1
|
Michael Sabo T, Trent JO, Chaires JB, Monsen RC. Strategy for modeling higher-order G-quadruplex structures recalcitrant to NMR determination. Methods 2024; 230:9-20. [PMID: 39032720 DOI: 10.1016/j.ymeth.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024] Open
Abstract
Guanine-rich nucleic acids can form intramolecularly folded four-stranded structures known as G-quadruplexes (G4s). Traditionally, G4 research has focused on short, highly modified DNA or RNA sequences that form well-defined homogeneous compact structures. However, the existence of longer sequences with multiple G4 repeats, from proto-oncogene promoters to telomeres, suggests the potential for more complex higher-order structures with multiple G4 units that might offer selective drug-targeting sites for therapeutic development. These larger structures present significant challenges for structural characterization by traditional high-resolution methods like multi-dimensional NMR and X-ray crystallography due to their molecular complexity. To address this current challenge, we have developed an integrated structural biology (ISB) platform, combining experimental and computational methods to determine self-consistent molecular models of higher-order G4s (xG4s). Here we outline our ISB method using two recent examples from our lab, an extended c-Myc promoter and long human telomere G4 repeats, that highlights the utility and generality of our approach to characterizing biologically relevant xG4s.
Collapse
Affiliation(s)
- T Michael Sabo
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States
| | - Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
2
|
Zareie AR, Dabral P, Verma SC. G-Quadruplexes in the Regulation of Viral Gene Expressions and Their Impacts on Controlling Infection. Pathogens 2024; 13:60. [PMID: 38251367 PMCID: PMC10819198 DOI: 10.3390/pathogens13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures that play significant roles in regulating various biological processes, including replication, transcription, translation, and recombination. Recent studies have identified G4s in the genomes of several viruses, such as herpes viruses, hepatitis viruses, and human coronaviruses. These structures are implicated in regulating viral transcription, replication, and virion production, influencing viral infectivity and pathogenesis. G4-stabilizing ligands, like TMPyP4, PhenDC3, and BRACO19, show potential antiviral properties by targeting and stabilizing G4 structures, inhibiting essential viral life-cycle processes. This review delves into the existing literature on G4's involvement in viral regulation, emphasizing specific G4-stabilizing ligands. While progress has been made in understanding how these ligands regulate viruses, further research is needed to elucidate the mechanisms through which G4s impact viral processes. More research is necessary to develop G4-stabilizing ligands as novel antiviral agents. The increasing body of literature underscores the importance of G4s in viral biology and the development of innovative therapeutic strategies against viral infections. Despite some ligands' known regulatory effects on viruses, a deeper comprehension of the multifaceted impact of G4s on viral processes is essential. This review advocates for intensified research to unravel the intricate relationship between G4s and viral processes, paving the way for novel antiviral treatments.
Collapse
Affiliation(s)
| | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA; (A.R.Z.); (P.D.)
| |
Collapse
|
3
|
Fleming PJ, Correia JJ, Fleming KG. Revisiting macromolecular hydration with HullRadSAS. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:215-224. [PMID: 36602579 DOI: 10.1007/s00249-022-01627-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023]
Abstract
Hydration of biological macromolecules is important for their stability and function. Historically, attempts have been made to describe the degree of macromolecular hydration using a single parameter over a narrow range of values. Here, we describe a method to calculate two types of hydration: surface shell water and entrained water. A consideration of these two types of hydration helps to explain the "hydration problem" in hydrodynamics. The combination of these two types of hydration allows accurate calculation of hydrodynamic volume and related macromolecular properties such as sedimentation and diffusion coefficients, intrinsic viscosities, and the concentration-dependent non-ideality identified with sedimentation velocity experiments.
Collapse
Affiliation(s)
- Patrick J Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - John J Correia
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
4
|
Trizna L, Osif B, Víglaský V. G-QINDER Tool: Bioinformatically Predicted Formation of Different Four-Stranded DNA Motifs from (GT) n and (GA) n Repeats. Int J Mol Sci 2023; 24:ijms24087565. [PMID: 37108727 DOI: 10.3390/ijms24087565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
The recently introduced semi-orthogonal system of nucleic acid imaging offers a greatly improved method of identifying DNA sequences that are capable of adopting noncanonical structures. This paper uses our newly developed G-QINDER tool to identify specific repeat sequences that adopt unique structural motifs in DNA: TG and AG repeats. The structures were found to adopt a left-handed G-quadruplex form under extreme crowding conditions and a unique tetrahelical motif under certain other conditions. The tetrahelical structure likely consists of stacked AGAG-tetrads but, unlike G-quadruplexes, their stability does not appear to be dependent on the type of monovalent cation present. The occurrence of TG and AG repeats in genomes is not rare, and they are also found frequently in the regulatory regions of nucleic acids, so it is reasonable to assume that putative structural motifs, like other noncanonical forms, could play an important regulatory role in cells. This hypothesis is supported by the structural stability of the AGAG motif; its unfolding can occur even at physiological temperatures since the melting temperature is primarily dependent on the number of AG repeats in the sequence.
Collapse
Affiliation(s)
- Lukáš Trizna
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Branislav Osif
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| | - Viktor Víglaský
- Department of Biochemistry, Institute of Chemistry, Faculty of Sciences, Pavol Jozef Šafárik University, 04001 Košice, Slovakia
| |
Collapse
|
5
|
Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int J Mol Sci 2022; 23:ijms232416020. [PMID: 36555662 PMCID: PMC9786302 DOI: 10.3390/ijms232416020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.
Collapse
|
6
|
Monsen RC, Trent JO, Chaires JB. G-quadruplex DNA: A Longer Story. Acc Chem Res 2022; 55:3242-3252. [PMID: 36282946 DOI: 10.1021/acs.accounts.2c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
G-quadruplexes (G4s) are distinctive four-stranded DNA or RNA structures found within cells that are thought to play functional roles in gene regulation and transcription, translation, recombination, and DNA damage/repair. While G4 structures can be uni-, bi-, or tetramolecular with respect to strands, folded unimolecular conformations are most significant in vivo. Unimolecular G4 can potentially form in sequences with runs of guanines interspersed with what will become loops in the folded structure: 5'GxLyGxLyGxLyGx, where x is typically 2-4 and y is highly variable. Such sequences are highly conserved and specifically located in genomes. In the folded structure, guanines from each run combine to form planar tetrads with four hydrogen-bonded guanine bases; these tetrads stack on one another to produce four strand segments aligned in specific parallel or antiparallel orientations, connected by the loop sequences. Three types of loops (lateral, diagonal, or "propeller") have been identified. The stacked tetrads form a central cavity that features strong coordination sites for monovalent cations that stabilize the G4 structure, with potassium or sodium preferred. A single monomeric G4 typically forms from a sequence containing roughly 20-30 nucleotides. Such short sequences have been the primary focus of X-ray crystallographic or NMR studies that have produced high-resolution structures of a variety of monomeric G4 conformations. These structures are often used as the basis for drug design efforts to modulate G4 function.We believe that the focus on monomeric G4 structures formed by such short sequences is perhaps myopic. Such short sequences for structural studies are often arbitrarily selected and removed from their native genomic sequence context, and then are often changed from their native sequences by base substitutions or deletions intended to optimize the formation of a homogeneous G4 conformation. We believe instead that G-quadruplexes prefer company and that in a longer natural sequence context multiple adjacent G4 units can form to combine into more complex multimeric G4 structures with richer topographies than simple monomeric forms. Bioinformatic searches of the human genome show that longer sequences with the potential for forming multiple G4 units are common. Telomeric DNA, for example, has a single-stranded overhang of hundreds of nucleotides with the requisite repetitive sequence with the potential for formation of multiple G4s. Numerous extended promoter sequences have similar potentials for multimeric G4 formation. X-ray crystallography and NMR methods are challenged by these longer sequences (>30 nt), so other tools are needed to explore the possible multimeric G4 landscape. We have implemented an integrated structural biology approach to address this challenge. This approach integrates experimental biophysical results with atomic-level molecular modeling and molecular dynamics simulations that provide quantitatively testable model structures. In every long sequence we have studied so far, we found that multimeric G4 structures readily form, with a surprising diversity of structures dependent on the exact native sequence used. In some cases, stable hairpin duplexes form along with G4 units to provide an even richer landscape. This Account provides an overview of our approach and recent progress and provides a new perspective on the G-quadruplex folding landscape.
Collapse
Affiliation(s)
- Robert C Monsen
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| | - John O Trent
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Biochemistry and Molecular Genetics, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| | - Jonathan B Chaires
- UofL Health Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Medicine, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States.,Department of Biochemistry and Molecular Genetics, University of Louisville, 505 S. Hancock St., Louisville, Kentucky 40202, United States
| |
Collapse
|
7
|
Olejko L, Dutta A, Shahsavar K, Bald I. Influence of Different Salts on the G-Quadruplex Structure Formed from the Reversed Human Telomeric DNA Sequence. Int J Mol Sci 2022; 23:ijms232012206. [PMID: 36293060 PMCID: PMC9602856 DOI: 10.3390/ijms232012206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
G-rich telomeric DNA plays a major role in the stabilization of chromosomes and can fold into a plethora of different G-quadruplex structures in the presence of mono- and divalent cations. The reversed human telomeric DNA sequence (5′-(GGG ATT)4; RevHumTel) was previously shown to have interesting properties that can be exploited for chemical sensing and as a chemical switch in DNA nanotechnology. Here, we analyze the specific G-quadruplex structures formed by RevHumTel in the presence of K+, Na+, Mg2+ and Ca2+ cations using circular dichroism spectroscopy (CDS) and Förster resonance energy transfer (FRET) based on fluorescence lifetimes. CDS is able to reveal strand and loop orientations, whereas FRET gives information about the distances between the 5′-end and the 3′-end, and also, the number of G-quadruplex species formed. Based on this combined information we derived specific G-quadruplex structures formed from RevHumTel, i.e., a chair-type and a hybrid-type G-quadruplex structure formed in presence of K+, whereas Na+ induces the formation of up to three different G-quadruplexes (a basket-type, a propeller-type and a hybrid-type structure). In the presence of Mg2+ and Ca2+ two different parallel G-quadruplexes are formed (one of which is a propeller-type structure). This study will support the fundamental understanding of the G-quadruplex formation in different environments and a rational design of G-quadruplex-based applications in sensing and nanotechnology.
Collapse
|
8
|
Chang TR, Long X, Shastry S, Parks JW, Stone MD. Single-Molecule Mechanical Analysis of Strand Invasion in Human Telomere DNA. Biochemistry 2022; 61:1554-1560. [PMID: 35852986 PMCID: PMC9352315 DOI: 10.1021/acs.biochem.1c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Telomeres are essential
chromosome end capping structures that
safeguard the genome from dangerous DNA processing events. DNA strand
invasion occurs during vital transactions at telomeres, including
telomere length maintenance by the alternative lengthening of telomeres
(ALT) pathway. During telomeric strand invasion, a single-stranded
guanine-rich (G-rich) DNA invades at a complementary duplex telomere
repeat sequence, forming a displacement loop (D-loop) in which the
displaced DNA consists of the same G-rich sequence as the invading
single-stranded DNA. Single-stranded G-rich telomeric DNA readily
folds into stable, compact, structures called G-quadruplexes (GQs)
in vitro and is anticipated to form within the context of a D-loop;
however, evidence supporting this hypothesis is lacking. Here, we
report a magnetic tweezers assay that permits the controlled formation
of telomeric D-loops (TDLs) within uninterrupted duplex human telomere
DNA molecules of physiologically relevant lengths. Our results are
consistent with a model wherein the displaced single-stranded DNA
of a TDL fold into a GQ. This study provides new insight into telomere
structure and establishes a framework for the development of novel
therapeutics designed to target GQs at telomeres in cancer cells.
Collapse
Affiliation(s)
- Terren R. Chang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Xi Long
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- 10X Genomics, 6230 Stoneridge Mall Rd, Pleasanton, California 94588, United States
| | - Joseph W. Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- Invitae, 1400 16th St, San Francisco, California 94103, United States
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| |
Collapse
|
9
|
New insights into the effect of molecular crowding environment induced by dimethyl sulfoxide on the conformation and stability of G-quadruplex. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
11
|
Single-Run Catalysis and Kinetic Control of Human Telomerase Holoenzyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1371:109-129. [PMID: 34962637 DOI: 10.1007/5584_2021_676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Genome stability in eukaryotic cells relies on proper maintenance of telomeres at the termini of linear chromosomes. Human telomerase holoenzyme is required for maintaining telomere stability in a majority of proliferative human cells, making it essential for control of cell division and aging, stem cell maintenance, and development and survival of tumor or cancer. A dividing human cell usually contains a limited number of active telomerase holoenzymes. Recently, we discovered that a human telomerase catalytic site undergoes catalysis-dependent shut-off and an inactive site can be reactivated by cellular fractions containing human intracellular telomerase-activating factors (hiTAFs). Such ON-OFF control of human telomerase activity suggests a dynamic switch between inactive and active pools of the holoenzymes. In this review, we will link the ON-OFF control to the thermodynamic and kinetic properties of human telomerase holoenzymes, and discuss its potential contributions to the maintenance of telomere length equilibrium. This treatment suggests probabilistic fluctuations in the number of active telomerase holoenzymes as well as the number of telomeres that are extended in a limited number of cell cycles, and may be an important component of a fully quantitative model for the dynamic control of telomerase activities and telomere lengths in different types of eukaryotic cells.
Collapse
|
12
|
Chen H, Guo X, Li X, Tang Y, Sun H. An increase in DNA G-quadruplex formation in acute myelocytic leukemia is detected by a supramolecular probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119968. [PMID: 34049005 DOI: 10.1016/j.saa.2021.119968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Acute myeloid leukemia (AML) is a common acute leukemia in both adults and children, with poor early detection and diagnosis. Therefore, identifying new indicators for AML detection is significant for effective treatment. Here, we developed a supramolecular probe that exhibits high specificity and sensitivity to G-quadruplex structures in physiological buffer solution, chromosomes, and cells. Using this probe, we tested the DNA extracted from different types of cells and found that the DNA extracted from human acute myeloid leukemia cells HL-60 and KG-1 enhanced the probe fluorescence more significantly than the DNA extracted from other cells. This phenomenon may be related to a large number of G-quadruplexes in acute myeloid leukemia cells, implicating that G-quadruplex levels may be a potential indicator for the detection of acute myeloid leukemia.
Collapse
Affiliation(s)
- Hongbo Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; Shenzhou Space Biology Science and Technology Corporation, Ltd, China Academy of Space Technology, Beijing 100190, PR China
| | - Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xinquan Li
- Department of Hematology, Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing 102218, PR China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
13
|
Interactions of HMGB Proteins with the Genome and the Impact on Disease. Biomolecules 2021; 11:biom11101451. [PMID: 34680084 PMCID: PMC8533419 DOI: 10.3390/biom11101451] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023] Open
Abstract
High Mobility Group Box (HMGB) proteins are small architectural DNA binding proteins that regulate multiple genomic processes such as DNA damage repair, nucleosome sliding, telomere homeostasis, and transcription. In doing so they control both normal cellular functions and impact a myriad of disease states, including cancers and autoimmune diseases. HMGB proteins bind to DNA and nucleosomes to modulate the local chromatin environment, which facilitates the binding of regulatory protein factors to the genome and modulates higher order chromosomal organization. Numerous studies over the years have characterized the structure and function of interactions between HMGB proteins and DNA, both biochemically and inside cells, providing valuable mechanistic insight as well as evidence these interactions influence pathological processes. This review highlights recent studies supporting the roles of HMGB1 and HMGB2 in global organization of the genome, as well as roles in transcriptional regulation and telomere maintenance via interactions with G-quadruplex structures. Moreover, emerging models for how HMGB proteins function as RNA binding proteins are presented. Nuclear HMGB proteins have broad regulatory potential to impact numerous aspects of cellular metabolism in normal and disease states.
Collapse
|
14
|
Dziuba D, Didier P, Ciaco S, Barth A, Seidel CAM, Mély Y. Fundamental photophysics of isomorphic and expanded fluorescent nucleoside analogues. Chem Soc Rev 2021; 50:7062-7107. [PMID: 33956014 DOI: 10.1039/d1cs00194a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescent nucleoside analogues (FNAs) are structurally diverse mimics of the natural essentially non-fluorescent nucleosides which have found numerous applications in probing the structure and dynamics of nucleic acids as well as their interactions with various biomolecules. In order to minimize disturbance in the labelled nucleic acid sequences, the FNA chromophoric groups should resemble the natural nucleobases in size and hydrogen-bonding patterns. Isomorphic and expanded FNAs are the two groups that best meet the criteria of non-perturbing fluorescent labels for DNA and RNA. Significant progress has been made over the past decades in understanding the fundamental photophysics that governs the spectroscopic and environmentally sensitive properties of these FNAs. Herein, we review recent advances in the spectroscopic and computational studies of selected isomorphic and expanded FNAs. We also show how this information can be used as a rational basis to design new FNAs, select appropriate sequences for optimal spectroscopic response and interpret fluorescence data in FNA applications.
Collapse
Affiliation(s)
- Dmytro Dziuba
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| | - Stefano Ciaco
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France. and Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via Aldo Moro 2, 53100 Siena, Italy
| | - Anders Barth
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Claus A M Seidel
- Institut für Physikalische Chemie, Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France.
| |
Collapse
|
15
|
Miclot T, Corbier C, Terenzi A, Hognon C, Grandemange S, Barone G, Monari A. Forever Young: Structural Stability of Telomeric Guanine Quadruplexes in the Presence of Oxidative DNA Lesions*. Chemistry 2021; 27:8865-8874. [PMID: 33871121 DOI: 10.1002/chem.202100993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Indexed: 01/13/2023]
Abstract
Human telomeric DNA, in G-quadruplex (G4) conformation, is characterized by a remarkable structural stability that confers it the capacity to resist to oxidative stress producing one or even clustered 8-oxoguanine (8oxoG) lesions. We present a combined experimental/computational investigation, by using circular dichroism in aqueous solutions, cellular immunofluorescence assays and molecular dynamics simulations, that identifies the crucial role of the stability of G4s to oxidative lesions, related also to their biological role as inhibitors of telomerase, an enzyme overexpressed in most cancers associated to oxidative stress.
Collapse
Affiliation(s)
- Tom Miclot
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy.,Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | - Camille Corbier
- Université de Lorraine and CNRS, CRAN UMR 7039, 54000, Nancy, France
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Cécilia Hognon
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| | | | - Giampaolo Barone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Palermo, Viale delle Scienze, 90128, Palermo, Italy
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, 54000, Nancy, France
| |
Collapse
|
16
|
Monsen RC, Chakravarthy S, Dean WL, Chaires JB, Trent JO. The solution structures of higher-order human telomere G-quadruplex multimers. Nucleic Acids Res 2021; 49:1749-1768. [PMID: 33469644 PMCID: PMC7897503 DOI: 10.1093/nar/gkaa1285] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/21/2020] [Accepted: 01/13/2021] [Indexed: 12/17/2022] Open
Abstract
Human telomeres contain the repeat DNA sequence 5′-d(TTAGGG), with duplex regions that are several kilobases long terminating in a 3′ single-stranded overhang. The structure of the single-stranded overhang is not known with certainty, with disparate models proposed in the literature. We report here the results of an integrated structural biology approach that combines small-angle X-ray scattering, circular dichroism (CD), analytical ultracentrifugation, size-exclusion column chromatography and molecular dynamics simulations that provide the most detailed characterization to date of the structure of the telomeric overhang. We find that the single-stranded sequences 5′-d(TTAGGG)n, with n = 8, 12 and 16, fold into multimeric structures containing the maximal number (2, 3 and 4, respectively) of contiguous G4 units with no long gaps between units. The G4 units are a mixture of hybrid-1 and hybrid-2 conformers. In the multimeric structures, G4 units interact, at least transiently, at the interfaces between units to produce distinctive CD signatures. Global fitting of our hydrodynamic and scattering data to a worm-like chain (WLC) model indicates that these multimeric G4 structures are semi-flexible, with a persistence length of ∼34 Å. Investigations of its flexibility using MD simulations reveal stacking, unstacking, and coiling movements, which yield unique sites for drug targeting.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA
| | - Jonathan B Chaires
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville Medical School, Louisville, KY 40202, USA
| | - John O Trent
- Department of Biochemistry & Molecular Genetics, University of Louisville Medical School, Louisville, KY 40202, USA.,James Graham Brown Cancer Center, University of Louisville Medical School, Louisville, KY 40202, USA.,Department of Medicine, University of Louisville Medical School, Louisville, KY 40202, USA
| |
Collapse
|
17
|
Nishio M, Tsukakoshi K, Ikebukuro K. G-quadruplex: Flexible conformational changes by cations, pH, crowding and its applications to biosensing. Biosens Bioelectron 2021; 178:113030. [PMID: 33524709 DOI: 10.1016/j.bios.2021.113030] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
G-quadruplex (G4) is a non-canonical structure that is formed in G-rich sequences of nucleic acids. G4s play important roles in vivo, such as telomere maintenance, transcription, and DNA replication. There are three typical topologies of G4: parallel, anti-parallel, and hybrid. In general, metal cations, such as potassium and sodium, stabilize G4s through coordination in the G-quartet. While G4s have some functions in vivo, there are many reports of developed applications that use G4s. As various conformations of G4s could form from one sequence depending on varying conditions, many researchers have developed G4-based sensors. Furthermore, G4 is a great scaffold of aptamers since many aptamers folded into G4s have also been reported. However, there are some challenges about its practical use due to the difference between practical sample conditions and experimental ones. G4 conformations are dramatically altered by the surrounding conditions, such as metal cations, pH, and crowding. Many studies have been conducted to characterize G4 conformations under various conditions, not only to use G4s in practical applications but also to reveal its function in vivo. In this review, we summarize recent studies that have investigated the effects of surrounding conditions (e.g., metal cations, pH, and crowding) on G4 conformations and the application of G4s mainly in biosensor fields, and in others.
Collapse
Affiliation(s)
- Maui Nishio
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kaori Tsukakoshi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan.
| |
Collapse
|
18
|
Zuffo M, Gandolfini A, Heddi B, Granzhan A. Harnessing intrinsic fluorescence for typing of secondary structures of DNA. Nucleic Acids Res 2020; 48:e61. [PMID: 32313962 PMCID: PMC7293009 DOI: 10.1093/nar/gkaa257] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/28/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
High-throughput investigation of structural diversity of nucleic acids is hampered by the lack of suitable label-free methods, combining fast and cheap experimental workflow with high information content. Here, we explore the use of intrinsic fluorescence emitted by nucleic acids for this scope. After a preliminary assessment of suitability of this phenomenon for tracking conformational changes of DNA, we examined steady-state emission spectra of an 89-membered set of oligonucleotides with reported conformation (G-quadruplexes (G4s), i-motifs, single- and double-strands) by means of multivariate analysis. Principal component analysis of emission spectra resulted in successful clustering of oligonucleotides into three corresponding conformational groups, without discrimination between single- and double-stranded structures. Linear discriminant analysis was exploited for the assessment of novel sequences, allowing the evaluation of their G4-forming propensity. Our method does not require any labeling agent or dye, avoiding the related bias, and can be utilized to screen novel sequences of interest in a high-throughput and cost-effective manner. In addition, we observed that left-handed (Z-) G4 structures were systematically more fluorescent than most other G4 structures, almost reaching the quantum yield of 5'-d[(G3T)3G3]-3' (G3T, the most fluorescent G4 structure reported to date).
Collapse
Affiliation(s)
- Michela Zuffo
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Aurélie Gandolfini
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| | - Brahim Heddi
- Laboratoire de Biologie et de Pharmacologie Appliquée, CNRS UMR8113, École Normale Supérieure Paris-Saclay, F-94235 Cachan, France
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, PSL Research University, F-91405 Orsay, France.,CNRS UMR9187, INSERM U1196, Université Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
19
|
Chaires JB, Gray RD, Dean WL, Monsen R, DeLeeuw LW, Stribinskis V, Trent JO. Human POT1 unfolds G-quadruplexes by conformational selection. Nucleic Acids Res 2020; 48:4976-4991. [PMID: 32232414 PMCID: PMC7229828 DOI: 10.1093/nar/gkaa202] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
The reaction mechanism by which the shelterin protein POT1 (Protection of Telomeres 1) unfolds human telomeric G-quadruplex structures is not fully understood. We report here kinetic, thermodynamic, hydrodynamic and computational studies that show that a conformational selection mechanism, in which POT1 binding is coupled to an obligatory unfolding reaction, is the most plausible mechanism. Stopped-flow kinetic and spectroscopic titration studies, along with isothermal calorimetry, were used to show that binding of the single-strand oligonucleotide d[TTAGGGTTAG] to POT1 is both fast (80 ms) and strong (-10.1 ± 0.3 kcal mol-1). In sharp contrast, kinetic studies showed the binding of POT1 to an initially folded 24 nt G-quadruplex structure is four orders of magnitude slower. Fluorescence, circular dichroism and analytical ultracentrifugation studies showed that POT1 binding is coupled to quadruplex unfolding, with a final complex with a stoichiometry of 2 POT1 per 24 nt DNA. The binding isotherm for the POT1-quadruplex interaction was sigmoidal, indicative of a complex reaction. A conformational selection model that includes equilibrium constants for both G-quadruplex unfolding and POT1 binding to the resultant single-strand provided an excellent quantitative fit to the experimental binding data. POT1 unfolded and bound to any conformational form of human telomeric G-quadruplex (antiparallel, hybrid, parallel monomers or a 48 nt sequence with two contiguous quadruplexes), but did not avidly interact with duplex DNA or with other G-quadruplex structures. Finally, molecular dynamics simulations provided a detailed structural model of a 2:1 POT1:DNA complex that is fully consistent with experimental biophysical results.
Collapse
Affiliation(s)
- Jonathan B Chaires
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Robert Monsen
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Lynn W DeLeeuw
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Vilius Stribinskis
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| |
Collapse
|
20
|
Monsen RC, DeLeeuw L, Dean WL, Gray RD, Sabo T, Chakravarthy S, Chaires JB, Trent JO. The hTERT core promoter forms three parallel G-quadruplexes. Nucleic Acids Res 2020; 48:5720-5734. [PMID: 32083666 PMCID: PMC7261196 DOI: 10.1093/nar/gkaa107] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
The structure of the 68 nt sequence with G-quadruplex forming potential within the hTERT promoter is disputed. One model features a structure with three stacked parallel G-quadruplex units, while another features an unusual duplex hairpin structure adjoined to two stacked parallel and antiparallel quadruplexes. We report here the results of an integrated structural biology study designed to distinguish between these possibilities. As part of our study, we designed a sequence with an optimized hairpin structure and show that its biophysical and biochemical properties are inconsistent with the structure formed by the hTERT wild-type sequence. By using circular dichroism, thermal denaturation, nuclear magnetic resonance spectroscopy, analytical ultracentrifugation, small-angle X-ray scattering, molecular dynamics simulations and a DNase I cleavage assay we found that the wild type hTERT core promoter folds into a stacked, three-parallel G-quadruplex structure. The hairpin structure is inconsistent with all of our experimental data obtained with the wild-type sequence. All-atom models for both structures were constructed using molecular dynamics simulations. These models accurately predicted the experimental hydrodynamic properties measured for each structure. We found with certainty that the wild-type hTERT promoter sequence does not form a hairpin structure in solution, but rather folds into a compact stacked three-G-quadruplex conformation.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
| | - Lynn DeLeeuw
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - William L Dean
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Robert D Gray
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - T Michael Sabo
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Srinivas Chakravarthy
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Chemical and Physical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Jonathan B Chaires
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - John O Trent
- Department of Biochemistry & Molecular Genetics, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
21
|
Zhang M, Hao N, Gao Y, Li L, Ye X. Characterization of mixed solutions of hyperbranched and linear polystyrenes by a combination of size‐exclusion chromatography and analytical ultracentrifugation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Miao Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei Anhui China
| | - Nairong Hao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei Anhui China
| | - Yating Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei Anhui China
| | - Lianwei Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei Anhui China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical PhysicsUniversity of Science and Technology of China Hefei Anhui China
- CAS Key Laboratory of Soft Matter ChemistryUniversity of Science and Technology of China Hefei Anhui China
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education InstitutesUniversity of Science and Technology of China Hefei Anhui China
| |
Collapse
|
22
|
Folding intermediate states of the parallel human telomeric G-quadruplex DNA explored using Well-Tempered Metadynamics. Sci Rep 2020; 10:3176. [PMID: 32081872 PMCID: PMC7035250 DOI: 10.1038/s41598-020-59774-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
An increasingly comprehension of the folding intermediate states of DNA G-quadruplexes (G4s) is currently an important scientific challenge, especially for the human telomeric (h-tel) G4s-forming sequences, characterized by a highly polymorphic nature. Despite the G-triplex conformation was proposed as one of the possible folding intermediates for the antiparallel and hybrid h-tel G4s, for the parallel h-tel topology with an all-anti guanine orientation, a vertical strand-slippage involving the G-triplets was proposed in previous works through microseconds-long standard molecular dynamics simulations (MDs). Here, in order to get further insights into the vertical strand-slippage and the folding intermediate states of the parallel h-tel G4s, we have carried out a Well-Tempered Metadynamics simulation (WT-MetaD), which allowed us to retrieve an ensemble of six G4s having two/G-tetrad conformations derived by the G-triplets vertical slippage. The insights highlighted in this work are aimed at rationalizing the mechanistic characterisation of the parallel h-tel G4 folding process.
Collapse
|
23
|
Terenzi A, Gattuso H, Spinello A, Keppler BK, Chipot C, Dehez F, Barone G, Monari A. Targeting G-quadruplexes with Organic Dyes: Chelerythrine-DNA Binding Elucidated by Combining Molecular Modeling and Optical Spectroscopy. Antioxidants (Basel) 2019; 8:antiox8100472. [PMID: 31658666 PMCID: PMC6826623 DOI: 10.3390/antiox8100472] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/05/2019] [Accepted: 10/07/2019] [Indexed: 01/24/2023] Open
Abstract
The DNA-binding of the natural benzophenanthridine alkaloid chelerythrine (CHE) has been assessed by combining molecular modeling and optical absorption spectroscopy. Specifically, both double-helical (B-DNA) and G-quadruplex sequences—representative of different topologies and possessing biological relevance, such as telomeric or regulatory sequences—have been considered. An original multiscale protocol, making use of molecular dynamics (MD) simulations and quantum mechanics/molecular mechanics (QM/MM) calculations, allowed us to compare the theoretical and experimental circular dichroism spectra of the different DNA topologies, readily providing atomic-level details of the CHE–DNA binding modes. The binding selectivity towards G-quadruplexes is confirmed by both experimental and theoretical determination of the binding free energies. Overall, our mixed computational and experimental approach is able to shed light on the interaction of small molecules with different DNA conformations. In particular, CHE may be seen as the building block of promising drug candidates specifically targeting G-quadruplexes for both antitumoral and antiviral purposes.
Collapse
Affiliation(s)
- Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, 20018 Donostia, Spain.
| | - Hugo Gattuso
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| | - Angelo Spinello
- CNR-IOM DEMOCRITOS c/o International School for Advanced Studies (SISSA), 34136 Trieste, Italy.
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währingerstrasse 42, A-1090 Vienna, Austria.
| | - Christophe Chipot
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA.
| | - François Dehez
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA.
| | - Giampaolo Barone
- Dipartimento di Scienze Biologiche, Chimiche e Farmaceutiche, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy.
| | - Antonio Monari
- Université de Lorraine and CNRS, LPCT UMR 7019, F54000 Nancy, France.
| |
Collapse
|
24
|
Kolesnikova S, Curtis EA. Structure and Function of Multimeric G-Quadruplexes. Molecules 2019; 24:molecules24173074. [PMID: 31450559 PMCID: PMC6749722 DOI: 10.3390/molecules24173074] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 11/16/2022] Open
Abstract
G-quadruplexes are noncanonical nucleic acid structures formed from stacked guanine tetrads. They are frequently used as building blocks and functional elements in fields such as synthetic biology and also thought to play widespread biological roles. G-quadruplexes are often studied as monomers, but can also form a variety of higher-order structures. This increases the structural and functional diversity of G-quadruplexes, and recent evidence suggests that it could also be biologically important. In this review, we describe the types of multimeric topologies adopted by G-quadruplexes and highlight what is known about their sequence requirements. We also summarize the limited information available about potential biological roles of multimeric G-quadruplexes and suggest new approaches that could facilitate future studies of these structures.
Collapse
Affiliation(s)
- Sofia Kolesnikova
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | - Edward A Curtis
- The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic.
| |
Collapse
|
25
|
Uda RM, Nishimoto N, Matsui T, Takagi S. Photoinduced binding of malachite green copolymer to parallel G-quadruplex DNA. SOFT MATTER 2019; 15:4454-4459. [PMID: 31073583 DOI: 10.1039/c9sm00411d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Designing ligands that selectively target G-quadruplex DNAs has gained attention due to their possible roles in regulation of gene expression and as anti-cancer agents. In this article, we report irradiation-induced ligand binding to G-quadruplex DNAs which offers a novel approach to targeting specific G-quadruplexes. Photoinduced binding to G-quadruplex DNAs was observed for copolymers of poly(vinyl alcohol) carrying a malachite green moiety (PVAMG). This molecule has an aromatic ring with cationic charge, which after irradiation becomes a binding site for G-quadruplex DNA. PVAMGs acted as neutral polymers with no binding affinity under dark conditions. The photoinduced binding was revealed by fluorescence spectroscopy, NMR spectroscopy, UV melting curve, and DNA polymerase stop assay. PVAMGs showed preference to parallel G-quadruplex structures over mixed parallel/antiparallel structures. PVAMGs were found to be noncytotoxic under both dark and irradiated conditions up to a concentration of 20 μM.
Collapse
Affiliation(s)
- Ryoko M Uda
- Department of Chemical Engineering, National Institute of Technology, Nara college, Yata 22, Yamato-koriyama, Nara 639-1080, Japan.
| | | | | | | |
Collapse
|
26
|
Ma G, Yu Z, Zhou W, Li Y, Fan L, Li X. Investigation of Na+ and K+ Competitively Binding with a G-Quadruplex and Discovery of a Stable K+–Na+-Quadruplex. J Phys Chem B 2019; 123:5405-5411. [DOI: 10.1021/acs.jpcb.9b02823] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ge Ma
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ze Yu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei Zhou
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yunchao Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Louzhen Fan
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaohong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
27
|
Papi F, Kenđel A, Ratkaj M, Piantanida I, Gratteri P, Bazzicalupi C, Miljanić S. Effect of structure levels on surface-enhanced Raman scattering of human telomeric G-quadruplexes in diluted and crowded media. Anal Bioanal Chem 2019; 411:5197-5207. [PMID: 31119345 DOI: 10.1007/s00216-019-01894-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 05/06/2019] [Indexed: 10/26/2022]
Abstract
Human telomeric G-quadruplexes are emerging targets in anticancer drug discovery since they are able to efficiently inhibit telomerase, an enzyme which is greatly involved in telomere instability and immortalization process in malignant cells. G-quadruplex (G4) DNA is highly polymorphic and can adopt different topologies upon addition of electrolytes, additives, and ligands. The study of G-quadruplex forms under various conditions, however, might be quite challenging. In this work, surface-enhanced Raman scattering (SERS) spectroscopy has been applied to study G-quadruplexes formed by human telomeric sequences, d[A3G3(TTAGGG)3A2] (Tel26) and d[(TTAGGG)4T2] (wtTel26), under dilute and crowding conditions. The SERS spectra distinctive of hybrid-1 and hybrid-2 G-quadruplexes of Tel26 and wtTel26, respectively, were observed for the sequences folded in the presence of K+ ions (110 mM) in a buffered solution, representing the diluted medium. Polyethylene glycol (5, 10, 15, 20, and 40% v/v PEG) was used to create a molecular-crowded environment, resulting in the formation of the parallel G-quadruplexes of both studied human telomeric sequences. Despite extensive overlap by the crowding agent bands, the SERS spectral features indicative of parallel G4 form of Tel26 were recognized. The obtained results implied that SERS of G-quadruplexes reflected not only the primary structure of the studied human telomeric sequence, including its nucleobase composition and sequence, but also its secondary structure in the sense of Hoogsteen hydrogen bonds responsible for the guanine tetrad formation, and finally its tertiary structure, defining a three-dimensional DNA shape, positioned close to the enhancing metallic surface. Graphical abstract.
Collapse
Affiliation(s)
- Francesco Papi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy. .,Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
| | - Adriana Kenđel
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia
| | - Marina Ratkaj
- Teva Pharmaceutical Industries Ltd., Research and Development, PLIVA Croatia, Prilaz baruna Filipovića 29, 10000, Zagreb, Croatia
| | - Ivo Piantanida
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10002, Zagreb, Croatia
| | - Paola Gratteri
- Department NEUROFARBA - Pharmaceutical and Nutraceutical Section, Laboratory of Molecular Modeling Cheminformatics & QSAR, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Carla Bazzicalupi
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Florence, Italy
| | - Snežana Miljanić
- Division of Analytical Chemistry, Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000, Zagreb, Croatia.
| |
Collapse
|
28
|
Bulged and Canonical G-Quadruplex Conformations Determine NDPK Binding Specificity. Molecules 2019; 24:molecules24101988. [PMID: 31126138 PMCID: PMC6572678 DOI: 10.3390/molecules24101988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/20/2019] [Accepted: 05/22/2019] [Indexed: 11/17/2022] Open
Abstract
Guanine-rich DNA strands can adopt tertiary structures known as G-quadruplexes (G4s) that form when Hoogsteen base-paired guanines assemble as planar stacks, stabilized by a central cation like K+. In this study, we investigated the conformational heterogeneity of a G-rich sequence from the 5′ untranslated region of the Zea mayshexokinase4 gene. This sequence adopted an extensively polymorphic G-quadruplex, including non-canonical bulged G-quadruplex folds that co-existed in solution. The nature of this polymorphism depended, in part, on the incorporation of different sets of adjacent guanines into a quadruplex core, which permitted the formation of the different conformations. Additionally, we showed that the maize homolog of the human nucleoside diphosphate kinase (NDPK) NM23-H2 protein—ZmNDPK1—specifically recognizes and promotes formation of a subset of these conformations. Heteromorphic G-quadruplexes play a role in microorganisms’ ability to evade the host immune system, so we also discuss how the underlying properties that determine heterogeneity of this sequence could apply to microorganism G4s.
Collapse
|
29
|
Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc Natl Acad Sci U S A 2019; 116:9350-9359. [PMID: 31019071 DOI: 10.1073/pnas.1814777116] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomerase reverse transcribes short guanine (G)-rich DNA repeat sequences from its internal RNA template to maintain telomere length. G-rich telomere DNA repeats readily fold into G-quadruplex (GQ) structures in vitro, and the presence of GQ-prone sequences throughout the genome introduces challenges to replication in vivo. Using a combination of ensemble and single-molecule telomerase assays, we discovered that GQ folding of the nascent DNA product during processive addition of multiple telomere repeats modulates the kinetics of telomerase catalysis and dissociation. Telomerase reactions performed with telomere DNA primers of varying sequence or using GQ-stabilizing K+ versus GQ-destabilizing Li+ salts yielded changes in DNA product profiles consistent with formation of GQ structures within the telomerase-DNA complex. Addition of the telomerase processivity factor POT1-TPP1 altered the DNA product profile, but was not sufficient to recover full activity in the presence of Li+ cations. This result suggests GQ folding synergizes with POT1-TPP1 to support telomerase function. Single-molecule Förster resonance energy transfer experiments reveal complex DNA structural dynamics during real-time catalysis in the presence of K+ but not Li+, supporting the notion of nascent product folding within the active telomerase complex. To explain the observed distributions of telomere products, we globally fit telomerase time-series data to a kinetic model that converges to a set of rate constants describing each successive telomere repeat addition cycle. Our results highlight the potential influence of the intrinsic folding properties of telomere DNA during telomerase catalysis, and provide a detailed characterization of GQ modulation of polymerase function.
Collapse
|
30
|
Sun L, Xie X, Weng W, Jin H. Structural and mechanistic insights into modified G-quadruplex thrombin-binding DNA aptamers. Biochem Biophys Res Commun 2019; 513:753-759. [PMID: 30992128 DOI: 10.1016/j.bbrc.2019.04.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Thrombin-binding aptamer (TBA) can fold into a G-quadruplex structure necessary for interacting with thrombin. When one thymidine residue of the TGT loop at position 7 is replaced with unlocked uracil (UNA), d-isothymidine (D-isoT) or l-isothymidine (L-isoT), these modified sequences display different activities. To date, the mechanisms of how D/L-isoT and UNA influence the biological properties of TBA have not been illustrated in the literature. In this paper, we fill this gap by probing the structure variations and binding modes of these modified TBAs via molecular dynamics (MD) simulation and free energy calculation. Comparative structural analyses demonstrated that both D-IsoT and UNA changed the local conformation of TGT loop and formed stronger interactions with the target protein. Particularly, D-IsoT and UNA adopted similar conformation which can well explain their similar biological activities. In addition, the flexibility of the two TT loops were described clearly. In contrast, L-IsoT at position 7 led to an obvious tendency to unfold. Free energy calculation and the analysis of key residues energy contributions eventually provide a clear picture of interactions for further understanding of the structure-activity relationships. Collectively, our findings open the way for a rational design of modified aptamers.
Collapse
Affiliation(s)
- Lidan Sun
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China.
| | - Xiaolan Xie
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Wenting Weng
- College of Chemical Engineering and Material Science, Quanzhou Normal University, Quanzhou, China
| | - Hongwei Jin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| |
Collapse
|
31
|
Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019; 24:molecules24061010. [PMID: 30871220 PMCID: PMC6471034 DOI: 10.3390/molecules24061010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/01/2019] [Accepted: 03/09/2019] [Indexed: 11/30/2022] Open
Abstract
Although BRACO19 is a potent G-quadruplex binder, its potential for clinical usage is hindered by its low selectivity towards DNA G-quadruplex over duplex. High-resolution structures of BRACO19 in complex with neither single-stranded telomeric DNA G-quadruplexes nor B-DNA duplex are available. In this study, the binding pathway of BRACO19 was probed by 27.5 µs molecular dynamics binding simulations with a free ligand (BRACO19) to a DNA duplex and three different topological folds of the human telomeric DNA G-quadruplex (parallel, anti-parallel and hybrid). The most stable binding modes were identified as end stacking and groove binding for the DNA G-quadruplexes and duplex, respectively. Among the three G-quadruplex topologies, the MM-GBSA binding energy analysis suggested that BRACO19′s binding to the parallel scaffold was most energetically favorable. The two lines of conflicting evidence plus our binding energy data suggest conformation-selection mechanism: the relative population shift of three scaffolds upon BRACO19 binding (i.e., an increase of population of parallel scaffold, a decrease of populations of antiparallel and/or hybrid scaffold). This hypothesis appears to be consistent with the fact that BRACO19 was specifically designed based on the structural requirements of the parallel scaffold and has since proven effective against a variety of cancer cell lines as well as toward a number of scaffolds. In addition, this binding mode is only slightly more favorable than BRACO19s binding to the duplex, explaining the low binding selectivity of BRACO19 to G-quadruplexes over duplex DNA. Our detailed analysis suggests that BRACO19′s groove binding mode may not be stable enough to maintain a prolonged binding event and that the groove binding mode may function as an intermediate state preceding a more energetically favorable end stacking pose; base flipping played an important role in enhancing binding interactions, an integral feature of an induced fit binding mechanism.
Collapse
|
32
|
Masaki Y, Inde T, Maruyama A, Seio K. Tolerance of N 2-heteroaryl modifications on guanine bases in a DNA G-quadruplex. Org Biomol Chem 2019; 17:859-866. [DOI: 10.1039/c8ob03100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To systematically determine the effect of N2-heteroaryl modification on the stability of G-quadruplex structures, six types of N2-heteroarylated deoxyguanosines were incorporated into oligonucleotides with intramolecular quadruplex-forming sequences obtained from the human telomere sequence.
Collapse
Affiliation(s)
- Yoshiaki Masaki
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Takeshi Inde
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Atsuya Maruyama
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| | - Kohji Seio
- Department of Life Science and Technology
- Tokyo Institute of Technology
- Yokohama
- Japan
| |
Collapse
|
33
|
Putting a New Spin of G-Quadruplex Structure and Binding by Analytical Ultracentrifugation. Methods Mol Biol 2019; 2035:87-103. [PMID: 31444745 DOI: 10.1007/978-1-4939-9666-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical ultracentrifugation is a powerful biophysical tool that provides information about G-quadruplex structure, stability, and binding reactivity. This chapter provides a simplified explanation of the method, along with examples of how it can be used to characterize G4 formation and to monitor small-molecule binding.
Collapse
|
34
|
Interactions Between Spermine-Derivatized Tentacle Porphyrins and The Human Telomeric DNA G-Quadruplex. Int J Mol Sci 2018; 19:ijms19113686. [PMID: 30469358 PMCID: PMC6274827 DOI: 10.3390/ijms19113686] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 01/31/2023] Open
Abstract
G-rich DNA sequences have the potential to fold into non-canonical G-Quadruplex (GQ) structures implicated in aging and human diseases, notably cancers. Because stabilization of GQs at telomeres and oncogene promoters may prevent cancer, there is an interest in developing small molecules that selectively target GQs. Herein, we investigate the interactions of meso-tetrakis-(4-carboxysperminephenyl)porphyrin (TCPPSpm4) and its Zn(II) derivative (ZnTCPPSpm4) with human telomeric DNA (Tel22) via UV-Vis, circular dichroism (CD), and fluorescence spectroscopies, resonance light scattering (RLS), and fluorescence resonance energy transfer (FRET) assays. UV-Vis titrations reveal binding constants of 4.7 × 106 and 1.4 × 107 M−1 and binding stoichiometry of 2–4:1 and 10–12:1 for TCPPSpm4 and ZnTCPPSpm4, respectively. High stoichiometry is supported by the Job plot data, CD titrations, and RLS data. FRET melting indicates that TCPPSpm4 stabilizes Tel22 by 36 ± 2 °C at 7.5 eq., and that ZnTCPPSpm4 stabilizes Tel22 by 33 ± 2 °C at ~20 eq.; at least 8 eq. of ZnTCPPSpm4 are required to achieve significant stabilization of Tel22, in agreement with its high binding stoichiometry. FRET competition studies show that both porphyrins are mildly selective for human telomeric GQ vs duplex DNA. Spectroscopic studies, combined, point to end-stacking and porphyrin self-association as major binding modes. This work advances our understanding of ligand interactions with GQ DNA.
Collapse
|
35
|
Sharma VR, Thomas SD, Miller DM, Rezzoug F. Nucleolin Overexpression Confers Increased Sensitivity to the Anti-Nucleolin Aptamer, AS1411. Cancer Invest 2018; 36:475-491. [PMID: 30396283 PMCID: PMC6396827 DOI: 10.1080/07357907.2018.1527930] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/20/2018] [Indexed: 02/04/2023]
Abstract
AS1411 is an antiproliferative DNA aptamer, which binds the ubiquitous protein, nucleolin. In this study, we show that constitutive overexpression of nucleolin confers increased sensitivity to the growth inhibitory effects of AS1411. HeLa cells overexpressing nucleolin have an increased growth rate and invasiveness relative to control cells. Nucleolin overexpressing cells demonstrate increased growth inhibition in response to the AS1411 treatment, which correlates with increased apoptosis and cell cycle arrest, when compared to non-transfected cells. AS1411 induces nucleolin expression at the RNA and protein level in HeLa cells, suggesting a feedback loop with important implications for the clinical use of AS1411.
Collapse
Affiliation(s)
- Vivek R. Sharma
- University of Louisville, Division of Medical Oncology/Hematology, Department of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky, USA
| | - Shelia D. Thomas
- University of Louisville, Division of Medical Oncology/Hematology, Department of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky, USA
| | - Donald M. Miller
- University of Louisville, Division of Medical Oncology/Hematology, Department of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky, USA
| | - Francine Rezzoug
- University of Louisville, Division of Medical Oncology/Hematology, Department of Medicine, James Graham Brown Cancer Center, Louisville, Kentucky, USA
| |
Collapse
|
36
|
Guang TL, Gao YT, Ye XD. Effect of a single repeat sequence of the human telomere d(TTAGGG) on structure of single-stranded telomeric DNA d[AGGG(TTAGGG)6]. CHINESE J CHEM PHYS 2018. [DOI: 10.1063/1674-0068/31/cjcp1804069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Tian-lei Guang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Ya-ting Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiao-dong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
37
|
Insulin-like growth factor type I selectively binds to G-quadruplex structures. Biochim Biophys Acta Gen Subj 2018; 1863:31-38. [PMID: 30278241 DOI: 10.1016/j.bbagen.2018.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND G-quadruplex has been viewed as a promising therapeutic target in oncology due to its potentially important roles in physiological and pathological processes. Emerging evidence suggests that the biological functions of G-quadruplexes are closely related to the binding of some proteins. Insulin-like growth factor type I (IGF-1), as a significant modulator of cell growth and development, may serve as a quadruplex-binding protein. METHODS The binding affinity and selectivity of IGF-1 to different DNA motifs in solution were measured by using fluorescence spectroscopy, Surface Plasmon Resonance (SPR), and force-induced remnant magnetization (FIRM). The effects of IGF-1 on the formation and stability of G-quadruplex structures were evaluated by circular dichroism (CD) and melting fluorescence resonance energy transfer (FRET) spectroscopy. The influence of quadruplex-specific ligands on the binding of G-quadruplexes with IGF-1 was determined by FIRM. RESULTS IGF-1 shows a binding specificity for G-quadruplex structures, especially the G-quadruplex structure with a parallel topology. The quadruplex-specific ligands TMPyP4 and PDS (Pyridostatin) can inhibit the interaction between G-quadruplexes and proteins. CONCLUSIONS IGF-1 is demonstrated to selectively bind with G-quadruplex structures. The use of quadruplex-interactive ligands could modulate the binding of IGF-1 to G-quadruplexes. GENERAL SIGNIFICANCE This study provides us with a new perspective to understand the possible physiological relationship between IGF-1 and G-quadruplexes and also conveys a strategy to regulate the interaction between G-quadruplex DNA and proteins.
Collapse
|
38
|
Marchand A, Rosu F, Zenobi R, Gabelica V. Thermal Denaturation of DNA G-Quadruplexes and Their Complexes with Ligands: Thermodynamic Analysis of the Multiple States Revealed by Mass Spectrometry. J Am Chem Soc 2018; 140:12553-12565. [PMID: 30183275 DOI: 10.1021/jacs.8b07302] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Designing ligands targeting G-quadruplex nucleic acid structures and affecting cellular processes is complicated because there are multiple target sequences and some are polymorphic. Further, structure alone does not reveal the driving forces for ligand binding. To know why a ligand binds, the thermodynamics of binding must be characterized. Electrospray mass spectrometry enables one to detect and quantify each specific stoichiometry (number of strands, cations, and ligands) and thus to simultaneously determine the equilibrium constants for each complex. Using a temperature-controlled nanoelectrospray source, we determined the temperature dependence of the equilibrium constants, and thus the enthalpic and entropic contributions to the formation of each stoichiometry. Enthalpy drives the formation of each quartet-K+-quartet unit, whereas entropy drives the formation of quartet-K+-triplet units. Consequently, slip-stranded structures can become more abundant as the temperature increases. In the presence of ligands (Phen-DC3, TrisQ, TMPyP4, Cu-ttpy), we observed that, even when only a 1:1 (ligand/quadruplex) complex is observed at room temperature, new states are populated at intermediate temperatures, including 2:1 complexes. In most cases, ligand-G4-quadruplex binding is entropically driven, and we discuss that this may have resulted from biases when ranking ligand potency using melting experiments. Other thermodynamic profiles could be linked to topology changes in terms of number of G-quartets (reflected in the number of specific K+ ions in the complex). The thermodynamics of ligand binding to each form, one ligand at a time, provides unprecedented detail on the interplay between ligand binding and topology changes in terms of number of G-quartets.
Collapse
Affiliation(s)
- Adrien Marchand
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Frédéric Rosu
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac , France
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences , ETH Zurich , CH-8093 Zurich , Switzerland
| | - Valérie Gabelica
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, F-33600 Pessac , France
| |
Collapse
|
39
|
Monsen RC, Trent JO. G-quadruplex virtual drug screening: A review. Biochimie 2018; 152:134-148. [PMID: 29966734 PMCID: PMC6134840 DOI: 10.1016/j.biochi.2018.06.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Over the past two decades biologists and bioinformaticians have unearthed substantial evidence supporting a role for G-quadruplexes as important mediators of biological processes. This includes telomere damage signaling, transcriptional activity, and splicing. Both their structural heterogeneity and their abundance in oncogene promoters makes them ideal targets for drug discovery. Currently, there are hundreds of deposited DNA and RNA quadruplex atomic structures which have allowed researchers to begin using in silico drug screening approaches to develop novel stabilizing ligands. Here we provide a review of the past decade of G-quadruplex virtual drug discovery approaches and campaigns. With this we introduce relevant virtual screening platforms followed by a discussion of best practices to assist future G4 VS campaigns.
Collapse
Affiliation(s)
- Robert C Monsen
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40206, USA
| | - John O Trent
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY, 40206, USA; Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, KY, 40206, USA; Department of Medicine, University of Louisville, Louisville, KY, 40206, USA.
| |
Collapse
|
40
|
Manna S, Srivatsan SG. Fluorescence-based tools to probe G-quadruplexes in cell-free and cellular environments. RSC Adv 2018; 8:25673-25694. [PMID: 30210793 PMCID: PMC6130854 DOI: 10.1039/c8ra03708f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/08/2018] [Indexed: 12/26/2022] Open
Abstract
Biophysical and biochemical investigations provide compelling evidence connecting the four-stranded G-quadruplex (GQ) structure with its role in regulating multiple cellular processes. Hence, modulating the function of GQs by using small molecule binders is being actively pursued as a strategy to develop new chemotherapeutic agents. However, sequence diversity and structural polymorphism of GQs have posed immense challenges in terms of understanding what conformation a G-rich sequence adopts inside the cell and how to specifically target a GQ motif amidst several other GQ-forming sequences. In this context, here we review recent developments in the applications of biophysical tools that use fluorescence readout to probe the GQ structure and recognition in cell-free and cellular environments. First, we provide a detailed discussion on the utility of covalently labeled environment-sensitive fluorescent nucleoside analogs in assessing the subtle difference in GQ structures and their ligand binding abilities. Furthermore, a detailed discussion on structure-specific antibodies and small molecule probes used to visualize and confirm the existence of DNA and RNA GQs in cells is provided. We also highlight the open challenges in the study of tetraplexes (GQ and i-motif structures) and how addressing these challenges by developing new tools and techniques will have a profound impact on tetraplex-directed therapeutic strategies.
Collapse
Affiliation(s)
- Sudeshna Manna
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| | - Seergazhi G. Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), PuneDr. Homi Bhabha RoadPune 411008India
| |
Collapse
|
41
|
Kar A, Jones N, Arat NÖ, Fishel R, Griffith JD. Long repeating (TTAGGG) n single-stranded DNA self-condenses into compact beaded filaments stabilized by G-quadruplex formation. J Biol Chem 2018; 293:9473-9485. [PMID: 29674319 PMCID: PMC6005428 DOI: 10.1074/jbc.ra118.002158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/04/2018] [Indexed: 11/06/2022] Open
Abstract
Conformations adopted by long stretches of single-stranded DNA (ssDNA) are of central interest in understanding the architecture of replication forks, R loops, and other structures generated during DNA metabolism in vivo This is particularly so if the ssDNA consists of short nucleotide repeats. Such studies have been hampered by the lack of defined substrates greater than ∼150 nt and the absence of high-resolution biophysical approaches. Here we describe the generation of very long ssDNA consisting of the mammalian telomeric repeat (5'-TTAGGG-3') n , as well as the interrogation of its structure by EM and single-molecule magnetic tweezers (smMT). This repeat is of particular interest because it contains a run of three contiguous guanine residues capable of forming G quartets as ssDNA. Fluorescent-dye exclusion assays confirmed that this G-strand ssDNA forms ubiquitous G-quadruplex folds. EM revealed thick bead-like filaments that condensed the DNA ∼12-fold. The bead-like structures were 5 and 8 nm in diameter and linked by thin filaments. The G-strand ssDNA displayed initial stability to smMT force extension that ultimately released in steps that were multiples ∼28 nm at forces between 6 and 12 pN, well below the >20 pN required to unravel G-quadruplexes. Most smMT steps were consistent with the disruption of the beads seen by EM. Binding by RAD51 distinctively altered the force extension properties of the G-strand ssDNA, suggesting a stochastic G-quadruplex-dependent condensation model that is discussed.
Collapse
Affiliation(s)
- Anirban Kar
- From the Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nathan Jones
- the Department of Cancer Biology and Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio 43210
- the Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, Ohio 43210, and
| | - N Özlem Arat
- From the Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
- the Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3T 1J4, Canada
| | - Richard Fishel
- the Department of Cancer Biology and Genetics, Ohio State University Wexner Medical Center, Columbus, Ohio 43210,
- the Interdisciplinary Biophysics Graduate Program, Ohio State University, Columbus, Ohio 43210, and
| | - Jack D Griffith
- From the Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599,
| |
Collapse
|
42
|
Chaudhary S, Kaushik M, Kukreti R, Kukreti S. Structural switch from a multistranded G-quadruplex to single strands as a consequence of point mutation in the promoter of the human GRIN1 gene. MOLECULAR BIOSYSTEMS 2018; 13:1805-1816. [PMID: 28702665 DOI: 10.1039/c7mb00360a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A huge number of G-rich sequences forming quadruplexes are found in the human genome, especially in telomeric regions, UTRs, and the promoter regions of a number of genes. One such gene is GRIN1 encoding the NR1 subunit of the N-methyl-d-aspartate receptor (NMDA). Several lines of reports have implicated that attenuated function of NMDA results in schizophrenia, a genetic disorder characterized by hallucinations, delusions, and psychosis. Involvement of the GRIN1 gene in the pathogenesis of schizophrenia has been extensively analysed. Recent reports have demonstrated that polymorphism in the promoter region of GRIN1 at position -855 (G/C) has a possible association with schizophrenia. The binding site for the NF-κB transcription factor gets altered due to this mutation, resulting in reduced gene expression as well as NMDA activity. By combining gel electrophoresis (PAGE), circular dichroism (CD) and CD melting techniques, the G → C single nucleotide polymorphism (SNP) at the G-rich sequence (d-CTTAGCCCGAGGAG[combining low line]GGGGGTCCCAAGT; GRIN1) was investigated. We report that the GRIN1 sequence can form an octameric/multistranded quadruplex structure with parallel conformation in the presence of K+ as well as Na+. CD and gel studies are in good correlation in order to detect molecularity and strand conformation. The parallel G-quadruplex species was hypothesized to be octameric in K+/Na+ salts. The mutated sequence (d-CTTAGCCCGAGGAC[combining low line]GGGGGTCCCAAGT; GRIN1M) remained single stranded under physiological conditions. CD melting studies support the formation of an interstranded G-quadruplex structure by the GRIN1 sequence. Two structural models are propounded for a multistranded parallel G-quadruplex conformation which might be responsible for regulating the gene expression normally underlying memory and learning.
Collapse
Affiliation(s)
- Swati Chaudhary
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi, Delhi, India.
| | | | | | | |
Collapse
|
43
|
Shi Y, Sun H, Xiang J, Chen H, Zhang S, Guan A, Li Q, Xu S, Tang Y. Reversible regulation of the supramolecular chirality of a cyanine dye by using the G-quadruplex structure as a template. Chem Commun (Camb) 2018; 52:7302-5. [PMID: 27181338 DOI: 10.1039/c6cc02930b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Multiple cycle regulation of the supramolecular chirality of a cyanine dye has been successfully achieved by using DNA G-quadruplexes as templates, which is easily controllable by repeated addition of Ag(+) and cysteine (Cys). This work provides an easy and controllable strategy for the chiral regulation of supramolecules.
Collapse
Affiliation(s)
- Yunhua Shi
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongxia Sun
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Junfeng Xiang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Hongbo Chen
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Suge Zhang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Aijiao Guan
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Qian Li
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Shujuan Xu
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China. and University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
44
|
Peng P, Du Y, Sun Y, Liu S, Mi L, Li T. Probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine for label-free switchable molecular sensing. Analyst 2018; 143:3814-3820. [DOI: 10.1039/c8an00914g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a novel ligand-free signal readout mechanism for probing the propeller-like loops of DNA G-quadruplexes with looped-out 2-aminopurine.
Collapse
Affiliation(s)
- Pai Peng
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yi Du
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Yudie Sun
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Shuangna Liu
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Lan Mi
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| | - Tao Li
- Department of Chemistry
- University of Science and Technology of China
- Hefei
- P.R. China
| |
Collapse
|
45
|
Triplex-quadruplex structural scaffold: a new binding structure of aptamer. Sci Rep 2017; 7:15467. [PMID: 29133961 PMCID: PMC5684193 DOI: 10.1038/s41598-017-15797-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/02/2017] [Indexed: 11/08/2022] Open
Abstract
Apart from the canonical Watson-Crick duplex, nucleic acids can often form other structures, e.g. G-quadruplex and triplex. These structures give nucleic acid additional functions besides coding for genetic information. Aptamers are one type of functional nucleic acids that bind to specific targets with high selectivity and affinity by folding into special tertiary structures. Despite the fact that numerous aptamers have been reported, only a few different types of aptamer structures are identified. Here we report a novel triplex-quadruplex hybrid scaffold formed by a codeine binding aptamer (CBA). CBA and its derivatives are G-rich DNA sequences. Codeine binding can induce the formation of a complex structure for this aptamer containing a G-quadruplex and a G·GC triplex, while codeine is located at the junction of the triplex and quadruplex. When split CBA into two moieties, codeine does not bind either moieties individually, but can bind them together by inducing the formation of the triplex-quadruplex scaffold. This structure formation induced by codeine binding is shown to inhibit polymerase reaction, which shows a potential application of the aptamer sequence in gene regulations.
Collapse
|
46
|
Chen X, Karpenko A, Lopez-Acevedo O. Silver-Mediated Double Helix: Structural Parameters for a Robust DNA Building Block. ACS OMEGA 2017; 2:7343-7348. [PMID: 30023548 PMCID: PMC6045379 DOI: 10.1021/acsomega.7b01089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/19/2017] [Indexed: 05/10/2023]
Abstract
The DNA double helix is a versatile building block used in DNA nanotechnology. To potentiate the discovery of new DNA nanoscale assemblies, recently, silver cations have been introduced to pair DNA strands by base-Ag+-base bonding rather than by Watson-Crick pairing. In this work, we study the classical dynamics of a parallel silver-mediated homobase double helix and compare it to the dynamics of the antiparallel double helix. Our classical simulations show that only the parallel double helix is highly stable through the 100 ns simulation time. A new type of H-bond previously proposed by our collaboration and recently observed in crystal-determined helices drives the physicochemical stabilization. Compared to the natural B-DNA form, the metal-mediated helix has a contracted axial base pair rise and smaller numbers of base pairs per turn. These results open the path for the inclusion of this robust metal-mediated building block into new nanoscale DNA assemblies.
Collapse
Affiliation(s)
- Xi Chen
- Department
of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Alexander Karpenko
- Department
of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
| | - Olga Lopez-Acevedo
- Department
of Applied Physics, COMP Centre of Excellence, Aalto University, P.O. Box 11100, 00076 Aalto, Finland
- Facultad
de Ciencias Básicas, Universidad
de Medellín, Carrera
87 No. 30-65, Medellín 050026, Colombia
- E-mail:
| |
Collapse
|
47
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
48
|
Papi F, Bazzicalupi C, Ferraroni M, Massai L, Bertrand B, Gratteri P, Colangelo D, Messori L. [Au(9-methylcaffein-8-ylidene)2
]+
/DNA Tel23 System: Solution, Computational, and Biological Studies. Chemistry 2017; 23:13784-13791. [DOI: 10.1002/chem.201702854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Francesco Papi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco, Salute del Bambino (NEUROFARBA); Laboratory of Molecular Modeling Cheminformatics & QSAR; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino (FI Italy
| | - Carla Bazzicalupi
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | - Marta Ferraroni
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | - Lara Massai
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| | | | - Paola Gratteri
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco, Salute del Bambino (NEUROFARBA); Laboratory of Molecular Modeling Cheminformatics & QSAR; Università degli Studi di Firenze; Via Ugo Schiff 6 50019 Sesto Fiorentino (FI Italy
| | - Donato Colangelo
- Dipartimento di Scienze della Salute; Università del Piemonte Orientale ‘A. Avogadro'; Via Solaroli 17 28100 Novara Italy
| | - Luigi Messori
- Dipartimento di Chimica “Ugo Schiff”; Università degli Studi di Firenze; Via della Lastruccia 3 50019 Sesto Fiorentino (FI Italy
| |
Collapse
|
49
|
Effects of monovalent cations on folding kinetics of G-quadruplexes. Biosci Rep 2017; 37:BSR20170771. [PMID: 28588052 PMCID: PMC5567087 DOI: 10.1042/bsr20170771] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 01/29/2023] Open
Abstract
G-quadruplexes are special structures existing at the ends of human telomeres,
the folding kinetics of which are essential for their functions, such as in the
maintenance of genome stability and the protection of chromosome ends. In the
present study, we investigated the folding kinetics of G-quadruplex in different
monovalent cation environments and determined the detailed kinetic parameters
for Na+- and K+-induced G-quadruplex folding, and for its
structural transition from the basket-type Na+ form to the
hybrid-type K+ form. More interestingly, although Li+ was
often used in previous studies of G-quadruplex folding as a control ion supposed
to have no effect, we have found that Li+ can actually influence the
folding kinetics of both Na+- and K+-induced
G-quadruplexes significantly and in different ways, by changing the folding
fraction of Na+-induced G-quadruplexes and greatly increasing the
folding rates of K+-induced G-quadruplexes. The present study may
shed new light on the roles of monovalent cations in G-quadruplex folding and
should be useful for further studies of the underlying folding mechanism.
Collapse
|
50
|
Aslanyan L, Ko J, Kim BG, Vardanyan I, Dalyan YB, Chalikian TV. Effect of Urea on G-Quadruplex Stability. J Phys Chem B 2017; 121:6511-6519. [DOI: 10.1021/acs.jpcb.7b03479] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lusine Aslanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Jordan Ko
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Byul G. Kim
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Ishkhan Vardanyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Yeva B. Dalyan
- Department
of Molecular Physics, Faculty of Physics, Yerevan State University, 1 Alex Manoogian Street, Yerevan 375025, Armenia
| | - Tigran V. Chalikian
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|