleotide sequence. The quenching of fluorescence for an internal position is approximately three-fold, whereas a terminal position (5'-end or 3'-end) experienced approximately two-fold decrease in the fluorescence intensity.
Collapse
Affiliation(s)
- Robert H E Hudson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
46
|
Abstract
This chapter is focused on the fluorescent pteridine guanine analogs, 3MI and 6MI and on the pteridine adenine analog, 6MAP. A brief overview of commonly used methods to fluorescently label oligonucleotides reveals the role the pteridines play in the extensive variety of available probes. We describe the fluorescence characteristics of the pteridine probes as monomers and incorporated into DNA and review a variety of applications including changes in fluorescence intensity, anisotropies, time resolved studies, two photon excitation and single molecule detection.
Collapse
|
47
|
Srivatsan SG, Tor Y. Synthesis and enzymatic incorporation of a fluorescent pyrimidine ribonucleotide. Nat Protoc 2007; 2:1547-55. [PMID: 17571062 DOI: 10.1038/nprot.2007.222] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A detailed protocol for the synthesis of a fluorescent pyrimidine ribonucleoside analogue and its enzymatic incorporation into an RNA strand by transcription reactions is described. Furan-modified ribonucleoside triphosphate is synthesized in two steps with an overall yield of 33%. Incorporation of the triphosphate into an RNA oligomer occurs with nearly 225-fold amplification over the amount of the DNA template. Bacterial rRNA decoding site (known as the A-site) derived from this fluorescently modified ssRNA positively signals a binding event upon interaction with aminoglycoside antibiotics, its cognate ligands. The total time for the synthesis of ribonucleoside triphosphate is approximately 6 days, and that for the incorporation of the nucleoside triphosphate and purification of the fluorescently labeled RNA approximately 40 h.
Collapse
Affiliation(s)
- Seergazhi G Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093-0358, USA
| | | |
Collapse
|
48
|
Abstract
We describe procedures for the synthesis of a fluorescent pyrimidine analog and its site-specific incorporation into a DNA oligomer. The 5'-protected and 3'-activated nucleoside 4 is synthesized in three steps with an overall yield of 40%. Site-specific incorporation into a DNA oligomer occurs with greater than 88% coupling efficiency. This isosteric fluorescent DNA analog can be used to monitor denaturation of DNA duplexes via fluorescence and can positively detect the presence of abasic sites in DNA duplexes. The total time for synthesis of the phosphoramidite 4 is about 75 h, whereas the total time for site-specific incorporation of nucleoside 2 into an oligonucleotide and purification of the corresponding oligonucleotide is about 114 hours.
Collapse
Affiliation(s)
- Nicholas J Greco
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California 92093, USA.
| | | |
Collapse
|
49
|
Naphthalenyl- and anthracenyl-ethynyl dT analogues as base discriminating fluorescent nucleosides and intramolecular energy transfer donors in oligonucleotide probes. Tetrahedron 2007. [DOI: 10.1016/j.tet.2006.10.090] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Srivatsan SG, Tor Y. Fluorescent pyrimidine ribonucleotide: synthesis, enzymatic incorporation, and utilization. J Am Chem Soc 2007; 129:2044-53. [PMID: 17256858 PMCID: PMC2517582 DOI: 10.1021/ja066455r] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fluorescent nucleobase analogues that respond to changes in their microenvironment are valuable for studying RNA structure, dynamics, and recognition. The most commonly used fluorescent ribonucleoside is 2-aminopurine, a highly responsive purine analogue. Responsive isosteric fluorescent pyrimidine analogues are, however, rare. Appending five-membered aromatic heterocycles at the 5-position on a pyrimidine core has recently been found to provide a family of responsive fluorescent nucleoside analogues with emission in the visible range. To explore the potential utility of this chromophore for studying RNA-ligand interactions, an efficient incorporation method is necessary. Here we describe the synthesis of the furan-containing ribonucleoside and its triphosphate, as well as their basic photophysical characteristics. We demonstrate that T7 RNA polymerase accepts this fluorescent ribonucleoside triphosphate as a substrate in in vitro transcription reactions and very efficiently incorporates it into RNA oligonucleotides, generating fluorescent constructs. Furthermore, we utilize this triphosphate for the enzymatic preparation of a fluorescent bacterial A-site, an RNA construct of potential therapeutic utility. We show that the binding of this RNA target to aminoglycoside antibiotics, its cognate ligands, can be effectively monitored by fluorescence spectroscopy. These observations are significant since isosteric emissive U derivatives are scarce and the trivial synthesis and effective enzymatic incorporation of the furan-containing U triphosphate make it accessible to the biophysical community.
Collapse
Affiliation(s)
- Seergazhi G. Srivatsan
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego La Jolla, CA 92093-0358, E-mail:
| |
Collapse
|