1
|
Yıldırım Akdeniz G, Timuçin AC. Structure based computational RNA design towards MafA transcriptional repressor implicated in multiple myeloma. J Mol Graph Model 2024; 132:108839. [PMID: 39096645 DOI: 10.1016/j.jmgm.2024.108839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Multiple myeloma is recognized as the second most common hematological cancer. MafA transcriptional repressor is an established mediator of myelomagenesis. While there are multitude of drugs available for targeting various effectors in multiple myeloma, current literature lacks a candidate RNA based MafA modulator. Thus, using the structure of MafA homodimer-consensus target DNA, a computational effort was implemented to design a novel RNA based chemical modulator against MafA. First, available MafA-consensus DNA structure was employed to generate an RNA library. This library was further subjected to global docking to select the most plausible RNA candidates, preferring to bind DNA binding region of MafA. Following global docking, MD-ready complexes that were prepared via local docking program, were subjected to 500 ns of MD simulations. First, each of these MD simulations were analyzed for relative binding free energy through MM-PBSA method, which pointed towards a strong RNA based MafA binder, RNA1. Second, through a detailed MD analysis, RNA1 was shown to prefer binding to a single monomer of the dimeric DNA binding domain of MafA using higher number of hydrophobic interactions compared with positive control MafA-DNA complex. At the final phase, a principal component analyses was conducted, which led us to identify the actual interaction region of RNA1 and MafA monomer. Overall, to our knowledge, this is the first computational study that presents an RNA molecule capable of potentially targeting MafA protein. Furthermore, limitations of our study together with possible future implications of RNA1 in multiple myeloma were also discussed.
Collapse
Affiliation(s)
- Güneş Yıldırım Akdeniz
- Department of Molecular Biology, Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Sabancı University, 34956, Tuzla, İstanbul, Turkey.
| | - Ahmet Can Timuçin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acıbadem Mehmet Ali Aydınlar University, 34752, Ataşehir, İstanbul, Turkey.
| |
Collapse
|
2
|
Kanai M, Nishino T, Daassi D, Kimura A, Liao CW, Javanfekr Shahri Z, Wakimoto A, Gogoleva N, Usui T, Morito N, Arita M, Takahashi S, Hamada M. MAFB in Macrophages Regulates Prostaglandin E2-Mediated Lipid Mediator Class Switch through ALOX15 in Ischemic Acute Kidney Injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1212-1224. [PMID: 39230290 PMCID: PMC11457724 DOI: 10.4049/jimmunol.2300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Monocytes and macrophages express the transcription factor MAFB (V-maf musculoaponeurotic fibrosarcoma oncogene homolog B) and protect against ischemic acute kidney injury (AKI). However, the mechanism through which MAFB alleviates AKI in macrophages remains unclear. In this study, we induced AKI in macrophage lineage-specific Mafb-deficient mice (C57BL/6J) using the ischemia-reperfusion injury model to analyze these mechanisms. Our results showed that MAFB regulates the expression of Alox15 (arachidonate 15-lipoxygenase) in macrophages during ischemic AKI. The expression of ALOX15 was significantly decreased at the mRNA and protein levels in macrophages that infiltrated the kidneys of macrophage-specific Mafb-deficient mice at 24 h after ischemia-reperfusion injury. ALOX15 promotes the resolution of inflammation under acute conditions by producing specialized proresolving mediators by oxidizing essential fatty acids. Therefore, MAFB in macrophages promotes the resolution of inflammation in ischemic AKI by regulating the expression of Alox15. Moreover, MAFB expression in macrophages is upregulated via the COX-2/PGE2/EP4 pathway in ischemic AKI. Our in vitro assay showed that MAFB regulates the expression of Alox15 under the COX-2/PGE2/EP4 pathway in macrophages. PGE2 mediates the lipid mediator (LM) class switch from inflammatory LMs to specialized proresolving mediators. Therefore, MAFB plays a key role in the PGE2-mediated LM class switch by regulating the expression of Alox15. Our study identified a previously unknown mechanism by which MAFB in macrophages alleviates ischemic AKI and provides new insights into regulating the LM class switch in acute inflammatory conditions.
Collapse
Affiliation(s)
- Maho Kanai
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Teppei Nishino
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Tsukuba Medical Center Hospital, Tsukuba, Japan
| | - Dhouha Daassi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akari Kimura
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Ching-Wei Liao
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Zeynab Javanfekr Shahri
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Arata Wakimoto
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Natalia Gogoleva
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Toshiaki Usui
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Naoki Morito
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Science, Yokohama, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan; and
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Laboratory Animal Resource Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
3
|
Ramos L. Dimorphic Regulation of the MafB Gene by Sex Steroids in Hamsters, Mesocricetus auratus. Animals (Basel) 2024; 14:1728. [PMID: 38929347 PMCID: PMC11200555 DOI: 10.3390/ani14121728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
MafB is a transcription factor that regulates macrophage differentiation. Macrophages are a traditional feature of the hamster Harderian gland (HG); however, studies pertaining to MafB expression in the HG are scant. Here, the full-length cDNA of the MafB gene in hamsters was cloned and sequenced. Molecular characterization revealed that MafB encodes a protein containing 323 amino acids with a DNA-binding domain, a transactivation domain, and a leucine zipper domain. qPCR assays indicated that MafB was expressed in different tissues of both sexes. The highest relative expression levels in endocrine tissues were identified in the pancreas. Gonadectomy in male hamsters was associated with significantly higher mRNA levels in the HG; replacement with dihydrotestosterone restored mRNA expression. The HG in male hamsters contained twofold more MafB mRNA than the HG of female hamsters. Adrenals revealed similar mRNA relative expression levels during the estrous cycle. The estrous phase was associated with higher mRNA levels in the ovary. A significantly up-regulated expression and sexual dimorphism of MafB was found in the pancreas. Therefore, MafB in the HG may play an active role in the macrophage differentiation required for phagocytosis activity and intraocular repair. Additionally, sex steroids appear to strongly influence the MafB expression in the HG and pancreas. These studies highlight the probable biological importance of MafB in immunological defense and pancreatic β cell regulation.
Collapse
Affiliation(s)
- Luis Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City 14080, Mexico
| |
Collapse
|
4
|
Sadaki S, Fujita R, Hayashi T, Nakamura A, Okamura Y, Fuseya S, Hamada M, Warabi E, Kuno A, Ishii A, Muratani M, Okada R, Shiba D, Kudo T, Takeda S, Takahashi S. Large Maf transcription factor family is a major regulator of fast type IIb myofiber determination. Cell Rep 2023; 42:112289. [PMID: 36952339 DOI: 10.1016/j.celrep.2023.112289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Myofibers are broadly characterized as fatigue-resistant slow-twitch (type I) fibers and rapidly fatiguing fast-twitch (type IIa/IIx/IIb) fibers. However, the molecular regulation of myofiber type is not entirely understood; particularly, information on regulators of fast-twitch muscle is scarce. Here, we demonstrate that the large Maf transcription factor family dictates fast type IIb myofiber specification in mice. Remarkably, the ablation of three large Mafs leads to the drastic loss of type IIb myofibers, resulting in enhanced endurance capacity and the reduction of muscle force. Conversely, the overexpression of each large Maf in the type I soleus muscle induces type IIb myofibers. Mechanistically, a large Maf directly binds to the Maf recognition element on the promoter of myosin heavy chain 4, which encodes the type IIb myosin heavy chain, driving its expression. This work identifies the large Maf transcription factor family as a major regulator for fast type IIb muscle determination.
Collapse
Affiliation(s)
- Shunya Sadaki
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ryo Fujita
- Division of Regenerative Medicine, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| | - Takuto Hayashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Doctoral Program in Biomedical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Ayano Nakamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yui Okamura
- College of Medicine, School of Medicine and Health Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Sayaka Fuseya
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michito Hamada
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akihiro Kuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Akiko Ishii
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masafumi Muratani
- Department of Genome Biology, Transborder Medical Research Center, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Risa Okada
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Dai Shiba
- JEM Utilization Center, Human Spaceflight Technology Directorate, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki 305-8505, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Shin'ichi Takeda
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-higashi, Kodaira, Tokyo 187-8502, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
| |
Collapse
|
5
|
Deng Y, Lu L, Zhang H, Fu Y, Liu T, Chen Y. The role and regulation of Maf proteins in cancer. Biomark Res 2023; 11:17. [PMID: 36750911 PMCID: PMC9903618 DOI: 10.1186/s40364-023-00457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/22/2023] [Indexed: 02/09/2023] Open
Abstract
The Maf proteins (Mafs) belong to basic leucine zipper transcription factors and are members of the activator protein-1 (AP-1) superfamily. There are two subgroups of Mafs: large Mafs and small Mafs, which are involved in a wide range of biological processes, such as the cell cycle, proliferation, oxidative stress, and inflammation. Therefore, dysregulation of Mafs can affect cell fate and is closely associated with diverse diseases. Accumulating evidence has established both large and small Mafs as mediators of tumor development. In this review, we first briefly describe the structure and physiological functions of Mafs. Then we summarize the upstream regulatory mechanisms that control the expression and activity of Mafs. Furthermore, we discuss recent studies on the critical role of Mafs in cancer progression, including cancer proliferation, apoptosis, metastasis, tumor/stroma interaction and angiogenesis. We also review the clinical implications of Mafs, namely their potential possibilities and limitations as biomarkers and therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yalan Deng
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Liqing Lu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Huajun Zhang
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China ,grid.452223.00000 0004 1757 7615Department of Ultrasonic Imaging, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ying Fu
- grid.452223.00000 0004 1757 7615Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Ting Liu
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
6
|
Morito N, Usui T, Ishibashi S, Yamagata K. Podocyte-specific Transcription Factors: Could MafB Become a Therapeutic Target for Kidney Disease? Intern Med 2023; 62:11-19. [PMID: 35249929 PMCID: PMC9876710 DOI: 10.2169/internalmedicine.9336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increasing number of patients with chronic kidney disease (CKD) is being recognized as an emerging global health problem. Recently, it has become clear that injury and loss of glomerular visceral epithelial cells, known as podocytes, is a common early event in many forms of CKD. Podocytes are highly specialized epithelial cells that cover the outer layer of the glomerular basement membrane. They serve as the final barrier to urinary protein loss through the formation and maintenance of specialized foot-processes and an interposed slit-diaphragm. We previously reported that the transcription factor MafB regulates the podocyte slit diaphragm protein production and transcription factor Tcf21. We showed that the forced expression of MafB was able to prevent CKD. In this review, we discuss recent advances and offer an updated overview of the functions of podocyte-specific transcription factors in kidney biology, aiming to present new perspectives on the progression of CKD and respective therapeutic strategies.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shun Ishibashi
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
7
|
Moura Silva H, Kitoko JZ, Queiroz CP, Kroehling L, Matheis F, Yang KL, Reis BS, Ren-Fielding C, Littman DR, Bozza MT, Mucida D, Lafaille JJ. c-MAF-dependent perivascular macrophages regulate diet-induced metabolic syndrome. Sci Immunol 2021; 6:eabg7506. [PMID: 34597123 DOI: 10.1126/sciimmunol.abg7506] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Hernandez Moura Silva
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Jamil Zola Kitoko
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Camila Pereira Queiroz
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas. Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Lina Kroehling
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA
| | - Fanny Matheis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Katharine Lu Yang
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Bernardo S Reis
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | | | - Dan R Littman
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.,Howard Hughes Medical Institute, New York, NY 10016, USA
| | - Marcelo Torres Bozza
- Laboratório de Inflamação e Imunidade, Departamento de Imunologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Daniel Mucida
- Laboratory of Mucosal Immunology, Rockefeller University, New York, NY 10065, USA
| | - Juan J Lafaille
- Kimmel Center for Biology and Medicine at the Skirball Institute; New York University School of Medicine, New York, NY 10016, USA.,Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| |
Collapse
|
8
|
Hörberg J, Reymer A. Specifically bound BZIP transcription factors modulate DNA supercoiling transitions. Sci Rep 2020; 10:18795. [PMID: 33139763 PMCID: PMC7606469 DOI: 10.1038/s41598-020-75711-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/18/2020] [Indexed: 01/01/2023] Open
Abstract
Torsional stress on DNA, introduced by molecular motors, constitutes an important regulatory mechanism of transcriptional control. Torsional stress can modulate specific binding of transcription factors to DNA and introduce local conformational changes that facilitate the opening of promoters and nucleosome remodelling. Using all-atom microsecond scale molecular dynamics simulations together with a torsional restraint that controls the total twist of a DNA fragment, we address the impact of torsional stress on DNA complexation with a human BZIP transcription factor, MafB. We gradually over- and underwind DNA alone and in complex with MafB by 0.5° per dinucleotide step, starting from the relaxed state to a maximum of 5° per dinucleotide step, monitoring the evolution of the protein-DNA contacts at different degrees of torsional strain. Our computations show that MafB changes the DNA sequence-specific response to torsional stress. The dinucleotide steps that are susceptible to absorbing most of the torsional stress become more torsionally rigid, as they are involved in protein-DNA contacts. Also, the protein undergoes substantial conformational changes to follow the stress-induced DNA deformation, but mostly maintains the specific contacts with DNA. This results in a significant asymmetric increase of free energy of DNA twisting transitions, relative to free DNA, where overtwisting is more energetically unfavourable. Our data suggest that specifically bound BZIP factors could act as torsional stress insulators, modulating the propagation of torsional stress along the chromatin fibre, which might promote cooperative binding of collaborative DNA-binding factors.
Collapse
Affiliation(s)
- Johanna Hörberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden
| | - Anna Reymer
- Department of Chemistry and Molecular Biology, University of Gothenburg, 40530, Gothenburg, Sweden.
| |
Collapse
|
9
|
Abstract
The transcription factor MafB regulates macrophage differentiation. However, studies on
the phenotype of Mafb-deficient macrophages are still limited. Recently,
it was shown that the specific expression of MafB permits macrophages to be distinguished
from dendritic cells. In addition, MafB has been reported to be involved in various
diseases related to macrophages. Studies using macrophage-specific
Mafb-deficient mice show that MafB is linked to atherosclerosis,
autoimmunity, obesity, and ischemic stroke, all of which exhibit macrophage abnormality.
Therefore, MafB is hypothesized to be indispensable for the regulation of macrophages to
maintain systemic homeostasis and may serve as an innovative target for treating
macrophage-related diseases.
Collapse
Affiliation(s)
- Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Yuki Tsunakawa
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Hyojung Jeon
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Manoj Kumar Yadav
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan.,Laboratory Animal Resource Center (LARC), Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
10
|
Kikuchi K, Iida M, Ikeda N, Moriyama S, Hamada M, Takahashi S, Kitamura H, Watanabe T, Hasegawa Y, Hase K, Fukuhara T, Sato H, Kobayashi EH, Suzuki T, Yamamoto M, Tanaka M, Asano K. Macrophages Switch Their Phenotype by Regulating Maf Expression during Different Phases of Inflammation. THE JOURNAL OF IMMUNOLOGY 2018; 201:635-651. [PMID: 29907708 DOI: 10.4049/jimmunol.1800040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/14/2022]
Abstract
Macrophages manifest distinct phenotype according to the organs in which they reside. In addition, they flexibly switch their character in adaptation to the changing environment. However, the molecular basis that explains the conversion of the macrophage phenotype has so far been unexplored. We find that CD169+ macrophages change their phenotype by regulating the level of a transcription factor Maf both in vitro and in vivo in C57BL/6J mice. When CD169+ macrophages were exposed to bacterial components, they expressed an array of acute inflammatory response genes in Maf-dependent manner and simultaneously start to downregulate Maf. This Maf suppression is dependent on accelerated degradation through proteasome pathway and microRNA-mediated silencing. The downregulation of Maf unlocks the NF-E2-related factor 2-dominant, cytoprotective/antioxidative program in the same macrophages. The present study provides new insights into the previously unanswered question of how macrophages initiate proinflammatory responses while retaining their capacity to repair injured tissues during inflammation.
Collapse
Affiliation(s)
- Kenta Kikuchi
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Mayumi Iida
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Naoki Ikeda
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Shigetaka Moriyama
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroshi Kitamura
- Laboratory of Veterinary Physiology, Department of Veterinary Medicine, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Takashi Watanabe
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Yoshinori Hasegawa
- Department of Research and Development, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Koji Hase
- Division of Biochemistry, Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan
| | - Takeshi Fukuhara
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.,Laboratory of Oncology, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hideyo Sato
- Department of Medical Technology, Faculty of Medicine, Niigata University, Niigata 951-8518, Japan; and
| | - Eri H Kobayashi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takafumi Suzuki
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Masato Tanaka
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| | - Kenichi Asano
- Laboratory of Immune Regulation, The School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan;
| |
Collapse
|
11
|
MAFB is dispensable for the fetal testis morphogenesis and the maintenance of spermatogenesis in adult mice. PLoS One 2018; 13:e0190800. [PMID: 29324782 PMCID: PMC5764304 DOI: 10.1371/journal.pone.0190800] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 12/20/2017] [Indexed: 01/01/2023] Open
Abstract
The transcription factor MAFB is an important regulator of the development and differentiation of various organs and tissues. Previous studies have shown that MAFB is expressed in embryonic and adult mouse testes and is expected to act as the downstream target of retinoic acid (RA) to initiate spermatogenesis. However, its exact localization and function remain unclear. Here, we localized MAFB expression in embryonic and adult testes and analyzed its gene function using Mafb-deficient mice. We found that MAFB and c-MAF are the only large MAF transcription factors expressed in testes, while MAFA and NRL are not. MAFB was localized in Leydig and Sertoli cells at embryonic day (E) 18.5 but in Leydig cells, Sertoli cells, and pachytene spermatocytes in adults. Mafb-deficient testes at E18.5 showed fully formed seminiferous tubules with no abnormal structure or differences in testicular somatic cell numbers compared with those of control wild-type mice. Additionally, the expression levels of genes related to development and function of testicular cells were unchanged between genotypes. In adults, the expression of MAFB in Sertoli cells was shown to be stage specific and induced by RA. By generating Mafbfl/fl CAG-CreER™ (Mafb-cKO) mice, in which Cre recombinase was activated upon tamoxifen treatment, we found that the neonatal cKO mice died shortly upon Mafb deletion, but adult cKO mice were alive upon deletion. Adult cKO mice were fertile, and spermatogenesis maintenance was normal, as indicated by histological analysis, hormone levels, and germ cell stage-specific markers. Moreover, there were no differences in the proportion of seminiferous stages between cKO mice and controls. However, RNA-Seq analysis of cKO Sertoli cells revealed that the down-regulated genes were related to immune function and phagocytosis activity but not spermatogenesis. In conclusion, we found that MAFB is dispensable for fetal testis morphogenesis and spermatogenesis maintenance in adult mice, despite the significant gene expression in different cell types, but MAFB might be critical for phagocytosis activity of Sertoli cells.
Collapse
|
12
|
Li R, Wang Y, Cheng H, Liu G, Cheng T, Liu Y, Liu L. System modeling reveals the molecular mechanisms of HSC cell cycle alteration mediated by Maff and Egr3 under leukemia. BMC SYSTEMS BIOLOGY 2017; 11:91. [PMID: 28984203 PMCID: PMC5629552 DOI: 10.1186/s12918-017-0467-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND Molecular mechanisms of the functional alteration of hematopoietic stem cells (HSCs) in leukemic environment attract intensive research interests. As known in previous researches, Maff and Egr3 are two important genes having opposite functions on cell cycle; however, they are both highly expressed in HSCs under leukemia. Hence, exploring the molecular mechanisms of how the genes act on cell cycle will help revealing the functional alteration of HSCs. RESULTS We herein utilize the bioinformatic resources to computationally model the acting mechanisms of Maff and Egr3 on cell cycle. Using the data of functional experiments as reference, molecular acting mechanisms are optimally enumerated through model selection. The results are consolidated by evidences from gene sequence analysis, thus having enhanced the confidence of our pilot findings, which suggest that HSCs possibly undergo a "adaptation - suppression" process in response to the malignant environment of leukemia. CONCLUSION As a pilot research, our results may provide valuable insights for further experimental studies. Meanwhile, our research method combining computational modeling and data from functional experiments can be worthwhile for knowledge discovery; and it can be generalized and extended to other biological/biomedical studies.
Collapse
Affiliation(s)
- Rudong Li
- Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Yin Wang
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031 China
- Shanghai Center for Bioinformatics Technology, Shanghai, 201203 China
| | - Hui Cheng
- Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Gang Liu
- Shanghai Center for Bioinformatics Technology, Shanghai, 201203 China
| | - Tao Cheng
- Institute of Hematology, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300020 China
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202 USA
| | - Lei Liu
- Shanghai Public Health Clinical Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200031 China
- Shanghai Center for Bioinformatics Technology, Shanghai, 201203 China
| |
Collapse
|
13
|
Lu T, Sun X, Li Y, Chai Q, Wang XL, Lee HC. Role of Nrf2 Signaling in the Regulation of Vascular BK Channel β1 Subunit Expression and BK Channel Function in High-Fat Diet-Induced Diabetic Mice. Diabetes 2017; 66:2681-2690. [PMID: 28465407 PMCID: PMC5606315 DOI: 10.2337/db17-0181] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/17/2017] [Indexed: 01/13/2023]
Abstract
The large conductance Ca2+-activated K+ (BK) channel β1-subunit (BK-β1) is a key modulator of BK channel electrophysiology and the downregulation of BK-β1 protein expression in vascular smooth muscle cells (SMCs) underlies diabetic vascular dysfunction. In this study, we hypothesized that the nuclear factor erythroid-2-related factor 2 (Nrf2) signaling pathway plays a significant role in the regulation of coronary BK channel function and vasodilation in high-fat diet (HFD)-induced obese/diabetic mice. We found that the protein expressions of BK-β1 and Nrf2 were markedly downregulated, whereas those of the nuclear factor-κB (NF-κB) and the muscle ring finger protein 1 (MuRF1 [a ubiquitin E3 ligase for BK-β1]) were significantly upregulated in HFD mouse arteries. Adenoviral expression of Nrf2 suppressed the protein expressions of NF-κB and MuRF1 but enhanced BK-β1 mRNA and protein expressions in cultured coronary SMCs. Knockdown of Nrf2 resulted in reciprocal changes of these proteins. Patch-clamp studies showed that coronary BK-β1-mediated channel activation was diminished in HFD mice. Importantly, the activation of Nrf2 by dimethyl fumarate significantly reduced the body weight and blood glucose levels of HFD mice, enhanced BK-β1 transcription, and attenuated MuRF1-dependent BK-β1 protein degradation, which in turn restored coronary BK channel function and BK channel-mediated coronary vasodilation in HFD mice. Hence, Nrf2 is a novel regulator of BK channel function with therapeutic implications in diabetic vasculopathy.
Collapse
Affiliation(s)
- Tong Lu
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Xiaojing Sun
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Yong Li
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
- Department of Cardiology, The Affiliated Wujin Hospital of Jiangsu University, Changzhou, Jiangsu, People's Republic of China
| | - Qiang Chai
- Department of Physiology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China
| | - Xiao-Li Wang
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| | - Hon-Chi Lee
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN
| |
Collapse
|
14
|
c-Maf regulates pluripotency genes, proliferation/self-renewal, and lineage commitment in ROS-mediated senescence of human mesenchymal stem cells. Oncotarget 2016; 6:35404-18. [PMID: 26496036 PMCID: PMC4742114 DOI: 10.18632/oncotarget.6178] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/06/2015] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are therapeutically relevant multilineage and immunomodulatory progenitors. Ex vivo expansion of these rare cells is necessary for clinical application and can result in detrimental senescent effects, with mechanisms still largely unknown. We found that vigorous ex vivo expansion of human adipose tissue-derived MSCs (hAMSCs) results in proliferative decline, cell cycle arrest, and altered differentiation capacity. This senescent phenotype was associated with reactive oxygen species (ROS) accumulation, and with increased expression of G1 cell -cycle inhibitors— p15INK4b and p16INK4a — but decreased expression of pluripotency genes—Oct-4, Sox-2, Nanog, and c-Myc—as well as c-Maf a co-factor of MSC lineage-specific transcription factor and sensitive to oxidative stress. These global changes in the transcriptional and functional programs of proliferation, differentiation, and self-renewal were all mediated by ROS-induced suppression of c-Maf, as evidenced by binding of c-Maf to promoter regions of multiple relevant genes in hAMSCs which could be reduced by exogenous ROS. Our findings implicate the strong effects of ROS on multiple stem cell functions with a central role for c-Maf in stem cell senescence.
Collapse
|
15
|
Abstract
Terminal erythroid differentiation occurs in the bone marrow, within specialized niches termed erythroblastic islands. These functional units consist of a macrophage surrounded by differentiating erythroblasts and have been described more than five decades ago, but their function in the pathophysiology of erythropoiesis has remained unclear until recently. Here we propose that the central macrophage in the erythroblastic island contributes to the pathophysiology of anemia of inflammation. After introducing erythropoiesis and the interactions between the erythroblasts and the central macrophage within the erythroblastic islands, we will discuss the immunophenotypic characterization of this specific subpopulation of macrophages. We will then integrate these concepts into the currently known pathophysiological drivers of anemia of inflammation and address the role of the central macrophage in this disorder. Finally, as a means of furthering our understanding of the various concepts, we will discuss the differences between murine and rat models with regard to developmental and stress erythropoiesis in an attempt to define a model system representative of human pathophysiology.
Collapse
|
16
|
Luo Q, Wu C, Sun S, Lu F, Xie L, Zhao H, Zhong X, Zhou Q. The spatial-temporal expression and functional divergence of bach homologs in zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2016; 88:1584-1597. [PMID: 26992035 DOI: 10.1111/jfb.12931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 01/21/2016] [Indexed: 06/05/2023]
Abstract
The spatial-temporal expressions of bach1a, bach1b, bach2a and bach2b in early development of zebrafish Danio rerio embryos were examined in the present study by whole mount in situ hybridization. Transcripts of all genes were found at the one cell stage, suggesting that these four genes are maternally inherited. From the phylogenetic analyses, Bach1a and Bach1b from fishes form a well-supported group with two sub-groups. Bach2a and Bach2b, however, did not fall into one clade, suggesting that Bach2 proteins diverged faster or earlier than Bach1 proteins in fishes. The differentially regulated expression of the exocrine zymogen (such as the trypsin-like gene, tryl) of both paralogs of bach1 and bach2, respectively, showed that their functions are still active and already divergent, coinciding with subfunction partitioning.
Collapse
Affiliation(s)
- Q Luo
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - C Wu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - S Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - F Lu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - L Xie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - H Zhao
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - X Zhong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| | - Q Zhou
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
17
|
Zhang C, Guo Z. Multiple functions of Maf in the regulation of cellular development and differentiation. Diabetes Metab Res Rev 2015; 31:773-8. [PMID: 26122665 PMCID: PMC5042042 DOI: 10.1002/dmrr.2676] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/29/2015] [Accepted: 06/24/2015] [Indexed: 11/08/2022]
Abstract
Cellular muscular aponeurotic fibrosarcoma (c-Maf) is a member of the large macrophage-activating factor family. C-Maf plays important roles in the morphogenetic processes and cellular differentiation of the lens, kidneys, liver, T cells and nervous system, and it is particularly important in pancreatic islet and erythroblastic island formation. However, the exact role of c-Maf remains to be elucidated. In this review, we summarize the research to clarify the functions of c-Maf in the cellular development and differentiation. The expression of c-Maf is higher in pancreatic duct cells than in pancreatic islet cells. Therefore, we suggest that pancreatic duct cells may be converted to the functional insulin-secreting cells by regulating c-Maf.
Collapse
Affiliation(s)
- Chuan Zhang
- Department of Endocrinology and MetabolismThe Second Hospital of Jilin UniversityChangchunChina
| | - Zhi‐Min Guo
- Department of Experimental MicrobiologyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
18
|
Differential effect of cataract-associated mutations in MAF on transactivation of MAF target genes. Mol Cell Biochem 2014; 396:137-45. [DOI: 10.1007/s11010-014-2150-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/11/2014] [Indexed: 12/29/2022]
|
19
|
Gemelli C, Zanocco Marani T, Bicciato S, Mazza EMC, Boraschi D, Salsi V, Zappavigna V, Parenti S, Selmi T, Tagliafico E, Ferrari S, Grande A. MafB is a downstream target of the IL-10/STAT3 signaling pathway, involved in the regulation of macrophage de-activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:955-64. [PMID: 24472656 DOI: 10.1016/j.bbamcr.2014.01.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/16/2014] [Accepted: 01/21/2014] [Indexed: 01/08/2023]
Abstract
In spite of the numerous reports implicating MafB transcription factor in the molecular control of monocyte-macrophage differentiation, the precise genetic program underlying this activity has been, to date, poorly understood. To clarify this issue, we planned a number of experiments that were mainly conducted on human primary macrophages. In this regard, a preliminary gene function study, based on MafB inactivation and over-expression, indicated MMP9 and IL-7R genes as possible targets of the investigated transcription factor. Bioinformatics analysis of their promoter regions disclosed the presence of several putative MARE elements and a combined approach of EMSA and luciferase assay subsequently demonstrated that expression of both genes is indeed activated by MafB through a direct transcription mechanism. Additional investigation, performed with similar procedures to elucidate the biological relevance of our observation, revealed that MafB is a downstream target of the IL-10/STAT3 signaling pathway, normally inducing the macrophage de-activation process. Taken together our data support the existence of a signaling cascade by which stimulation of macrophages with the IL-10 cytokine determines a sequential activation of STAT3 and MafB transcription factors, in turn leading to an up-regulated expression of MMP9 and IL-7R genes.
Collapse
Affiliation(s)
- Claudia Gemelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | - Tommaso Zanocco Marani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Silvio Bicciato
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Emilia M C Mazza
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Diana Boraschi
- Immunobiology Unit, Institute of Biomedical Technologies, CNR, Pisa, Italy
| | - Valentina Salsi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Vincenzo Zappavigna
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Sandra Parenti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Tommaso Selmi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Enrico Tagliafico
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Sergio Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Alexis Grande
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
20
|
Lu X, Guanga GP, Wan C, Rose RB. A novel DNA binding mechanism for maf basic region-leucine zipper factors inferred from a MafA-DNA complex structure and binding specificities. Biochemistry 2012; 51:9706-17. [PMID: 23148532 DOI: 10.1021/bi301248j] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
MafA is a proto-oncoprotein and is critical for insulin gene expression in pancreatic β-cells. Maf proteins belong to the AP1 superfamily of basic region-leucine zipper (bZIP) transcription factors. Residues in the basic helix and an ancillary N-terminal domain, the Extended Homology Region (EHR), endow maf proteins with unique DNA binding properties: binding a 13 bp consensus site consisting of a core AP1 site (TGACTCA) flanked by TGC sequences and binding DNA stably as monomers. To further characterize maf DNA binding, we determined the structure of a MafA-DNA complex. MafA forms base-specific hydrogen bonds with the flanking G(-5)C(-4) and central C(0)/G(0) bases, but not with the core-TGA bases. However, in vitro binding studies utilizing a pulse-chase electrophoretic mobility shift assay protocol revealed that mutating either the core-TGA or flanking-TGC bases dramatically increases the binding off rate. Comparing the known maf structures, we propose that DNA binding specificity results from positioning the basic helix through unique phosphate contacts. The EHR does not contact DNA directly but stabilizes DNA binding by contacting the basic helix. Collectively, these results suggest a novel multistep DNA binding process involving a conformational change from contacting the core-TGA to contacting the flanking-TGC bases.
Collapse
Affiliation(s)
- Xun Lu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
21
|
Zhang Y, Chen Q, Ross AC. Retinoic acid and tumor necrosis factor-α induced monocytic cell gene expression is regulated in part by induction of transcription factor MafB. Exp Cell Res 2012; 318:2407-16. [PMID: 22820162 DOI: 10.1016/j.yexcr.2012.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/24/2022]
Abstract
All-trans-retinoic acid (RA), the major active metabolite of vitamin A, is a regulator of gene expression with many roles in cell differentiation. In the present study, we investigated RA in the regulation of MafB, a basic leucine-zipper transcription factor with broad roles in embryonic development, hematopoiesis and monocyte-macrophage differentiation. In RA-treated THP-1 human monocytic cells, MafB mRNA and protein levels were up-regulated by RA dose and time-dependently, while, additionally, RA and tumor necrosis factor (TNF)α, also known to induce monocyte to macrophage differentiation, increased MafB expression synergistically. Screening of potential targets containing Maf recognition elements (MARE motifs) in their promoter regions identified SPOCK1, Blimp1 and CCL2 as potential targets; these genes are related to cell communication, recruitment and differentiation, respectively. Across cell treatments, SPOCK1, Blimp1 and CCL2 mRNA levels were highly correlated (P<0.001) with MafB. ChIP assays demonstrated increased MafB protein binding to MARE elements in the promoter regions of SPOCK1, Blimp1 and CCL2 in RA and TNFα-treated cells, as well as acetylation of histone-H4 in MARE-containing regions, indicative of chromatin activation. Conversely, reducing MafB protein by microRNA silencing significantly decreased the expression of SPOCK1, Blimp1 and CCL2 (P<0.01). Moreover, the reduction in MafB expression and these downstream targets correlated with decreased cell differentiation as determined by cell-surface CD11b expression and phagocytic activity. We conclude that MafB may be a key factor in mediating the ability of RA and TNFα to regulate monocytic cell communication, recruitment and differentiation through regulation of MafB target genes including SPOCK1, CCL2 and Blimp1.
Collapse
Affiliation(s)
- Y Zhang
- The Pennsylvania State University, Department of Nutritional Sciences, 110 Chandlee Laboratory, University Park, PA 16802, United States
| | | | | |
Collapse
|
22
|
Ishibashi S, Love NR, Amaya E. A simple method of transgenesis using I-SceI meganuclease in Xenopus. Methods Mol Biol 2012; 917:205-218. [PMID: 22956090 DOI: 10.1007/978-1-61779-992-1_12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Here we present a protocol for generating transgenic embryos in Xenopus using I-SceI meganuclease. This method relies on integration of DNA constructs, containing one or two I-SceI meganuclease sites. It is a simpler method than the REMI method of transgenesis, and it is ideally suited for generating transgenic lines in Xenopus laevis and Xenopus tropicalis. In addition to it being simpler than the REMI method, this protocol also results in single copy integration events rather than tandem concatemers. Although the protocol we describe is for X. tropicalis, the method can also be used to generate transgenic lines in X. laevis. We also describe a convenient method for designing and generating complex constructs for transgenesis, named pTransgenesis, based on the Multisite Gateway(®) cloning, which include I-SceI sites and Tol2 elements to facilitate genome integration.
Collapse
Affiliation(s)
- Shoko Ishibashi
- The Healing Foundation Centre, The Faculty of Life Sciences, University of Manchester, Manchester, England, UK
| | | | | |
Collapse
|
23
|
Morita M, Nakamura M, Hamada M, Takahashi S. Combinatorial motif analysis of regulatory gene expression in Mafb deficient macrophages. BMC SYSTEMS BIOLOGY 2011; 5 Suppl 2:S7. [PMID: 22784578 PMCID: PMC3287487 DOI: 10.1186/1752-0509-5-s2-s7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background Deficiency of the transcription factor MafB, which is normally expressed in macrophages, can underlie cellular dysfunction associated with a range of autoimmune diseases and arteriosclerosis. MafB has important roles in cell differentiation and regulation of target gene expression; however, the mechanisms of this regulation and the identities of other transcription factors with which MafB interacts remain uncertain. Bioinformatics methods provide a valuable approach for elucidating the nature of these interactions with transcriptional regulatory elements from a large number of DNA sequences. In particular, identification of patterns of co-occurrence of regulatory cis-elements (motifs) offers a robust approach. Results Here, the directional relationships among several functional motifs were evaluated using the Log-linear Graphical Model (LGM) after extraction and search for evolutionarily conserved motifs. This analysis highlighted GATA-1 motifs and 5’AT-rich half Maf recognition elements (MAREs) in promoter regions of 18 genes that were down-regulated in Mafb deficient macrophages. GATA-1 motifs and MafB motifs could regulate expression of these genes in both a negative and positive manner, respectively. The validity of this conclusion was tested with data from a luciferase assay that used a C1qa promoter construct carrying both the GATA-1 motifs and MAREs. GATA-1 was found to inhibit the activity of the C1qa promoter with the GATA-1 motifs and MafB motifs. Conclusions These observations suggest that both the GATA-1 motifs and MafB motifs are important for lineage specific expression of C1qa. In addition, these findings show that analysis of combinations of evolutionarily conserved motifs can be successfully used to identify patterns of gene regulation.
Collapse
Affiliation(s)
- Mariko Morita
- Department of Anatomy and Embryology, Institute of Basic Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, 305-8575, Ibaraki, Japan.
| | | | | | | |
Collapse
|
24
|
Hang Y, Stein R. MafA and MafB activity in pancreatic β cells. Trends Endocrinol Metab 2011; 22:364-73. [PMID: 21719305 PMCID: PMC3189696 DOI: 10.1016/j.tem.2011.05.003] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/03/2011] [Accepted: 05/18/2011] [Indexed: 12/11/2022]
Abstract
Analyses in mouse models have revealed crucial roles for MafA (musculoaponeurotic fibrosarcoma oncogene family A) and MafB in islet β cells, with MafB being required during development and MafA in adults. These two closely related transcription factors regulate many genes essential for glucose sensing and insulin secretion in a cooperative and sequential manner. Significantly, the switch from MafB to MafA expression also appears to be vital for functional maturation of β cells produced by human embryonic stem (hES) cell differentiation. This review summarizes the discovery, distribution, and function of MafA and MafB in rodent pancreatic β cells, and describes some key questions regarding their importance to β cells.
Collapse
Affiliation(s)
| | - Roland Stein
- Correspondence: 723 Light Hall, 2215 Garland Ave Nashville, TN 37232 Phone: 615-322-7026 Facsimile: 615-322-7236
| |
Collapse
|
25
|
c-Maf plays a crucial role for the definitive erythropoiesis that accompanies erythroblastic island formation in the fetal liver. Blood 2011; 118:1374-85. [PMID: 21628412 DOI: 10.1182/blood-2010-08-300400] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
c-Maf is one of the large Maf (musculoaponeurotic fibrosarcoma) transcription factors that belong to the activated protein-1 super family of basic leucine zipper proteins. Despite its overexpression in hematologic malignancies, the physiologic roles c-Maf plays in normal hematopoiesis have been largely unexplored. On a C57BL/6J background, c-Maf(-/-) embryos succumbed from severe erythropenia between embryonic day (E) 15 and E18. Flow cytometric analysis of fetal liver cells showed that the mature erythroid compartments were significantly reduced in c-Maf(-/-) embryos compared with c-Maf(+/+) littermates. Interestingly, the CFU assay indicated there was no significant difference between c-Maf(+/+) and c-Maf(-/-) fetal liver cells in erythroid colony counts. This result indicated that impaired definitive erythropoiesis in c-Maf(-/-) embryos is because of a non-cell-autonomous effect, suggesting a defective erythropoietic microenvironment in the fetal liver. As expected, the number of erythroblasts surrounding the macrophages in erythroblastic islands was significantly reduced in c-Maf(-/-) embryos. Moreover, decreased expression of VCAM-1 was observed in c-Maf(-/-) fetal liver macrophages. In conclusion, these results strongly suggest that c-Maf is crucial for definitive erythropoiesis in fetal liver, playing an important role in macrophages that constitute erythroblastic islands.
Collapse
|
26
|
Abstract
Chondrocyte differentiation in the growth plate is an important process for the longitudinal growth of endochondral bones. Sox9 and Runx2 are the most often-studied transcriptional regulators of the chondrocyte differentiation process, but the importance of additional factors is also becoming apparent. Mafs are a subfamily of the basic ZIP (bZIP) transcription factor superfamily, which act as key regulators of tissue-specific gene expression and terminal differentiation in many tissues. There is increasing evidence that c-Maf and its splicing variant Lc-Maf play a role in chondrocyte differentiation in a temporal-spatial manner. This review summarizes the functions of c-Maf in chondrocyte differentiation and discusses the possible role of c-Maf in osteoarthritis progression.
Collapse
Affiliation(s)
| | | | - Dominik R. Haudenschild
- Dominik R. Haudenschild, Department of Orthopaedic Surgery, Division of Orthopaedic Research, University of California Davis Medical Center, 4635 Second Street, Sacramento, CA 95817, USA
| |
Collapse
|
27
|
Lambard S, Reichman S, Berlinicke C, Niepon ML, Goureau O, Sahel JA, Léveillard T, Zack DJ. Expression of rod-derived cone viability factor: dual role of CRX in regulating promoter activity and cell-type specificity. PLoS One 2010; 5:e13075. [PMID: 20949100 PMCID: PMC2951342 DOI: 10.1371/journal.pone.0013075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/06/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND RdCVF and RdCVF2, encoded by the nucleoredoxin-like genes NXNL1 and NXNL2, are trophic factors with therapeutic potential that are involved in cone photoreceptor survival. Studying how their expression is regulated in the retina has implications for understanding both their activity and the mechanisms determining cell-type specificity within the retina. METHODOLOGY/PRINCIPAL FINDINGS In order to define and characterize their promoters, a series of luciferase/GFP reporter constructs that contain various fragments of the 5'-upstream region of each gene, both murine and human, were tested in photoreceptor-like and non-photoreceptor cell lines and also in a biologically more relevant mouse retinal explant system. For NXNL1, 5'-deletion analysis identified the human -205/+57 bp and murine -351/+51 bp regions as having promoter activity. Moreover, in the retinal explants these constructs drove expression specifically to photoreceptor cells. For NXNL2, the human -393/+27 bp and murine -195/+70 bp regions were found to be sufficient for promoter activity. However, despite the fact that endogenous NXNL2 expression is photoreceptor-specific within the retina, neither of these DNA sequences nor larger upstream regions demonstrated photoreceptor-specific expression. Further analysis showed that a 79 bp NXNL2 positive regulatory sequence (-393 to 315 bp) combined with a 134 bp inactive minimal NXNL1 promoter fragment (-77 to +57 bp) was able to drive photoreceptor-specific expression, suggesting that the minimal NXNL1 fragment contains latent elements that encode cell-type specificity. Finally, based on bioinformatic analysis that suggested the importance of a CRX binding site within the minimal NXNL1 fragment, we found by mutation analysis that, depending on the context, the CRX site can play a dual role. CONCLUSIONS/SIGNIFICANCE The regulation of the Nucleoredoxin-like genes involves a CRX responsive element that can act as both as a positive regulator of promoter activity and as a modulator of cell-type specificity.
Collapse
Affiliation(s)
- Sophie Lambard
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Sacha Reichman
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Cynthia Berlinicke
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Marie-Laure Niepon
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Olivier Goureau
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - José-Alain Sahel
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Thierry Léveillard
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
| | - Donald J. Zack
- Department of Genetics, INSERM, U968, Paris, France
- INSERM UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris, France
- CNRS, UMR_7210, Paris, France
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Department of Neuroscience, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
28
|
Identification of the quorum-sensing target DNA sequence and N-Acyl homoserine lactone responsiveness of the Brucella abortus virB promoter. J Bacteriol 2010; 192:3434-40. [PMID: 20400542 DOI: 10.1128/jb.00232-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VjbR is a LuxR-type quorum-sensing (QS) regulator that plays an essential role in the virulence of the intracellular facultative pathogen Brucella, the causative agent of brucellosis. It was previously described that VjbR regulates a diverse group of genes, including the virB operon. The latter codes for a type IV secretion system (T4SS) that is central for the pathogenesis of Brucella. Although the regulatory role of VjbR on the virB promoter (P(virB)) was extensively studied by different groups, the VjbR-binding site had not been identified so far. Here, we identified the target DNA sequence of VjbR in P(virB) by DNase I footprinting analyses. Surprisingly, we observed that VjbR specifically recognizes a sequence that is identical to a half-binding site of the QS-related regulator MrtR of Mesorhizobium tianshanense. As shown by DNase I footprinting and electrophoretic mobility shift assays, generation of a palindromic MrtR-like-binding site in P(virB) increased both the affinity and the stability of the VjbR-DNA complex, which confirmed that the QS regulator of Brucella is highly related to that of M. tianshanense. The addition of N-dodecanoyl homoserine lactone dissociated VjbR from the promoter, which confirmed previous reports that indicated a negative effect of this signal on the VjbR-mediated activation of P(virB). Our results provide new molecular evidence for the structure of the virB promoter and reveal unusual features of the QS target DNA sequence of the main regulator of virulence in Brucella.
Collapse
|
29
|
Nakamura M, Hamada M, Hasegawa K, Kusakabe M, Suzuki H, Greaves DR, Moriguchi T, Kudo T, Takahashi S. c-Maf is essential for the F4/80 expression in macrophages in vivo. Gene 2009; 445:66-72. [DOI: 10.1016/j.gene.2009.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
|
30
|
Abstract
Cells exposed to oxidative stress or electrophilic xenobiotics respond by transcriptionally up-regulating a battery of genes that contain a cis-acting element in their promoter region known as the antioxidant/electrophile response element (ARE). Mutational analysis of the promoter regions of ARE-containing genes led to the creation of two different models for the ARE; a core ARE (cARE: RTGACnnnGC) and an extended ARE (eARE: TMAnnRTGAYnnnGCAwwww). Using bioinformatic software we have aligned the promoter regions of several ARE-containing genes to produce two position-specific probability matrices that independently describe the cARE and eARE. These matrices can also be used to quantitatively assess putative AREs.
Collapse
Affiliation(s)
- Donald E Nerland
- Department of Pharmacology & Toxicology, Health Sciences Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
31
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
32
|
Vanhoose AM, Samaras S, Artner I, Henderson E, Hang Y, Stein R. MafA and MafB regulate Pdx1 transcription through the Area II control region in pancreatic beta cells. J Biol Chem 2008; 283:22612-9. [PMID: 18522939 PMCID: PMC2504898 DOI: 10.1074/jbc.m802902200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreatic-duodenal homeobox factor-1 (Pdx1) is highly enriched in islet β cells and integral to proper cell development and adult function. Of the four conserved 5′-flanking sequence blocks that contribute to transcription in vivo, Area II (mouse base pairs -2153/-1923) represents the only mammalian specific control domain. Here we demonstrate that regulation of β-cell-enriched Pdx1 expression by the MafA and MafB transcription factors is exclusively through Area II. Thus, these factors were found to specifically activate through Area II in cell line transfection-based assays, and MafA, which is uniquely expressed in adult islet β cells was only bound to this region in quantitative chromatin immunoprecipitation studies. MafA and MafB are produced in β cells during development and were both bound to Area II at embryonic day 18.5. Expression of a transgene driven by Pdx1 Areas I and II was also severely compromised during insulin+ cell formation in MafB-/- mice, consistent with the importance of this large Maf in β-cell production and Pdx1 expression. These findings illustrate the significance of large Maf proteins to Pdx1 expression in β cells, and in particular MafB during pancreatic development.
Collapse
Affiliation(s)
- Amanda M Vanhoose
- Department of Molecular Physiology and Biophysics, Vanderbilt Medical School, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Insulin is a critical hormone in the regulation of blood glucose levels. It is produced exclusively by pancreatic islet beta-cells. beta-cell-enriched transcription factors, such as Pdx1 and Beta2, have dual roles in the activation of the insulin gene promoter establishing beta-cell-specific insulin expression, and in the regulation of beta-cell differentiation. It was shown that MafA, a beta-cell-specific member of the Maf family of transcription factors, binds to the conserved C1/RIPE3b element of the insulin promoter. The Maf family proteins regulate tissue-specific gene expression and cell differentiation in a wide variety of tissues. MafA acts synergistically with Pdx1 and Beta2 to activate the insulin gene promoter, and mice with a targeted deletion of mafA develop age-dependent diabetes. MafA also regulates genes involved in beta-cell function such as Glucose transporter 2, Glucagons-like peptide 1 receptor, and Prohormone convertase 1/3. The abundance of MafA in beta-cells is regulated at both the transcriptional and post-translational levels by glucose and oxidative stress. This review summarizes recent progress in determining the functions and roles of MafA in the regulation of insulin gene transcription in beta-cells.
Collapse
Affiliation(s)
- Shinsaku Aramata
- Graduate School of Biological Science, Nara Institute of Science and Technology, Nara Japan
| | | | | |
Collapse
|
34
|
Mahoney KMM, Petrovic N, Schacke W, Shapiro LH. CD13/APN transcription is regulated by the proto-oncogene c-Maf via an atypical response element. Gene 2007; 403:178-87. [PMID: 17897790 PMCID: PMC2045687 DOI: 10.1016/j.gene.2007.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 06/21/2007] [Accepted: 08/10/2007] [Indexed: 12/13/2022]
Abstract
Angiogenic growth factors induce the transcription of the cell surface peptidase CD13/APN in activated endothelial cells of the tumor vasculature. Inhibition of CD13/APN abrogates endothelial invasion and morphogenesis in vitro and tumor growth in vivo suggesting a critical functional role for CD13 in angiogenesis. Experiments to identify the transcription factors responsible for this regulation demonstrated that exogenous expression of the proto-oncogene c-Maf, but not other bZip family members tested, potently activates transcription from a critical regulatory region of the CD13 proximal promoter between -115 and -70 bp which is highly conserved among mammalian species. Using promoter mutation, EMSA and ChIP analyses we established that both endogenous and recombinant c-Maf directly interact with an atypical Maf response element contained within this active promoter region via its basic DNA/leucine zipper domain. However full activity of c-Maf requires the amino-terminal transactivation domain, and site-directed mutation of putative phosphorylation sites within the transactivation domain (serines 15 and 70) shows that these sites behave in a dramatic cell type-specific manner. Therefore, this atypical response element predicts a broader range of c-Maf target genes than previously appreciated and thus impacts its regulation of multiple myeloma as well as endothelial cell function and angiogenesis.
Collapse
Affiliation(s)
| | | | | | - Linda H. Shapiro
- Address for Correspondence: Linda H. Shapiro, Center for Vascular Biology MC3501, Department of Cell Biology, University of Connecticut Health Center for Vascular Biology, 263 Farmington Ave, Farmington, CT 06030-3501,
| |
Collapse
|
35
|
Monteiro P, Gilot D, Le Ferrec E, Lecureur V, N'diaye M, Le Vee M, Podechard N, Pouponnot C, Fardel O. AhR- and c-maf-dependent induction of beta7-integrin expression in human macrophages in response to environmental polycyclic aromatic hydrocarbons. Biochem Biophys Res Commun 2007; 358:442-8. [PMID: 17490615 DOI: 10.1016/j.bbrc.2007.04.111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 04/19/2007] [Indexed: 11/29/2022]
Abstract
In order to identify molecular targets of environmental polycyclic aromatic hydrocarbons (PAHs), we have analysed regulation of integrin (ITG) expression in PAH-exposed human macrophages. Among ITG subunits, beta7 ITG was found to be markedly up-regulated at both mRNA and protein levels in response to the prototypical PAH benzo(a)pyrene (BP). Knock-down of the transcription factor c-maf, known to control beta7 ITG expression, markedly impaired BP-mediated beta7 ITG induction. Moreover, chromatin immunoprecipitation and electrophoretic mobility shift assays showed BP-triggered binding of c-maf to a specific maf-responsive element found in beta7 ITG promoter. Such a binding, and also beta7 ITG induction, were however abolished in response to chemical inhibition of the aryl hydrocarbon receptor (AhR), to which PAHs bind. Taken together, these data establish beta7 ITG as a new molecular target of PAHs, whose up-regulation by these environmental contaminants most likely requires activation of co-operative pathways involving both AhR and c-maf.
Collapse
Affiliation(s)
- Patricia Monteiro
- UMR-INSERM U620, Equipe Toxicity of Polycyclic Aromatic Hydrocarbons, IFR140, Université de Rennes 1, Faculté des Sciences Pharmaceutiques et Biologiques, 2 Avenue du Professeur Léon Bernard, Rennes Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aziz A, Vanhille L, Mohideen P, Kelly LM, Otto C, Bakri Y, Mossadegh N, Sarrazin S, Sieweke MH. Development of macrophages with altered actin organization in the absence of MafB. Mol Cell Biol 2006; 26:6808-18. [PMID: 16943423 PMCID: PMC1592864 DOI: 10.1128/mcb.00245-06] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the hematopoietic system the bZip transcription factor MafB is selectively expressed at high levels in monocytes and macrophages and promotes macrophage differentiation in myeloid progenitors, whereas a dominant-negative allele can inhibit this process. To analyze the requirement of MafB for macrophage development, we generated MafB-deficient mice and, due to their neonatal lethal phenotype, analyzed macrophage differentiation in vitro, in the embryo, and in reconstituted mice. Surprisingly we observed in vitro differentiation of macrophages from E14.5 fetal liver (FL) cells and E18.5 splenocytes. Furthermore we found normal numbers of F4/80(+)/Mac-1(+) macrophages and monocytes in fetal liver, spleen, and blood as well as in bone marrow, spleen, and peritoneum of adult MafB(-/-) FL reconstituted mice. MafB(-/-) macrophages showed intact basic macrophage functions such as phagocytosis of latex beads or Listeria monocytogenes and nitric oxide production in response to lipopolysaccharide. By contrast, MafB(-/-) macrophages expressed increased levels of multiple genes involved in actin organization. Consistent with this, phalloidin staining revealed an altered morphology involving increased numbers of branched protrusions of MafB(-/-) macrophages in response to macrophage colony-stimulating factor. Together these data point to an unexpected redundancy of MafB function in macrophage differentiation and a previously unknown role in actin-dependent macrophage morphology.
Collapse
Affiliation(s)
- Athar Aziz
- Centre d'Immunologie de Marseille-Luminy, Campus de Luminy, Case 906, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Moriguchi T, Hamada M, Morito N, Terunuma T, Hasegawa K, Zhang C, Yokomizo T, Esaki R, Kuroda E, Yoh K, Kudo T, Nagata M, Greaves DR, Engel JD, Yamamoto M, Takahashi S. MafB is essential for renal development and F4/80 expression in macrophages. Mol Cell Biol 2006; 26:5715-27. [PMID: 16847325 PMCID: PMC1592773 DOI: 10.1128/mcb.00001-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MafB is a member of the large Maf family of transcription factors that share similar basic region/leucine zipper DNA binding motifs and N-terminal activation domains. Although it is well known that MafB is specifically expressed in glomerular epithelial cells (podocytes) and macrophages, characterization of the null mutant phenotype in these tissues has not been previously reported. To investigate suspected MafB functions in the kidney and in macrophages, we generated mafB/green fluorescent protein (GFP) knock-in null mutant mice. MafB homozygous mutants displayed renal dysgenesis with abnormal podocyte differentiation as well as tubular apoptosis. Interestingly, these kidney phenotypes were associated with diminished expression of several kidney disease-related genes. In hematopoietic cells, GFP fluorescence was observed in both Mac-1- and F4/80-expressing macrophages in the fetal liver. Interestingly, F4/80 expression in macrophages was suppressed in the homozygous mutant, although development of the Mac-1-positive macrophage population was unaffected. In primary cultures of fetal liver hematopoietic cells, MafB deficiency was found to dramatically suppress F4/80 expression in nonadherent macrophages, whereas the Mac-1-positive macrophage population developed normally. These results demonstrate that MafB is essential for podocyte differentiation, renal tubule survival, and F4/80 maturation in a distinct subpopulation of nonadherent mature macrophages.
Collapse
Affiliation(s)
- Takashi Moriguchi
- Institute of Basic Medical Sciences, Center for Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba 305-8575, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Fedorova AV, Chan IS, Shin JA. The GCN4 bZIP can bind to noncognate gene regulatory sequences. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1252-9. [PMID: 16784907 PMCID: PMC2600801 DOI: 10.1016/j.bbapap.2006.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Revised: 04/10/2006] [Accepted: 04/17/2006] [Indexed: 12/27/2022]
Abstract
We show that a minimalist basic region/leucine zipper (bZIP) hybrid, comprising the yeast GCN4 basic region and C/EBP leucine zipper, can target mammalian and other gene regulatory sequences naturally targeted by other bZIP and basic/helix-loop-helix (bHLH) proteins. We previously reported that this hybrid, wt bZIP, is capable of sequence-specific, high-affinity binding of DNA comparable to that of native GCN4 to the cognate AP-1 and CRE DNA sites. In this work, we used DNase I footprinting and electrophoretic mobility shift assay to show that wt bZIP can also specifically target noncognate gene regulatory sequences: C/EBP (CCAAT/enhancer binding protein, 5'-TTGCGCAA), XRE1 (Xenobiotic response element, 5'-TTGCGTGA), HRE (HIF response element, 5'-GCACGTAG), and the E-box (Enhancer box, 5'-CACGTG). Although wt bZIP still targets AP-1 with strongest affinity, both DNA-binding specificity and affinity are maintained with wt bZIP binding to noncognate gene regulatory sequences: the dissociation constant for wt bZIP in complex with AP-1 is 13 nM, while that for C/EBP is 120 nM, XRE1 240 nM, and E-box and HRE are in the microM range. These results demonstrate that the bZIP possesses the versatility to bind various sequences with varying affinities, illustrating the potential to fine-tune a designed protein's affinity for its DNA target. Thus, the bZIP scaffold may be a powerful tool in design of small, alpha-helical proteins with desired DNA recognition properties.
Collapse
Affiliation(s)
- Anna V. Fedorova
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - I-San Chan
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
| | - Jumi A. Shin
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada L5G 4T8
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Corresponding author. Tel.: +1 905 828 5355; fax: +1 905 828 5425. E-mail address: (J.A. Shin)
| |
Collapse
|