1
|
Tyagi P, Singh A, Kumar J, Ahmad B, Bahuguna A, Vivekanandan P, Sarin SK, Kumar V. Furanocoumarins promote proteasomal degradation of viral HBx protein and down-regulate cccDNA transcription and replication of hepatitis B virus. Virology 2024; 595:110065. [PMID: 38569227 DOI: 10.1016/j.virol.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Nucleot(s)ide analogues, the current antiviral treatments against chronic hepatitis B (CHB) infection, are non-curative due to their inability to eliminate covalently closed circular DNA (cccDNA) from the infected hepatocytes. Preclinical studies have shown that coumarin derivatives can effectively reduce the HBV DNA replication. We evaluated the antiviral efficacy of thirty new coumarin derivatives in cell culture models for studying HBV. Furanocoumarins Fc-20 and Fc-31 suppressed the levels of pre-genomic RNA as well as cccDNA, and reduced the secretion of virions, HBsAg and HBeAg. The antiviral efficacies of Fc-20 and Fc31 improved further when used in combination with the hepatitis B antiviral drug Entecavir. There was a marked reduction in the intracellular HBx level in the presence of these furanocoumarins due to proteasomal degradation resulting in the down-regulation of HBx-dependent viral genes. Importantly, both Fc-20 and Fc-31 were non-cytotoxic to cells even at high concentrations. Further, our molecular docking studies confirmed a moderate to high affinity interaction between furanocoumarins and viral HBx via residues Ala3, Arg26 and Lys140. These data suggest that furanocoumarins could be developed as a new therapeutic for CHB infection.
Collapse
Affiliation(s)
- Purnima Tyagi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Ankita Singh
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Jitendra Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Belal Ahmad
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Aparna Bahuguna
- Elsevier/ RELX India Pvt Ltd., DLF Cyber City, Gurgaon, 122002, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Vijay Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.
| |
Collapse
|
2
|
Wang Z, Yan H, He F, Wang J, Zhang Y, Sun L, Hao C, Wang W. Inhibition of herpes simplex virus by wedelolactone via targeting viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways. Int J Antimicrob Agents 2023; 62:107000. [PMID: 37838148 DOI: 10.1016/j.ijantimicag.2023.107000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/14/2023] [Accepted: 10/01/2023] [Indexed: 10/16/2023]
Abstract
OBJECTIVES Development of novel antiherpes simplex virus (HSV) agents with active mechanisms different from nucleoside analogues is of high importance. Herein, we investigated the anti-HSV activities and mechanisms of wedelolactone (WDL) both in vitro and in vivo. METHODS Cytopathic effect (CPE) inhibition assay, plaque assay, and western blot assay were used to evaluate the anti-HSV effects of WDL in vitro. The immunofluorescence assay, RT-PCR assay, plaque reduction assay, sandwich ELISA assay, syncytium formation assay, tanscriptome analysis and western blot assay were used to explore the anti-HSV mechanisms of WDL. The murine encephalitis and vaginal models of HSV infection were performed to evaluate the anti-HSV effects of WDL in vivo. RESULTS WDL possessed inhibitory effects against both HSV-1 and HSV-2 in different cells with low toxicity, superior to the effects of acyclovir. WDL can directly inactivate the HSV particle via destruction of viral envelope and block HSV replication process after virus adsorption, different from the mechanisms of acyclovir. WDL may influence the host genes and signaling pathways related to HSV infection and immune responses. WDL can mainly interfere with the TBK1/IRF3 and SOCS1/STAT3 pathways to reduce HSV infection and inflammatory responses. Importantly, WDL treatment markedly improved mice survival, attenuated inflammatory symptoms, and reduced the virus titres in both HSV-1 and HSV-2 infected mice. CONCLUSIONS Thus, the natural compound WDL has the potential to be developed into a novel anti-HSV agent targeting both viral envelope and cellular TBK1/IRF3 and SOCS1/STAT3 pathways.
Collapse
Affiliation(s)
- Zhaoqi Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Han Yan
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Fujie He
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Jie Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Yang Zhang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Lishan Sun
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China
| | - Cui Hao
- Medical Research Center, Affiliated Hospital of Qingdao University, Qingdao, PR China.
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, PR China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
3
|
Mandal A, Hazra B. Medicinal plant molecules against hepatitis C virus: Current status and future prospect. Phytother Res 2023; 37:4353-4374. [PMID: 37439007 DOI: 10.1002/ptr.7936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/14/2023]
Abstract
Hepatitis C virus (HCV), a global malady, causes acute and chronic hepatitis leading to permanent liver damage, hepatocellular carcinoma, and death. Modern anti-HCV therapies are efficient, but mostly inaccessible for residents of underdeveloped regions. To innovate more effective treatments at affordable cost, medicinal plant-based products need to be explored. The aim of this article is to review plant constituents in the light of putative anti-HCV mechanisms of action, and discuss existing problems, challenges, and future directions for their potential application in therapeutic settings. One hundred sixty literatures were collected by using appropriate search strings via scientific search engines: Google Scholar, PubMed, ScienceDirect, and Scopus. Bibliography was prepared using Mendeley desktop software. We found a substantial number of plants that were reported to inhibit different stages of HCV life cycle. Traditional medicinal plants such as Phyllanthus amarus Schumach. and Thonn., Eclipta alba (L.) Hassk., and Acacia nilotica (L.) Delile exhibited strong anti-HCV activities. Again, several phytochemicals such as epigallocatechin-3-gallate, honokilol, punicalagin, and quercetin have shown broad-spectrum anti-HCV effect. We have presented promising phytochemicals like silymarin, curcumin, glycyrrhizin, and camptothecin for nanoparticle-based hepatocyte-targeted drug delivery. Nevertheless, only a few animal studies have been performed to validate the anti-HCV effect of these plant products. Again, insufficient clinical evaluation of the safety and effectiveness of herbal medications remain a problem. Selected plants products could be developed as novel therapeutics for HCV patients only after scrupulous evaluation of their safety and efficacy in a clinical set-up.
Collapse
Affiliation(s)
- Anirban Mandal
- Department of Microbiology, Mrinalini Datta Mahavidyapith, Birati, Kolkata, India
| | - Banasri Hazra
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Bachar SC, Mazumder K, Bachar R, Aktar A, Al Mahtab M. A Review of Medicinal Plants with Antiviral Activity Available in Bangladesh and Mechanistic Insight Into Their Bioactive Metabolites on SARS-CoV-2, HIV and HBV. Front Pharmacol 2021; 12:732891. [PMID: 34819855 PMCID: PMC8606584 DOI: 10.3389/fphar.2021.732891] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Currently, viral infection is the most serious health issue which causing unexpected higher rate of death globally. Many viruses are not yet curable, such as corona virus-2 (SARS-CoV-2), human immunodeficiency virus (HIV), hepatitis virus, human papilloma virus and so others. Furthermore, the toxicities and ineffective responses to resistant strains of synthetic antiviral drugs have reinforced the search of effective and alternative treatment options, such as plant-derived antiviral drug molecules. Therefore, in the present review, an attempt has been taken to summarize the medicinal plants reported for exhibiting antiviral activities available in Bangladesh along with discussing the mechanistic insights into their bioactive components against three most hazardous viruses, namely SARS-CoV-2, HIV, and HBV. The review covers 46 medicinal plants with antiviral activity from 25 families. Among the reported 79 bioactive compounds having antiviral activities isolated from these plants, about 37 of them have been reported for significant activities against varieties of viruses. Hesperidin, apigenin, luteolin, seselin, 6-gingerol, humulene epoxide, quercetin, kaempferol, curcumin, and epigallocatechin-3-gallate (EGCG) have been reported to inhibit multiple molecular targets of SARS-CoV-2 viral replication in a number of in silico investigations. Besides, numerous in silico, in vitro, and in vivo bioassays have been demonstrated that EGCG, anolignan-A, and B, ajoene, curcumin, and oleanolic acid exhibit anti-HIV activity while piperine, ursolic acid, oleanolic acid, (+)-cycloolivil-4'-O-β-d-glucopyranoside, quercetin, EGCG, kaempferol, aloin, apigenin, rosmarinic acid, andrographolide, and hesperidin possess anti-HBV activity. Thus, the antiviral medicinal plants and the isolated bioactive compounds may be considered for further advanced investigations with the aim of the development of effective and affordable antiviral drugs.
Collapse
Affiliation(s)
- Sitesh C Bachar
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh.,School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW, Australia.,School of Biomedical Sciences and Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga, NSW, Australia
| | - Ritesh Bachar
- Department of Pharmacy, School of Science and Engineering, University of Information Technology and Sciences, Dhaka, Bangladesh
| | - Asma Aktar
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
5
|
Timalsina D, Devkota HP. Eclipta prostrata (L.) L. (Asteraceae): Ethnomedicinal Uses, Chemical Constituents, and Biological Activities. Biomolecules 2021; 11:1738. [PMID: 34827736 PMCID: PMC8615741 DOI: 10.3390/biom11111738] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 11/05/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Eclipta prostrata (L.) L. (Syn.: Eclipta alba (L.) Hassak, Family: Asteraceae) is an important medicinal plant in the tropical and subtropical regions. It is widely used in treating various diseases of skin, liver and stomach in India, Nepal, Bangladesh, and other countries. The main aim of this review was to collect and analyze the available information on traditional uses, phytoconstituents, and biological activities of E. prostrata. The scientific information was collected from the online bibliographic databases such as Scopus, MEDLINE/PubMed, Google Scholar, SciFinder, etc. and books and proceedings. The active phytochemicals were coumestan derivatives, phenolic acid derivatives, flavonoids, triterpenoid and steroid saponins, substituted thiophenes, etc. Various extracts and isolated compounds of E. prostrata showed a wide range of biological activities such as antimicrobial, anticancer, hepatoprotective, neuroprotective and hair growth promoting activities. Relatively a few studies have been performed to reveal the exact phytoconstituents responsible for their corresponding pharmacological activities. Future studies should focus on detailed mechanism based studies using animal models and clinical studies.
Collapse
Affiliation(s)
- Deepak Timalsina
- Central Department of Chemistry, Tribhuvan University, Kathmandu 44618, Nepal;
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-Ku, Kumamoto 862-0973, Japan
- Headquarters for Admissions and Education, Kumamoto University, 2-40-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Research progress in pharmacological activities and structure-activity relationships of tetralone scaffolds as pharmacophore and fluorescent skeleton. Eur J Med Chem 2021; 227:113964. [PMID: 34743062 DOI: 10.1016/j.ejmech.2021.113964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/03/2022]
Abstract
The tetralone and tetralone derivatives, as crucial structural scaffolds of potential novel drugs targeted at multiple biological end-points, are normally found in several natural compounds and also, it can be used as parental scaffold and/or intermediate for the synthesis of a series of pharmacologically active compounds with a broad-spectrum of bioactivities including antibacterial, antitumor, CNS effect and so on. Meanwhile, SAR information of its analogues has drawn attentions among medicinal chemists, which could contribute to the further research related to tetralone derivatives aimed at multiple targets. This review encompasses pharmacological activities, SAR analysis and docking study of tetralone and its derivatives, expecting to provide a general retrospect and prospect on tetralone derivatives.
Collapse
|
7
|
Mermer A. The Importance of Rhodanine Scaffold in Medicinal Chemistry: A Comprehensive Overview. Mini Rev Med Chem 2021; 21:738-789. [PMID: 33334286 DOI: 10.2174/1389557521666201217144954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 11/22/2022]
Abstract
After the clinical use of epalrestat that contains a rhodanine ring, in type II diabetes mellitus and diabetic complications, rhodanin-based compounds have become an important class of heterocyclic in the field of medicinal chemistry. Various modifications to the rhodanine ring have led to a broad spectrum of biological activity of these compounds. Synthesis of rhodanine derivatives, depended on advenced throughput scanning hits, frequently causes potent and selective modulators of targeted enzymes or receptors, which apply their pharmacological activities through different mechanisms of action. Rhodanine-based compounds will likely stay a privileged scaffold in drug discovery because of different probability of chemical modifications of the rhodanine ring. We have, therefore reviewed their biological activities and structure activity relationship.
Collapse
Affiliation(s)
- Arif Mermer
- Department of Biotechnology, Hamidiye Health Science Institute, University of Health Sciences Turkey, 34668, İstanbul, Turkey
| |
Collapse
|
8
|
Zhu W, Chen CZ, Gorshkov K, Xu M, Lo DC, Zheng W. RNA-Dependent RNA Polymerase as a Target for COVID-19 Drug Discovery. SLAS DISCOVERY 2020; 25:1141-1151. [PMID: 32660307 PMCID: PMC7684788 DOI: 10.1177/2472555220942123] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
COVID-19 respiratory disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has rapidly become a global health issue since it emerged in December 2019. While great global efforts are underway to develop vaccines and to discover or repurpose therapeutic agents for this disease, as of this writing only the nucleoside drug remdesivir has been approved under Emergency Use Authorization to treat COVID-19. The RNA-dependent RNA polymerase (RdRP), a viral enzyme for viral RNA replication in host cells, is one of the most intriguing and promising drug targets for SARS-CoV-2 drug development. Because RdRP is a viral enzyme with no host cell homologs, selective SARS-CoV-2 RdRP inhibitors can be developed that have improved potency and fewer off-target effects against human host proteins and thus are safer and more effective therapeutics for treating COVID-19. This review focuses on biochemical enzyme and cell-based assays for RdRPs that could be used in high-throughput screening to discover new and repurposed drugs against SARS-CoV-2.
Collapse
Affiliation(s)
- Wei Zhu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Donald C Lo
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
9
|
Svrlanska A, Ruhland A, Marschall M, Reuter N, Stamminger T. Wedelolactone inhibits human cytomegalovirus replication by targeting distinct steps of the viral replication cycle. Antiviral Res 2019; 174:104677. [PMID: 31836420 DOI: 10.1016/j.antiviral.2019.104677] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Wedelolactone (WDL) is a coumestan present in the plants Eclipta prostrata and Wedelia calendulacea which are used for treatment of a multitude of health problems in traditional medicine. It has previously been shown that WDL exerts antiviral activity against human immunodeficiency virus and hepatitis C virus. In this study, we investigated the effect of WDL on lytic human cytomegalovirus (HCMV) infection. We demonstrate a strong interference with HCMV replication as analyzed in multi-round replication settings. A more detailed analysis of the underlying mechanisms revealed that WDL acts at two distinct steps of the viral replication cycle. During immediate early (IE) times, we observe an inhibition of IE1/IE2 expression. Although WDL was reported to interfere with NF-κB signaling our results suggest the existence of additional mechanisms that impede viral IE expression. During later time points of infection, WDL induced a disruption of the interaction between EZH2 and EED, components of the virus-supportive polycomb repressive complex 2 (PRC2). Thereby, the stability of the PRC2 complex as well as the related complex PRC1 was disturbed leading to diminished viral DNA synthesis. Taken together, we identify WDL as a potent agent against HCMV which interferes at two distinct steps of viral replication.
Collapse
Affiliation(s)
- Adriana Svrlanska
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Anna Ruhland
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Nina Reuter
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Stamminger
- Institute for Virology, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
10
|
Polamreddy P, Vishwakarma V, Arumugam P, Bheemanati R, Esram P, Mahto MK, Kacker P. Discovery of hit molecules targeting allosteric site of hepatitis C virus NS5B polymerase. J Biomol Struct Dyn 2019; 38:1448-1466. [PMID: 31007134 DOI: 10.1080/07391102.2019.1608864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Nonstructural protein 5B (NS5B), the RNA-dependent RNA polymerase of Hepatitis C Virus (HCV), plays a key role in viral amplification and is an attractive and most explored target for discovery of new therapeutic agents for Hepatitis C. Though safe and effective, NS5B inhibitors were launched in 2013 (Sovaldi) and 2014 (Harvoni, Viekira Pak), the high price tags of these medications limit their use among poor people in developing countries. Hence, still there exists a need for cost-effective and short duration anti-HCV agents especially those targeting niche patient population who were non-respondent to earlier therapies or with comorbid conditions. The present study describes the discovery of novel non-nucleoside (NNI) inhibitors of NS5B using a series of rational drug design techniques such as virtual screening, scaffold matching and molecular docking. 2D and 3D structure based virtual screening technique identified 300 hit compounds. Top 20 hits were screened out from identified hits using molecular docking technique. Four molecules, that are representative of 20 hits were evaluated for binding affinity under in vitro conditions using surface plasmon resonance-based assay and the results emphasized that compound with CoCoCo ID: 412075 could exhibit good binding response toward NS5B and could be a potential candidate as NS5B inhibitor.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasanthi Polamreddy
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, India.,Excelra Knowledge Solutions Pvt Ltd, Hyderabad, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Sathyabama Institute of Science and Technology, Chennai, India
| | | | | | | | | | - Puneet Kacker
- Excelra Knowledge Solutions Pvt Ltd, Hyderabad, India
| |
Collapse
|
11
|
Chen H, Zhao S, Cheng S, Dai X, Xu X, Yuan W, Zhang X. Synthesis of Novel Pterocarpen Analogues
via
[3 + 2] Coupling‐Elimination Cascade of α,α‐Dicyanoolefins with Quinone Monoimines. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hui Chen
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Sihan Zhao
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Shaobing Cheng
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingjie Dai
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaoying Xu
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
| | - Weicheng Yuan
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
| | - Xiaomei Zhang
- Key Laboratory for Asymmetric Synthesis and Chirotechnology of Sichuan ProvinceChengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 China
| |
Collapse
|
12
|
Zhao H, Cheng S, Zhang L, Dong H, Zhang Y, Wang X. Ultra-high-pressure-assisted extraction of wedelolactone and isodemethylwedelolactone from Ecliptae Herba and purification by high-speed counter-current chromatography. Biomed Chromatogr 2019; 33:e4497. [PMID: 30666687 DOI: 10.1002/bmc.4497] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/28/2018] [Accepted: 01/10/2019] [Indexed: 11/07/2022]
Abstract
Ultra-high-pressure extraction combined with high-speed counter-current chromatography was employed to extract and purify wedelolactone and isodemethylwedelolactone from Ecliptae Herba. The operating conditions of ultra-high-pressure extraction were optimized using an orthogonal experimental design. The optimal conditions were 80% aqueous methanol solvent, 200 MPa pressure, 3 min extraction time and 1:20 (g/mL) solid-liquid ratio for extraction of wedelolactone and isodemethylwedelolactone. After extraction by ultra-high pressure, the extraction solution was concentrated and subsequently extracted with ethyl acetate; a total of 2.1 g of crude sample was obtained from 100 g of Ecliptae Herba. A two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (3:7:5:5, v/v) was used for high-speed counter-current chromatography separation, by which 23.5 mg wedelolactone, 6.8 mg isodemethylwedelolactone and 5.5 mg luteolin with purities >95% were purified from 300 mg crude sample in a one-step separation. This research demonstrated that ultra-high-pressure extraction combined with high-speed counter-current chromatography was an efficient technique for the extraction and purification of coumestans from plant material.
Collapse
Affiliation(s)
- Hongwei Zhao
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Supan Cheng
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Longfei Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Hongjing Dong
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| | - Yongqing Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
| | - Xiao Wang
- Shandong University of Traditional Chinese Medicine, Jinan, People's Republic of China
- Key Laboratory of TCM Quality Control Technology, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, People's Republic of China
| |
Collapse
|
13
|
Shahab U, Faisal M, Alatar AA, Ahmad S. Impact of wedelolactone in the anti-glycation and anti-diabetic activity in experimental diabetic animals. IUBMB Life 2018; 70:547-552. [DOI: 10.1002/iub.1744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/24/2018] [Accepted: 03/07/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Uzma Shahab
- Department of Biochemistry; King George Medical University; Lucknow Uttar Pradesh India
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Abdulrahman A. Alatar
- Department of Botany and Microbiology, College of Science; King Saud University; Riyadh Saudi Arabia
| | - Saheem Ahmad
- Department of Bioscience; Integral University; Lucknow Uttar Pradesh India
- IIRC-1 Laboratory of Glycation Biology and Metabolic Disorders; Integral University; Lucknow Uttar Pradesh India
| |
Collapse
|
14
|
|
15
|
Reddy BU, Mullick R, Kumar A, Sharma G, Bag P, Roy CL, Sudha G, Tandon H, Dave P, Shukla A, Srinivasan P, Nandhitha M, Srinivasan N, Das S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res 2018. [DOI: 10.1016/j.antiviral.2017.12.004 pmid: 29224736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Reddy BU, Mullick R, Kumar A, Sharma G, Bag P, Roy CL, Sudha G, Tandon H, Dave P, Shukla A, Srinivasan P, Nandhitha M, Srinivasan N, Das S. A natural small molecule inhibitor corilagin blocks HCV replication and modulates oxidative stress to reduce liver damage. Antiviral Res 2017; 150:47-59. [PMID: 29224736 DOI: 10.1016/j.antiviral.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 12/01/2017] [Accepted: 12/06/2017] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection causes chronic liver disease, which often leads to hepatocellular carcinoma. Earlier, we have demonstrated anti-HCV property of the methanolic extract of Phyllanthus amarus, an age-old folk-medicine against viral hepatitis. Here, we report identification of a principal bioactive component 'corilagin', which showed significant inhibition of the HCV key enzymes, NS3 protease and NS5B RNA-dependent-RNA-polymerase. This pure compound could effectively inhibit viral replication in the infectious cell culture system, displayed strong antioxidant activity by blocking HCV induced generation of reactive oxygen species and suppressed up-regulation of NOX4 and TGF-β mRNA levels. Oral administration of corilagin in BALB/c mice demonstrated its better tolerability and systemic bioavailability. More importantly, corilagin could restrict serum HCV RNA levels, decrease collagen deposition and hepatic cell denaturation in HCV infected chimeric mice harbouring human hepatocytes. Taken together, results provide a basis towards developing a pure natural drug as an alternate therapeutic strategy for restricting viral replication and prevent liver damage towards better management of HCV induced pathogenesis.
Collapse
Affiliation(s)
- B Uma Reddy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Anuj Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Geetika Sharma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Paromita Bag
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Chaitrali Laha Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Govindarajan Sudha
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India
| | - Pratik Dave
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Ashutosh Shukla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Priyanka Srinivasan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | - Madhusudhan Nandhitha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
17
|
Fischer J, Weber ANR, Böhm S, Dickhöfer S, El Maadidi S, Deichsel D, Knop V, Klinker H, Möller B, Rasenack J, Wang L, Sharma M, Hinrichsen H, Spengler U, Buggisch P, Sarrazin C, Pawlita M, Waterboer T, Wiese M, Probst-Müller E, Malinverni R, Bochud PY, Gardiner C, O'Farrelly C, Berg T. Sex-specific effects of TLR9 promoter variants on spontaneous clearance of HCV infection. Gut 2017; 66:1829-1837. [PMID: 27196570 DOI: 10.1136/gutjnl-2015-310239] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 12/15/2022]
Abstract
OBJECTIVE As pathogen sensors, Toll-like receptors (TLR) play a role in the first defence line during HCV infection. However, the impact of the DNA sensor TLR9 on the natural course of HCV infection is unknown. To address this, TLR9 promoter polymorphisms (single nucleotide polymorphisms (SNPs)) rs187084 and rs5743836 were investigated for their effect on disease progression. DESIGN Therefore, the TLR9 SNPs and the interferon lambda 4 (IFNL4) rs12979860 were genotyped in chronically HCV type 1 infected (n=333), in patients who spontaneously cleared the infection (n=161), in the Swiss HCV cohort (n=1057) and the well-characterised German (n=305) and Irish (n=198) 'anti-D' cohorts. Functional analyses were done with promoter reporter constructs of human TLR9 in B cells and assessing TLR9 mRNA levels in whole blood of healthy volunteers. RESULTS The TLR9 rs187084 C allele was associated with spontaneous virus clearance in women of the study cohort (OR=2.15 (95% CI 1.18 to 3.90) p=0.012), of the Swiss HCV cohort (OR=2.06 (95% CI 1.02 to 4.18) p=0.044) and in both 'anti-D' cohorts (German: OR=2.01 (95% CI 1.14 to 3.55) p=0.016; Irish: OR=1.93 (95% CI 1.10 to 3.68) p=0.047). Multivariate analysis in the combined study and Swiss HCV cohorts supported the results (OR=1.99 (95% CI 1.30 to 3.05) p=0.002). Functional analyses revealed higher transcriptional activities for both TLR9 variants and an association of the C allele of rs5743836 with allele-specific TLR9 mRNA regulation by oestrogens in women. CONCLUSIONS TLR9 promoter SNPs are associated with the natural course of HCV infection and show higher transcriptional activities. Our results imply the DNA sensor TLR9 in natural immunity against the RNA virus, HCV.
Collapse
Affiliation(s)
- Janett Fischer
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany
| | - Alexander N R Weber
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stephan Böhm
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany
| | - Sabine Dickhöfer
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Souhayla El Maadidi
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany.,Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Danilo Deichsel
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany
| | - Viola Knop
- Medical Department 1, Goethe-University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Hartwig Klinker
- Department of Internal Medicine II, University of Würzburg, Würzburg, Germany
| | - Bernd Möller
- Department of Medical Practice, Charlottenstraße 81, Berlin, Germany
| | - Jens Rasenack
- Medical Department, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Lisa Wang
- Division of Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Manu Sharma
- Division of Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Holger Hinrichsen
- Department of Gastroenterology, Gastroenterologische Schwerpunkt-Praxis, Kiel, Germany
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| | - Peter Buggisch
- Liver Unit, IFI Institute for Interdisciplinary Medicine, Asklepios Klinik St. Georg Hamburg, Hamburg, Germany
| | - Christoph Sarrazin
- Medical Department 1, Goethe-University Hospital Frankfurt/Main, Frankfurt, Germany
| | - Michael Pawlita
- Department of Genome Modifications and Carcinogenesis (F020), Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Waterboer
- Department of Genome Modifications and Carcinogenesis (F020), Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Wiese
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany
| | | | | | - Pierre-Yves Bochud
- Infectious Diseases Service, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Clair Gardiner
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Thomas Berg
- Department of Gastroenterology and Rheumatology, Section of Hepatology, University Hospital, Leipzig, Germany
| |
Collapse
|
18
|
Patel S, Rauf A. Edible seeds from Cucurbitaceae family as potential functional foods: Immense promises, few concerns. Biomed Pharmacother 2017; 91:330-337. [DOI: 10.1016/j.biopha.2017.04.090] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/10/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022] Open
|
19
|
Ganesan A, Barakat K. Applications of computer-aided approaches in the development of hepatitis C antiviral agents. Expert Opin Drug Discov 2017; 12:407-425. [PMID: 28164720 DOI: 10.1080/17460441.2017.1291628] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Hepatitis C virus (HCV) is a global health problem that causes several chronic life-threatening liver diseases. The numbers of people affected by HCV are rising annually. Since 2011, the FDA has approved several anti-HCV drugs; while many other promising HCV drugs are currently in late clinical trials. Areas covered: This review discusses the applications of different computational approaches in HCV drug design. Expert opinion: Molecular docking and virtual screening approaches have emerged as a low-cost tool to screen large databases and identify potential small-molecule hits against HCV targets. Ligand-based approaches are useful for filtering-out compounds with rich physicochemical properties to inhibit HCV targets. Molecular dynamics (MD) remains a useful tool in optimizing the ligand-protein complexes and understand the ligand binding modes and drug resistance mechanisms in HCV. Despite their varied roles, the application of in-silico approaches in HCV drug design is still in its infancy. A more mature application should aim at modelling the whole HCV replicon in its active form and help to identify new effective druggable sites within the replicon system. With more technological advancements, the roles of computer-aided methods are only going to increase several folds in the development of next-generation HCV drugs.
Collapse
Affiliation(s)
- Aravindhan Ganesan
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| | - Khaled Barakat
- a Faculty of Pharmacy and Pharmaceutical Sciences , University of Alberta , Edmonton , Canada
| |
Collapse
|
20
|
Jain CK, Majumder HK, Roychoudhury S. Natural Compounds as Anticancer Agents Targeting DNA Topoisomerases. Curr Genomics 2017; 18:75-92. [PMID: 28503091 PMCID: PMC5321768 DOI: 10.2174/1389202917666160808125213] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/26/2015] [Indexed: 12/14/2022] Open
Abstract
DNA topoisomerases are important cellular enzymes found in almost all types of living cells (eukaryotic and prokaryotic). These enzymes are essential for various DNA metabolic processes e.g. replication, transcription, recombination, chromosomal decatenation etc. These enzymes are important molecular drug targets and inhibitors of these enzymes are widely used as effective anticancer and antibacterial drugs. However, topoisomerase inhibitors have some therapeutic limitations and they exert serious side effects during cancer chemotherapy. Thus, development of novel anticancer topoisomerase inhibitors is necessary for improving cancer chemotherapy. Nature serves as a repertoire of structurally and chemically diverse molecules and in the recent years many DNA topoisomerase inhibitors have been identified from natural sources. The present review discusses anticancer properties and therapeutic importance of eighteen recently identified natural topoisomerase inhibitors (from the year 2009 to 2015). Structural characteristics of these novel inhibitors provide backbones for designing and developing new anticancer drugs.
Collapse
Affiliation(s)
- Chetan Kumar Jain
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Hemanta Kumar Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Susanta Roychoudhury
- Division of Research, Saroj Gupta Cancer Centre & Research Institute, M G Road, Thakurpukur, Kolkata-700 063, India
| |
Collapse
|
21
|
Advances in the Chemistry of Natural and Semisynthetic Topoisomerase I/II Inhibitors. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2017. [DOI: 10.1016/b978-0-444-63929-5.00002-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
22
|
Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 2016; 123:236-255. [PMID: 27484512 PMCID: PMC7115672 DOI: 10.1016/j.ejmech.2016.07.056] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
Collapse
Affiliation(s)
- Mohd Zaheen Hassan
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia; Department of Pharmaceutical Chemistry, Alwar Pharmacy College, M.I.A., Alwar, Rajasthan 301030, India.
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia.
| | - Mohamed Ashraf Ali
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | |
Collapse
|
23
|
Hamdy AM, Khaddour Z, Al-Masoudi NA, Rahman Q, Hering-Junghans C, Villinger A, Langer P. Synthesis of arylated coumarins by Suzuki–Miyaura cross-coupling. Reactions and anti-HIV activity. Bioorg Med Chem 2016; 24:5115-5126. [DOI: 10.1016/j.bmc.2016.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/28/2016] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
|
24
|
Kaushik-Basu N, Ratmanova NK, Manvar D, Belov DS, Cevik O, Basu A, Yerukhimovich MM, Lukyanenko ER, Andreev IA, Belov GM, Manfroni G, Cecchetti V, Frick DN, Kurkin AV, Altieri A, Barreca ML. Bicyclic octahydrocyclohepta[b]pyrrol-4(1H)one derivatives as novel selective anti-hepatitis C virus agents. Eur J Med Chem 2016; 122:319-325. [PMID: 27376494 DOI: 10.1016/j.ejmech.2016.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/01/2016] [Accepted: 06/21/2016] [Indexed: 01/27/2023]
Abstract
We report the discovery of the bicyclic octahydrocyclohepta[b]pyrrol-4(1H)-one scaffold as a new chemotype with anti-HCV activity on genotype 1b and 2a subgenomic replicons. The most potent compound 34 displayed EC50 values of 1.8 μM and 4.5 μM in genotype 1b and 2a, respectively, coupled with the absence of any antimetabolic effect (gt 1b SI = 112.4; gt 2a SI = 44.2) in a cell-based assay. Compound 34 did not target HCV NS5B, IRES, NS3 helicase, or selected host factors, and thus future work will involve the unique mechanism of action of these new antiviral compounds.
Collapse
Affiliation(s)
- Neerja Kaushik-Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA.
| | - Nina K Ratmanova
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia
| | - Dinesh Manvar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Dmitry S Belov
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Ozge Cevik
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Amartya Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, NJ 07103, USA
| | - Mark M Yerukhimovich
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| | - Evgeny R Lukyanenko
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Ivan A Andreev
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Grigory M Belov
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia; EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy
| | - Giuseppe Manfroni
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy
| | - Violetta Cecchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy
| | - David N Frick
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, 3210 N. Cramer St., Milwaukee, WI 53211, USA
| | - Alexander V Kurkin
- Chemistry Department of Lomonosov Moscow State University, Moscow 119991, GSP-2, Leninskie gory, 1/3, Russia.
| | - Andrea Altieri
- EDASA Scientific srls., Via Stingi, 37, 66050 San Salvo, CH, Italy.
| | - Maria Letizia Barreca
- Department of Pharmaceutical Sciences, University of Perugia, Via A. Fabretti, 48, 06123 Perugia, Italy.
| |
Collapse
|
25
|
Fernandes TDA, Manvar D, Domingos JLO, Basu A, Nichols DB, Kaushik-Basu N, Costa PRR. 5-Carba-pterocarpens: A new scaffold with anti-HCV activity. Eur J Med Chem 2016; 112:33-38. [PMID: 26874742 DOI: 10.1016/j.ejmech.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 01/01/2023]
Abstract
The synthesis of a series of 5-carba-pterocarpens derivatives involving the cyclization of α-aryl-α-tetralones is described. Several compounds demonstrated potent activity and selectivity in vitro against HCV replicon reporter cells. The best profile in Huh7/Rep-Feo1b replicon reporter cells was observed with 2h (EC50 = 5.5 μM/SI = 20), while 2e was the most active in Huh7.5-FGR-JC1-Rluc2A replicon reporter cells (EC50 = 1.5 μM/SI = 70). Hydroxy groups at A- and D-rings are essential for anti-HCV activity, and substitutions in the A-ring at positions 3 and 4 resulted in enhanced activity of the compounds.
Collapse
Affiliation(s)
- Talita de A Fernandes
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Ilha da Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| | - Dinesh Manvar
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA
| | - Jorge L O Domingos
- Departamento de Química Orgânica, Centro de Tecnologia e Ciências, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier 524, Pav. Haroldo Lisboa da Cunha - s 406 - Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Amartya Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA
| | - Daniel Brian Nichols
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, New Jersey, 07079, USA
| | - Neerja Kaushik-Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers-The State University of New Jersey, 185 South Orange Avenue, New Jersey 07103, USA.
| | - Paulo R R Costa
- Laboratório de Química Bioorgânica, Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Bloco H, Ilha da Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
26
|
Çıkla-Süzgün P, Kaushik-Basu N, Basu A, Arora P, Talele TT, Durmaz I, Çetin-Atalay R, Küçükgüzel Ş. Anti-cancer and anti-hepatitis C virus NS5B polymerase activity of etodolac 1,2,4-triazoles. J Enzyme Inhib Med Chem 2015; 30:778-85. [DOI: 10.3109/14756366.2014.971780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Pelin Çıkla-Süzgün
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey,
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, NJ, USA,
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, NJ, USA,
| | - Payal Arora
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, Rutgers, The State University of New Jersey, New Jersey, NJ, USA,
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, USA, and
| | - Irem Durmaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Rengül Çetin-Atalay
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ş.Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, İstanbul, Turkey,
| |
Collapse
|
27
|
Nehybova T, Smarda J, Daniel L, Brezovsky J, Benes P. Wedelolactone induces growth of breast cancer cells by stimulation of estrogen receptor signalling. J Steroid Biochem Mol Biol 2015; 152:76-83. [PMID: 25934092 DOI: 10.1016/j.jsbmb.2015.04.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/09/2015] [Accepted: 04/26/2015] [Indexed: 01/14/2023]
Abstract
Wedelolactone, a plant coumestan, was shown to act as anti-cancer agent for breast and prostate carcinomas in vitro and in vivo targeting multiple cellular proteins including androgen receptors, 5-lipoxygenase and topoisomerase IIα. It is cytotoxic to breast, prostate, pituitary and myeloma cancer cell lines in vitro at μM concentrations. In this study, however, a novel biological activity of nM dose of wedelolactone was demonstrated. Wedelolactone acts as agonist of estrogen receptors (ER) α and β as demonstrated by transactivation of estrogen response element (ERE) in cells transiently expressing either ERα or ERβ and by molecular docking of this coumestan into ligand binding pocket of both ERα and ERβ. In breast cancer cells, wedelolactone stimulates growth of estrogen receptor-positive cells, expression of estrogen-responsive genes and activates rapid non-genomic estrogen signalling. All these effects can be inhibited by pretreatment with pure ER antagonist ICI 182,780 and they are not observed in ER-negative breast cancer cells. We conclude that wedelolactone acts as phytoestrogen in breast cancer cells by stimulating ER genomic and non-genomic signalling pathways.
Collapse
Affiliation(s)
- Tereza Nehybova
- Laboratory of Cellular Differentiation, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A36, 625 00 Brno, Czech Republic
| | - Jan Smarda
- Laboratory of Cellular Differentiation, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A36, 625 00 Brno, Czech Republic; Masaryk Memorial Cancer Institute, RECAMO, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Lukas Daniel
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Jan Brezovsky
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Compounds in the Environment RECETOX, Faculty of Science, Masaryk University, Kamenice 5/A13, 625 00 Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic
| | - Petr Benes
- Laboratory of Cellular Differentiation, Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5/A36, 625 00 Brno, Czech Republic; International Clinical Research Center, Center for Biological and Cellular Engineering, St. Anne's University Hospital, Pekarska 53, 656 91 Brno, Czech Republic.
| |
Collapse
|
28
|
Abstract
The liver is a very important organ with a lot of functions for the host to survive. Dietary components are essential for and can be beneficial or detrimental to the healthy or diseased liver. Plants food is an essential part of the human diet and comprises various compounds which are closely related to liver health. Selected food plants can provide nutritional and medicinal support for liver disease. At the present, the knowledge of the effects of plants on the liver is still incomplete. The most urgent task at the present time is to find the best dietary and medicinal plants for liver health in an endless list of candidates. This review article updates the knowledge about the effects of plants consumption on the health of the liver, putting particular emphasis on the potential beneficial and harmful impact of dietary and medicinal plants on liver function.
Collapse
|
29
|
Červeň J, Havran L, Pečinka P, Fojta M. Electrochemical Activity of Wedelolactone and Probing its Interaction with DNA Using Voltammetry at a Carbon Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Discovery of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole as a novel anti-hepatitis C virus targeting scaffold. Eur J Med Chem 2015; 96:250-8. [PMID: 25890075 DOI: 10.1016/j.ejmech.2015.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/08/2015] [Accepted: 04/09/2015] [Indexed: 01/12/2023]
Abstract
Although all-oral direct-acting antiviral (DAA) therapy for hepatitis C virus (HCV) treatment is now a reality, today's HCV drugs are expensive, and more affordable drugs are still urgently needed. In this work, we report the identification of the 2-phenyl-4,5,6,7-Tetrahydro-1H-indole chemical scaffold that inhibits cellular replication of HCV genotype 1b and 2a subgenomic replicons. The anti-HCV genotype 1b and 2a profiling and effects on cell viability of a selected representative set of derivatives as well as their chemical synthesis are described herein. The most potent compound 39 displayed EC50 values of 7.9 and 2.6 μM in genotype 1b and 2a, respectively. Biochemical assays showed that derivative 39 had no effect on HCV NS5B polymerase, NS3 helicase, IRES mediated translation and selected host factors. Thus, future work will involve both the chemical optimization and target identification of 2-phenyl-4,5,6,7-Tetrahydro-1H-indoles as new anti-HCV agents.
Collapse
|
31
|
Lin WL, Wang SM, Ho YJ, Kuo HC, Lee YJ, Tseng TH. Ethyl acetate extract of Wedelia chinensis inhibits tert-butyl hydroperoxide-induced damage in PC12 cells and D-galactose-induced neuronal cell loss in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:491. [PMID: 25510435 PMCID: PMC4301464 DOI: 10.1186/1472-6882-14-491] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/10/2014] [Indexed: 01/07/2023]
Abstract
BACKGROUND Wedelia chinensis is traditionally used as a hepatoprotective herb in Taiwan. The aim of this study was to evaluate the neuroprotective potential of W. chinensis. METHODS An ethyl acetate extract of W. chinensis (EAW) was prepared and analyzed by HPLC. The neuroprotective potential of EAW was assessed by tert-butylhydroperoxide (t-BHP)-induced damage in PC12 cells and D-galactose-induced damage in mouse cortex. RESULTS EAW exhibited potent radical scavenging property and highly contained luteolin and wedelolactone. EAW decreased t-BHP-induced reactive oxygen species (ROS) accumulation, cytotoxicity and apoptosis in PC12 cells. EAW and its major constituents blocked t-BHP-induced cytochrome C release and Bcl-2 family protein ratio change. EAW and its major constituents increased the endogenous antioxidant capacity evaluated by the binding activity assay of nuclear factor E2-related factor 2 (Nrf2) to antioxidant response element (ARE) and nuclear translocation of Nrf2 respectively in PC12 cells. Finally, EAW inhibited D-galactose-induced lipid peroxidation, apoptosis and neuron loss in the cerebral cortex of mice. CONCLUSION These results demonstrate that W. chinensis has neuroprotective potential through blocking oxidative stress-induced damage and that luteolin and wedelolactone contribute to the protective action.
Collapse
|
32
|
Manvar D, Pelliccia S, La Regina G, Famiglini V, Coluccia A, Ruggieri A, Anticoli S, Lee JC, Basu A, Cevik O, Nencioni L, Palamara AT, Zamperini C, Botta M, Neyts J, Leyssen P, Kaushik-Basu N, Silvestri R. New 1-phenyl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides inhibit hepatitis C virus replication via suppression of cyclooxygenase-2. Eur J Med Chem 2014; 90:497-506. [PMID: 25483263 DOI: 10.1016/j.ejmech.2014.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/15/2014] [Accepted: 11/21/2014] [Indexed: 12/18/2022]
Abstract
We report here the synthesis and mechanism of inhibition of pyrazolecarboxamide derivatives as a new class of HCV inhibitors. Compounds 6, 7, 8 and 16 inhibited the subgenomic HCV replicon 1b genotype at EC50 values between 5 and 8 μM and displayed an even higher potency against the infectious Jc1 HCV 2a genotype. Compound 6 exhibited an EC50 of 6.7 μM and selectivity index of 23 against HCV 1b, and reduced the RNA copies of the infectious Jc1 chimeric 2a clone by 82% at 7 μM. Evaluation of the mode of anti-HCV activity of 6 revealed that it suppressed HCV-induced COX-2 mRNA and protein expression, displaying an IC50 of 3.2 μM in COX-2 promoter-linked luciferase reporter assay. Conversely, the anti-HCV activity of 6 was abrogated upon over-expression of COX-2. These findings suggest that 6 as a representative of these pyrazolecarboxamides function as anti-HCV agents via targeting COX-2 at both the transcription and translation levels.
Collapse
Affiliation(s)
- Dinesh Manvar
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, New Jersey 07103, United States
| | - Sveva Pelliccia
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Giuseppe La Regina
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valeria Famiglini
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Anna Ruggieri
- Istituto Superiore di Sanità, Department of Infectious Parasitic and Immune Mediated Diseases, Viale Regina Elena 299, I-00161 Roma, Italy
| | - Simona Anticoli
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Jin-Ching Lee
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | - Amartya Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, New Jersey 07103, United States
| | - Ozge Cevik
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, New Jersey 07103, United States
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Istituto Pasteur - Fondazione Cenci Bolognetti, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy; San Raffaele Pisana Scientific Institute for Research, Hospitalization and Health Care, 00166 Rome, Italy
| | - Claudio Zamperini
- Dipartimento di Biotecnologia Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologia Chimica e Farmacia, Università di Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Johan Neyts
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Pieter Leyssen
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium
| | - Neerja Kaushik-Basu
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, 185 South Orange Avenue, New Jersey 07103, United States
| | - Romano Silvestri
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
33
|
Xi GL, Liu ZQ. Coumestan inhibits radical-induced oxidation of DNA: is hydroxyl a necessary functional group? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:5636-5642. [PMID: 24911109 DOI: 10.1021/jf500013v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Coumestan is a natural tetracycle with a C═C bond shared by a coumarin moiety and a benzofuran moiety. In addition to the function of the hydroxyl group on the antioxidant activity of coumestan, it is worth exploring the influence of the oxygen-abundant scaffold on the antioxidant activity as well. In this work, seven coumestans containing electron-withdrawing and electron-donating groups were synthesized to evaluate the abilities to trap 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) cationic radical (ABTS(•+)), 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH), and galvinoxyl radical, respectively, and to inhibit the oxidations of DNA mediated by (•)OH, Cu(2+)/glutathione (GSH), and 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH), respectively. It was found that all of the coumestans used herein can quench the aforementioned radicals and can inhibit (•)OH-, Cu(2+)/GSH-, and AAPH-induced oxidations of DNA. In particular, substituent-free coumestan exhibits higher ability to quench DPPH and to inhibit AAPH-induced oxidation of DNA than Trolox. In addition, nonsubstituted coumestan shows a similar ability to inhibit (•)OH- and Cu(2+)/GSH-induced oxidations of DNA relative to that of Trolox. The antioxidant effectiveness of the coumestan can be attributed to the lactone in the coumarin moiety and, therefore, a hydroxyl group may not be a necessary functional group for coumestan to be an antioxidant.
Collapse
Affiliation(s)
- Gao-Lei Xi
- Department of Organic Chemistry, College of Chemistry, Jilin University , Changchun 130021, China
| | | |
Collapse
|
34
|
Manfroni G, Manvar D, Barreca ML, Kaushik-Basu N, Leyssen P, Paeshuyse J, Cannalire R, Iraci N, Basu A, Chudaev M, Zamperini C, Dreassi E, Sabatini S, Tabarrini O, Neyts J, Cecchetti V. New pyrazolobenzothiazine derivatives as hepatitis C virus NS5B polymerase palm site I inhibitors. J Med Chem 2014; 57:3247-62. [PMID: 24654886 PMCID: PMC4203399 DOI: 10.1021/jm401688h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have previously identified the pyrazolobenzothiazine scaffold as a promising chemotype against hepatitis C virus (HCV) NS5B polymerase, a validated and promising anti-HCV target. Herein we describe the design, synthesis, enzymatic, and cellular characterization of new pyrazolobenzothiazines as anti-HCV inhibitors. The binding site for a representative derivative was mapped to NS5B palm site I employing a mutant counterscreen assay, thus validating our previous in silico predictions. Derivative 2b proved to be the best selective anti-HCV derivative within the new series, exhibiting a IC50 of 7.9 μM against NS5B polymerase and antiviral effect (EC50 = 8.1 μM; EC90 = 23.3 μM) coupled with the absence of any antimetabolic effect (CC50 > 224 μM; SI > 28) in a cell based HCV replicon system assay. Significantly, microscopic analysis showed that, unlike the parent compounds, derivative 2b did not show any significant cell morphological alterations. Furthermore, since most of the pyrazolobenzothiazines tested altered cell morphology, this undesired aspect was further investigated by exploring possible perturbation of lipid metabolism during compound treatment.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Perugia , Via A. Fabretti 48, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Therese PJ, Manvar D, Kondepudi S, Battu MB, Sriram D, Basu A, Yogeeswari P, Kaushik-Basu N. Multiple e-pharmacophore modeling, 3D-QSAR, and high-throughput virtual screening of hepatitis C virus NS5B polymerase inhibitors. J Chem Inf Model 2014; 54:539-52. [PMID: 24460140 DOI: 10.1021/ci400644r] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The hepatitis C virus (HCV) NS5B RNA-dependent RNA polymerase (RdRP) is a crucial and unique component of the HCV RNA replication machinery and a validated target for drug discovery. Multiple crystal structures of NS5B inhibitor complexes have facilitated the identification of novel compound scaffolds through in silico analysis. With the goal of discovering new NS5B inhibitor leads, HCV NS5B crystal structures bound with inhibitors in the palm and thumb allosteric pockets in combination with ligands with known inhibitory potential were explored for a comparative pharmacophore analyses. The energy-based and 3D-QSAR-based pharmacophore models were validated using enrichment analysis, and the six models thus developed were employed for high-throughput virtual screening and docking to identify nonpeptidic leads. The hits derived at each stage were analyzed for diversity based on the six pharmacophore models, followed by molecular docking and filtering based on their interaction with amino acids in the NS5B allosteric pocket and 3D-QSAR predictions. The resulting 10 hits displaying diverse scaffold were then screened employing biochemical and cell-based NS5B and anti-HCV inhibition assays. Of these, two molecules H-5 and H-6 were the most promising, exhibiting IC50 values of 28.8 and 47.3 μM against NS5B polymerase and anti-HCV inhibition of 96% and 86% at 50 μM, respectively. The identified leads comprised of benzimidazole (H-5) and pyridine (H-6) scaffolds thus constitute prototypical molecules for further optimization and development as NS5B inhibitors.
Collapse
Affiliation(s)
- Patrisha Joseph Therese
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani , Hyderabad campus, Jawahar Nagar, Hyderabad-500078, Andhra Pradesh, India
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Shi D, Ding H, Xu S. Optimization of microwave-assisted extraction of wedelolactone from Eclipta alba using response surface methodology. Front Chem Sci Eng 2014. [DOI: 10.1007/s11705-014-1401-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Manfroni G, Cannalire R, Barreca ML, Kaushik-Basu N, Leyssen P, Winquist J, Iraci N, Manvar D, Paeshuyse J, Guhamazumder R, Basu A, Sabatini S, Tabarrini O, Danielson UH, Neyts J, Cecchetti V. The versatile nature of the 6-aminoquinolone scaffold: identification of submicromolar hepatitis C virus NS5B inhibitors. J Med Chem 2013; 57:1952-63. [PMID: 24131104 DOI: 10.1021/jm401362f] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously reported that the 6-aminoquinolone chemotype is a privileged scaffold to obtain antibacterial and antiviral agents. Herein we describe the design, synthesis, and enzymatic and cellular characterization of new 6-aminoquinolone derivatives as potent inhibitors of NS5B polymerase, an attractive and viable therapeutic target to develop safe anti-HCV agents. The 6-amino-7-[4-(2-pyridinyl)-1-piperazinyl]quinolone derivative 8 proved to be the best compound of this series, exhibiting an IC50 value of 0.069 μM against NS5B polymerase and selective antiviral effect (EC50 = 3.03 μM) coupled with the absence of any cytostatic effect (CC50 > 163 μM; SI > 54) in Huh 9-13 cells carrying a HCV genotype 1b, as measured by MTS assay. These results indicate that the 6-aminoquinolone scaffold is worthy of further investigation in the context of NS5B-targeted HCV drug discovery programs.
Collapse
Affiliation(s)
- Giuseppe Manfroni
- Dipartimento di Chimica e Tecnologia del Farmaco, Università degli Studi di Perugia , Via del Liceo 1, 06123 Perugia, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Küçükgüzel I, Satılmış G, Gurukumar KR, Basu A, Tatar E, Nichols DB, Talele TT, Kaushik-Basu N. 2-Heteroarylimino-5-arylidene-4-thiazolidinones as a new class of non-nucleoside inhibitors of HCV NS5B polymerase. Eur J Med Chem 2013; 69:931-41. [PMID: 24161679 DOI: 10.1016/j.ejmech.2013.08.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 12/09/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is an important and attractive target for the development of anti-HCV drugs. Here we report on the design, synthesis and evaluation of twenty-four novel allosteric inhibitors bearing the 4-thiazolidinone scaffold as inhibitors of HCV NS5B polymerase. Eleven compounds tested were found to inhibit HCV NS5B with IC₅₀ values ranging between 19.8 and 64.9 μM. Compound 24 was the most active of this series with an IC₅₀ of 5.6 μM. A number of these derivatives further exhibited strong inhibition against HCV 1b and 2a genotypes in cell based antiviral assays. Molecular docking analysis predicted that the thiazolidinone derivatives bind to the NS5B thumb pocket-II (TP-II). Our results suggest that further optimization of the thiazolidinone scaffold may be possible to yield new derivatives with improved enzyme- and cell-based activity.
Collapse
Affiliation(s)
- Ilkay Küçükgüzel
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Haydarpaşa, 34668 İstanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ray A, Bharali P, Konwar BK. Mode of Antibacterial Activity of Eclalbasaponin Isolated from Eclipta alba. Appl Biochem Biotechnol 2013; 171:2003-19. [DOI: 10.1007/s12010-013-0452-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 08/20/2013] [Indexed: 10/26/2022]
|
40
|
Patel B, Krishnan R, Khadtare N, Gurukumar KR, Basu A, Arora P, Bhatt A, Patel MR, Dana D, Kumar S, Kaushik-Basu N, Talele TT. Design and synthesis of L- and D-phenylalanine derived rhodanines with novel C5-arylidenes as inhibitors of HCV NS5B polymerase. Bioorg Med Chem 2013; 21:3262-71. [PMID: 23598249 PMCID: PMC3651775 DOI: 10.1016/j.bmc.2013.03.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/01/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Hepatitis C virus (HCV) NS5B polymerase is a key target for anti-HCV therapeutics development. Herein, we report the synthesis and in vitro evaluation of anti-NS5B polymerase activity of a molecular hybrid of our previously reported lead compounds 1 (IC50=7.7 μM) and 2 (IC50=10.6 μM) as represented by hybrid compound 27 (IC50=6.7 μM). We have explored the optimal substituents on the terminal phenyl ring of the 3-phenoxybenzylidene moiety in 27, by generating a set of six analogs. This resulted in the identification of compound 34 with an IC50 of 2.6 μM. To probe the role of stereochemistry towards the observed biological activity, we synthesized and evaluated the D-isomers 41 (IC50=19.3 μM) and 45 (IC50=5.4 μM) as enantiomers of the l-isomers 27 and 34, respectively. The binding site of compounds 32 and 34 was mapped to palm pocket-I (PP-I) of NS5B. The docking models of 34 and 45 within the PP-I of NS5B were investigated to envisage the molecular mechanism of inhibition.
Collapse
Affiliation(s)
- Bhargav Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Ramalingam Krishnan
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Nikhil Khadtare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - K. R. Gurukumar
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Payal Arora
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Aaditya Bhatt
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Maulik R. Patel
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Ave, New York, NY 10021, USA
| | - Dibyendu Dana
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65–30 Kissena Blvd., Flushing, NY 11367, USA
| | - Sanjai Kumar
- Department of Chemistry and Biochemistry, Queens College and the Graduate Center of the City University of New York, 65–30 Kissena Blvd., Flushing, NY 11367, USA
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, NY 11439, USA
| |
Collapse
|
41
|
|
42
|
Chen Z, Sun X, Shen S, Zhang H, Ma X, Liu J, Kuang S, Yu Q. Wedelolactone, a naturally occurring coumestan, enhances interferon-γ signaling through inhibiting STAT1 protein dephosphorylation. J Biol Chem 2013; 288:14417-14427. [PMID: 23580655 DOI: 10.1074/jbc.m112.442970] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal transducers and activators of transcription 1 (STAT1) transduces signals from cytokines and growth factors, particularly IFN-γ, and regulates expression of genes involved in cell survival/death, proliferation, and migration. STAT1 is activated through phosphorylation on its tyrosine 701 by JAKs and is inactivated through dephosphorylation by tyrosine phosphatases. We discovered a natural compound, wedelolactone, that increased IFN-γ signaling by inhibiting STAT1 dephosphorylation and prolonging STAT1 activation through specific inhibition of T-cell protein tyrosine phosphatase (TCPTP), an important tyrosine phosphatase for STAT1 dephosphorylation. More interestingly, wedelolactone inhibited TCPTP through interaction with the C-terminal autoinhibition domain of TCPTP. We also found that wedelolactone synergized with IFN-γ to induce apoptosis of tumor cells. Our data suggest a new target for anticancer or antiproliferation drugs, a new mechanism to regulate PTPs specifically, and a new drug candidate for treating cancer or other proliferation disorders.
Collapse
Affiliation(s)
- Zhimin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Xiaoxiao Sun
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Shensi Shen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Haohao Zhang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Xiuquan Ma
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Jingli Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Shan Kuang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China
| | - Qiang Yu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 201203 Shanghai, China.
| |
Collapse
|
43
|
Nichols DB, Leão RAC, Basu A, Chudayeu M, de Moraes PDF, Talele TT, Costa PRR, Kaushik-Basu N. Evaluation of Coumarin and Neoflavone Derivatives as HCV NS5B Polymerase Inhibitors. Chem Biol Drug Des 2013; 81:607-14. [DOI: 10.1111/cbdd.12105] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/04/2012] [Accepted: 12/31/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Daniel B. Nichols
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Raquel A. C. Leão
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Maksim Chudayeu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| | - Paula de F. de Moraes
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences; College of Pharmacy and Health Sciences; St. John's University; Queens; NY; 11439; USA
| | - Paulo R. R. Costa
- Laboratório de Química Bioorgânica, Núcleo de Pesquisas de Produtos Naturais; Centro de Ciências da Saúde; Bloco H; Universidade Federal do Rio de Janeiro; RJ; 21941-590; Brazil
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology; UMDNJ-New Jersey Medical School; 185 South Orange Avenue; Newark; NJ; 07103; USA
| |
Collapse
|
44
|
Küçükgüzel ŞG, Coşkun İ, Aydın S, Aktay G, Gürsoy Ş, Çevik Ö, Özakpınar ÖB, Özsavcı D, Şener A, Kaushik-Basu N, Basu A, Talele TT. Synthesis and characterization of celecoxib derivatives as possible anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV agents. Molecules 2013; 18:3595-614. [PMID: 23519201 PMCID: PMC6269910 DOI: 10.3390/molecules18033595] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 02/12/2013] [Accepted: 03/10/2013] [Indexed: 02/05/2023] Open
Abstract
A series of novel N-(3-substituted aryl/alkyl-4-oxo-1,3-thiazolidin-2-ylidene)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamides 2a-e were synthesized by the addition of ethyl a-bromoacetate and anhydrous sodium acetate in dry ethanol to N-(substituted aryl/alkylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoro-methyl)-1H-pyrazol-1-yl]benzene sulfonamides 1a-e, which were synthesized by the reaction of alkyl/aryl isothiocyanates with celecoxib. The structures of the isolated products were determined by spectral methods and their anti-inflammatory, analgesic, antioxidant, anticancer and anti-HCV NS5B RNA-dependent RNA polymerase (RdRp) activities evaluated. The compounds were also tested for gastric toxicity and selected compound 1a was screened for its anticancer activity against 60 human tumor cell lines. These investigations revealed that compound 1a exhibited anti-inflammatory and analgesic activities and further did not cause tissue damage in liver, kidney, colon and brain compared to untreated controls or celecoxib. Compounds 1c and 1d displayed modest inhibition of HCV NS5B RdRp activity. In conclusion, N-(ethylcarbamothioyl)-4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]benzenesulfonamide (1a) may have the potential to be developed into a therapeutic agent.
Collapse
Affiliation(s)
- Ş. Güniz Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - İnci Coşkun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - Sevil Aydın
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (İ.C.); (S.A.)
| | - Göknur Aktay
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; E-Mails: (G.A.); (Ş.G.)
| | - Şule Gürsoy
- Department of Pharmacology, Faculty of Pharmacy, Inonu University, 44280 Malatya, Turkey; E-Mails: (G.A.); (Ş.G.)
| | - Özge Çevik
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, 58140 Sivas, Turkey
| | - Özlem Bingöl Özakpınar
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Derya Özsavcı
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Azize Şener
- Department of Biochemistry, Faculty of Pharmacy, Marmara University, Haydarpaşa, 34668 İstanbul, Turkey; E-Mails: (Ö.Ç.); (Ö.B.Ö.); (D.Ö.); (A.Ş.)
| | - Neerja Kaushik-Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; E-Mails: (N.K.-B.); (A.B.)
| | - Amartya Basu
- Department of Biochemistry and Molecular Biology, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA; E-Mails: (N.K.-B.); (A.B.)
| | - Tanaji T. Talele
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, St. John’s University, Jamaica, NY 11439, USA; E-Mail:
| |
Collapse
|
45
|
Çıkla P, Tatar E, Küçükgüzel İ, Şahin F, Yurdakul D, Basu A, Krishnan R, Nichols DB, Kaushik-Basu N, Küçükgüzel ŞG. Synthesis and characterization of flurbiprofen hydrazide derivatives as potential anti-HCV, anticancer and antimicrobial agents. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0550-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
46
|
Barreca ML, Manfroni G, Leyssen P, Winquist J, Kaushik-Basu N, Paeshuyse J, Krishnan R, Iraci N, Sabatini S, Tabarrini O, Basu A, Danielson UH, Neyts J, Cecchetti V. Structure-based discovery of pyrazolobenzothiazine derivatives as inhibitors of hepatitis C virus replication. J Med Chem 2013; 56:2270-82. [PMID: 23409936 DOI: 10.1021/jm301643a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The NS5B RNA-dependent RNA polymerase is an attractive target for the development of novel and selective inhibitors of hepatitis C virus replication. To identify novel structural hits as anti-HCV agents, we performed structure-based virtual screening of our in-house library followed by rational drug design, organic synthesis, and biological testing. These studies led to the identification of pyrazolobenzothiazine scaffold as a suitable template for obtaining novel anti-HCV agents targeting the NS5B polymerase. The best compound of this series was the meta-fluoro-N-1-phenyl pyrazolobenzothiazine derivative 4a, which exhibited an EC50 = 3.6 μM, EC90 = 25.6 μM, and CC50 > 180 μM in the Huh 9-13 replicon system, thus providing a good starting point for further hit evolution.
Collapse
Affiliation(s)
- Maria Letizia Barreca
- Dipartimento di Chimica e Tecnologia del Farmaco, Sezione di Chimica Farmaceutica II, Università degli Studi di Perugia, Via del Liceo 1, 06123 Perugia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Çıkla P, Arora P, Basu A, Talele TT, Kaushik-Basu N, Küçükgüzel Ş. Etodolac Thiosemicarbazides: A novel class of hepatitis C virus NS5B polymerase inhibitors. MARMARA PHARMACEUTICAL JOURNAL 2013; 17:138-146. [PMID: 30948924 PMCID: PMC6445542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel series of new etodolac hydrazide derivatives, 1-[2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetyl]-4-alkyl/aryl thiosemicarbazides [3a-h] have been synthesized in this study. The structures of the new compounds were determined by spectral (FT-IR, 1H-NMR, 13C-NMR and LC-MS) methods. Inhibition of hepatitis C virus NS5B RNA dependent RNA polymerase activity by etodolac thiosemicarbazides was evaluated in vitro by primer dependent elongation assays. The most active compounds of this series were 3a (SGK 224), 3d (SGK 227) and 3e (SGK 229) with IC50 values of 18.7 μM, 29.2 μM and 16.8 μM, respectively. Binding mode investigations of the most active compound 1-[2-(1,8-diethyl-1,3,4,9-tetrahydropyrano[3,4-b]indole-1-yl)acetyl]-4-allyl thiosemicarbazide (3e) suggested that TP-II of HCV NS5B polymerase may be the potential binding site for etodolac thiosemicarbazides and provided clues for modifications to improve the potency of etodolac derivatives.
Collapse
Affiliation(s)
- Pelin Çıkla
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Turkey
| | - Payal Arora
- UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, New Jersey, USA
| | - Amartya Basu
- UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, New Jersey, USA
| | - Tanaji T. Talele
- St. John’s University College of Pharmacy and Health Sciences, Department of Pharmaceutical Sciences, New York, USA
| | - Neerja Kaushik-Basu
- UMDNJ-New Jersey Medical School, Department of Biochemistry and Molecular Biology, New Jersey, USA
| | - Ş.Güniz Küçükgüzel
- Marmara University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, İstanbul, Turkey
| |
Collapse
|
48
|
Abstract
The biological differences between males and females advocate the ultimate need for gender-specific medicine. The variation in response to viral infection as well as therapy among different genders makes it very intriguing to reveal the responsible factors for causing this discrepancy. HCV is one of the most noxious infectious diseases, however the impact of gender on the response to HCV has received negligible attention in the literature. The controversial studies concerning the effect of gender on the outcome of interferon-based therapy urge a need to judge the gender discrepancy in host factors responsible for both interferon release and action. The main aim of this review is to disentangle the interplay between sex hormones and several viral and host factors responsible for viral clearance in an attempt to clarify the role of gender in modulating the response to HCV as well as interferon-based therapy.
Collapse
Affiliation(s)
- Radwa Y Mekky
- The Molecular Pathology Research Group, Department of Pharmacology and Toxicology, German University in Cairo, New Cairo City, Main Entrance Al Tagamoa Al Khames 11835, Cairo, Egypt
| | | |
Collapse
|
49
|
Tatar E, Küçükgüzel İ, Daelemans D, Talele TT, Kaushik-Basu N, De Clercq E, Pannecouque C. Some Hydrazones of 2-Aroylamino-3-methylbutanohydrazide: Synthesis, Molecular Modeling Studies, and Identification as Stereoselective Inhibitors of HIV-1. Arch Pharm (Weinheim) 2012; 346:140-53. [DOI: 10.1002/ardp.201200311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/10/2012] [Accepted: 10/17/2012] [Indexed: 11/11/2022]
|
50
|
Manvar D, Mishra M, Kumar S, Pandey VN. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:545-54. [PMID: 23026306 PMCID: PMC3511619 DOI: 10.1016/j.jep.2012.09.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 09/11/2012] [Accepted: 09/24/2012] [Indexed: 05/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Eclipta alba, traditionally known as bhringraj, has been used in Ayurvedic medicine for more than 1000 years in India. It is used for the treatment of infective hepatitis, liver cirrhosis, liver enlargement and other ailments of liver and gall bladder in India. The aim of this study was to evaluate anti-hepatitis C virus activity present in the Eclipta alba extract, perform bioassay based fractionation and identify anti-HCV phytochemicals from the active fractions. MATERIALS AND METHODS Identification of active compounds was performed by bio-activity guided fractionation approach. Active isolates were separated by the combination of silica gel chromatography and preparative scale reverse phase HPLC. Eclipta alba extract and its isolates were examined for their ability to inhibit HCV replicase (HCV NS5B) activity in vitro and HCV replication in a cell culture system carrying replicating HCV subgenomic RNA replicon. The purified isolates were also examined for their binding affinity to HCV replicase by fluorescence quenching and their cytotoxicity by MTT assay. RESULTS Eclipta alba extract strongly inhibited RNA dependent RNA polymerase (RdRp) activity of HCV replicase in vitro. In cell culture system, it effectively inhibited HCV replication which resulted in reduced HCV RNA titer and translation level of viral proteins. Bioassay-based fractionations of the extracts and purification of anti-HCV phytochemicals present in the active fractions have identified three compounds, wedelolactone, luteolin, and apigenin. These compounds exhibited dose dependent inhibition of HCV replicase in vitro, and anti-HCV replication activity in the cell culture system CONCLUSION Eclipta alba extract and phytochemicals isolated from active fractions display anti-HCV activity in vitro and in cell culture system. The standardized Eclipta alba extract or its isolates can be used as an effective alternative and complementary treatment against HCV.
Collapse
Affiliation(s)
- Dinesh Manvar
- Department of Biochemistry and Molecular Biology, Center for Emerging Pathogens, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Mahesh Mishra
- Ganesh Ayurvedic Pharmacy, Mumukshu Bhawan, Varanasi, India
| | - Suriender Kumar
- Department of Biochemistry and Molecular Biology, Center for Emerging Pathogens, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
| | - Virendra N. Pandey
- Department of Biochemistry and Molecular Biology, Center for Emerging Pathogens, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, United States
- Corresponding author: Virendra N. Pandey, Ph.D. Tel.: 001-973-972-0660; FAX: 001-973-972-8657
| |
Collapse
|