1
|
Vaquero-Sedas MI, Vega-Palas MA. A Nested PCR Telomere Fusion Assay Highlights the Widespread End-Capping Protection of Arabidopsis CTC1. Int J Mol Sci 2024; 25:672. [PMID: 38203842 PMCID: PMC10779545 DOI: 10.3390/ijms25010672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/15/2023] [Accepted: 11/18/2023] [Indexed: 01/12/2024] Open
Abstract
Telomeres protect the ends of linear eukaryotic chromosomes from being recognized as DNA double-strand breaks. Two major protein complexes are involved in the protection of telomeres: shelterin and CST. The dysfunction of these complexes can challenge the function of telomeres and lead to telomere fusions, breakage-fusion-bridge cycles, and cell death. Therefore, monitoring telomere fusions helps to understand telomeres biology. Telomere fusions are often analyzed by Fluorescent In Situ Hybridization (FISH) or PCR. Usually, both methods involve hybridization with a telomeric probe, which allows the detection of fusions containing telomeric sequences, but not of those lacking them. With the aim of detecting both types of fusion events, we have developed a nested PCR method to analyze telomere fusions in Arabidopsis thaliana. This method is simple, accurate, and does not require hybridization. We have used it to analyze telomere fusions in wild-type and mutant plants altered in CTC1, one of the three components of the Arabidopsis CST telomere capping complex. Our results show that null ctc1-2 mutant plants display fusions between all telomeric regions present in Arabidopsis chromosomes 1, 3 and 5, thus highlighting the widespread end-capping protection achieved by CTC1.
Collapse
Affiliation(s)
| | - Miguel A. Vega-Palas
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, IBVF (CSIC-US), E41092 Seville, Spain;
| |
Collapse
|
2
|
Kusová A, Steinbachová L, Přerovská T, Drábková LZ, Paleček J, Khan A, Rigóová G, Gadiou Z, Jourdain C, Stricker T, Schubert D, Honys D, Schrumpfová PP. Completing the TRB family: newly characterized members show ancient evolutionary origins and distinct localization, yet similar interactions. PLANT MOLECULAR BIOLOGY 2023; 112:61-83. [PMID: 37118559 PMCID: PMC10167121 DOI: 10.1007/s11103-023-01348-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
Telomere repeat binding proteins (TRBs) belong to a family of proteins possessing a Myb-like domain which binds to telomeric repeats. Three members of this family (TRB1, TRB2, TRB3) from Arabidopsis thaliana have already been described as associated with terminal telomeric repeats (telomeres) or short interstitial telomeric repeats in gene promoters (telo-boxes). They are also known to interact with several protein complexes: telomerase, Polycomb repressive complex 2 (PRC2) E(z) subunits and the PEAT complex (PWOs-EPCRs-ARIDs-TRBs). Here we characterize two novel members of the TRB family (TRB4 and TRB5). Our wide phylogenetic analyses have shown that TRB proteins evolved in the plant kingdom after the transition to a terrestrial habitat in Streptophyta, and consequently TRBs diversified in seed plants. TRB4-5 share common TRB motifs while differing in several others and seem to have an earlier phylogenetic origin than TRB1-3. Their common Myb-like domains bind long arrays of telomeric repeats in vitro, and we have determined the minimal recognition motif of all TRBs as one telo-box. Our data indicate that despite the distinct localization patterns of TRB1-3 and TRB4-5 in situ, all members of TRB family mutually interact and also bind to telomerase/PRC2/PEAT complexes. Additionally, we have detected novel interactions between TRB4-5 and EMF2 and VRN2, which are Su(z)12 subunits of PRC2.
Collapse
Affiliation(s)
- Alžbeta Kusová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Steinbachová
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tereza Přerovská
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Lenka Záveská Drábková
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Paleček
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ahamed Khan
- Institute of Plant Molecular Biology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Gabriela Rigóová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Zuzana Gadiou
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Claire Jourdain
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Tino Stricker
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Daniel Schubert
- Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - David Honys
- Laboratory of Pollen Biology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petra Procházková Schrumpfová
- Laboratory of Functional Genomics and Proteomics, Faculty of Science, National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic.
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
3
|
Charbonnel C, Rymarenko O, Da Ines O, Benyahya F, White CI, Butter F, Amiard S. The Linker Histone GH1-HMGA1 Is Involved in Telomere Stability and DNA Damage Repair. PLANT PHYSIOLOGY 2018; 177:311-327. [PMID: 29622687 PMCID: PMC5933147 DOI: 10.1104/pp.17.01789] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/28/2018] [Indexed: 05/19/2023]
Abstract
Despite intensive searches, few proteins involved in telomere homeostasis have been identified in plants. Here, we used pull-down assays to identify potential telomeric interactors in the model plant species Arabidopsis (Arabidopsis thaliana). We identified the candidate protein GH1-HMGA1 (also known as HON4), an uncharacterized linker histone protein of the High Mobility Group Protein A (HMGA) family in plants. HMGAs are architectural transcription factors and have been suggested to function in DNA damage repair, but their precise biological roles remain unclear. Here, we show that GH1-HMGA1 is required for efficient DNA damage repair and telomere integrity in Arabidopsis. GH1-HMGA1 mutants exhibit developmental and growth defects, accompanied by ploidy defects, increased telomere dysfunction-induced foci, mitotic anaphase bridges, and degraded telomeres. Furthermore, mutants have a higher sensitivity to genotoxic agents such as mitomycin C and γ-irradiation. Our work also suggests that GH1-HMGA1 is involved directly in the repair process by allowing the completion of homologous recombination.
Collapse
Affiliation(s)
- Cyril Charbonnel
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | | | - Olivier Da Ines
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Fatiha Benyahya
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Charles I White
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| | - Falk Butter
- Institute of Molecular Biology, 455128 Mainz, Germany
| | - Simon Amiard
- Génétique, Reproduction, et Dévélopement, Université Clermont Auvergne-Centre National de la Recherche Scientifique Unité Mixte de Recherche 6293-INSERM U1103, F-63000 Clermont-Ferrand, France
| |
Collapse
|
4
|
Tasdighian S, Van Bel M, Li Z, Van de Peer Y, Carretero-Paulet L, Maere S. Reciprocally Retained Genes in the Angiosperm Lineage Show the Hallmarks of Dosage Balance Sensitivity. THE PLANT CELL 2017; 29:2766-2785. [PMID: 29061868 PMCID: PMC5728127 DOI: 10.1105/tpc.17.00313] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 05/20/2023]
Abstract
In several organisms, particular functional categories of genes, such as regulatory and complex-forming genes, are preferentially retained after whole-genome multiplications but rarely duplicate through small-scale duplication, a pattern referred to as reciprocal retention. This peculiar duplication behavior is hypothesized to stem from constraints on the dosage balance between the genes concerned and their interaction context. However, the evidence for a relationship between reciprocal retention and dosage balance sensitivity remains fragmentary. Here, we identified which gene families are most strongly reciprocally retained in the angiosperm lineage and studied their functional and evolutionary characteristics. Reciprocally retained gene families exhibit stronger sequence divergence constraints and lower rates of functional and expression divergence than other gene families, suggesting that dosage balance sensitivity is a general characteristic of reciprocally retained genes. Gene families functioning in regulatory and signaling processes are much more strongly represented at the top of the reciprocal retention ranking than those functioning in multiprotein complexes, suggesting that regulatory imbalances may lead to stronger fitness effects than classical stoichiometric protein complex imbalances. Finally, reciprocally retained duplicates are often subject to dosage balance constraints for prolonged evolutionary times, which may have repercussions for the ease with which genome multiplications can engender evolutionary innovation.
Collapse
Affiliation(s)
- Setareh Tasdighian
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Li
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Yves Van de Peer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
- Genomics Research Institute, University of Pretoria, Pretoria 0028, South Africa
| | - Lorenzo Carretero-Paulet
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| | - Steven Maere
- Ghent University, Department of Plant Biotechnology and Bioinformatics, B-9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, B-9052 Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
5
|
Lustig AJ. Hypothesis: Paralog Formation from Progenitor Proteins and Paralog Mutagenesis Spur the Rapid Evolution of Telomere Binding Proteins. Front Genet 2016; 7:10. [PMID: 26904098 PMCID: PMC4748036 DOI: 10.3389/fgene.2016.00010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/22/2016] [Indexed: 12/31/2022] Open
Abstract
Through elegant studies in fungal cells and complex organisms, we propose a unifying paradigm for the rapid evolution of telomere binding proteins (TBPs) that associate with either (or both) telomeric DNA and telomeric proteins. TBPs protect and regulate telomere structure and function. Four critical factors are involved. First, TBPs that commonly bind to telomeric DNA include the c-Myb binding proteins, OB-fold single-stranded binding proteins, and G-G base paired Hoogsteen structure (G4) binding proteins. Each contributes independently or, in some cases, cooperatively, to provide a minimum level of telomere function. As a result of these minimal requirements and the great abundance of homologs of these motifs in the proteome, DNA telomere-binding activity may be generated more easily than expected. Second, telomere dysfunction gives rise to genome instability, through the elevation of recombination rates, genome ploidy, and the frequency of gene mutations. The formation of paralogs that diverge from their progenitor proteins ultimately can form a high frequency of altered TBPs with altered functions. Third, TBPs that assemble into complexes (e.g., mammalian shelterin) derive benefits from the novel emergent functions. Fourth, a limiting factor in the evolution of TBP complexes is the formation of mutually compatible interaction surfaces amongst the TBPs. These factors may have different degrees of importance in the evolution of different phyla, illustrated by the apparently simpler telomeres in complex plants. Selective pressures that can utilize the mechanisms of paralog formation and mutagenesis to drive TBP evolution along routes dependent on the requisite physiologic changes.
Collapse
Affiliation(s)
- Arthur J Lustig
- Department of Biochemistry and Molecular Biology, Tulane University, New Orleans LA, USA
| |
Collapse
|
6
|
Fulcher N, Riha K. Using Centromere Mediated Genome Elimination to Elucidate the Functional Redundancy of Candidate Telomere Binding Proteins in Arabidopsis thaliana. Front Genet 2016; 6:349. [PMID: 26779251 PMCID: PMC4700174 DOI: 10.3389/fgene.2015.00349] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/29/2015] [Indexed: 12/23/2022] Open
Abstract
Proteins that bind to telomeric DNA form the key structural and functional constituents of telomeres. While telomere binding proteins have been described in the majority of organisms, their identity in plants remains unknown. Several protein families containing a telomere binding motif known as the telobox have been previously described in Arabidopsis thaliana. Nonetheless, functional evidence for their involvement at telomeres has not been obtained, likely due to functional redundancy. Here we performed genetic analysis on the TRF-like family consisting of six proteins (TRB1, TRP1, TRFL1, TRFL2, TRFL4, and TRF9) which have previously shown to bind telomeric DNA in vitro. We used haploid genetics to create multiple knock-out plants deficient for all six proteins of this gene family. These plants did not exhibit changes in telomere length, or phenotypes associated with telomere dysfunction. This data demonstrates that this telobox protein family is not involved in telomere maintenance in Arabidopsis. Phylogenetic analysis in major plant lineages revealed early diversification of telobox proteins families indicating that telomere function may be associated with other telobox proteins.
Collapse
Affiliation(s)
- Nick Fulcher
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna Austria
| | - Karel Riha
- Central European Institute of Technology, Masaryk University, Brno Czech Republic
| |
Collapse
|
7
|
Dvořáčková M, Fojtová M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:18-37. [PMID: 25752316 DOI: 10.1111/tpj.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 05/03/2023]
Abstract
Telomeres and genes encoding 45S ribosomal RNA (rDNA) are frequently located adjacent to each other on eukaryotic chromosomes. Although their primary roles are different, they show striking similarities with respect to their features and additional functions. Both genome domains have remarkably dynamic chromatin structures. Both are hypersensitive to dysfunctional histone chaperones, responding at the genomic and epigenomic levels. Both generate non-coding transcripts that, in addition to their epigenetic roles, may induce gross chromosomal rearrangements. Both give rise to chromosomal fragile sites, as their replication is intrinsically problematic. However, at the same time, both are essential for maintenance of genomic stability and integrity. Here we discuss the structural and functional inter-connectivity of telomeres and rDNA, with a focus on recent results obtained in plants.
Collapse
Affiliation(s)
- Martina Dvořáčková
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Kamenice 5, 62500, Brno, Czech Republic
- Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, 61265, Brno, Czech Republic
| |
Collapse
|
8
|
Nelson ADL, Forsythe ES, Gan X, Tsiantis M, Beilstein MA. Extending the model of Arabidopsis telomere length and composition across Brassicaceae. Chromosome Res 2015; 22:153-66. [PMID: 24846723 DOI: 10.1007/s10577-014-9423-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Telomeres are repetitive TG-rich DNA elements essential for maintaining the stability of genomes and replicative capacity of cells in almost all eukaryotes. Most of what is known about telomeres in plants comes from the angiosperm Arabidopsis thaliana, which has become an important comparative model for telomere biology. Arabidopsis tolerates numerous insults to its genome, many of which are catastrophic or lethal in other eukaryotic systems such as yeast and vertebrates. Despite the importance of Arabidopsis in establishing a model for the structure and regulation of plant telomeres, only a handful of studies have used this information to assay components of telomeres from across land plants, or even among the closest relatives of Arabidopsis in the plant family Brassicaceae. Here, we determined how well Arabidopsis represents Brassicaceae by comparing multiple aspects of telomere biology in species that represent major clades in the family tree. Specifically, we determined the telomeric repeat sequence, measured bulk telomere length, and analyzed variation in telomere length on syntenic chromosome arms. In addition, we used a phylogenetic approach to infer the evolutionary history of putative telomere-binding proteins, CTC1, STN1, TEN1 (CST), telomere repeat-binding factor like (TRFL), and single Myb histone (SMH). Our analyses revealed conservation of the telomeric DNA repeat sequence, but considerable variation in telomere length among the sampled species, even in comparisons of syntenic chromosome arms. We also found that the single-stranded and double-stranded telomeric DNA-binding complexes CST and TRFL, respectively, differ in their pattern of gene duplication and loss. The TRFL and SMH gene families have undergone numerous duplication events, and these duplicate copies are often retained in the genome. In contrast, CST components occur as single-copy genes in all sampled genomes, even in species that experienced recent whole genome duplication events. Taken together, our results place the Arabidopsis model in the context of other species in Brassicaceae, making the family the best characterized plant group in regard to telomere architecture.
Collapse
Affiliation(s)
- Andrew D L Nelson
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | | | | | | |
Collapse
|
9
|
Boltz KA, Jasti M, Townley JM, Shippen DE. Analysis of poly(ADP-Ribose) polymerases in Arabidopsis telomere biology. PLoS One 2014; 9:e88872. [PMID: 24551184 PMCID: PMC3923816 DOI: 10.1371/journal.pone.0088872] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 01/17/2014] [Indexed: 11/22/2022] Open
Abstract
Maintaining the length of the telomere tract at chromosome ends is a complex process vital to normal cell division. Telomere length is controlled through the action of telomerase as well as a cadre of telomere-associated proteins that facilitate replication of the chromosome end and protect it from eliciting a DNA damage response. In vertebrates, multiple poly(ADP-ribose) polymerases (PARPs) have been implicated in the regulation of telomere length, telomerase activity and chromosome end protection. Here we investigate the role of PARPs in plant telomere biology. We analyzed Arabidopsis thaliana mutants null for PARP1 and PARP2 as well as plants treated with the PARP competitive inhibitor 3-AB. Plants deficient in PARP were hypersensitive to genotoxic stress, and expression of PARP1 and PARP2 mRNA was elevated in response to MMS or zeocin treatment or by the loss of telomerase. Additionally, PARP1 mRNA was induced in parp2 mutants, and conversely, PARP2 mRNA was induced in parp1 mutants. PARP3 mRNA, by contrast, was elevated in both parp1 and parp2 mutants, but not in seedlings treated with 3-AB or zeocin. PARP mutants and 3-AB treated plants displayed robust telomerase activity, no significant changes in telomere length, and no end-to-end chromosome fusions. Although there remains a possibility that PARPs play a role in Arabidopsis telomere biology, these findings argue that the contribution is a minor one.
Collapse
Affiliation(s)
- Kara A. Boltz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Madhu Jasti
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Jennifer M. Townley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
10
|
Lee WK, Yun JH, Lee W, Cho MH. DNA-binding domain of AtTRB2 reveals unique features of a single Myb histone protein family that binds to both Arabidopsis- and human-type telomeric DNA sequences. MOLECULAR PLANT 2012; 5:1406-1408. [PMID: 22859734 DOI: 10.1093/mp/sss063] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
|
11
|
Moriguchi R, Ohata K, Kanahama K, Takahashi H, Nishiyama M, Kanayama Y. Suppression of telomere-binding protein gene expression represses seed and fruit development in tomato. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:1927-1933. [PMID: 21683470 DOI: 10.1016/j.jplph.2011.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 05/30/2023]
Abstract
Tomato (Solanum lycopersicum L.) plants were transformed with an antisense construct of a cDNA encoding tomato telomere-binding protein (LeTBP1) to describe the role of a telomere-binding protein at the whole plant level. Fruit size decreased corresponding to the degree of suppression of LeTBP1 expression. This inhibition of fruit development was likely due to a decrease in the number of seeds in the LeTBP1 antisense plants. Pollen fertility and pollen germination rate decreased in accordance with the degree of suppression of LeTBP1 expression. Ovule viability was also reduced in the LeTBP1 antisense plants. Although plant height was somewhat reduced in the antisense plants compared to the control plants, the number and weight of leaves were unaffected by LeTBP1 suppression. The number and morphology of flowers were also normal in the antisense plants. These indicate that reduced fertility in the antisense plants is not an indirect effect of altered vegetative growth. LeTBP1 expression was sensitive to temperature stress in wild-type plants. We conclude that LeTBP1 plays a critical role in seed and fruit development rather than vegetative growth and flower formation.
Collapse
Affiliation(s)
- Ryo Moriguchi
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai 981-8555, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
13
|
Watson JM, Riha K. Comparative biology of telomeres: where plants stand. FEBS Lett 2010; 584:3752-9. [PMID: 20580356 PMCID: PMC3767043 DOI: 10.1016/j.febslet.2010.06.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/11/2010] [Accepted: 06/14/2010] [Indexed: 01/02/2023]
Abstract
Telomeres are essential structures at the ends of eukaryotic chromosomes. Work on their structure and function began almost 70 years ago in plants and flies, continued through the Nobel Prize winning work on yeast and ciliates, and goes on today in many model and non-model organisms. The basic molecular mechanisms of telomeres are highly conserved throughout evolution, and our current understanding of how telomeres function is a conglomeration of insights gained from many different species. This review will compare the current knowledge of telomeres in plants with other organisms, with special focus on the functional length of telomeric DNA, the search for TRF homologs, the family of POT1 proteins, and the recent discovery of members of the CST complex.
Collapse
Affiliation(s)
- J Matthew Watson
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
14
|
Shakirov EV, Perroud PF, Nelson AD, Cannell ME, Quatrano RS, Shippen DE. Protection of Telomeres 1 is required for telomere integrity in the moss Physcomitrella patens. THE PLANT CELL 2010; 22:1838-48. [PMID: 20515974 PMCID: PMC2910979 DOI: 10.1105/tpc.110.075846] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In vertebrates, the single-stranded telomeric DNA binding protein Protection of Telomeres 1 (POT1) shields chromosome ends and prevents them from eliciting a DNA damage response. By contrast, Arabidopsis thaliana encodes two divergent full-length POT1 paralogs that do not exhibit telomeric DNA binding in vitro and have evolved to mediate telomerase regulation instead of chromosome end protection. To further investigate the role of POT1 in plants, we established the moss Physcomitrella patens as a new model for telomere biology and a counterpoint to Arabidopsis. The sequence and architecture of the telomere tract is similar in P. patens and Arabidopsis, but P. patens harbors only a single-copy POT1 gene. Unlike At POT1 proteins, Pp POT1 efficiently bound single-stranded telomeric DNA in vitro. Deletion of the P. patens POT1 gene resulted in the rapid onset of severe developmental defects and sterility. Although telomerase activity levels were unperturbed, telomeres were substantially shortened, harbored extended G-overhangs, and engaged in end-to-end fusions. We conclude that the telomere capping function of POT1 is conserved in early diverging land plants but is subsequently lost in Arabidopsis.
Collapse
Affiliation(s)
- Eugene V. Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | | | - Andrew D. Nelson
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Maren E. Cannell
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Ralph S. Quatrano
- Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Dorothy E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Address correspondence to
| |
Collapse
|
15
|
Bowen AJ, Gonzalez D, Mullins JGL, Bhatt AM, Martinez A, Conlan RS. PAH-domain-specific interactions of the Arabidopsis transcription coregulator SIN3-LIKE1 (SNL1) with telomere-binding protein 1 and ALWAYS EARLY2 Myb-DNA binding factors. J Mol Biol 2010; 395:937-49. [PMID: 19962994 DOI: 10.1016/j.jmb.2009.11.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 09/25/2009] [Accepted: 11/29/2009] [Indexed: 11/17/2022]
Abstract
The eukaryotic SIN3 protein is the central component of the evolutionarily conserved multisubunit SIN3 complex that has roles in regulating gene expression and genome stability. Here we characterise the structure of the SIN3 protein in higher plants through the analysis of SNL1 (SIN3-LIKE1), SNL2, SNL3, SNL4, SNL5 and SNL6, a family of six SIN3 homologues in Arabidopsis thaliana. In an Arabidopsis-protoplast beta-glucuronidase reporter gene assay, as well as in a heterologous yeast repression assay, full-length SNL1 was shown to repress transcription in a histone-deacetylase-dependent manner, demonstrating the conserved nature of SIN3 function. Yeast two-hybrid screening identified a number of DNA binding proteins each containing a single Myb domain that included the Arabidopsis ALWAYS EARLY proteins AtALY2 and AtALY3, and two telomere binding proteins AtTBP1 and AtTRP2/TRFL1 as SNL1 partners, suggesting potential functions for SNL1 in development and telomere maintenance. The interaction with telomere-binding protein 1 was found to be mediated through the well-defined paired amphipathic helix domain PAH2. In contrast, the AtALY2 interaction was mediated through the PAH3 domain of SNL1, which is structurally distinct from PAH1 and PAH2, suggesting that evolution of this domain to a more novel structural motif has occurred. These findings support a diverse role of SNL1 in the regulation of transcription and genome stability.
Collapse
Affiliation(s)
- Adam J Bowen
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | | | | | | | | | | |
Collapse
|
16
|
Hong JP, Byun MY, An K, Yang SJ, An G, Kim WT. OsKu70 is associated with developmental growth and genome stability in rice. PLANT PHYSIOLOGY 2010; 152:374-87. [PMID: 19923234 PMCID: PMC2799371 DOI: 10.1104/pp.109.150391] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The cellular functions of Ku70 in repair of DNA double-stranded breaks and telomere regulation have been described in a wide range of organisms. In this study, we identified the rice (Oryza sativa) Ku70 homolog (OsKu70) from the rice genome database. OsKu70 transcript was detected constitutively in every tissue and developmental stage examined and also in undifferentiated callus cells in rice. Yeast two-hybrid and in vitro pull-down experiments revealed that OsKu70 physically interacts with OsKu80. We obtained loss-of-function osku70 T-DNA knockout mutant lines and constructed transgenic rice plants that overexpress the OsKu70 gene in the sense (35S:OsKu70) or antisense (35S:anti-OsKu70) orientation. The homozygous G2 osku70 mutant lines were more sensitive than wild-type plants to a DNA-damaging agent (0.01%-0.05% methyl-methane sulfonate), consistent with the notion that OsKu70 participates in the DNA repair mechanism. Terminal restriction fragment analysis revealed that telomeres in homozygous G2 osku70 mutants were markedly longer (10-20 kb) than those in wild-type plants (5-10 kb), whereas telomere length in heterozygous G2 osku70 mutant and T2 OsKu70-overexpressing transgenic (35S:OsKu70) rice resembled that of the wild-type plant. In contrast to what was observed in Arabidopsis (Arabidopsis thaliana) atku70 mutants, homozygous G2 osku70 rice plants displayed severe developmental defects in both vegetative and reproductive organs under normal growth conditions, resulting in sterile flowers. Analysis of meiotic progression in pollen mother cells demonstrated that up to 11.1% (seven of 63) of G2 mutant anaphase cells displayed one or more chromosomal fusions. These results suggest that OsKu70 is required for the maintenance of chromosome stability and normal developmental growth in rice plants.
Collapse
|
17
|
Single-Myb-histone proteins from Arabidopsis thaliana: a quantitative study of telomere-binding specificity and kinetics. Biochem J 2009; 419:221-8, 2 p following 228. [DOI: 10.1042/bj20082195] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteins that bind telomeric DNA modulate the structure of chromosome ends and control telomere function and maintenance. It has been shown that AtTRB (Arabidopsis thaliana telomere-repeat-binding factor) proteins from the SMH (single-Myb-histone) family selectively bind double-stranded telomeric DNA and interact with the telomeric protein AtPOT1b (A. thaliana protection of telomeres 1b), which is involved in telomere capping. In the present study, we performed the first quantitative DNA-binding study of this plant-specific family of proteins. Interactions of full-length proteins AtTRB1 and AtTRB3 with telomeric DNA were analysed by electrophoretic mobility-shift assay, fluorescence anisotropy and surface plasmon resonance to reveal their binding stoichiometry and kinetics. Kinetic analyses at different salt conditions enabled us to estimate the electrostatic component of binding and explain different affinities of the two proteins to telomeric DNA. On the basis of available data, a putative model explaining the binding stoichiometry and the protein arrangement on telomeric DNA is presented.
Collapse
|
18
|
Ko S, Yu EY, Shin J, Yoo HH, Tanaka T, Kim WT, Cho HS, Lee W, Chung IK. Solution Structure of the DNA Binding Domain of Rice Telomere Binding Protein RTBP1,. Biochemistry 2009; 48:827-38. [DOI: 10.1021/bi801270g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sunggeon Ko
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Eun Young Yu
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Joon Shin
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hyun Hee Yoo
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Toshiyuki Tanaka
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Woo Taek Kim
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hyun-Soo Cho
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Weontae Lee
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - In Kwon Chung
- Departments of Biochemistry and Biology, Protein Network Research Center, Yonsei University, Seoul 120-749, Korea, and Institute of Applied Biochemistry, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
19
|
Shakirov EV, Salzberg SL, Alam M, Shippen DE. Analysis of Carica papaya Telomeres and Telomere-Associated Proteins: Insights into the Evolution of Telomere Maintenance in Brassicales. TROPICAL PLANT BIOLOGY 2008; 1:202-215. [PMID: 20664721 PMCID: PMC2909770 DOI: 10.1007/s12042-008-9018-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Telomeres are terminal regions of linear eukaryotic chromosomes that are critical for genome stability and continued cell proliferation. The draft assembly of the papaya genome provides an opportunity to analyze and compare the evolution of telomeric DNA sequence composition and telomere maintenance machinery in this and other organisms of the Brassicales Order, which includes Arabidopsis. Here we investigate telomere size and sequence variation at papaya chromosome ends. As with most other plant species, papaya telomeres consist of TTTAGGG repeats. However, in contrast to members of the closely related Brassicaceae family, telomeres in papaya are ~10-fold longer. Sequence analysis reveals that many centromereproximal telomere repeats in papaya harbor nucleotide substitutions and insertions of Gs and Ts. In contrast, we found very few N-to-C substitutions, and even fewer instances of nucleotide deletion, suggesting that a six-nucleotide telomere repeat is not well tolerated. The papaya genome encodes single-copy sequence homologues of several genes involved in telomere maintenance and chromosome end protection, including the Telomerase Reverse Transcriptase (TERT) and Protection Of Telomeres (POT1). Notably, unlike Arabidopsis, which encodes six Telomere Repeat binding Factor-like (TRFL) proteins that bind double-stranded telomere DNA, papaya appears to encode only two such proteins. Thus, the more streamlined genome of papaya will provide an excellent resource for comparative and functional analysis of telomeres in plants.
Collapse
Affiliation(s)
- E. V. Shakirov
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - S. L. Salzberg
- Center for Bioinformatics and Computational Biology, and Department of Computer Science, University of Maryland, 3125 Biomolecular Sciences Bldg, College Park, MD 20742, USA
| | - M. Alam
- Advanced Studies in Genomics, Proteomics and Bioinformatics, and Department of Microbiology, University of Hawaii, Honolulu, HI 96822, USA
| | - D. E. Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA,
| |
Collapse
|
20
|
Mozgová I, Schrumpfová PP, Hofr C, Fajkus J. Functional characterization of domains in AtTRB1, a putative telomere-binding protein in Arabidopsis thaliana. PHYTOCHEMISTRY 2008; 69:1814-9. [PMID: 18479720 DOI: 10.1016/j.phytochem.2008.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 03/24/2008] [Accepted: 04/01/2008] [Indexed: 05/24/2023]
Abstract
Telomeres are nucleoprotein structures ensuring the stability of eukaryotic chromosome ends. Two protein families, TRFL (TFL-Like) and SMH (Single-Myb-Histone), containing a specific telobox motif in their Myb domain, have been identified as potential candidates involved in a functional nucleoprotein structure analogous to human "shelterin" at plant telomeres. We analyze the DNA-protein interaction of the full-length and truncated variants of AtTRB1, a SMH-family member with a typical structure: N-terminal Myb domain, central H1/5 domain and C-terminal coiled-coil. We show that preferential interaction of AtTRB1 with double-stranded telomeric DNA is mediated by the Myb domain, while the H1/5 domain is involved in non-specific DNA-protein interaction and in the multimerization of AtTRB1.
Collapse
Affiliation(s)
- Iva Mozgová
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | | | | | | |
Collapse
|
21
|
Schrumpfová PP, Kuchar M, Palecek J, Fajkus J. Mapping of interaction domains of putative telomere-binding proteins AtTRB1 and AtPOT1b from Arabidopsis thaliana. FEBS Lett 2008; 582:1400-6. [PMID: 18387366 DOI: 10.1016/j.febslet.2008.03.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/19/2008] [Accepted: 03/02/2008] [Indexed: 11/20/2022]
Abstract
We previously searched for interactions between plant telomere-binding proteins and found that AtTRB1, from the single-myb-histone (Smh) family, interacts with the Arabidopsis POT1-like-protein, AtPOT1b, involved in telomere capping. Here we identify domains responsible for that interaction. We also map domains in AtTRB1 responsible for interactions with other Smh-family-members. Our results show that the N-terminal OB-fold-domain of AtPOT1b mediates the interaction with AtTRB1. This domain is characteristic for POT1- proteins and is involved with binding the G-rich-strand of telomeric DNA. AtPOT1b also interacts with AtTRB2 and AtTRB3. The central histone-globular-domain of AtTRB1 is involved with binding to AtTRB2 and 3, as well as to AtPOT1b. AtTRB1-heterodimers with other Smh-family-members are more stable than AtTRB1-homodimers. Our results reveal interaction networks of plant telomeres.
Collapse
Affiliation(s)
- Petra Procházková Schrumpfová
- Department of Functional Genomics and Proteomics, Institute of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | | | | | | |
Collapse
|
22
|
Grandin N, Charbonneau M. Protection against chromosome degradation at the telomeres. Biochimie 2008; 90:41-59. [PMID: 17764802 DOI: 10.1016/j.biochi.2007.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 07/17/2007] [Indexed: 10/23/2022]
Abstract
Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.
Collapse
Affiliation(s)
- Nathalie Grandin
- UMR CNRS no. 5239, Ecole Normale Supérieure de Lyon, IFR128 BioSciences Gerland-Lyon Sud, 46, allée d'Italie, 69364 Lyon, France
| | | |
Collapse
|
23
|
Hong JP, Byun MY, Koo DH, An K, Bang JW, Chung IK, An G, Kim WT. Suppression of RICE TELOMERE BINDING PROTEIN 1 results in severe and gradual developmental defects accompanied by genome instability in rice. THE PLANT CELL 2007; 19:1770-81. [PMID: 17586654 PMCID: PMC1955717 DOI: 10.1105/tpc.107.051953] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Although several potential telomere binding proteins have been identified in higher plants, their in vivo functions are still unknown at the plant level. Both knockout and antisense mutants of RICE TELOMERE BINDING PROTEIN1 (RTBP1) exhibited markedly longer telomeres relative to those of the wild type, indicating that the amount of functional RTBP1 is inversely correlated with telomere length. rtbp1 plants displayed progressive and severe developmental abnormalities in both germination and postgermination growth of vegetative organs over four generations (G1 to G4). Reproductive organ formation, including panicles, stamens, and spikelets, was also gradually and severely impaired in G1 to G4 mutants. Up to 11.4, 17.2, and 26.7% of anaphases in G2, G3, and G4 mutant pollen mother cells, respectively, exhibited one or more chromosomal fusions, and this progressively increasing aberrant morphology was correlated with an increased frequency of anaphase bridges containing telomeric repeat DNA. Furthermore, 35S:anti-RTBP1 plants expressing lower levels of RTBP1 mRNA exhibited developmental phenotypes intermediate between the wild type and mutants in all aspects examined, including telomere length, vegetative and reproductive growth, and degree of genomic anomaly. These results suggest that RTBP1 plays dual roles in rice (Oryza sativa), as both a negative regulator of telomere length and one of positive and functional components for proper architecture of telomeres.
Collapse
Affiliation(s)
- Jong-Pil Hong
- Department of Biology, College of Science, Yonsei University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|