1
|
Mohamed Yusoff AA, Mohd Khair SZN, Abd Radzak SM. Mitochondrial DNA copy number alterations: Key players in the complexity of glioblastoma (Review). Mol Med Rep 2025; 31:78. [PMID: 39886971 PMCID: PMC11795256 DOI: 10.3892/mmr.2025.13443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Renowned as a highly invasive and lethal tumor derived from neural stem cells in the central nervous system, glioblastoma (GBM) exhibits substantial histopathological variation and genomic complexity, which drive its rapid progression and therapeutic resistance. Alterations in mitochondrial DNA (mtDNA) copy number (CN) serve a crucial role in GBM development and progression, affecting various aspects of tumor biology, including energy production, oxidative stress regulation and cellular adaptability. Fluctuations in mtDNA levels, whether elevated or diminished, can impair mitochondrial function, potentially disrupting oxidative phosphorylation and amplifying reactive oxygen species generation, thereby fueling tumor growth and influencing treatment responses. Understanding the mechanisms of mtDNA‑CN variations, and their interplay with genetic and environmental elements in the tumor microenvironment, is essential for advancing diagnostic and therapeutic strategies. Targeting mtDNA alterations could strengthen treatment efficacy, mitigate resistance and ultimately enhance the prognosis of patients with this aggressive brain tumor. The present review summarizes the existing literature on mtDNA alterations, specifically emphasizing variations in mtDNA‑CN and their association with GBM by surveying articles published between 1996 and 2024, sourced from databases such as Scopus, PubMed and Google Scholar. In addition, the review provides a brief overview of mitochondrial genome architecture, knowledge regarding the regulation of mtDNA integrity and CN, and how mitochondria significantly impact GBM tumorigenesis. This review further presents information on therapeutic approaches for restoring mtDNA‑CN that contribute to optimized mitochondrial function and improved health outcomes.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | | | - Siti Muslihah Abd Radzak
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Zhang F, Zhang L, Hu G, Chen X, Liu H, Li C, Guo X, Huang C, Sun F, Li T, Cui Z, Guo Y, Yan W, Xia Y, Liu Z, Lin Z, Duan W, Lu L, Wang X, Wang Z, Wang S, Tao L. Rectifying METTL4-Mediated N 6-Methyladenine Excess in Mitochondrial DNA Alleviates Heart Failure. Circulation 2024; 150:1441-1458. [PMID: 38686562 DOI: 10.1161/circulationaha.123.068358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Myocardial mitochondrial dysfunction underpins the pathogenesis of heart failure (HF), yet therapeutic options to restore myocardial mitochondrial function are scarce. Epigenetic modifications of mitochondrial DNA (mtDNA), such as methylation, play a pivotal role in modulating mitochondrial homeostasis. However, their involvement in HF remains unclear. METHODS Experimental HF models were established through continuous angiotensin II and phenylephrine (AngII/PE) infusion or prolonged myocardial ischemia/reperfusion injury. The landscape of N6-methyladenine (6mA) methylation within failing cardiomyocyte mtDNA was characterized using high-resolution mass spectrometry and methylated DNA immunoprecipitation sequencing. A tamoxifen-inducible cardiomyocyte-specific Mettl4 knockout mouse model and adeno-associated virus vectors designed for cardiomyocyte-targeted manipulation of METTL4 (methyltransferase-like protein 4) expression were used to ascertain the role of mtDNA 6mA and its methyltransferase METTL4 in HF. RESULTS METTL4 was predominantly localized within adult cardiomyocyte mitochondria. 6mA modifications were significantly more abundant in mtDNA than in nuclear DNA. Postnatal cardiomyocyte maturation presented with a reduction in 6mA levels within mtDNA, coinciding with a decrease in METTL4 expression. However, an increase in both mtDNA 6mA level and METTL4 expression was observed in failing adult cardiomyocytes, suggesting a shift toward a neonatal-like state. METTL4 preferentially targeted mtDNA promoter regions, which resulted in interference with transcription initiation complex assembly, mtDNA transcriptional stalling, and ultimately mitochondrial dysfunction. Amplifying cardiomyocyte mtDNA 6mA through METTL4 overexpression led to spontaneous mitochondrial dysfunction and HF phenotypes. The transcription factor p53 was identified as a direct regulator of METTL4 transcription in response to HF-provoking stress, thereby revealing a stress-responsive mechanism that controls METTL4 expression and mtDNA 6mA. Cardiomyocyte-specific deletion of the Mettl4 gene eliminated mtDNA 6mA excess, preserved mitochondrial function, and mitigated the development of HF upon continuous infusion of AngII/PE. In addition, specific silencing of METTL4 in cardiomyocytes restored mitochondrial function and offered therapeutic relief in mice with preexisting HF, irrespective of whether the condition was induced by AngII/PE infusion or myocardial ischemia/reperfusion injury. CONCLUSIONS Our findings identify a pivotal role of cardiomyocyte mtDNA 6mA and the corresponding methyltransferase, METTL4, in the pathogenesis of mitochondrial dysfunction and HF. Targeted suppression of METTL4 to rectify mtDNA 6mA excess emerges as a promising strategy for developing mitochondria-focused HF interventions.
Collapse
Affiliation(s)
- Fuyang Zhang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Zhang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guangyu Hu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiyao Chen
- Geriatrics (X.C.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hui Liu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Congye Li
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiong Guo
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chong Huang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangfang Sun
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tongzheng Li
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhe Cui
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yongzhen Guo
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wenjun Yan
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yunlong Xia
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhiyuan Liu
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Lin
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Weixun Duan
- Cardiovascular Surgery (W.D., L.L.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Linhe Lu
- Cardiovascular Surgery (W.D., L.L.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xinyi Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhengyang Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shan Wang
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ling Tao
- Departments of Cardiology (F.Z., L.Z., G.H., H.L., C.L., X.G., C.H., F.S., T.L., Z.C., Y.G., W.Y., Y.X., Z. Liu, Z. Lin, X.W., Z.W., S.W., L.T.), Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Cheung C, Tu S, Feng Y, Wan C, Ai H, Chen Z. Mitochondrial quality control dysfunction in osteoarthritis: Mechanisms, therapeutic strategies & future prospects. Arch Gerontol Geriatr 2024; 125:105522. [PMID: 38861889 DOI: 10.1016/j.archger.2024.105522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Osteoarthritis (OA) is a prevalent chronic joint disease characterized by articular cartilage degeneration, pain, and disability. Emerging evidence indicates that mitochondrial quality control dysfunction contributes to OA pathogenesis. Mitochondria are essential organelles to generate cellular energy via oxidative phosphorylation and regulate vital processes. Impaired mitochondria can negatively impact cellular metabolism and result in the generation of harmful reactive oxygen species (ROS). Dysfunction in mitochondrial quality control mechanisms has been increasingly linked to OA onset and progression. This review summarizes current knowledge on the role of mitochondrial quality control disruption in OA, highlighting disturbed mitochondrial dynamics, impaired mitochondrial biogenesis, antioxidant defenses and mitophagy. The review also discusses potential therapeutic strategies targeting mitochondrial Quality Control in OA, offering future perspectives on advancing OA therapeutic strategies.
Collapse
Affiliation(s)
- Chiyuen Cheung
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Shaoqin Tu
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Yi Feng
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Chuiming Wan
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Hong Ai
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Zheng Chen
- Department of Stomatology, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
4
|
Gettings SM, Timbury W, Dmochowska A, Sharma R, McGonigle R, MacKenzie LE, Miquelard-Garnier G, Bourbia N. Polyethylene terephthalate (PET) micro- and nanoplastic particles affect the mitochondrial efficiency of human brain vascular pericytes without inducing oxidative stress. NANOIMPACT 2024; 34:100508. [PMID: 38663501 DOI: 10.1016/j.impact.2024.100508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
The objective of this investigation was to evaluate the influence of micro- and nanoplastic particles composed of polyethylene terephthalate (PET), a significant contributor to plastic pollution, on human brain vascular pericytes. Specifically, we delved into their impact on mitochondrial functionality, oxidative stress, and the expression of genes associated with oxidative stress, ferroptosis and mitochondrial functions. Our findings demonstrate that the exposure of a monoculture of human brain vascular pericytes to PET particles in vitro at a concentration of 50 μg/ml for a duration of 3, 6 and 10 days did not elicit oxidative stress. Notably, we observed a reduction in various aspects of mitochondrial respiration, including maximal respiration, spare respiratory capacity, and ATP production in pericytes subjected to PET particles for 3 days, with a mitochondrial function recovery at 6 and 10 days. Furthermore, there were no statistically significant alterations in mitochondrial DNA copy number, or in the expression of genes linked to oxidative stress and ferroptosis, but an increase of the expression of the gene mitochondrial transcription factor A (TFAM) was noted at 3 days exposure. These outcomes suggest that, at a concentration of 50 μg/ml, PET particles do not induce oxidative stress in human brain vascular pericytes. Instead, at 3 days exposure, PET exposure impairs mitochondrial functions, but this is recovered at 6-day exposure. This seems to indicate a potential mitochondrial hormesis response (mitohormesis) is incited, involving the gene TFAM. Further investigations are warranted to explore the stages of mitohormesis and the potential consequences of plastics on the integrity of the blood-brain barrier and intercellular interactions. This research contributes to our comprehension of the potential repercussions of nanoplastic pollution on human health and underscores the imperative need for ongoing examinations into the exposure to plastic particles.
Collapse
Affiliation(s)
- Sean M Gettings
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - William Timbury
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Anna Dmochowska
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Riddhi Sharma
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK
| | - Rebecca McGonigle
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Lewis E MacKenzie
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1RD, UK
| | - Guillaume Miquelard-Garnier
- Laboratoire PIMM, CNRS, Arts et Métiers Institute of Technology, Cnam, HESAM Universite, 75013 Paris, France
| | - Nora Bourbia
- UK Health Security Agency, Radiation Effects Department, Radiation Protection Science Division, Harwell Science Campus, Didcot, Oxfordshire OX11 0RQ, UK.
| |
Collapse
|
5
|
Cheng Q, Liu QQ, Lu CA. A state-of-the-science review of using mitochondrial DNA copy number as a biomarker for environmental exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123642. [PMID: 38402934 DOI: 10.1016/j.envpol.2024.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Mitochondria are bioenergetic, biosynthetic, and signaling organelles in eukaryotes, and contain their own genomes, mitochondrial DNA (mtDNA), to supply energy to cells by generating ATP via oxidative phosphorylation. Therefore, the threat to mitochondria' integrity and health resulting from environmental exposure could induce adverse health effects in organisms. In this review, we summarized the association between mtDNA copy number (mtDNAcn), and environmental exposures as reported in the literature. We conducted a literature search in the Web of Science using [Mitochondrial DNA copy number] and [Exposure] as two keywords and employed three selection criteria for the final inclusion of 97 papers for review. The consensus of data was that mtDNAcn could be used as a plausible biomarker for cumulative exposures to environmental chemical and physical agents. In order to furtherly expand the application of mtDNAcn in ecological and environmental health research, we suggested a series of algorithms aiming to standardize the calculation of mtDNAcn based on the PCR results in this review. We also discussed the pitfalls of using whole blood/plasma samples for mtDNAcn measurements and regard buccal cells a plausible and practical alternative. Finally, we recognized the importance of better understanding the mechanistic analysis and regulatory mechanism of mtDNAcn, in particular the signals release and regulation pathways. We believe that the development of using mtDNAcn as an exposure biomarker will revolutionize the evaluation of chronic sub-lethal toxicity of chemicals to organisms in ecological and environmental health research that has not yet been implemented.
Collapse
Affiliation(s)
- Qing Cheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Qing Qing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China
| | - Chensheng Alex Lu
- College of Resources and Environment, Southwest University, Chongqing, 400715, People's Republic of China; School of Public Health, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Wang Y, Wang J, Tao SY, Liang Z, Xie R, Liu NN, Deng R, Zhang Y, Deng D, Jiang G. Mitochondrial damage-associated molecular patterns: A new insight into metabolic inflammation in type 2 diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3733. [PMID: 37823338 DOI: 10.1002/dmrr.3733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/18/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
The pathogenesis of diabetes is accompanied by increased levels of inflammatory factors, also known as "metabolic inflammation", which runs through the whole process of the occurrence and development of the disease. Mitochondria, as the key site of glucose and lipid metabolism, is often accompanied by mitochondrial function damage in type 2 diabetes mellitus (T2DM). Damaged mitochondria release pro-inflammatory factors through damage-related molecular patterns that activate inflammation pathways and reactions to oxidative stress, further aggravate metabolic disorders, and form a vicious circle. Currently, the pathogenesis of diabetes is still unclear, and clinical treatment focuses primarily on symptomatic intervention of the internal environment of disorders of glucose and lipid metabolism with limited clinical efficacy. The proinflammatory effect of mitochondrial damage-associated molecular pattern (mtDAMP) in T2DM provides a new research direction for exploring the pathogenesis and intervention targets of T2DM. Therefore, this review covers the most recent findings on the molecular mechanism and related signalling cascades of inflammation caused by mtDAMP in T2DM and discusses its pathogenic role of it in the pathological process of T2DM to search potential intervention targets.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jingwu Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Si-Yu Tao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | | | - Rong Xie
- Xinjiang Medical University, Urumqi, China
| | - Nan-Nan Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruxue Deng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Deqiang Deng
- Department of Endocrinology, Urumqi Hospital of Traditional Chinese Medicine, Urumqi, China
| | - Guangjian Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Zheng Z, Zhao Y, Yu H, Wang T, Li J, Xu L, Ding C, He L, Wu L, Dong Z. Suppressing MTERF3 inhibits proliferation of human hepatocellular carcinoma via ROS-mediated p38 MAPK activation. Commun Biol 2024; 7:18. [PMID: 38177713 PMCID: PMC10767110 DOI: 10.1038/s42003-023-05664-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Mitochondrial transcription termination factor 3 (MTERF3) negatively regulates mitochondrial DNA transcription. However, its role in hepatocellular carcinoma (HCC) progression remains elusive. Here, we investigate the expression and function of MTERF3 in HCC. MTERF3 is overexpressed in HCC tumor tissues and higher expression of MTERF3 positively correlates with poor overall survival of HCC patients. Knockdown of MTERF3 induces mitochondrial dysfunction, S-G2/M cell cycle arrest and apoptosis, resulting in cell proliferation inhibition. In contrast, overexpression of MTERF3 promotes cell cycle progression and cell proliferation. Mechanistically, mitochondrial dysfunction induced by MTERF3 knockdown promotes ROS accumulation, activating p38 MAPK signaling pathway to suppress HCC cell proliferation. In conclusion, ROS accumulation induced by MTERF3 knockdown inhibits HCC cell proliferation via p38 MAPK signaling pathway suggesting a promising target in HCC patients.
Collapse
Affiliation(s)
- Zhihai Zheng
- Department of Colorectal Surgery, The First Affiliated Hospital of Wenzhou Medical University, 2 Fuxue Lane, Wenzhou, Zhejiang, 325000, China
| | - Youjuan Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Hongjia Yu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Tingting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinhai Li
- Department of Liver and Gall Surgery, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325200, Zhejiang, China
| | - Liang Xu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chunming Ding
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lan He
- School of Biomedical Science, Hunan University, Changsha, Hunan, 410013, PR China.
| | - Lijun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| | - Zhixiong Dong
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
8
|
Ouyang J, Li Q, Zhou H, Li G, Wu Y, Yang L, Li G. Tryptophan alleviates chronic heat stress-induced impairment of antioxidant capacities, inflammatory response, and mitochondrial function in broilers. Trop Anim Health Prod 2023; 55:425. [PMID: 38030895 DOI: 10.1007/s11250-023-03842-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The aim of this study was to investigate the effect of dietary tryptophan (Trp) supplementation on serum biochemical indices, antioxidant indices, cytokine levels, mitochondrial biosynthesis, and mitochondrial morphology of heat-stressed broilers. A total of 180 female Arbor Acres broilers (18-day-old) were randomly allocated into three groups with six replicates of 10 broilers each. Broilers in thermoneutral (TN) (23 ± 1 °C) group were fed a basal diet; the other two groups were fed the basal diet supplemented with 0 or 0.18% Trp under heat stress (HS) (34 ± 1 °C for 8 h/day (h/day) and 23 ± 1°C for the remaining time) condition. The heat stress lasted for 21 days (days 21 to 42). The results indicated that heat stress reduced serum total protein content (TP) and decreased the activities of serum superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), but increased the levels of serum uric acid (UA), interleukin (IL)-1β, IL-6, and IL-18 (P < 0.05) compared to the TN group. However, dietary supplementation with 0.18% Trp enhanced serum TP content, glutathione peroxidase (GSH-Px), SOD, catalase (CAT) activities, and T-AOC; decreased aspartate aminotransferase (AST) activities (P < 0.05); and lowered serum IL-1β, IL-6, IL-18 contents (P < 0.05). Meanwhile, heat stress exposure downregulated the mRNA expression of mitochondrial transcription factor A (TFAM), cytochrome c oxidase subunit 1 (COX1), and cytochrome c oxidase subunit 5A (COX5A) in ileum (P < 0.05) as compared to the TN group. Dietary Trp supplementation enhanced the mitochondrial membrane potential (MMP) and the mRNA expression of TFAM, COX1 in ileum mucosa (P < 0.05) and ameliorated the damage of mitochondrial structure. Collectively, dietary supplementation with Trp could improve antioxidant capacity and mitochondrial structure and regulate mitochondrial function-related genes and decrease inflammatory response in heat-stressed broilers. Dietary Trp supplementation might be an effective nutritional strategy to protect against heat stress impairment.
Collapse
Affiliation(s)
- Jingxin Ouyang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Qiufen Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Hua Zhou
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Guiyao Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Yajing Wu
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Lei Yang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China
| | - Guanhong Li
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
- Jiangxi Province Key Innovation Center of Integration in Production and Education for High-quality and Safe Livestock and Poultry, Nanchang, 330045, China.
| |
Collapse
|
9
|
Soler Palacios B, Villares R, Lucas P, Rodríguez-Frade JM, Cayuela A, Piccirillo JG, Lombardía M, Delgado Gestoso D, Fernández-García M, Risco C, Barbas C, Corrales F, Sorzano COS, Martínez-Martín N, Conesa JJ, Iborra FJ, Mellado M. Growth hormone remodels the 3D-structure of the mitochondria of inflammatory macrophages and promotes metabolic reprogramming. Front Immunol 2023; 14:1200259. [PMID: 37475858 PMCID: PMC10354525 DOI: 10.3389/fimmu.2023.1200259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/14/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Macrophages are a heterogeneous population of innate immune cells that support tissue homeostasis through their involvement in tissue development and repair, and pathogen defense. Emerging data reveal that metabolism may control macrophage polarization and function and, conversely, phenotypic polarization may drive metabolic reprogramming. Methods Here we use biochemical analysis, correlative cryogenic fluorescence microscopy and cryo-focused ion-beam scanning electron microscopy. Results We demonstrate that growth hormone (GH) reprograms inflammatory GM-CSF-primed monocyte-derived macrophages (GM-MØ) by functioning as a metabolic modulator. We found that exogenous treatment of GM-MØ with recombinant human GH reduced glycolysis and lactate production to levels similar to those found in anti-inflammatory M-MØ. Moreover, GH treatment of GM-MØ augmented mitochondrial volume and altered mitochondrial dynamics, including the remodeling of the inner membrane to increase the density of cristae. Conclusions Our data demonstrate that GH likely serves a modulatory role in the metabolism of inflammatory macrophages and suggest that metabolic reprogramming of macrophages should be considered as a new target to intervene in inflammatory diseases.
Collapse
Affiliation(s)
- Blanca Soler Palacios
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - José Miguel Rodríguez-Frade
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Ana Cayuela
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Jonathan G. Piccirillo
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Manuel Lombardía
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - David Delgado Gestoso
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Miguel Fernández-García
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
- Department of Basic Medical Sciences, Medicine Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Cristina Risco
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Coral Barbas
- Metabolomic and Bioanalysis Center (CEMBIO), Pharmacy Faculty, Universidad San Pablo-CEU, Centre for Universitary Studies (CEU) Universities, Boadilla del Monte, Spain
| | - Fernando Corrales
- Functional Proteomics Laboratory, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Carlos Oscar S. Sorzano
- Biocomputing Unit, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| | - Nuria Martínez-Martín
- Tissue and Organ Homeostasis Program, Centro de Biologia Molecular Severo Ochoa, The Spanish National Research Council (CSIC)–Autonomus University of Madrid (UAM), Madrid, Spain
| | - José Javier Conesa
- Department of Macromolecular Structures, National Center for Biotechnology/The Spanish National Research Council) (CSIC), Madrid, Spain
| | - Francisco J. Iborra
- Príncipe Felípe Research Centre (Associated Unit to the Biomedicine Institute of Valencia), Biomedicine Institute of Valencia, Valencia, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, National Center for Biotechnology/The Spanish National Research Council (CSIC), Madrid, Spain
| |
Collapse
|
10
|
Kozhukhar N, Alexeyev MF. 35 Years of TFAM Research: Old Protein, New Puzzles. BIOLOGY 2023; 12:823. [PMID: 37372108 DOI: 10.3390/biology12060823] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/29/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023]
Abstract
Transcription Factor A Mitochondrial (TFAM), through its contributions to mtDNA maintenance and expression, is essential for cellular bioenergetics and, therefore, for the very survival of cells. Thirty-five years of research on TFAM structure and function generated a considerable body of experimental evidence, some of which remains to be fully reconciled. Recent advancements allowed an unprecedented glimpse into the structure of TFAM complexed with promoter DNA and TFAM within the open promoter complexes. These novel insights, however, raise new questions about the function of this remarkable protein. In our review, we compile the available literature on TFAM structure and function and provide some critical analysis of the available data.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
11
|
Lin CC, Wang YP, Sun YK, Chiu CH, Lin MW, Tzeng IS. Mitochondrial replication, transcription, and function in obstructive sleep apnea. Respir Physiol Neurobiol 2023:104066. [PMID: 37080370 DOI: 10.1016/j.resp.2023.104066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/31/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
We assessed mitochondrial replication, transcription, and function in the upper airways of obstructive sleep apnea (OSA) patients and the effects of uvulopalatopharyngoplasty. Twenty subjects with mild and 40 with moderate to severe OSA requiring uvulopalatopharyngoplasty were included. Mitochondrial transcription factor A (TFAM) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) in uvula specimens were assessed by immunohistochemical staining, and their mRNA and protein expression was examined using reverse-transcription polymerase chain reaction and western blotting, respectively. The mitochondrial to nuclear DNA (Mt/N) ratio in the blood, exhaled breath condensate (EBC), and uvula was measured using quantitative reverse-transcription polymerase chain reaction. TFAM and PGC-1α protein concentrations in the plasma and EBC were determined using enzyme-linked immunosorbent assay. All tested parameters were higher in the OSA group than in the control. Three months later, 21 uvulopalatopharyngoplasty-responsive patients with OSA showed decreased TFAM and PGC-1α concentrations and EBC Mt/N ratio while these remained high in 19 uvulopalatopharyngoplasty-unresponsive patients. The OSA group showed severe inflammation, increased mitochondrial replication and transcription-related signaling, and mitochondrial dysfunction in the uvula. Successful OSA treatment using uvulopalatopharyngoplasty restored the TFAM and PGC-1α levels and EBC Mt/N ratio.
Collapse
Affiliation(s)
- Ching-Chi Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan.
| | - Ying-Piao Wang
- Department of Otolaryngology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Kun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chung-Hsin Chiu
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Mei-Wei Lin
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| |
Collapse
|
12
|
Functional Assessment of Mitochondrial DNA Maintenance by Depletion and Repopulation Using 2',3'-Dideoxycytidine in Cultured Cells. Methods Mol Biol 2023; 2615:229-240. [PMID: 36807796 DOI: 10.1007/978-1-0716-2922-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The manipulation of mitochondrial DNA (mtDNA) copy number in cultured cells, using substances that interfere with DNA replication, is a useful tool to investigate various aspects of mtDNA maintenance. Here we describe the use of 2',3'-dideoxycytidine (ddC) to induce a reversible reduction of mtDNA copy number in human primary fibroblasts and human embryonic kidney (HEK293) cells. Once the application of ddC is stopped, cells depleted for mtDNA attempt to recover normal mtDNA copy numbers. The dynamics of repopulation of mtDNA provide a valuable measure for the enzymatic activity of the mtDNA replication machinery.
Collapse
|
13
|
Schwartz AZA, Nance J. Germline TFAM levels regulate mitochondrial DNA copy number and mutant heteroplasmy in C. elegans. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000727. [PMID: 36873298 PMCID: PMC9975812 DOI: 10.17912/micropub.biology.000727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 03/07/2023]
Abstract
The mitochondrial genome (mtDNA) is packaged into discrete protein-DNA complexes called nucleoids. mtDNA packaging factor TFAM (mitochondrial transcription factor-A) promotes nucleoid compaction and is required for mtDNA replication. Here, we investigate how changing TFAM levels affects mtDNA in the Caenorhabditis elegans germ line. We show that increasing germline TFAM activity boosts mtDNA number and significantly increases the relative proportion of a selfish mtDNA mutant, uaDf5 . We conclude that TFAM levels must be tightly controlled to ensure appropriate mtDNA composition in the germ line.
Collapse
Affiliation(s)
- Aaron Z A Schwartz
- Department of Cell Biology, NYU Grossman School of Medicine, New York NY 10016.,Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York NY 10016
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of Medicine, New York NY 10016.,Skirball Institute of Biomolecular Medicine, NYU Grossman School of Medicine, New York NY 10016
| |
Collapse
|
14
|
Rahman MM, Young CKJ, Goffart S, Pohjoismäki JLO, Young MJ. Heterozygous p.Y955C mutation in DNA polymerase γ leads to alterations in bioenergetics, complex I subunit expression, and mtDNA replication. J Biol Chem 2022; 298:102196. [PMID: 35760101 PMCID: PMC9307957 DOI: 10.1016/j.jbc.2022.102196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/03/2022] Open
Abstract
In human cells, ATP is generated using oxidative phosphorylation machinery, which is inoperable without proteins encoded by mitochondrial DNA (mtDNA). The DNA polymerase gamma (Polγ) repairs and replicates the multicopy mtDNA genome in concert with additional factors. The Polγ catalytic subunit is encoded by the POLG gene, and mutations in this gene cause mtDNA genome instability and disease. Barriers to studying the molecular effects of disease mutations include scarcity of patient samples and a lack of available mutant models; therefore, we developed a human SJCRH30 myoblast cell line model with the most common autosomal dominant POLG mutation, c.2864A>G/p.Y955C, as individuals with this mutation can present with progressive skeletal muscle weakness. Using on-target sequencing, we detected a 50% conversion frequency of the mutation, confirming heterozygous Y955C substitution. We found mutated cells grew slowly in a glucose-containing medium and had reduced mitochondrial bioenergetics compared with the parental cell line. Furthermore, growing Y955C cells in a galactose-containing medium to obligate mitochondrial function enhanced these bioenergetic deficits. Also, we show complex I NDUFB8 and ND3 protein levels were decreased in the mutant cell line, and the maintenance of mtDNA was severely impaired (i.e., lower copy number, fewer nucleoids, and an accumulation of Y955C-specific replication intermediates). Finally, we show the mutant cells have increased sensitivity to the mitochondrial toxicant 2′-3′-dideoxycytidine. We expect this POLG Y955C cell line to be a robust system to identify new mitochondrial toxicants and therapeutics to treat mitochondrial dysfunction.
Collapse
Affiliation(s)
- Md Mostafijur Rahman
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Carolyn K J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, 80101 Joensuu, Finland
| | - Matthew J Young
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901.
| |
Collapse
|
15
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
16
|
Abstract
R-loops forming inadvertently during transcription can threaten genome stability, but R-loops are also formed intentionally, as a means of regulating transcription and other aspects of DNA metabolism. The study of R-loops in mitochondria is in its infancy, and yet there is already clear evidence that they are predominantly located in the major regulatory region of the mammalian mitochondrial genome. Here, we describe how mitochondrial R-loops have been characterized to date, with the emphasis on the problems of their being extremely labile, and how to minimize their loss during extraction. The oft-overlooked issues of RNA-DNA hybrids not being synonymous with R-loops, and adventitious RNA hybridization to DNA, are tackled head on; and possible new approaches are described and placed in the context of future research lines that could reveal the detailed roles of R-loops in the metabolism of mitochondrial DNA.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, San Sebastián, Spain.
- CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain.
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Universidad de País Vasco, Bilbao, Spain.
| |
Collapse
|
17
|
Molecular dynamics of estrogen-related receptors and their regulatory proteins: roles in transcriptional control for endocrine and metabolic signaling. Anat Sci Int 2021; 97:15-29. [PMID: 34609710 DOI: 10.1007/s12565-021-00634-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Estrogen-related receptor (ERR) is a member of the nuclear receptor (NR) superfamily and has three subtypes α, β, and γ. Despite their strong homology with estrogen receptor (ER) α, ERRs cannot accommodate endogenous hormones. However, they are able to regulate gene expression without ligand binding. ERRα and ERRγ orchestrate the expression of genes involved in bioenergetic pathways, while ERRβ controls placental development and stem cell maintenance. Evidence from recent studies, including clinical research, has also demonstrated close associations of ERRs with the pathophysiology of hormone-related cancers and metabolic disorders including type 2 diabetes mellitus. This review summarizes the basic knowledge and recent advances in ERRs and their associated proteins, focusing on the subcellular dynamics involved in transcriptional regulation. Fluorescent protein labeling enabled monitoring of ERRs in living cells and revealed previously unrecognized characteristics. Using this technique, we demonstrated a role of ERRβ in controlling estrogen signaling by regulating the subnuclear dynamics of ligand-activated ERα. Visualization of ERRs and related proteins and subsequent analyses also revealed a function of ERRγ in promoting liver lactate metabolism in association with LRPGC1, a recently identified lactic acid-responsive protein. These findings suggest that ERRs activate unique transregulation mechanisms in response to extracellular stimuli such as hormones and metabolic signals, implying an adaptive system behind the cellular homeostatic regulation by orphan NRs. Control of subcellular ERR dynamics will contribute toward the development of therapeutic approaches to treat various diseases including hormone-related cancers and metabolic disorders associated with abnormal ERR signaling pathways.
Collapse
|
18
|
Bonekamp NA, Jiang M, Motori E, Garcia Villegas R, Koolmeister C, Atanassov I, Mesaros A, Park CB, Larsson NG. High levels of TFAM repress mammalian mitochondrial DNA transcription in vivo. Life Sci Alliance 2021; 4:4/11/e202101034. [PMID: 34462320 PMCID: PMC8408345 DOI: 10.26508/lsa.202101034] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 08/10/2021] [Accepted: 08/20/2021] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial transcription factor A (TFAM) is compacting mitochondrial DNA (dmtDNA) into nucleoids and directly controls mtDNA copy number. Here, we show that the TFAM-to-mtDNA ratio is critical for maintaining normal mtDNA expression in different mouse tissues. Moderately increased TFAM protein levels increase mtDNA copy number but a normal TFAM-to-mtDNA ratio is maintained resulting in unaltered mtDNA expression and normal whole animal metabolism. Mice ubiquitously expressing very high TFAM levels develop pathology leading to deficient oxidative phosphorylation (OXPHOS) and early postnatal lethality. The TFAM-to-mtDNA ratio varies widely between tissues in these mice and is very high in skeletal muscle leading to strong repression of mtDNA expression and OXPHOS deficiency. In the heart, increased mtDNA copy number results in a near normal TFAM-to-mtDNA ratio and maintained OXPHOS capacity. In liver, induction of LONP1 protease and mitochondrial RNA polymerase expression counteracts the silencing effect of high TFAM levels. TFAM thus acts as a general repressor of mtDNA expression and this effect can be counterbalanced by tissue-specific expression of regulatory factors.
Collapse
Affiliation(s)
- Nina A Bonekamp
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Min Jiang
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, Key Laboratory of Growth Regulation and Transformation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Elisa Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | | | - Camilla Koolmeister
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Andrea Mesaros
- Phenotyping Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Nils-Göran Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany .,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
19
|
Kirby CS, Patel MR. Elevated mitochondrial DNA copy number found in ubiquinone-deficient clk-1 mutants is not rescued by ubiquinone precursor 2-4-dihydroxybenzoate. Mitochondrion 2021; 58:38-48. [PMID: 33581333 DOI: 10.1016/j.mito.2021.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 01/28/2023]
Abstract
Inside mitochondria reside semi-autonomous genomes, called mtDNA. mtDNA is multi-copy per cell and mtDNA copy number can vary from hundreds to thousands of copies per cell. The variability of mtDNA copy number between tissues, combined with the lack of variability of copy number within a tissue, suggest a homeostatic copy number regulation mechanism. Mutations in the gene encoding the Caenorhabditis elegans hydroxylase, CLK-1, result in elevated mtDNA. CLK-1's canonical role in ubiquinone biosynthesis results in clk-1 mutants lacking ubiquinone. Importantly, clk-1 mutants also exhibit slowed biological timing phenotypes (pharyngeal pumping, defecation, development) and an activated stress response (UPRmt). These biological timing and stress phenotypes have been attributed to ubiquinone deficiency; however, it is unknown whether the mtDNA phenotype is also due to ubiquinone deficiency. To test this, in animals carrying the uncharacterized clk-1 (ok1247) mutant allele, we supplemented with an exogenous ubiquinone precursor 2-4-dihydroxybenzoate (DHB), which has previously been shown to restore ubiquinone biosynthesis. We measured phenotypes as a function of DHB across a log-scale range. Unlike the biological timing and stress phenotypes, the elevated mtDNA phenotype was not rescued. Since CLK-1's canonical role is in ubiquinone biosynthesis and DHB does not rescue mtDNA copy number, we infer CLK-1 has an additional function in homeostatic mtDNA copy number regulation.
Collapse
Affiliation(s)
- Cait S Kirby
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA; Diabetes Research and Training Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
20
|
Zhu X, Wang F, Lei X, Dong W. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med (Maywood) 2020; 246:596-606. [PMID: 33215523 DOI: 10.1177/1535370220975106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bronchopulmonary dysplasia is a severe and long-term pulmonary disease in premature infants. Hyperoxia-induced acute lung injury plays a critical role in bronchopulmonary dysplasia. Resveratrol is a polyphenolic phytoalexin and a natural agonist of Sirtuin 1. Many studies have shown that resveratrol has a protective effect on hyperoxia-induced lung damage, but its specific protective mechanism is still not clear. Further exploration of the possible protective mechanism of resveratrol was the main goal of this study. In this study, human alveolar epithelial cells were used to establish a hyperoxia-induced acute lung injury cell model, and resveratrol (Res or R), the Sirtuin 1 activator SRT1720 (S) and the Sirtuin 1 inhibitor EX-527 (E) were administered to alveolar epithelial cells, which were then exposed to hyperoxia to investigate the role of Res in mitochondrial function and apoptosis. We divided human alveolar epithelial cells into the following groups: (1) the control group, (2) hyperoxia group, (3) hyperoxia+Res20 group, (4) hyperoxia+Res20+E5 group, (5) hyperoxia+Res20+E10 group, (6) hyperoxia+S2 group, (7) hyperoxia+S2+E5 group, and (8) hyperoxia+S2+E10 group. Hyperoxia-induced cell apoptosis and mitochondrial dysfunction were alleviated by Res and SRT1720. Res and SRT1720 upregulated Sirtuin 1, PGC-1α, NRF1, and TFAM but decreased the expression of acetyl-p53 in human alveolar epithelial cells that were exposed to hyperoxia. These findings revealed that Res may alleviated hyperoxia-induced mitochondrial dysfunction and apoptosis in alveolar epithelial cells through the SIRT1/PGC-1a signaling pathway. Thus, Sirtuin 1 upregulation plays an important role in lung protection.
Collapse
Affiliation(s)
- Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Fan Wang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Sichuan Clinical Research Center for Birth Defects, Luzhou 646000, China
| |
Collapse
|
21
|
Tanida T, Matsuda KI, Tanaka M. Novel metabolic system for lactic acid via LRPGC1/ERRγ signaling pathway. FASEB J 2020; 34:13239-13256. [PMID: 32851675 DOI: 10.1096/fj.202000492r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 12/17/2022]
Abstract
Lactic acid (LA) is a byproduct of glycolysis resulting from intense exercise or a metabolic defect in aerobic processes. LA metabolism is essential to prevent lactic acidosis, but the mechanism through which LA regulates its own metabolism is largely unknown. Here, we identified a LA-responsive protein, named LRPGC1, which has a distinct role from PGC1α, a key metabolic regulator, and report that LRPGC1 particularly mediates LA response to activate liver LA metabolism. Following LA stimulation, LRPGC1, but not PGC1α, translocates from the cytoplasm to the nucleus through deactivation of nuclear export signals, interacts with the nuclear receptor ERRγ, and upregulates TFAM, which ensures mitochondrial biogenesis. Knockout of PGC1 gene in HepG2 hepatocarcinoma cells decreased the LA consumption and TFAM expression, which were rescued by LRPGC1 expression, but not by PGC1α. These LRPGC1-induced effects were mediated by ERRγ, concomitantly with mitochondrial activation. The response element for LRPGC1/ERRγ signaling pathway was identified in TFAM promoter. Notably, the survival rate of a mouse model of lactic acidosis was reduced by the liver-targeted silencing of Lrpgc1, while it was significantly ameliorated by the pharmacological activation of ERRγ. These findings demonstrate LA-responsive transactivation via LRPGC1 that highlight an intrinsic molecular mechanism for LA homeostasis.
Collapse
Affiliation(s)
- Takashi Tanida
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masaki Tanaka
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
22
|
Mohammed SA, Ambrosini S, Lüscher T, Paneni F, Costantino S. Epigenetic Control of Mitochondrial Function in the Vasculature. Front Cardiovasc Med 2020; 7:28. [PMID: 32195271 PMCID: PMC7064473 DOI: 10.3389/fcvm.2020.00028] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 02/19/2020] [Indexed: 12/24/2022] Open
Abstract
The molecular signatures of epigenetic regulation and chromatin architecture are emerging as pivotal regulators of mitochondrial function. Recent studies unveiled a complex intersection among environmental factors, epigenetic signals, and mitochondrial metabolism, ultimately leading to alterations of vascular phenotype and increased cardiovascular risk. Changing environmental conditions over the lifetime induce covalent and post-translational chemical modification of the chromatin template which sensitize the genome to establish new transcriptional programs and, hence, diverse functional states. On the other hand, metabolic alterations occurring in mitochondria affect the availability of substrates for chromatin-modifying enzymes, thus leading to maladaptive epigenetic signatures altering chromatin accessibility and gene transcription. Indeed, several components of the epigenetic machinery require intermediates of cellular metabolism (ATP, AcCoA, NADH, α-ketoglutarate) for enzymatic function. In the present review, we describe the emerging role of epigenetic modifications as fine tuners of gene transcription in mitochondrial dysfunction and vascular disease. Specifically, the following aspects are described in detail: (i) mitochondria and vascular function, (ii) mitochondrial ROS, (iii) epigenetic regulation of mitochondrial function; (iv) the role of mitochondrial metabolites as key effectors for chromatin-modifying enzymes; (v) epigenetic therapies. Understanding epigenetic routes may pave the way for new approaches to develop personalized therapies to prevent mitochondrial insufficiency and its complications.
Collapse
Affiliation(s)
- Shafeeq A Mohammed
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Samuele Ambrosini
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| | - Thomas Lüscher
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Research, Education and Development, Royal Brompton and Harefield Hospital Trust and Imperial College, London, United Kingdom
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland.,Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zurich, Switzerland
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Zurich, Switzerland
| |
Collapse
|
23
|
Abstract
The mitochondrial genome encodes 13 proteins that are components of the oxidative phosphorylation system (OXPHOS), suggesting that precise regulation of these genes is crucial for maintaining OXPHOS functions, including ATP production, calcium buffering, cell signaling, ROS production, and apoptosis. Furthermore, heteroplasmy or mis-regulation of gene expression in mitochondria frequently is associated with human mitochondrial diseases. Thus, various approaches have been developed to investigate the roles of genes encoded by the mitochondrial genome. In this review, we will discuss a wide range of techniques available for investigating the mitochondrial genome, mitochondrial transcription, and mitochondrial translation, which provide a useful guide to understanding mitochondrial gene expression.
Collapse
Affiliation(s)
- Dongkeun Park
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Soyeon Lee
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| | - Kyung-Tai Min
- Department of Biological Sciences, School of Life Sciences, Ulsan 44919, Korea
- National Creative Research Initiative Center for Proteostasis, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
| |
Collapse
|
24
|
Kozhukhar N, Alexeyev MF. Limited predictive value of TFAM in mitochondrial biogenesis. Mitochondrion 2019; 49:156-165. [PMID: 31419493 PMCID: PMC6885536 DOI: 10.1016/j.mito.2019.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/23/2019] [Accepted: 08/12/2019] [Indexed: 12/16/2022]
Abstract
Mitochondrial transcription factor A (TFAM) plays an important role in mitochondrial DNA (mtDNA) transcription and replication. In some experimental settings, TFAM expression parallels parameters of mitochondrial biogenesis, which led to a widespread acceptance of TFAM as marker of mitochondrial biogenesis. We modulated TFAM expression in several experimental systems and observed that it fails to consistently parallel mtDNA copy number and expression of mtDNA-encoded polypeptides. We suggest that the use of TFAM as a marker of mitochondrial biogenesis should be avoided outside of systems in which its performance has been carefully validated.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA.
| |
Collapse
|
25
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
26
|
Expression of selected mitochondrial genes during in vitro maturation of bovine oocytes related to their meiotic competence. Theriogenology 2019; 133:104-112. [PMID: 31078068 DOI: 10.1016/j.theriogenology.2019.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/30/2019] [Accepted: 05/01/2019] [Indexed: 11/24/2022]
Abstract
The main goal of this study was to characterize the expression patterns of genes which play a role in mitochondrial DNA biogenesis and metabolism during the maturation of bovine oocytes with different meiotic competence and health. Meiotically more and less competent oocytes were obtained separately either from medium (MF) or small (SF) follicles and categorized according to oocyte morphology into healthy and light-atretic. The four oocyte categories were matured and collected after 0, 3, 7, 16 and 24 h of maturation. Either total RNA or poly(A) RNA were extracted from oocytes and the expression of selected mitochondrial translational factors (TFAM, TFB1M, and TFB2M), MATER, and Luciferase as external standard was assessed using a real-time RT-PCR. The level of TFAM, TFB1M and MATER poly(A) RNA transcripts significantly decreased during maturation in both healthy and light-atretic MF and SF oocytes. On the other hand, the level of TFB2M poly(A) increased during maturation in healthy and light-atretic SF oocytes, in contrast to MF oocytes. The abundance of TFAM total RNA was significantly higher after maturation than that before maturation in all oocyte categories. However, no differences in TFB1M and TFB2M total RNA were found in any oocyte categories. It can be concluded that the gene expression patterns differ in maturing bovine oocytes in dependence on their meiotic competence and health. The TFAM and TFB1M poly(A) RNAs are actively deadenylated at different meiotic stages but TFB2M poly(A) RNA remains elevated in light-atretic less competent oocytes until the completion of meiosis.
Collapse
|
27
|
Yan C, Duanmu X, Zeng L, Liu B, Song Z. Mitochondrial DNA: Distribution, Mutations, and Elimination. Cells 2019; 8:E379. [PMID: 31027297 PMCID: PMC6523345 DOI: 10.3390/cells8040379] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/17/2019] [Accepted: 04/20/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrion harbors its own DNA (mtDNA), which encodes many critical proteins for the assembly and activity of mitochondrial respiratory complexes. mtDNA is packed by many proteins to form a nucleoid that uniformly distributes within the mitochondrial matrix, which is essential for mitochondrial functions. Defects or mutations of mtDNA result in a range of diseases. Damaged mtDNA could be eliminated by mitophagy, and all paternal mtDNA are degraded by endonuclease G or mitophagy during fertilization. In this review, we describe the role and mechanism of mtDNA distribution and elimination. In particular, we focus on the regulation of paternal mtDNA elimination in the process of fertilization.
Collapse
Affiliation(s)
- Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Xiaoying Duanmu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Ling Zeng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Bing Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
28
|
Chen W, Xue Y, Scarfe L, Wang D, Zhang Y. Loss of Prune in Circadian Cells Decreases the Amplitude of the Circadian Locomotor Rhythm in Drosophila. Front Cell Neurosci 2019; 13:76. [PMID: 30881291 PMCID: PMC6405476 DOI: 10.3389/fncel.2019.00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/14/2019] [Indexed: 01/10/2023] Open
Abstract
The circadian system, which has a period of about 24 h, is import for organismal health and fitness. The molecular circadian clock consists of feedback loops involving both transcription and translation, and proper function of the circadian system also requires communication among intracellular organelles. As important hubs for signaling in the cell, mitochondria integrate a variety of signals. Mitochondrial dysfunction and disruption of circadian rhythms are observed in neurodegenerative diseases and during aging. However, how mitochondrial dysfunction influences circadian rhythm is largely unknown. Here, we report that Drosophila prune (pn), which localizes to the mitochondrial matrix, most likely affects the function of certain clock neurons.Deletion of pn in flies caused decreased expression of mitochondrial transcription factor TFAM and reductions in levels of mitochondrial DNA, which resulted in mitochondrial dysfunction. Loss of pn decreased the amplitude of circadian rhythms.In addition, we showed that depletion of mtDNA by overexpression of a mitochondrially targeted restriction enzyme mitoXhoI also decreased the robustness of circadian rhythms. Our work demonstrates that pn is important for mitochondrial function thus involved in the regulation of circadian rhythms.
Collapse
Affiliation(s)
- Wenfeng Chen
- Institute of Life Sciences, Fuzhou University, Fuzhou, China.,Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Lisa Scarfe
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| | - Danfeng Wang
- Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
29
|
Duncan OF, Granat L, Ranganathan R, Singh VK, Mazaud D, Fanto M, Chambers D, Ballard CG, Bateman JM. Ras-ERK-ETS inhibition alleviates neuronal mitochondrial dysfunction by reprogramming mitochondrial retrograde signaling. PLoS Genet 2018; 14:e1007567. [PMID: 30059502 PMCID: PMC6085068 DOI: 10.1371/journal.pgen.1007567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/09/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction activates the mitochondrial retrograde signaling pathway, resulting in large scale changes in gene expression. Mitochondrial retrograde signaling in neurons is poorly understood and whether retrograde signaling contributes to cellular dysfunction or is protective is unknown. We show that inhibition of Ras-ERK-ETS signaling partially reverses the retrograde transcriptional response to alleviate neuronal mitochondrial dysfunction. We have developed a novel genetic screen to identify genes that modify mitochondrial dysfunction in Drosophila. Knock-down of one of the genes identified in this screen, the Ras-ERK-ETS pathway transcription factor Aop, alleviates the damaging effects of mitochondrial dysfunction in the nervous system. Inhibition of Ras-ERK-ETS signaling also restores function in Drosophila models of human diseases associated with mitochondrial dysfunction. Importantly, Ras-ERK-ETS pathway inhibition partially reverses the mitochondrial retrograde transcriptional response. Therefore, mitochondrial retrograde signaling likely contributes to neuronal dysfunction through mis-regulation of gene expression. Loss of mitochondrial function activates the mitochondrial retrograde signaling pathway resulting in large scale changes in nuclear gene transcription. Very little is known about retrograde signaling in the nervous system and how the transcriptional changes affect neuronal function. Here we identify Ras-ERK-ETS signaling as a novel mitochondrial retrograde signaling pathway in the Drosophila nervous system. Inhibition of Ras-ERK-ETS signaling improves neuronal function in Drosophila models of mitochondrial disease. Targeting Ras-ERK-ETS signaling may therefore have therapeutic potential in mitochondrial disease patients. Using a transcriptomic approach, we find that inhibition of Ras-ERK-ETS signaling partially reverses the mitochondrial retrograde transcriptional response. Surprisingly therefore, the mitochondrial retrograde transcriptional response contributes to neuronal dysfunction.
Collapse
Affiliation(s)
- Olivia F. Duncan
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Lucy Granat
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Ramya Ranganathan
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Vandana K. Singh
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - David Mazaud
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - Manolis Fanto
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
| | - David Chambers
- Wolfson Centre for Age-Related Diseases, King’s College London, London, United Kingdom
| | - Clive G. Ballard
- Medical School Building, St Luke's Campus, University of Exeter, Exeter, United Kingdom
| | - Joseph M. Bateman
- Maurice Wohl Clinical Neuroscience Institute, King’s College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
30
|
Abstract
Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS) and Ca(2+) handling to stress responses, cell survival and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular, cancer, premature aging and cardiovascular diseases (CVD), including myocardial ischemia, cardiomyopathy and heart failure (HF). Mitochondria contain their own genome organized into DNA-protein complexes, called "mitochondrial nucleoids," along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription and repair. Although the mammalian organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to various types of mtDNA damage. These include accumulation of mtDNA point mutations and/or deletions and decreased mtDNA copy number, which will impair mitochondrial function and finally, may lead to CVD including HF.
Collapse
Affiliation(s)
- José Marín-García
- The Molecular Cardiology and Neuromuscular Institute, 75 Raritan Avenue, Highland Park, NJ, 08904, USA.
| |
Collapse
|
31
|
Zeissler ML, Eastwood J, McCorry K, Hanemann CO, Zajicek JP, Carroll CB. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis. Oncotarget 2018; 7:46603-46614. [PMID: 27366949 PMCID: PMC5216821 DOI: 10.18632/oncotarget.10314] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022] Open
Abstract
Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson's disease (PD).The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use. The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress. Differentiated SH-SY5Y neuroblastoma cells were exposed to the PD relevant mitochondrial complex 1 inhibitor 1-methyl-4-phenylpyridinium iodide (MPP+). We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content. Co-application of Δ9-THC with pioglitazone further increased the neuroprotection against MPP+ toxicity as compared to pioglitazone treatment alone. Furthermore, using lentiviral knock down of the PPARγ receptor we showed that, unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress. We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment.
Collapse
Affiliation(s)
- Marie-Louise Zeissler
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Jordan Eastwood
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - Kieran McCorry
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - C Oliver Hanemann
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BU, United Kingdom
| | - John P Zajicek
- School of Medicine, Medical and Biological Sciences, University of St Andrews, North Haugh, St Andrews, KY16 9TF, United Kingdom
| | - Camille B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BX, United Kingdom
| |
Collapse
|
32
|
Liao P, Liao M, Li L, Tan B, Yin Y. Effect of deoxynivalenol on apoptosis, barrier function, and expression levels of genes involved in nutrient transport, mitochondrial biogenesis and function in IPEC-J2 cells. Toxicol Res (Camb) 2017; 6:866-877. [PMID: 30090549 DOI: 10.1039/c7tx00202e] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 08/15/2017] [Indexed: 12/18/2022] Open
Abstract
This study was conducted to determine the effect of 200 ng mL-1 and 2000 ng mL-1 deoxynivalenol (DON) on apoptosis, barrier function, nutrient transporter gene expression, and free amino acid variation as well as on mitochondrial biogenesis and function-related gene expression in the intestinal porcine epithelial cell line J2 (IPEC-J2) for 6 h, 12 h, and 24 h. Exposure to 200 ng mL-1 DON inhibited the cell viability and promoted cell cycle progression from the G2/M phase to the S phase (P < 0.05). The data showed that the IPEC-J2 cell content of free amino acids, such as valine, methionine, leucine, and phenylalanine, was increased (P < 0.05) after treatment for 6 h; the aspartate, threonine, and lysine contents increased (P < 0.05) after treatment for 12 h; and the aspartate, serine, glycine, alanine, isoleucine, leucine, and lysine contents decreased (P < 0.05) after treatment for 24 h. The expression levels of barrier function genes, including zonula occludens 1 (ZO-1), occludin (OCLN), and claudin 1 (CLDN1), showed a significant reduction (P < 0.05). Moreover, the expression levels of differently regulated nutrient transporter genes, including B0,+ amino acid transporter (B0,+AT) and sodium-glucose transporter 1 (SGLT1) genes, showed a significant decrease (P < 0.05), while the Na+-dependent neutral amino acid transporter 2 (ASCT2) and glucose transporter type 2 (GLUT2) showed a significant increase (P < 0.01). The expression levels of cytokine genes, including IL-8, and IL-1β genes, showed a significant increase (P < 0.05). Furthermore, the expression levels of mitochondrial biogenesis and function-related genes, including mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF), mitochondrial single-strand DNA-binding protein (mt SSB) and mitochondrial polymerase r (mt polr), NADH dehydrogenase subunit 4 (ND4) and cytochrome c oxidase (CcOX) IV, CcOX V and cytochrome c (Cyt c), mammalian silencing information regulator-2α (SIRT-1), glucokinase and citrate synthase (CS), showed a significant increase (P < 0.05). Taken together, the present study indicated that 200 and 2000 ng mL-1 DON could affect proliferation and cell cycle progression from the G2/M phase to the S phase and could mediate the expression levels of differently regulated barrier function, nutrient transport, and mitochondrial biogenesis and function-related genes.
Collapse
Affiliation(s)
- Peng Liao
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Meifang Liao
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Ling Li
- College of Traditional Chinese Medicine , Hunan University of Chinese Medicine , 300# Xueshi Road , Changsha 410208 , Hunan Province , China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region , Institute of Subtropical Agriculture , Chinese Academy of Sciences , 644# Yuandaer Road , Changsha 410125 , Hunan Province , China . ; ; Tel: +86-731-8461-9703
| |
Collapse
|
33
|
Fueling Inflamm-Aging through Mitochondrial Dysfunction: Mechanisms and Molecular Targets. Int J Mol Sci 2017; 18:ijms18050933. [PMID: 28452964 PMCID: PMC5454846 DOI: 10.3390/ijms18050933] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/14/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022] Open
Abstract
Among the complex determinants of aging, mitochondrial dysfunction has been in the spotlight for a long time. As the hub for many cellular functions, the maintenance of an adequate pool of functional mitochondria is crucial for tissue homeostasis. Their unique role in energy supply makes these organelles essential, especially in those tissues strictly dependent on oxidative metabolism. Mitochondrial quality control (MQC) is ensured by pathways related to protein folding and degradation as well as by processes involving the entire organelle, such as biogenesis, dynamics, and mitophagy. Dysfunctional MQC, oxidative stress and inflammation are hallmarks of senescence and chronic degenerative diseases. One of the consequences of age-related failing MQC and oxidative stress is the release of mitochondria-derived damage-associated molecular patterns (DAMPs). Through their bacterial ancestry, these molecules contribute to mounting an inflammatory response by interacting with receptors similar to those involved in pathogen-associated responses. Mitochondrial DAMPs, especially cell-free mitochondrial DNA, have recently become the subject of intensive research because of their possible involvement in conditions associated with inflammation, such as aging and degenerative diseases. Here, we review the contribution of mitochondrial DAMPs to inflammation and discuss some of the mechanisms at the basis of their generation.
Collapse
|
34
|
Su W, Xu W, Zhang H, Ying Z, Zhou L, Zhang L, Wang T. Effects of dietary leucine supplementation on the hepatic mitochondrial biogenesis and energy metabolism in normal birth weight and intrauterine growth-retarded weanling piglets. Nutr Res Pract 2017; 11:121-129. [PMID: 28386385 PMCID: PMC5376530 DOI: 10.4162/nrp.2017.11.2.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 01/09/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/OBJECTIVES The study was conducted to evaluate the effects of dietary leucine supplementation on mitochondrial biogenesis and energy metabolism in the liver of normal birth weight (NBW) and intrauterine growth-retarded (IUGR) weanling piglets. MATERIALS/METHODS A total of sixteen pairs of NBW and IUGR piglets from sixteen sows were selected according to their birth weight. At postnatal day 14, all piglets were weaned and fed either a control diet or a leucine-supplemented diet for 21 d. Thereafter, a 2 × 2 factorial experimental design was used. Each treatment consisted of eight replications with one piglet per replication. RESULTS Compared with NBW piglets, IUGR piglets had a decreased (P < 0.05) hepatic adenosine triphosphate (ATP) content. Also, IUGR piglets exhibited reductions (P < 0.05) in the activities of hepatic mitochondrial pyruvate dehydrogenase (PDH), citrate synthase (CS), α-ketoglutarate dehydrogenase (α-KGDH), malate dehydrogenase (MDH), and complexes I and V, along with decreases (P < 0.05) in the concentration of mitochondrial DNA (mtDNA) and the protein expression of hepatic peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α). Dietary leucine supplementation increased (P < 0.05) the content of ATP, and the activities of CS, α-KGDH, MDH, and complex V in the liver of piglets. Furthermore, compared to those fed a control diet, piglets given a leucine-supplemented diet exhibited increases (P < 0.05) in the mtDNA content and in the mRNA expressions of sirtuin 1, PGC-1α, nuclear respiratory factor 1, mitochondrial transcription factor A, and ATP synthase, H+ transporting, mitochondrial F1 complex, β polypeptide in liver. CONCLUSIONS Dietary leucine supplementation may exert beneficial effects on mitochondrial biogenesis and energy metabolism in NBW and IUGR weanling piglets.
Collapse
Affiliation(s)
- Weipeng Su
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Wen Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Zhixiong Ying
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Le Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Weigang 1, Nanjing, 210095, China
| |
Collapse
|
35
|
Shokolenko IN, Alexeyev MF. Mitochondrial transcription in mammalian cells. Front Biosci (Landmark Ed) 2017; 22:835-853. [PMID: 27814650 DOI: 10.2741/4520] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
As a consequence of recent discoveries of intimate involvement of mitochondria with key cellular processes, there has been a resurgence of interest in all aspects of mitochondrial biology, including the intricate mechanisms of mitochondrial DNA maintenance and expression. Despite four decades of research, there remains a lot to be learned about the processes that enable transcription of genetic information from mitochondrial DNA to RNA, as well as their regulation. These processes are vitally important, as evidenced by the lethality of inactivating the central components of mitochondrial transcription machinery. Here, we review the current understanding of mitochondrial transcription and its regulation in mammalian cells. We also discuss key theories in the field and highlight controversial subjects and future directions as we see them.
Collapse
Affiliation(s)
- Inna N Shokolenko
- University of South Alabama, Patt Capps Covey College of Allied Health Professions, Biomedical Sciences Department, 5721 USA Drive N, HAHN 4021, Mobile, AL 36688-0002, USA
| | - Mikhail F Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, 5851 USA Dr. North, MSB3074, Mobile, AL 36688, USA,
| |
Collapse
|
36
|
Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res 2016; 45:861-874. [PMID: 27903899 PMCID: PMC5314767 DOI: 10.1093/nar/gkw1157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial DNA is transcribed by POLRMT with the help of two initiation factors, TFAM and TFB2M. The current model postulates that the role of TFAM is to recruit POLRMT and TFB2M to melt the promoter. However, we show that TFAM has ‘post-recruitment’ roles in promoter melting and RNA synthesis, which were revealed by studying the pre-initiation steps of promoter binding, bending and melting, and abortive RNA synthesis. Our 2-aminopurine mapping studies show that the LSP (Light Strand Promoter) is melted from −4 to +1 in the open complex with all three proteins and from −4 to +3 with addition of ATP. Our equilibrium binding studies show that POLRMT forms stable complexes with TFB2M or TFAM on LSP with low-nanomolar Kd values, but these two-component complexes lack the mechanism to efficiently melt the promoter. This indicates that POLRMT needs both TFB2M and TFAM to melt the promoter. Additionally, POLRMT+TFB2M makes 2-mer abortives on LSP, but longer RNAs are observed only with TFAM. These results are explained by TFAM playing a role in promoter melting and/or stabilization of the open complex on LSP. Based on our results, we propose a refined model of transcription initiation by the human mitochondrial transcription machinery.
Collapse
Affiliation(s)
- Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA.,Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Shemaila Sultana
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| |
Collapse
|
37
|
Mitochondrial role in adaptive response to stress conditions in preeclampsia. Sci Rep 2016; 6:32410. [PMID: 27573305 PMCID: PMC5004102 DOI: 10.1038/srep32410] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/09/2016] [Indexed: 01/12/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome, characterized in general by hypertension with proteinuria or other systemic disturbances. PE is the major cause of maternal and fetal morbidity and mortality worldwide. However, the etiology of PE still remains unclear. Our study involved 38 patients: 14 with uncomplicated pregnancy; 13 with early-onset PE (eoPE); and 11 with late-onset PE (loPE). We characterized the immunophenotype of cells isolated from the placenta and all biopsy samples were stained positive for Cytokeratin 7, SOX2, Nestin, Vimentin, and CD44. We obtained a significant increase in OPA1 mRNA and protein expression in the eoPE placentas. Moreover, TFAM expression was down-regulated in comparison to the control (p < 0.01). Mitochondrial DNA copy number in eoPE placentas was significantly higher than in samples from normal pregnancies. We observed an increase of maximum coupled state 3 respiration rate in mitochondria isolated from the placenta in the presence of complex I substrates in the eoPE group and an increase of P/O ratio, citrate synthase activity and decrease of Ca(2+)-induced depolarization rate in both PE groups. Our results suggest an essential role of mitochondrial activity changes in an adaptive response to the development of PE.
Collapse
|
38
|
Pastukh VM, Gorodnya OM, Gillespie MN, Ruchko MV. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radic Biol Med 2016; 96:78-88. [PMID: 27091693 PMCID: PMC4912408 DOI: 10.1016/j.freeradbiomed.2016.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 02/04/2023]
Abstract
Mitochondria of mammalian cells contain multiple copies of mitochondrial (mt) DNA. Although mtDNA copy number can fluctuate dramatically depending on physiological and pathophysiologic conditions, the mechanisms regulating mitochondrial genome replication remain obscure. Hypoxia, like many other physiologic stimuli that promote growth, cell proliferation and mitochondrial biogenesis, uses reactive oxygen species as signaling molecules. Emerging evidence suggests that hypoxia-induced transcription of nuclear genes requires controlled DNA damage and repair in specific sequences in the promoter regions. Whether similar mechanisms are operative in mitochondria is unknown. Here we test the hypothesis that controlled oxidative DNA damage and repair in the D-loop region of the mitochondrial genome are required for mitochondrial DNA replication and transcription in hypoxia. We found that hypoxia had little impact on expression of mitochondrial proteins in pulmonary artery endothelial cells, but elevated mtDNA content. The increase in mtDNA copy number was accompanied by oxidative modifications in the D-loop region of the mitochondrial genome. To investigate the role of this sequence-specific oxidation of mitochondrial genome in mtDNA replication, we overexpressed mitochondria-targeted 8-oxoguanine glycosylase Ogg1 in rat pulmonary artery endothelial cells, enhancing the mtDNA repair capacity of transfected cells. Overexpression of Ogg1 resulted in suppression of hypoxia-induced mtDNA oxidation in the D-loop region and attenuation of hypoxia-induced mtDNA replication. Ogg1 overexpression also reduced binding of mitochondrial transcription factor A (TFAM) to both regulatory and coding regions of the mitochondrial genome without altering total abundance of TFAM in either control or hypoxic cells. These observations suggest that oxidative DNA modifications in the D-loop region during hypoxia are important for increased TFAM binding and ensuing replication of the mitochondrial genome.
Collapse
Affiliation(s)
- Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Olena M Gorodnya
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mykhaylo V Ruchko
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|
39
|
Darbandi S, Darbandi M, Khorshid HRK, Sadeghi MR, Al-Hasani S, Agarwal A, Shirazi A, Heidari M, Akhondi MM. Experimental strategies towards increasing intracellular mitochondrial activity in oocytes: A systematic review. Mitochondrion 2016; 30:8-17. [PMID: 27234976 DOI: 10.1016/j.mito.2016.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 04/04/2016] [Accepted: 05/20/2016] [Indexed: 12/19/2022]
Abstract
PURPOSE The mitochondrial complement is critical in sustaining the earliest stages of life. To improve the Assisted Reproductive Technology (ART), current methods of interest were evaluated for increasing the activity and copy number of mitochondria in the oocyte cell. METHODS This covered the researches from 1966 to September 2015. RESULTS The results provided ten methods that can be studied individually or simultaneously. CONCLUSION Though the use of these techniques generated great concern about heteroplasmy observation in humans, it seems that with study on these suggested methods there is real hope for effective treatments of old oocyte or oocytes containing mitochondrial problems in the near future.
Collapse
Affiliation(s)
- Sara Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahsa Darbandi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | | | - Mohammad Reza Sadeghi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Safaa Al-Hasani
- Reproductive Medicine Unit, University of Schleswig-Holstein, Luebeck, Germany.
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahnaz Heidari
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran. M.@avicenna.ar.ir
| | - Mohammad Mehdi Akhondi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| |
Collapse
|
40
|
Erlich AT, Tryon LD, Crilly MJ, Memme JM, Moosavi ZSM, Oliveira AN, Beyfuss K, Hood DA. Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integr Med Res 2016; 5:187-197. [PMID: 28462117 PMCID: PMC5390460 DOI: 10.1016/j.imr.2016.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
Abstract
Skeletal muscle mitochondrial content and function are regulated by a number of specialized molecular pathways that remain to be fully defined. Although a number of proteins have been identified to be important for the maintenance of mitochondria in quiescent muscle, the requirement for these appears to decrease with the activation of multiple overlapping signaling events that are triggered by exercise. This makes exercise a valuable therapeutic tool for the treatment of mitochondrially based metabolic disorders. In this review, we summarize some of the traditional and more recently appreciated pathways that are involved in mitochondrial biogenesis in muscle, particularly during exercise.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - David A. Hood
- Corresponding author. Muscle Health Research Centre, School of Kinesiology and Health Science York University, Toronto, Ontario M3J1P3, Canada.
| |
Collapse
|
41
|
Digital PCR methods improve detection sensitivity and measurement precision of low abundance mtDNA deletions. Sci Rep 2016; 6:25186. [PMID: 27122135 PMCID: PMC4848546 DOI: 10.1038/srep25186] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 04/12/2016] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial DNA (mtDNA) mutations are a common cause of primary mitochondrial disorders, and have also been implicated in a broad collection of conditions, including aging, neurodegeneration, and cancer. Prevalent among these pathogenic variants are mtDNA deletions, which show a strong bias for the loss of sequence in the major arc between, but not including, the heavy and light strand origins of replication. Because individual mtDNA deletions can accumulate focally, occur with multiple mixed breakpoints, and in the presence of normal mtDNA sequences, methods that detect broad-spectrum mutations with enhanced sensitivity and limited costs have both research and clinical applications. In this study, we evaluated semi-quantitative and digital PCR-based methods of mtDNA deletion detection using double-stranded reference templates or biological samples. Our aim was to describe key experimental assay parameters that will enable the analysis of low levels or small differences in mtDNA deletion load during disease progression, with limited false-positive detection. We determined that the digital PCR method significantly improved mtDNA deletion detection sensitivity through absolute quantitation, improved precision and reduced assay standard error.
Collapse
|
42
|
Signaling pathways underlying skeletal muscle wasting in experimental pulmonary arterial hypertension. Biochim Biophys Acta Mol Basis Dis 2015; 1852:2722-31. [DOI: 10.1016/j.bbadis.2015.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 09/26/2015] [Accepted: 10/01/2015] [Indexed: 11/21/2022]
|
43
|
Abstract
Mitochondria are key regulators of cellular homeostasis, and mitochondrial dysfunction is strongly linked to neurodegenerative diseases, including Alzheimer's and Parkinson's. Mitochondria communicate their bioenergetic status to the cell via mitochondrial retrograde signaling. To investigate the role of mitochondrial retrograde signaling in neurons, we induced mitochondrial dysfunction in the Drosophila nervous system. Neuronal mitochondrial dysfunction causes reduced viability, defects in neuronal function, decreased redox potential, and reduced numbers of presynaptic mitochondria and active zones. We find that neuronal mitochondrial dysfunction stimulates a retrograde signaling response that controls the expression of several hundred nuclear genes. We show that the Drosophila hypoxia inducible factor alpha (HIFα) ortholog Similar (Sima) regulates the expression of several of these retrograde genes, suggesting that Sima mediates mitochondrial retrograde signaling. Remarkably, knockdown of Sima restores neuronal function without affecting the primary mitochondrial defect, demonstrating that mitochondrial retrograde signaling is partly responsible for neuronal dysfunction. Sima knockdown also restores function in a Drosophila model of the mitochondrial disease Leigh syndrome and in a Drosophila model of familial Parkinson's disease. Thus, mitochondrial retrograde signaling regulates neuronal activity and can be manipulated to enhance neuronal function, despite mitochondrial impairment.
Collapse
|
44
|
Picca A, Lezza AMS. Regulation of mitochondrial biogenesis through TFAM-mitochondrial DNA interactions: Useful insights from aging and calorie restriction studies. Mitochondrion 2015; 25:67-75. [PMID: 26437364 DOI: 10.1016/j.mito.2015.10.001] [Citation(s) in RCA: 201] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/24/2015] [Accepted: 10/01/2015] [Indexed: 11/24/2022]
Abstract
Mitochondrial biogenesis is regulated to adapt mitochondrial population to cell energy demands. Mitochondrial transcription factor A (TFAM) performs several functions for mtDNA and interactions between TFAM and mtDNA participate to regulation of mitochondrial biogenesis. Such interactions are modulated through different mechanisms: regulation of TFAM expression and turnover, modulation of TFAM binding activity to mtDNA through post-translational modifications and differential affinity of TFAM, occurrence of TFAM sliding on mtDNA filaments and of cooperative binding among TFAM molecules, modulation of protein-protein interactions. The tissue-specific regulation of mitochondrial biogenesis in aging and calorie restriction (CR) highlights the relevance of modulation of TFAM-mtDNA interactions.
Collapse
Affiliation(s)
- Anna Picca
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy
| | - Angela Maria Serena Lezza
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Via Orabona, 4, 70125, Bari, Italy.
| |
Collapse
|
45
|
Gao J, Wen S, Zhou H, Feng S. De-methylation of displacement loop of mitochondrial DNA is associated with increased mitochondrial copy number and nicotinamide adenine dinucleotide subunit 2 expression in colorectal cancer. Mol Med Rep 2015; 12:7033-8. [PMID: 26323487 DOI: 10.3892/mmr.2015.4256] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/28/2015] [Indexed: 11/06/2022] Open
Abstract
DNA methylation occurs in the displacement loop (D-loop) region of mammals; however, D-loop regions of certain tumor tissue types were found to be de‑methylated. Whether hypomethylation of the D‑loop region is involved in the regulation of the mitochondrial DNA (mtDNA) copy number and nicotinamide adenine dinucleotide subunit 2 (ND‑2) expressions in colorectal cancer has remained elusive. In the present study, the association between methylation status of the D‑loop region, mtDNA copy number and ND‑2 expression was investigated in 65 colorectal cancer specimens and their corresponding non‑cancerous tissues. In addition, a de‑methylation experiment was performed on the Caco‑2 colorectal cancer cell line by using 5‑aza-2'-deoxycytidine (5‑Aza). The methylation rate of the D‑loop region in all 65 colorectal cancer tissues was markedly reduced when compared with that of their corresponding non‑cancerous tissues (13.8 vs. 81.5%; P<0.05). Furthermore, the methylation rate of the D‑loop region in colorectal cancer tissues was markedly decreased in clinicopathological stages III and IV compared with that in clinicopathological stages I and II (7.1 and 0% vs. 25 and 16%; P<0.05). In addition, the mean relative mtDNA copy number and ND‑2 expression in colorectal cancer tissues were increased compared with those in the corresponding non‑cancerous tissues. De‑methylation of the D‑loop region was associated with an elevated mtDNA copy number and an increased ND‑2 expression. Furthermore, the mtDNA copy number and ND‑2 expression in Caco‑2 cells were significantly increased after 5‑Aza treatment. In conclusion, de‑methylation of the D‑loop region is likely to be involved in the regulation of the mtDNA copy number and ND-2 expression.
Collapse
Affiliation(s)
- Jinhang Gao
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shilei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hongying Zhou
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi Feng
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
46
|
Tryon LD, Crilly MJ, Hood DA. Effect of denervation on the regulation of mitochondrial transcription factor A expression in skeletal muscle. Am J Physiol Cell Physiol 2015; 309:C228-38. [PMID: 26063705 DOI: 10.1152/ajpcell.00266.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 06/03/2015] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine how the expression of mitochondrial transcription factor A (Tfam), a protein that governs mitochondrial DNA (mtDNA) transcription and replication, is regulated during a state of reduced organelle content imposed by muscle disuse. We measured Tfam expression at 8 h, 16 h, 24 h, 3 days, or 7 days following denervation and hypothesized that decreases in Tfam expression would precede mitochondrial loss. Muscle mass was lowered by 13% and 38% at 3 and 7 days postdenervation, while cytochrome c oxidase activity fell by 33% and 39% at the same time points. Tfam promoter activation in vivo was reduced by 30-65% between 8 h and 3 days of denervation, while Tfam transcript half-life was increased following 8-24 h of denervation. Protein expression of RNA-binding proteins that promote mRNA degradation (CUG repeat-binding protein and K homology splicing regulator protein) was elevated at 3 and 7 days of denervation. Tfam localization within subsarcolemmal mitochondria was reduced after 3 and 7 days of denervation and was associated with suppression of the cytochrome c oxidase type I transcript at 3 days, indicating that denervation impairs both mitochondrial Tfam import and mtDNA transcription during an early period following denervation. These data suggest that putative signals downregulate Tfam transcription during the earliest stages following denervation but are counteracted by increases in Tfam mRNA stability. Import of Tfam into the mitochondrion seems to be the most critical point of regulation of this protein during the early onset of denervation, an impairment of which is coincident with the loss of mitochondria during muscle disuse.
Collapse
Affiliation(s)
- Liam D Tryon
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Matthew J Crilly
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, York University, Toronto, Ontario, Canada; and School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Mei H, Sun S, Bai Y, Chen Y, Chai R, Li H. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs. Cell Death Dis 2015; 6:e1710. [PMID: 25837486 PMCID: PMC4650546 DOI: 10.1038/cddis.2015.78] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 02/15/2015] [Accepted: 02/18/2015] [Indexed: 11/09/2022]
Abstract
Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.
Collapse
Affiliation(s)
- H Mei
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - S Sun
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Y Bai
- Department of Otolaryngology, Children's Hospital, Chongqing Medical University, Chongqing 400014, China
| | - Y Chen
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - R Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - H Li
- Department of Otorhinolaryngology, Research Center, Key Laboratory of Hearing Science, Ministry of Health, Affiliated Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| |
Collapse
|
48
|
Capllonch-Amer G, Lladó I, Proenza AM, García-Palmer FJ, Gianotti M. Opposite effects of 17-β estradiol and testosterone on mitochondrial biogenesis and adiponectin synthesis in white adipocytes. J Mol Endocrinol 2014; 52:203-14. [PMID: 24604890 DOI: 10.1530/jme-13-0201] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sexual dimorphism has been found in both mitochondrial functionality and adiponectin expression in white adipose tissue, with female rats presenting more functional mitochondria than males and greater adiponectin expression. However, little is known about the role of sex hormones in this dimorphism. The aim was to elucidate the role of sex hormones in mitochondrial biogenesis and dynamics and in adiponectin synthesis in white adipocytes, and also to provide new evidence of the link between these processes. 3T3-L1 preadipocytes were differentiated and treated either with 17-β estradiol (E₂; 10 nM), progesterone (Pg), testosterone (1 μM both), or a combination of Pg or testosterone with flutamide (FLT; 10 μM) or E₂ (1 μM). The markers of mitochondrial biogenesis and dynamics and adiponectin expression were analyzed. E₂ induced mitochondrial proliferation and differentiation in 3T3-L1, although testosterone showed opposite effects. Pg treatment stimulated proliferation but impaired differentiation. In concerns mitochondrial dynamics, these hormones promoted fusion over fission. FLT treatment indicated that Pg elicits its effects on mitochondrial dynamics through the androgen receptor. E₂ coadministration with testosterone or Pg reversed its effects. In conclusion, our results show that E₂ induces stimulation of mitochondrial biogenesis in white adipocytes in vitro, especially in situations that imply an impairment of mitochondrial function, whereas testosterone would have opposite effects. Moreover, testosterone and Pg alter mitochondrial dynamics by promoting fusion over fission, while E₂ stimulates both processes. All these alterations run in parallel with changes in adiponectin expression, thus suggesting the existence of a link between mitochondrial biogenesis and dynamics and adiponectin synthesis in white adipocytes.
Collapse
Affiliation(s)
- Gabriela Capllonch-Amer
- Grup Metabolisme Energètic i Nutrició, Departament de Biologia Fonamental i Ciències de la Salut, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, Ctra. Valldemossa, km 7,5, E-07122 Palma de Mallorca, Illes Balears, Spain Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBERobn, CB06/03/0043), Instituto de Salud Carlos III, Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
49
|
Gammage PA, Rorbach J, Vincent AI, Rebar EJ, Minczuk M. Mitochondrially targeted ZFNs for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Mol Med 2014; 6:458-66. [PMID: 24567072 PMCID: PMC3992073 DOI: 10.1002/emmm.201303672] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We designed and engineered mitochondrially targeted obligate heterodimeric zinc finger nucleases (mtZFNs) for site-specific elimination of pathogenic human mitochondrial DNA (mtDNA). We used mtZFNs to target and cleave mtDNA harbouring the m.8993T>G point mutation associated with neuropathy, ataxia, retinitis pigmentosa (NARP) and the “common deletion” (CD), a 4977-bp repeat-flanked deletion associated with adult-onset chronic progressive external ophthalmoplegia and, less frequently, Kearns-Sayre and Pearson's marrow pancreas syndromes. Expression of mtZFNs led to a reduction in mutant mtDNA haplotype load, and subsequent repopulation of wild-type mtDNA restored mitochondrial respiratory function in a CD cybrid cell model. This study constitutes proof-of-principle that, through heteroplasmy manipulation, delivery of site-specific nuclease activity to mitochondria can alleviate a severe biochemical phenotype in primary mitochondrial disease arising from deleted mtDNA species.
Collapse
Affiliation(s)
- Payam A Gammage
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, UK
| | | | | | | | | |
Collapse
|
50
|
Hypothalamic–Pituitary–Thyroid Axis Hormones Stimulate Mitochondrial Function and Biogenesis in Human Hair Follicles. J Invest Dermatol 2014; 134:33-42. [DOI: 10.1038/jid.2013.286] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/29/2013] [Accepted: 05/31/2013] [Indexed: 12/22/2022]
|