1
|
Higuera-Rodriguez RA, De Pascali MC, Aziz M, Sattler M, Rant U, Kaiser W. Kinetic FRET Assay to Measure Binding-Induced Conformational Changes of Nucleic Acids. ACS Sens 2023; 8:4597-4606. [PMID: 38060303 PMCID: PMC10749467 DOI: 10.1021/acssensors.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The interaction of small molecules or proteins with RNA or DNA often involves changes in the nucleic acid (NA) folding and structure. A biophysical characterization of these processes helps us to understand the underlying molecular mechanisms. Here, we propose kinFRET (kinetics Förster resonance energy transfer), a real-time ensemble FRET methodology to measure binding and folding kinetics. With kinFRET, the kinetics of conformational changes of NAs (DNA or RNA) upon analyte binding can be directly followed via a FRET signal using a chip-based biosensor. We demonstrate the utility of this approach with two representative examples. First, we monitored the conformational changes of different formats of an aptamer (MN19) upon interaction with small-molecule analytes. Second, we characterized the binding kinetics of RNA recognition by tandem K homology (KH) domains of the human insulin-like growth factor II mRNA-binding protein 3 (IMP3), which reveals distinct kinetic contributions of the two KH domains. Our data demonstrate that kinFRET is well suited to study the kinetics and conformational changes of NA-analyte interactions.
Collapse
Affiliation(s)
- R. Anahi Higuera-Rodriguez
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Mareike C. De Pascali
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Masood Aziz
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Michael Sattler
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Ulrich Rant
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Wolfgang Kaiser
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| |
Collapse
|
2
|
Clark V, Pellitero MA, Arroyo-Currás N. Explaining the Decay of Nucleic Acid-Based Sensors under Continuous Voltammetric Interrogation. Anal Chem 2023; 95:4974-4983. [PMID: 36881708 PMCID: PMC10035425 DOI: 10.1021/acs.analchem.2c05158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023]
Abstract
Nucleic acid-based electrochemical sensors (NBEs) can support continuous and highly selective molecular monitoring in biological fluids, both in vitro and in vivo, via affinity-based interactions. Such interactions afford a sensing versatility that is not supported by strategies that depend on target-specific reactivity. Thus, NBEs have significantly expanded the scope of molecules that can be monitored continuously in biological systems. However, the technology is limited by the lability of the thiol-based monolayers employed for sensor fabrication. Seeking to understand the main drivers of monolayer degradation, we studied four possible mechanisms of NBE decay: (i) passive desorption of monolayer elements in undisturbed sensors, (ii) voltage-induced desorption under continuous voltammetric interrogation, (iii) competitive displacement by thiolated molecules naturally present in biofluids like serum, and (iv) protein binding. Our results indicate that voltage-induced desorption of monolayer elements is the main mechanism by which NBEs decay in phosphate-buffered saline. This degradation can be overcome by using a voltage window contained between -0.2 and 0.2 V vs Ag|AgCl, reported for the first time in this work, where electrochemical oxygen reduction and surface gold oxidation cannot occur. This result underscores the need for chemically stable redox reporters with more positive reduction potentials than the benchmark methylene blue and the ability to cycle thousands of times between redox states to support continuous sensing for long periods. Additionally, in biofluids, the rate of sensor decay is further accelerated by the presence of thiolated small molecules like cysteine and glutathione, which can competitively displace monolayer elements even in the absence of voltage-induced damage. We hope that this work will serve as a framework to inspire future development of novel sensor interfaces aiming to eliminate the mechanisms of signal decay in NBEs.
Collapse
Affiliation(s)
- Vincent Clark
- Chemistry-Biology
Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Miguel Aller Pellitero
- Departamento
de Química Física y Analítica, Universidad de Oviedo, Av. Julián Clavería 8, Oviedo 33006, Spain
- Instituto
de Investigación Sanitaria Del Principado de Asturias, Avenida de Roma, Oviedo 33011, Spain
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Netzahualcóyotl Arroyo-Currás
- Chemistry-Biology
Interface Program, Zanvyl Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department
of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
3
|
Chen S, Liu TL, Dong Y, Li J. A Wireless, Regeneratable Cocaine Sensing Scheme Enabled by Allosteric Regulation of pH Sensitive Aptamers. ACS NANO 2022; 16:20922-20936. [PMID: 36468646 DOI: 10.1021/acsnano.2c08511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A key challenge for achieving continuous biosensing with existing technologies is the poor reusability of the biorecognition interface due to the difficulty in the dissociation of analytes from the bioreceptors upon surface saturation. In this work, we introduce a regeneratable biosensing scheme enabled by allosteric regulation of a re-engineered pH sensitive anti-cocaine aptamer. The aptamer can regain its affinity with target analytes due to proton-promoted duplex-to-triplex transition in DNA configuration followed by the release of adsorbed analytes. A Pd/PdHx electrode placed next to the sensor can enable the pH regulation of the local chemical environment via electrochemical reactions. Demonstration of a "flower-shaped", stretchable, and inductively coupled electronic system with sensing and energy harvesting capabilities provides a promising route to designing wireless devices in biointegrated forms. These advances have the potential for future development of electronic sensing platforms with on-chip regeneration capability for continuous, quantitative, and real-time monitoring of chemical and biological markers.
Collapse
Affiliation(s)
- Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Tzu-Li Liu
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
| | - Jinghua Li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio43210, United States
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
4
|
Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M. Paramagnetic Chemical Probes for Studying Biological Macromolecules. Chem Rev 2022; 122:9571-9642. [PMID: 35084831 PMCID: PMC9136935 DOI: 10.1021/acs.chemrev.1c00708] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/11/2022]
Abstract
Paramagnetic chemical probes have been used in electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy for more than four decades. Recent years witnessed a great increase in the variety of probes for the study of biological macromolecules (proteins, nucleic acids, and oligosaccharides). This Review aims to provide a comprehensive overview of the existing paramagnetic chemical probes, including chemical synthetic approaches, functional properties, and selected applications. Recent developments have seen, in particular, a rapid expansion of the range of lanthanoid probes with anisotropic magnetic susceptibilities for the generation of structural restraints based on residual dipolar couplings and pseudocontact shifts in solution and solid state NMR spectroscopy, mostly for protein studies. Also many new isotropic paramagnetic probes, suitable for NMR measurements of paramagnetic relaxation enhancements, as well as EPR spectroscopic studies (in particular double resonance techniques) have been developed and employed to investigate biological macromolecules. Notwithstanding the large number of reported probes, only few have found broad application and further development of probes for dedicated applications is foreseen.
Collapse
Affiliation(s)
- Qing Miao
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
- School
of Chemistry &Chemical Engineering, Shaanxi University of Science & Technology, Xi’an710021, China
| | - Christoph Nitsche
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Henry Orton
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Mark Overhand
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Gottfried Otting
- Research
School of Chemistry, The Australian National
University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
- ARC
Centre of Excellence for Innovations in Peptide & Protein Science,
Research School of Chemistry, Australian
National University, Sullivans Creek Road, Canberra, Australian Capital Territory 2601, Australia
| | - Marcellus Ubbink
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| |
Collapse
|
5
|
Daems E, Dewaele D, Barylyuk K, De Wael K, Sobott F. Aptamer-ligand recognition studied by native ion mobility-mass spectrometry. Talanta 2020; 224:121917. [PMID: 33379118 DOI: 10.1016/j.talanta.2020.121917] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/31/2022]
Abstract
The range of applications for aptamers, small oligonucleotide-based receptors binding to their targets with high specificity and affinity, has been steadily expanding. Our understanding of the mechanisms governing aptamer-ligand recognition and binding is however lagging, stymieing the progress in the rational design of new aptamers and optimization of the known ones. Here we demonstrate the capabilities and limitations of native ion mobility-mass spectrometry for the analysis of their higher-order structure and non-covalent interactions. A set of related cocaine-binding aptamers, displaying a range of folding properties and ligand binding affinities, was used as a case study in both positive and negative electrospray ionization modes. Using carefully controlled experimental conditions, we probed their conformational behavior and interactions with the high-affinity ligand quinine as a surrogate for cocaine. The ratios of bound and unbound aptamers in the mass spectra were used to rank them according to their apparent quinine-binding affinity, qualitatively matching the published ranking order. The arrival time differences between the free aptamer and aptamer-quinine complexes were consistent with a small ligand-induced conformational change, and found to inversely correlate with the affinity of binding. This mass spectrometry-based approach provides a fast and convenient way to study the molecular basis of aptamer-ligand recognition.
Collapse
Affiliation(s)
- Elise Daems
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Debbie Dewaele
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Konstantin Barylyuk
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Frank Sobott
- BAMS Research Group, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium; Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
6
|
Churcher ZR, Garaev D, Hunter HN, Johnson PE. Reduction in Dynamics of Base pair Opening upon Ligand Binding by the Cocaine-Binding Aptamer. Biophys J 2020; 119:1147-1156. [PMID: 32882188 DOI: 10.1016/j.bpj.2020.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 12/25/2022] Open
Abstract
We have used magnetization transfer NMR experiments to measure the exchange rate constant (kex) of the imino protons in the unbound, cocaine-bound, and quinine-bound forms of the cocaine-binding DNA aptamer. Both long-stem 1 (MN4) and short-stem 1 (MN19) variants were analyzed, corresponding to structures with a prefolded secondary structure and ligand-induced-folding versions of this aptamer, respectively. The kex values were measured as a function of temperature from 5 to 45°C to determine the thermodynamics of the base pair opening for MN4. We find that the base pairs close to the ligand-binding site become stronger upon ligand binding, whereas those located away from the binding site do not strengthen. With the buffer conditions used in this study, we observe imino 1H signals in MN19 not previously seen, which leads us to conclude that in the free form, both stem 2 and parts of stem 3 are formed and that the base pairs in stem 1 become structured or more rigid upon binding. This is consistent with the kex values for MN19 decreasing in both stem 1 and at the ligand-binding site. Based on the temperature dependence of the kex values, we find that MN19 is more dynamic than MN4 in the free and both ligand-bound forms. For MN4, ligand-binding results in the reduction of dynamics that are localized to the binding site. These results demonstrate that an aptamer in which the base pairs are preformed also experiences a reduction in dynamics with ligand binding.
Collapse
Affiliation(s)
- Zachary R Churcher
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Devid Garaev
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Howard N Hunter
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada
| | - Philip E Johnson
- Department of Chemistry and Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Bissonnette S, Del Grosso E, Simon AJ, Plaxco KW, Ricci F, Vallée-Bélisle A. Optimizing the Specificity Window of Biomolecular Receptors Using Structure-Switching and Allostery. ACS Sens 2020; 5:1937-1942. [PMID: 32297508 DOI: 10.1021/acssensors.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To ensure maximum specificity (i.e., minimize cross-reactivity with structurally similar analogues of the desired target), most bioassays invoke "stringency", the careful tuning of the conditions employed (e.g., pH, ionic strength, or temperature). Willingness to control assay conditions will fall, however, as quantitative, single-step biosensors begin to replace multistep analytical processes. This is especially true for sensors deployed in vivo, where the tuning of such parameters is not just inconvenient but impossible. In response, we describe here the rational adaptation of two strategies employed by nature to tune the affinity of biomolecular receptors so as to optimize the placement of their specificity "windows" without the need to alter measurement conditions: structure-switching and allosteric control. We quantitatively validate these approaches using two distinct, DNA-based receptors: a simple, linear-chain DNA suitable for detecting a complementary DNA strand and a structurally complex DNA aptamer used for the detection of a small-molecule drug. Using these models, we show that, without altering assay conditions, structure-switching and allostery can tune the concentration range over which a receptor achieves optimal specificity over orders of magnitude, thus optimally matching the specificity window with the range of target concentrations expected to be seen in a given application.
Collapse
Affiliation(s)
- Stéphanie Bissonnette
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Erica Del Grosso
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | | | | | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome 00136, Italy
| | - Alexis Vallée-Bélisle
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Département de Biochimie et Médecine Moléculaire, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
8
|
Debiais M, Lelievre A, Smietana M, Müller S. Splitting aptamers and nucleic acid enzymes for the development of advanced biosensors. Nucleic Acids Res 2020; 48:3400-3422. [PMID: 32112111 PMCID: PMC7144939 DOI: 10.1093/nar/gkaa132] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
In analogy to split-protein systems, which rely on the appropriate fragmentation of protein domains, split aptamers made of two or more short nucleic acid strands have emerged as novel tools in biosensor set-ups. The concept relies on dissecting an aptamer into a series of two or more independent fragments, able to assemble in the presence of a specific target. The stability of the assembled structure can further be enhanced by functionalities that upon folding would lead to covalent end-joining of the fragments. To date, only a few aptamers have been split successfully, and application of split aptamers in biosensing approaches remains as promising as it is challenging. Further improving the stability of split aptamer target complexes and with that the sensitivity as well as efficient working modes are important tasks. Here we review functional nucleic acid assemblies that are derived from aptamers and ribozymes/DNAzymes. We focus on the thrombin, the adenosine/ATP and the cocaine split aptamers as the three most studied DNA split systems and on split DNAzyme assemblies. Furthermore, we extend the subject into split light up RNA aptamers used as mimics of the green fluorescent protein (GFP), and split ribozymes.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Amandine Lelievre
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, University of Montpellier, CNRS, ENCSM, Montpellier, France
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| |
Collapse
|
9
|
Gustmann H, Segler ALJ, Gophane DB, Reuss AJ, Grünewald C, Braun M, Weigand JE, Sigurdsson ST, Wachtveitl J. Structure guided fluorescence labeling reveals a two-step binding mechanism of neomycin to its RNA aptamer. Nucleic Acids Res 2019; 47:15-28. [PMID: 30462266 PMCID: PMC6326822 DOI: 10.1093/nar/gky1110] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/22/2018] [Indexed: 12/12/2022] Open
Abstract
The ability of the cytidine analog Çmf to act as a position specific reporter of RNA-dynamics was spectroscopically evaluated. Çmf-labeled single- and double-stranded RNAs differ in their fluorescence lifetimes, quantum yields and anisotropies. These observables were also influenced by the nucleobases flanking Çmf. This conformation and position specificity allowed to investigate the binding dynamics and mechanism of neomycin to its aptamer N1 by independently incorporating Çmf at four different positions within the aptamer. Remarkably fast binding kinetics of neomycin binding was observed with stopped-flow measurements, which could be satisfactorily explained with a two-step binding. Conformational selection was identified as the dominant mechanism.
Collapse
Affiliation(s)
- Henrik Gustmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Anna-Lena J Segler
- Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | | | - Andreas J Reuss
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Christian Grünewald
- Institute for Organic Chemistry and Chemical Biology, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| | - Julia E Weigand
- Department of Biology, Technical University Darmstadt, Schnittspahnstraße 10, 64287 Darmstadt, Germany
| | | | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Strasse 7, 60438 Frankfurt, Germany
| |
Collapse
|
10
|
Chen X, Zhou C, Guo X. Ultrasensitive Detection and Binding Mechanism of Cocaine in an Aptamer‐based Single‐molecule Device. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinjiani Chen
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Academy for Advanced Interdisciplinary Studies, Center for Life SciencesPeking University Beijing 100871 China
| | - Chenguang Zhou
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Science, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
- Department of Materials Science and Engineering, College of EngineeringPeking University Beijing 100871 China
| |
Collapse
|
11
|
Tapp MJN, Slocik JM, Dennis PB, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Identify DNA Aptamers. ACS COMBINATORIAL SCIENCE 2018; 20:585-593. [PMID: 30189130 DOI: 10.1021/acscombsci.8b00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Competition-enhanced ligand screening (CompELS) was employed to rapidly screen through large DNA libraries to identify single-stranded, oligonucleotide-based ligands called aptamers that bind to a nonbiological target. This previously unreported aptamer screening approach involves the repeated introduction of unenriched random sequence populations during the biopanning process, but avoids iterative elution and polymerase chain reaction (PCR) amplification steps inherent to traditional SELEX (systematic evolution of ligands by exponential enrichment) screening. In this study, 25 aptamers were identified against a gold surface via CompELS and evaluated to identify patterns in primary structures and predicted secondary structures. Following a final one-round competition experiment with the 25 identified aptamers, one particular aptamer sequence (1N) emerged as the most competitive adsorbate species for the gold substrate. Binding analysis indicated at least an order of magnitude difference in the binding affinity of 1N ( Kd = 5.6 × 10-10 M) compared to five other high affinity aptamer candidates ( Kd = 10-8-10-9 M) from identical secondary structure families. Collectively, these studies introduce a rapid, reliable screening and ranking platform along with a classification scheme well-suited for identifying and characterizing aptamers for nonbiological as well as biological targets.
Collapse
Affiliation(s)
| | - Joseph M. Slocik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
12
|
Gülbakan B, Barylyuk K, Schneider P, Pillong M, Schneider G, Zenobi R. Native Electrospray Ionization Mass Spectrometry Reveals Multiple Facets of Aptamer–Ligand Interactions: From Mechanism to Binding Constants. J Am Chem Soc 2018; 140:7486-7497. [DOI: 10.1021/jacs.7b13044] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Basri Gülbakan
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
- Hacettepe University Institute of Child Health, Ihsan Dogramaci Children’s Hospital, Sıhhiye Square, 06100 Ankara, Turkey
| | - Konstantin Barylyuk
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Petra Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Max Pillong
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Bioscience, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
13
|
Gustmann H, Lefrancois D, Reuss AJ, Gophane DB, Braun M, Dreuw A, Sigurdsson ST, Wachtveitl J. Spin the light off: rapid internal conversion into a dark doublet state quenches the fluorescence of an RNA spin label. Phys Chem Chem Phys 2018; 19:26255-26264. [PMID: 28933471 DOI: 10.1039/c7cp03975a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The spin label Çm and the fluorophore Çmf are close isosteric relatives: the secondary amine Çmf can be easily oxidized to a nitroxide group to form Çm. Thus, both compounds can serve as EPR and fluorescence labels, respectively, and their high structural similarity allows direct comparison of EPR and fluorescence data, e.g. in the context of investigations of RNA conformation and dynamics. Detailed UV/vis-spectroscopic studies demonstrate that the fluorescence lifetime and the quantum yield of Çmf are directly affected by intermolecular interactions, which makes it a sensitive probe of its microenvironment. On the other hand, Çm undergoes effective fluorescence quenching in the ps-time domain. The established quenching mechanisms that are usually operational for fluorophore-nitroxide compounds, do not explain the spectroscopic data for Çm. Quantum chemical calculations revealed that the lowest excited doublet state D1, which has no equivalent in Çmf, is a key state of the ultrafast quenching mechanism. This dark state is localized on the nitroxide group and is populated via rapid internal conversion.
Collapse
Affiliation(s)
- Henrik Gustmann
- Institute of Physical and Theoretical Chemistry, Goethe-University Frankfurt am Main, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Neves MAD, Shoara AA, Reinstein O, Abbasi Borhani O, Martin TR, Johnson PE. Optimizing Stem Length To Improve Ligand Selectivity in a Structure-Switching Cocaine-Binding Aptamer. ACS Sens 2017; 2:1539-1545. [PMID: 28929744 DOI: 10.1021/acssensors.7b00619] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Understanding how aptamer structure and function are related is crucial in the design and development of aptamer-based biosensors. We have analyzed a series of cocaine-binding aptamers with different lengths of their stem 1 in order to understand the role that this stem plays in the ligand-induced structure-switching binding mechanism utilized in many of the sensor applications of this aptamer. In the cocaine-binding aptamer, the length of stem 1 controls whether the structure-switching binding mechanism for this aptamer occurs or not. We varied the length of stem 1 from being one to seven base pairs long and found that the structural transition from unfolded to folded in the unbound aptamer is when the aptamer elongates from 3 to 4 base pairs in stem 1. We then used this knowledge to achieve new binding selectivity of this aptamer for quinine over cocaine by using an aptamer with a stem 1 two base pairs long. This selectivity is achieved by means of the greater affinity quinine has for the aptamer compared with cocaine. Quinine provides enough free energy to both fold and bind the 2-base pair-long aptamer while cocaine does not. This tuning of binding selectivity of an aptamer by reducing its stability is likely a general mechanism that could be used to tune aptamer specificity for tighter binding ligands.
Collapse
Affiliation(s)
- Miguel A. D. Neves
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Aron A. Shoara
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Oren Reinstein
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Okty Abbasi Borhani
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Taylor R. Martin
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| | - Philip E. Johnson
- Department of Chemistry and
Centre for Research on Biomolecular Interactions, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
15
|
Development of a thermal-stable structure-switching cocaine-binding aptamer. Biochimie 2017; 145:137-144. [PMID: 28838608 DOI: 10.1016/j.biochi.2017.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
Abstract
We have developed a new cocaine-binding aptamer variant that has a significantly higher melt temperature when bound to a ligand than the currently used sequence. Retained in this new construct is the ligand-induced structure-switching binding mechanism that is important in biosensing applications of the cocaine-binding aptamer. Isothermal titration calorimetry methods show that the binding affinity of this new sequence is slightly tighter than the existing cocaine-binding aptamer. The improved thermal performance, a Tm increase of 4 °C for the cocaine-bound aptamer and 9 °C for the quinine-bound aptamer, was achieved by optimizing the DNA sequence in stem 2 of the aptamer to have the highest stability based on the nearest neighbor thermodynamic parameters and confirmed by UV and fluorescence spectroscopy. The sequences in stem 1 and stem 3 were unchanged in order to retain the structure switching and ligand binding functions. The more favorable thermal stability characteristics of the OR3 aptamer should make it a useful construct for sensing applications employing the cocaine-binding aptamer system.
Collapse
|
16
|
Taylor IM, Du Z, Bigelow ET, Eles JR, Horner AR, Catt KA, Weber SG, Jamieson BG, Cui XT. Aptamer-functionalized neural recording electrodes for the direct measurement of cocaine in vivo. J Mater Chem B 2017; 5:2445-2458. [PMID: 28729901 PMCID: PMC5512874 DOI: 10.1039/c7tb00095b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cocaine is a highly addictive psychostimulant that acts through competitive inhibition of the dopamine transporter. In order to fully understand the region specific neuropathology of cocaine abuse and addiction, it is unequivocally necessary to develop cocaine sensing technology capable of directly measuring real-time cocaine transient events local to different brain regions throughout the pharmacokinetic time course of exposure. We have developed an electrochemical aptamer-based in vivo cocaine sensor on a silicon based neural recording probe platform capable of directly measuring cocaine from discrete brain locations using square wave voltammetry (SWV). The sensitivity of the sensor for cocaine follows a modified exponential Langmuir model relationship and complete aptamer-target binding occurs in < 2 sec and unbinding in < 4 sec. The resulting temporal resolution is a 75X increase from traditional microdialysis sampling methods. When implanted in the rat dorsal striatum, the cocaine sensor exhibits stable SWV signal drift (modeled using a logarithmic exponential equation) and is capable of measuring real-time in vivo response to repeated local cocaine infusion as well as systemic IV cocaine injection. The in vivo sensor is capable of obtaining reproducible measurements over a period approaching 3 hours, after which signal amplitude significantly decreases likely due to tissue encapsulation. Finally, aptamer functionalized neural recording probes successfully detect spontaneous and evoked neural activity in the brain. This dual functionality makes the cocaine sensor a powerful tool capable of monitoring both biochemical and electrophysiological signals with high spatial and temporal resolution.
Collapse
Affiliation(s)
- I. Mitch Taylor
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zhanhong Du
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science, Shenzhen Institute of Advanced Technologies, Chinese Academy of Sciences, Shenzhen, 518055, China
| | | | - James R. Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anthony R. Horner
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Kasey A. Catt
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stephen G. Weber
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | - X. Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Grytz CM, Marko A, Cekan P, Sigurdsson ST, Prisner TF. Flexibility and conformation of the cocaine aptamer studied by PELDOR. Phys Chem Chem Phys 2016; 18:2993-3002. [PMID: 26740459 DOI: 10.1039/c5cp06158j] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The cocaine aptamer is a DNA three-way junction that binds cocaine at its helical junction. We studied the global conformation and overall flexibility of the aptamer in the absence and presence of cocaine by pulsed electron-electron double resonance (PELDOR) spectroscopy, also called double electron-electron resonance (DEER). The rigid nitroxide spin label Ç was incorporated pairwise into two helices of the aptamer. Multi-frequency 2D PELDOR experiments allow the determination of the mutual orientation and the distances between two Çs. Since Ç is rigidly attached to double-stranded DNA, it directly reports on the aptamer dynamics. The cocaine-bound and the non-bound states could be differentiated by their conformational flexibility, which decreases upon binding to cocaine. We observed a small change in the width and mean value of the distance distribution between the two spin labels upon cocaine binding. Further structural insights were obtained by investigating the relative orientation between the two spin-labeled stems of the aptamer. We determined the bend angle between this two stems. By combining the orientation information with a priori knowledge about the secondary structure of the aptamer, we obtained a molecular model describing the global folding and flexibility of the cocaine aptamer.
Collapse
Affiliation(s)
- C M Grytz
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - A Marko
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| | - P Cekan
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - S Th Sigurdsson
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | - T F Prisner
- Institute of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic Resonance, Goethe University, 60438 Frankfurt am Main, Max-von-Laue-Str. 9, Hessen, Germany.
| |
Collapse
|
18
|
Sachan A, Ilgu M, Kempema A, Kraus GA, Nilsen-Hamilton M. Specificity and Ligand Affinities of the Cocaine Aptamer: Impact of Structural Features and Physiological NaCl. Anal Chem 2016; 88:7715-23. [PMID: 27348073 DOI: 10.1021/acs.analchem.6b01633] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The cocaine aptamer has been seen as a good candidate for development as a probe for cocaine in many contexts. Here, we demonstrate that the aptamer binds cocaine, norcocaine, and cocaethylene with similar affinities and aminoglycosides with similar or higher affinities in a mutually exclusive manner with cocaine. Analysis of its affinities for a series of cocaine derivatives shows that the aptamer specificity is the consequence of its interaction with all faces of the cocaine molecule. Circular dichroism spectroscopy and 2-aminopurine (2AP) fluorescence studies show no evidence of large structural rearrangement of the cocaine aptamer upon ligand binding, which is contrary to the general view of this aptamer. The aptamer's affinity for cocaine and neomycin-B decreases with the inclusion of physiological NaCl. The substitution of 2AP for A in position 6 (2AP6) of the aptamer sequence eliminated the effect of NaCl on its affinities for cocaine and analogues, but not for neomycin-B, showing a selective effect of 2AP substitution on cocaine binding. The affinity for cocaine also decreased with increasing concentrations of serum or urine, with the 2AP6 substitution blunting the effect of urine. Its low affinities for cocaine and metabolites and its ability to bind irrelevant compounds limit the opportunities for application of this aptamer in its current form as a selective and reliable sensor for cocaine. However, these studies also show that a small structural adjustment to the aptamer (2AP exchanged for adenine) can increase its specificity for cocaine in physiological NaCl relative to an off-target ligand.
Collapse
Affiliation(s)
- Ashish Sachan
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Muslum Ilgu
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Aaron Kempema
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - George A Kraus
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| | - Marit Nilsen-Hamilton
- Interdepartmental Toxicology Program, ‡Department of Chemistry, §Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University , Ames, Iowa 50011, United States
| |
Collapse
|
19
|
|
20
|
Gandhi S, Suman P, Kumar A, Sharma P, Capalash N, Suri CR. Recent advances in immunosensor for narcotic drug detection. BIOIMPACTS : BI 2015; 5:207-13. [PMID: 26929925 PMCID: PMC4769791 DOI: 10.15171/bi.2015.30] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 12/19/2015] [Accepted: 12/26/2015] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Immunosensor for illicit drugs have gained immense interest and have found several applications for drug abuse monitoring. This technology has offered a low cost detection of narcotics; thereby, providing a confirmatory platform to compliment the existing analytical methods. METHODS In this minireview, we define the basic concept of transducer for immunosensor development that utilizes antibodies and low molecular mass hapten (opiate) molecules. RESULTS This article emphasizes on recent advances in immunoanalytical techniques for monitoring of opiate drugs. Our results demonstrate that high quality antibodies can be used for immunosensor development against target analyte with greater sensitivity, specificity and precision than other available analytical methods. CONCLUSION In this review we highlight the fundamentals of different transducer technologies and its applications for immunosensor development currently being developed in our laboratory using rapid screening via immunochromatographic kit, label free optical detection via enzyme, fluorescence, gold nanoparticles and carbon nanotubes based immunosensing for sensitive and specific monitoring of opiates.
Collapse
Affiliation(s)
- Sonu Gandhi
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Pankaj Suman
- Amity Institute of Biotechnology, Amity University, Noida, India
| | - Ashok Kumar
- CSIR- Institute of Genomics and Integrative Biology, Delhi, India
| | - Prince Sharma
- Department of Microbiology and Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Microbiology and Biotechnology, Panjab University, Chandigarh, India
| | - C. Raman Suri
- CSIR- Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
21
|
Shelke SA, Sandholt GB, Sigurdsson ST. Nitroxide-labeled pyrimidines for non-covalent spin-labeling of abasic sites in DNA and RNA duplexes. Org Biomol Chem 2015; 12:7366-74. [PMID: 25119508 DOI: 10.1039/c4ob01095g] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-covalent and site-directed spin labeling gives easy access to spin-labeled nucleic acids for the study of their structure and dynamics by electron paramagnetic resonance (EPR) spectroscopy. In a search for improved spin labels for non-covalent binding to abasic sites in duplex DNA and RNA, ten pyrimidine-derived spin labels were prepared in good yields and their binding was evaluated by continuous wave (CW)-EPR spectroscopy. Most of the spin labels showed lower binding affinity than the previously reported label ç towards abasic sites in DNA and RNA. The most promising labels were triazole-linked spin labels and a pyrrolocytosine label. In particular, the N1-ethylamino derivative of a triazole-linked uracil spin label binds fully to both DNA and RNA containing an abasic site. This is the first example of a spin label that binds fully through non-covalent interactions with an abasic site in RNA.
Collapse
Affiliation(s)
- Sandip A Shelke
- University of Iceland, Department of Chemistry, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland.
| | | | | |
Collapse
|
22
|
Porchetta A, Idili A, Vallée-Bélisle A, Ricci F. General Strategy to Introduce pH-Induced Allostery in DNA-Based Receptors to Achieve Controlled Release of Ligands. NANO LETTERS 2015; 15:4467-71. [PMID: 26053894 PMCID: PMC4498449 DOI: 10.1021/acs.nanolett.5b00852] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/29/2015] [Indexed: 05/23/2023]
Abstract
Inspired by naturally occurring pH-regulated receptors, here we propose a rational approach to introduce pH-induced allostery into a wide range of DNA-based receptors. To demonstrate this we re-engineered two model DNA-based probes, a molecular beacon and a cocaine-binding aptamer, by introducing in their sequence a pH-dependent domain. We demonstrate here that we can finely tune the affinity of these model receptors and control the load/release of their specific target molecule by a simple pH change.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Andrea Idili
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Alexis Vallée-Bélisle
- Laboratory
of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| |
Collapse
|
23
|
Chen Z, Tan L, Hu L, Luan Y. Superior fluorescent probe for detection of potassium ion. Talanta 2015; 144:247-51. [PMID: 26452817 DOI: 10.1016/j.talanta.2015.06.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/31/2015] [Accepted: 06/05/2015] [Indexed: 12/27/2022]
Abstract
Here, a simple, and highly sensitive fluorescent assay is designed to monitor K(+). The versatile, robust biosensing strategy is based on the specific recognition utility of label-free aptamers with their targets and PicoGreen dye as the signal probe. The aptamers undergo a conformational change to a secondary structure such as G-quadruplex in the presence of targets. In addition to a conformational change with its targets, the remaining single-stranded DNA (ssDNA) aptamer form a duplex structure with its complete complementary sequence. Conformational changes of aptamers as well as fluorescence amplification produce clear signal-off in the presence of targets. Fluorescent assay employing this mechanism for the detection of K(+) is highly sensitive, and selective. The detection limit of the K(+) assay is determined to be 2.37 pM. The sensing strategy is low-cost and simple in its operation without requirement for complex labeling of probe DNA or sophisticated synthesis of the fluorescent compound. Also, the method has less structural requirement of complexes of aptamers with their targets, thus rending its wilder applications for various targets.
Collapse
Affiliation(s)
- Zhengbo Chen
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Lulu Tan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Liangyu Hu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China
| |
Collapse
|
24
|
Neves MAD, Blaszykowski C, Bokhari S, Thompson M. Ultra-high frequency piezoelectric aptasensor for the label-free detection of cocaine. Biosens Bioelectron 2015; 72:383-92. [PMID: 26022784 DOI: 10.1016/j.bios.2015.05.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/30/2015] [Accepted: 05/16/2015] [Indexed: 11/26/2022]
Abstract
This paper describes a label-free and real-time piezoelectric aptasensor for the detection of cocaine. The acoustic wave sensing platform is a quartz substrate functionalized with an adlayer of S-(11-trichlorosilyl-undecanyl)-benzenethiosulfonate (BTS) cross-linker onto which the anti-cocaine MN4 DNA aptamer is next immobilized. Preparation of the sensor surface was monitored using X-ray photoelectron spectroscopy (XPS), while the binding of cocaine to surface-attached MN4 was evaluated using the electromagnetic piezoelectric acoustic sensor (EMPAS). The MN4 aptamer, unlike other cocaine aptamer variants, has its secondary structure preformed in the unbound state with only tertiary structure changes occurring during target binding. It is postulated that the highly sensitive EMPAS detected the binding of cocaine through target mass loading coupled to aptamer tertiary structure folding. The sensor achieved an apparent Kd of 45 ± 12 µM, and a limit of detection of 0.9 µM. Repeated regenerability of the sensor platform was also demonstrated. This work constitutes the first application of EMPAS technology in the field of aptasensors. Furthermore, it is so far one of the very few examples of a bulk acoustic wave aptasensor that is able to directly detect the binding interaction between an aptamer and a small molecule in a facile one-step protocol without the use of a complex assay or signal amplification step.
Collapse
Affiliation(s)
- Miguel A D Neves
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | - Sumra Bokhari
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9
| | - Michael Thompson
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6; Econous Systems Inc., 80 St. George Street, Toronto, Ontario, Canada M5S 3H6; Institute for Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario, Canada M5S 3G9.
| |
Collapse
|
25
|
Nguyen PH, Popova AM, Hideg K, Qin PZ. A nucleotide-independent cyclic nitroxide label for monitoring segmental motions in nucleic acids. BMC BIOPHYSICS 2015; 8:6. [PMID: 25897395 PMCID: PMC4404236 DOI: 10.1186/s13628-015-0019-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/16/2015] [Indexed: 01/07/2023]
Abstract
Background Spin labels, which are chemically stable radicals attached at specific sites of a bio-molecule, enable investigations on structure and dynamics of proteins and nucleic acids using techniques such as site-directed spin labeling and paramagnetic NMR. Among spin labels developed, the class of rigid labels have limited or no independent motions between the radical bearing moiety and the target, and afford a number of advantages in measuring distances and monitoring local dynamics within the parent bio-molecule. However, a general method for attaching a rigid label to nucleic acids in a nucleotide-independent manner has not been reported. Results We developed an approach for installing a nearly rigid nitroxide spin label, designated as R5c, at a specific site of the nucleic acid backbone in a nucleotide-independent manner. The method uses a post-synthesis approach to covalently attach the nitroxide moiety in a cyclic fashion to phosphorothioate groups introduced at two consecutive nucleotides of the target strand. R5c-labeled nucleic acids are capable of pairing with their respective complementary strands, and the cyclic nature of R5c attachment significantly reduced independence motions of the label with respect to the parent duplex, although it may cause distortion of the local environment at the site of labeling. R5c yields enhanced sensitivity to the collective motions of the duplex, as demonstrated by its capability to reveal changes in collective motions of the substrate recognition duplex of the 120-kDa Tetrahymena group I ribozyme, which elude detection by a flexible label. Conclusions The cyclic R5c nitroxide can be efficiently attached to a target nucleic acid site using a post-synthetic coupling approach conducted under mild biochemical conditions, and serves as a viable label for experimental investigation of segmental motions in nucleic acids, including large folded RNAs. Electronic supplementary material The online version of this article (doi:10.1186/s13628-015-0019-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phuong H Nguyen
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA 90089-0744 USA ; Current Address: Bachem Americas, Torrance, CA 90505 USA
| | - Anna M Popova
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA 90089-0744 USA ; Current Address: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, Szigetic Strasse 12, Pécs, Hungary
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, CA 90089-0744 USA
| |
Collapse
|
26
|
Alsager OA, Kumar S, Zhu B, Travas-Sejdic J, McNatty KP, Hodgkiss JM. Ultrasensitive colorimetric detection of 17β-estradiol: the effect of shortening DNA aptamer sequences. Anal Chem 2015; 87:4201-9. [PMID: 25803717 DOI: 10.1021/acs.analchem.5b00335] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We report a strategy enabling ultrasensitive colorimetric detection of 17β-estradiol (E2) in water and urine samples using DNA aptamer-coated gold nanoparticles (AuNPs). Starting from an established sensor format where aggregation is triggered when target-bound aptamers dissociate from AuNP surfaces, we demonstrated that step-change improvements are easily accessible through deletion of excess flanking nucleotides from aptamer sequences. After evaluating the lowest energy two-dimensional configuration of the previously isolated E2 binding 75-mer aptamer (KD ∼25 nM), new 35-mer and 22-mer aptamers were generated with KD's of 14 and 11 nM by simply removing flanking nucleotides on either side of the inner core. The shorter aptamers were found to improve discrimination against other steroidal molecules and to improve colorimetric sensitivity for E2 detection by 25-fold compared with the 75-mer to 200 pM. In comparing the response of all sequences, we find that the excess flanking nucleotides suppress signal transduction by causing target-bound aptamers to remain adhered to AuNPs, which we confirm via surface sensitive electrochemical measurements. However, comparison between the 22-mer and 35-mer systems show that retaining a small number of excess bases is optimal. The performance advances we achieved by specifically considering the signal transduction mechanism ultimately resulted in facile detection of E2 in urine, as well as enabling environmental detection of E2 at levels approaching biological relevance.
Collapse
Affiliation(s)
| | - Shalen Kumar
- §School of Biological Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | - Bicheng Zhu
- ∥Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Jadranka Travas-Sejdic
- ∥Polymer Electronics Research Centre, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Kenneth P McNatty
- §School of Biological Sciences, Victoria University of Wellington, Wellington 6040, New Zealand
| | | |
Collapse
|
27
|
Poma A, Brahmbhatt H, Pendergraff HM, Watts JK, Turner NW. Generation of novel hybrid aptamer-molecularly imprinted polymeric nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:750-758. [PMID: 25413444 DOI: 10.1002/adma.201404235] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/26/2014] [Indexed: 06/04/2023]
Abstract
A strategy to exploit aptamers as recognition elements of molecularly imprinted polymeric nanoparticles (AptaMIP NPs) is presented, via modification of the chemical structure of the DNA. It is demonstrated that the introduction of this modified "aptamer monomer" results in an increase of the affinity of the produced MIP NPs, without altering their physical properties such as size, shape, or dispersibility.
Collapse
Affiliation(s)
- Alessandro Poma
- Department of Life, Health and Chemical Sciences, The Open University, Milton Keynes, MK7 6AA, UK
| | | | | | | | | |
Collapse
|
28
|
Roncancio D, Yu H, Xu X, Wu S, Liu R, Debord J, Lou X, Xiao Y. A label-free aptamer-fluorophore assembly for rapid and specific detection of cocaine in biofluids. Anal Chem 2014; 86:11100-6. [PMID: 25342426 DOI: 10.1021/ac503360n] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report a rapid and specific aptamer-based method for one-step cocaine detection with minimal reagent requirements. The feasibility of aptamer-based detection has been demonstrated with sensors that operate via target-induced conformational change mechanisms, but these have generally exhibited limited target sensitivity. We have discovered that the cocaine-binding aptamer MNS-4.1 can also bind the fluorescent molecule 2-amino-5,6,7-trimethyl-1,8-naphthyridine (ATMND) and thereby quench its fluorescence. We subsequently introduced sequence changes into MNS-4.1 to engineer a new cocaine-binding aptamer (38-GC) that exhibits higher affinity to both ligands, with reduced background signal and increased signal gain. Using this aptamer, we have developed a new sensor platform that relies on the cocaine-mediated displacement of ATMND from 38-GC as a result of competitive binding. We demonstrate that our sensor can detect cocaine within seconds at concentrations as low as 200 nM, which is 50-fold lower than existing assays based on target-induced conformational change. More importantly, our assay achieves successful cocaine detection in body fluids, with a limit of detection of 10.4, 18.4, and 36 μM in undiluted saliva, urine, and serum samples, respectively.
Collapse
Affiliation(s)
- Daniel Roncancio
- Department of Chemistry and Biochemistry, Florida International University , 11200 SW Eighth Street, Miami, Florida 33199, United States
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Ding Y, Zhang X, Tham KW, Qin PZ. Experimental mapping of DNA duplex shape enabled by global lineshape analyses of a nucleotide-independent nitroxide probe. Nucleic Acids Res 2014; 42:e140. [PMID: 25092920 PMCID: PMC4191381 DOI: 10.1093/nar/gku695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Sequence-dependent variation in structure and dynamics of a DNA duplex, collectively referred to as ‘DNA shape’, critically impacts interactions between DNA and proteins. Here, a method based on the technique of site-directed spin labeling was developed to experimentally map shapes of two DNA duplexes that contain response elements of the p53 tumor suppressor. An R5a nitroxide spin label, which was covalently attached at a specific phosphate group, was scanned consecutively through the DNA duplex. X-band continuous-wave electron paramagnetic resonance spectroscopy was used to monitor rotational motions of R5a, which report on DNA structure and dynamics at the labeling site. An approach based on Pearson's coefficient analysis was developed to collectively examine the degree of similarity among the ensemble of R5a spectra. The resulting Pearson's coefficients were used to generate maps representing variation of R5a mobility along the DNA duplex. The R5a mobility maps were found to correlate with maps of certain DNA helical parameters, and were capable of revealing similarity and deviation in the shape of the two closely related DNA duplexes. Collectively, the R5a probe and the Pearson's coefficient-based lineshape analysis scheme yielded a generalizable method for examining sequence-dependent DNA shapes.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaojun Zhang
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Kenneth W Tham
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter Z Qin
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
30
|
Zhang K, Wang K, Zhu X, Zhang J, Xu L, Huang B, Xie M. Label-free and ultrasensitive fluorescence detection of cocaine based on a strategy that utilizes DNA-templated silver nanoclusters and the nicking endonuclease-assisted signal amplification method. Chem Commun (Camb) 2014; 50:180-2. [PMID: 24217291 DOI: 10.1039/c3cc47418f] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and reliable strategy for the detection of cocaine was proposed utilizing DNA-templated silver nanoclusters as signal indicators and the nicking endonuclease-assisted signal amplification method. This strategy can detect cocaine specifically with a detection limit as low as 2 nM by using a small volume of 5 μL.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China.
| | | | | | | | | | | | | |
Collapse
|
31
|
Arnaut V, Langecker M, Simmel FC. Nanopore force spectroscopy of aptamer-ligand complexes. Biophys J 2014; 105:1199-207. [PMID: 24010663 DOI: 10.1016/j.bpj.2013.07.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/22/2013] [Accepted: 07/29/2013] [Indexed: 01/07/2023] Open
Abstract
The stability of aptamer-ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the trans-cis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer-target interactions in this case, the stability of the ligand-free aptamer-containing G-quadruplexes-is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.
Collapse
Affiliation(s)
- Vera Arnaut
- Lehrstuhl für Bioelektronik, Physik Department, Technische Universität München, Garching, Germany
| | | | | |
Collapse
|
32
|
Lawrence C, Vallée-Bélisle A, Pfeil SH, de Mornay D, Lipman EA, Plaxco KW. A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins. Protein Sci 2013; 23:56-66. [PMID: 24285472 DOI: 10.1002/pro.2390] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/17/2013] [Accepted: 10/23/2013] [Indexed: 01/13/2023]
Abstract
The folding of larger proteins generally differs from the folding of similarly large nucleic acids in the number and stability of the intermediates involved. To date, however, no similar comparison has been made between the folding of smaller proteins, which typically fold without well-populated intermediates, and the folding of small, simple nucleic acids. In response, in this study, we compare the folding of a 38-base DNA aptamer with the folding of a set of equivalently simple proteins. We find that, as is true for the large majority of simple, single domain proteins, the aptamer folds through a concerted, millisecond-scale process lacking well-populated intermediates. Perhaps surprisingly, the observed folding rate falls within error of a previously described relationship between the folding kinetics of single-domain proteins and their native state topology. Likewise, similarly to single-domain proteins, the aptamer exhibits a relatively low urea-derived Tanford β, suggesting that its folding transition state is modestly ordered. In contrast to this, however, and in contrast to the behavior of proteins, ϕ-value analysis suggests that the aptamer's folding transition state is highly ordered, a discrepancy that presumably reflects the markedly more important role that secondary structure formation plays in the folding of nucleic acids. This difference notwithstanding, the similarities that we observe between the two-state folding of single-domain proteins and the two-state folding of this similarly simple DNA presumably reflect properties that are universal in the folding of all sufficiently cooperative heteropolymers irrespective of their chemical details.
Collapse
Affiliation(s)
- Camille Lawrence
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, California, 93106
| | | | | | | | | | | |
Collapse
|
33
|
Reinstein O, Yoo M, Han C, Palmo T, Beckham SA, Wilce MCJ, Johnson PE. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand. Biochemistry 2013; 52:8652-62. [PMID: 24175947 DOI: 10.1021/bi4010039] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The cocaine-binding aptamer is unusual in that it tightly binds molecules other than the ligand it was selected for. Here, we study the interaction of the cocaine-binding aptamer with one of these off-target ligands, quinine. Isothermal titration calorimetry was used to quantify the quinine-binding affinity and thermodynamics of a set of sequence variants of the cocaine-binding aptamer. We find that the affinity of the cocaine-binding aptamer for quinine is 30-40 times stronger than it is for cocaine. Competitive-binding studies demonstrate that both quinine and cocaine bind at the same site on the aptamer. The ligand-induced structural-switching binding mechanism of an aptamer variant that contains three base pairs in stem 1 is retained with quinine as a ligand. The short stem 1 aptamer is unfolded or loosely folded in the free form and becomes folded when bound to quinine. This folding is confirmed by NMR spectroscopy and by the short stem 1 construct having a more negative change in heat capacity of quinine binding than is seen when stem 1 has six base pairs. Small-angle X-ray scattering (SAXS) studies of the free aptamer and both the quinine- and the cocaine-bound forms show that, for the long stem 1 aptamers, the three forms display similar hydrodynamic properties, and the ab initio shape reconstruction structures are very similar. For the short stem 1 aptamer there is a greater variation among the SAXS-derived ab initio shape reconstruction structures, consistent with the changes expected with its structural-switching binding mechanism.
Collapse
Affiliation(s)
- Oren Reinstein
- Department of Chemistry, York University , 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | |
Collapse
|
34
|
Lv Z, Liu J, Zhou Y, Guan Z, Yang S, Li C, Chen A. Highly sensitive fluorescent detection of small molecules, ions, and proteins using a universal label-free aptasensor. Chem Commun (Camb) 2013; 49:5465-7. [PMID: 23666035 DOI: 10.1039/c3cc42801j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A facile and universal aptamer-based label-free approach for highly selective and sensitive fluorescence detection of a broad range of targets including small molecules, inorganic ions and proteins was developed by using PicoGreen to transduce the fluorescent signal of the double stranded DNA duplex formed between a free aptamer and its complementary strand.
Collapse
Affiliation(s)
- Zhenzhen Lv
- Institute of Quality Standards and Testing Technology for Agro-products, Key Laboratory of Agro-product Quality and Safety, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Porchetta A, Vallée-Bélisle A, Plaxco KW, Ricci F. Using distal-site mutations and allosteric inhibition to tune, extend, and narrow the useful dynamic range of aptamer-based sensors. J Am Chem Soc 2012; 134:20601-4. [PMID: 23215257 PMCID: PMC3866043 DOI: 10.1021/ja310585e] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Here we demonstrate multiple, complementary approaches by which to tune, extend, or narrow the dynamic range of aptamer-based sensors. Specifically, we employ both distal-site mutations and allosteric control to tune the affinity and dynamic range of a fluorescent aptamer beacon. We show that allosteric control, achieved by using a set of easily designed oligonucleotide inhibitors that competes against the folding of the aptamer, allows rational fine-tuning of the affinity of our model aptamer across 3 orders of magnitude of target concentration with greater precision than that achieved using mutational approaches. Using these methods, we generate sets of aptamers varying significantly in target affinity and then combine them to recreate several of the mechanisms employed by nature to narrow or broaden the dynamic range of biological receptors. Such ability to finely control the affinity and dynamic range of aptamers may find many applications in synthetic biology, drug delivery, and targeted therapies, fields in which aptamers are of rapidly growing importance.
Collapse
Affiliation(s)
- Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| | - Alexis Vallée-Bélisle
- Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 USA
- Center for Bioengineering, University of California, Santa Barbara, CA 93106 USA
- Laboratory of Biosensors & Nanomachines, Département de Chimie, Université de Montréal, C.P. 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry University of California, Santa Barbara, CA 93106 USA
- Center for Bioengineering, University of California, Santa Barbara, CA 93106 USA
- Interdepartmental Program in Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
- Consorzio Interuniversitario Biostrutture e Biosistemi “INBB”, Rome, Italy
| |
Collapse
|
36
|
A universal and label-free aptasensor for fluorescent detection of ATP and thrombin based on SYBR Green I dye. Biosens Bioelectron 2012. [PMID: 23202351 DOI: 10.1016/j.bios.2012.10.064] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A facile and universal aptamer-based label-free approach for selective and sensitive fluorescence detection of proteins and small biomolecules by using the SYBR Green I (SGI) dye is developed. This robust versatile biosensing strategy relies on fluorescence turn-off changes of SGI, resulting from target-induced structure switching of aptamers. Upon binding with the targets, the aptamers dissociate from the respective cDNA/aptamer duplexes, leading to the release of the dsDNA-intercalated SGI into solution and the quenching of the corresponding fluorescence intensities. Such target-induced conformational changes and release of aptamers from the DNA duplexes essentially lead to the change in the fluorescence signal of the SGI and thus constitute the mechanism of our aptamer-based label-free fluorescence biosensor for specific target analyses. Under optimized conditions, our method exhibits high sensitivity and selectivity for the quantification of ATP and thrombin with low detection limits (23.4 nM and 1.1 nM, respectively). Compared with previous reported methods for aptamer-based detection of ATP and thrombin, this label-free approach is selective, simple, convenient and cost-efficient without any chemical labeling of the probe or the target. Therefore, the present strategy could be easily applicable to biosensors that target a wide range of biomolecules.
Collapse
|
37
|
Reginsson GW, Shelke SA, Rouillon C, White MF, Sigurdsson ST, Schiemann O. Protein-induced changes in DNA structure and dynamics observed with noncovalent site-directed spin labeling and PELDOR. Nucleic Acids Res 2012; 41:e11. [PMID: 22941643 PMCID: PMC3592447 DOI: 10.1093/nar/gks817] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Site-directed spin labeling and pulsed electron-electron double resonance (PELDOR or DEER) have previously been applied successfully to study the structure and dynamics of nucleic acids. Spin labeling nucleic acids at specific sites requires the covalent attachment of spin labels, which involves rather complicated and laborious chemical synthesis. Here, we use a noncovalent label strategy that bypasses the covalent labeling chemistry and show that the binding specificity and efficiency are large enough to enable PELDOR or DEER measurements in DNA duplexes and a DNA duplex bound to the Lac repressor protein. In addition, the rigidity of the label not only allows resolution of the structure and dynamics of oligonucleotides but also the determination of label orientation and protein-induced conformational changes. The results prove that this labeling strategy in combination with PELDOR has a great potential for studying both structure and dynamics of oligonucleotides and their complexes with various ligands.
Collapse
Affiliation(s)
- Gunnar W Reginsson
- Biomedical Sciences Research Complex, Centre of Magnetic Resonance, University of St Andrews, St Andrews KY16 9ST, UK
| | | | | | | | | | | |
Collapse
|
38
|
Höbartner C, Sicoli G, Wachowius F, Gophane DB, Sigurdsson ST. Synthesis and Characterization of RNA Containing a Rigid and Nonperturbing Cytidine-Derived Spin Label. J Org Chem 2012; 77:7749-54. [DOI: 10.1021/jo301227w] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Popova AM, Hatmal MM, Frushicheva M, Price EA, Qin PZ, Haworth IS. Nitroxide sensing of a DNA microenvironment: mechanistic insights from EPR spectroscopy and molecular dynamics simulations. J Phys Chem B 2012; 116:6387-96. [PMID: 22574834 PMCID: PMC3382087 DOI: 10.1021/jp303303v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The behavior of the nitroxide spin labels 1-oxyl-4-bromo-2,2,5,5-tetramethylpyrroline (R5a) and 1-oxyl-2,2,5,5-tetramethylpyrroline (R5) attached at a phosphorothioate-substituted site in a DNA duplex is modulated by the DNA in a site- and stereospecific manner. A better understanding of the mechanisms of R5a/R5 sensing of the DNA microenvironment will enhance our capability to relate information from nitroxide spectra to sequence-dependent properties of DNA. Toward this goal, electron paramagnetic resonance (EPR) spectroscopy and molecular dynamics (MD) simulations were used to investigate R5 and R5a attached as R(p) and S(p) diastereomers at phosphorothioate (pS)C(7) of d(CTACTG(pS)C(7)Y(8)TTAG). d(CTAAAGCAGTAG) (Y = T or U). X-band continuous-wave EPR spectra revealed that the dT(8) to dU(8) change alters nanosecond rotational motions of R(p)-R5a but produces no detectable differences for S(p)-R5a, R(p)-R5, and S(p)-R5. MD simulations were able to qualitatively account for these spectral variations and provide a plausible physical basis for the R5/R5a behavior. The simulations also revealed a correlation between DNA backbone B(I)/B(II) conformations and R5/R5a rotational diffusion, thus suggesting a direct connection between DNA local backbone dynamics and EPR-detectable R5/R5a motion. These results advance our understanding of how a DNA microenvironment influences nitroxide motion and the observed EPR spectra. This may enable use of R5/R5a for a quantitative description of the sequence-dependent properties of large biologically relevant DNA molecules.
Collapse
Affiliation(s)
- Anna M. Popova
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ma’mon M. Hatmal
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
| | - Maria Frushicheva
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Eric A. Price
- Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-0744
| | - Peter Z. Qin
- Department of Chemistry, University of Southern California, Los Angeles, California 90089-0744
| | - Ian S. Haworth
- Department of Biochemistry, University of Southern California, Los Angeles, California 90033-1039
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, California 90089-9121
| |
Collapse
|
40
|
Ebrahimi M, Johari-Ahar M, Hamzeiy H, Barar J, Mashinchian O, Omidi Y. Electrochemical impedance spectroscopic sensing of methamphetamine by a specific aptamer. BIOIMPACTS : BI 2012; 2:91-5. [PMID: 23678446 DOI: 10.5681/bi.2012.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 04/15/2012] [Accepted: 04/20/2012] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Electrochemical impedance spectroscopy (EIS) is a simple and highly sensitive technique that can be used for evaluation of the aptamer-target interaction even in a label-free approach. METHODS To pursue the effectiveness of EIS, in the current study, the folding properties of specific aptamer for methamphetamine (METH) (i.e., aptaMETH) were evaluated in the presence of METH and amphetamine (Amph). Folded and unfolded aptaMETH was mounted on the gold electrode surface and the electron charge transfer was measured by EIS. RESULTS The Ret of methamphetamine-aptaMETH was significantly increased in comparison with other folding conditions, indicating specific detection of METH by aptaMETH. CONCLUSION Based on these findings, methamphetamine-aptaMETH on the gold electrode surface displayed the most interfacial electrode resistance and thus the most folding situation. This clearly indicates that the aptaMETH can profoundly and specifically pinpoint METH; as a result we suggest utilization of this methodology for fast and cost-effective identification of METH.
Collapse
Affiliation(s)
- Mohsen Ebrahimi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran ; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran ; Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | |
Collapse
|
41
|
Zheng D, Zou R, Lou X. Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR Gold, and exonuclease I. Anal Chem 2012; 84:3554-60. [PMID: 22424113 DOI: 10.1021/ac300690r] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We have demonstrated a label-free sensing strategy employing structure-switching aptamers (SSAs), SYBR Gold, and exonuclease I to detect a broad range of targets including inorganic ions, proteins, and small molecules. This nearly universal biosensor approach is based on the observation that SSAs at binding state with their targets, which fold into secondary structures such as quadruplex structure or Y shape structure, show more resistance to nuclease digestion than SSAs at unfolded states. The amount of aptamer left after nuclease reaction is proportional to the concentrations of the targets and in turn is proportional to the fluorescence intensities from SYBR Gold that can only stain nucleic acids but not their digestion products, nucleoside monophosphates (dNMPs). Fluorescent assays employing this mechanism for the detection of potassium ion (K(+)) are sensitive, selective, and convenient. Twenty μM K(+) is readily detected even at the presence of a 500-fold excess of Na(+). Likewise, we have generalized the approach to the specific and convenient detection of proteins (thrombin) and small molecules (cocaine). The assays were then validated by detecting K(+), cocaine, and thrombin in urine and serum or cutting and masking adulterants with good agreements with the true values. Compared to other reported approaches, most limited to G-quadruplex structures, the demonstrated method has less structure requirements of both the SSAs and their complexes with targets, therefore rending its wilder applications for various targets. The detection scheme could be easily modified and extended to detection platforms to further improve the detection sensitivity or for other applications as well as being useful in high-throughput and paralleled analysis of multiple targets.
Collapse
Affiliation(s)
- Dongmei Zheng
- Department of Chemistry, Capital Normal University, Beijing, China
| | | | | |
Collapse
|
42
|
Cekan P, Sigurdsson ST. Conformation and dynamics of nucleotides in bulges and symmetric internal loops in duplex DNA studied by EPR and fluorescence spectroscopies. Biochem Biophys Res Commun 2012; 420:656-61. [PMID: 22450317 DOI: 10.1016/j.bbrc.2012.03.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 01/02/2023]
Abstract
The dynamics and conformation of base bulges and internal loops in duplex DNA were studied using the bifunctional spectroscopic probe Ç, which becomes fluorescent (Ç(f)) upon reduction of the nitroxide functional group, along with EPR and fluorescence spectroscopies. A one-base bulge was in a conformational equilibrium between looped-out and stacked states, the former favored at higher temperature and the latter at lower temperature. Stacking of bulge bases was favored in two- and three-base bulges, independent of temperature, resulting in DNA bending as evidenced by increased fluorescence of Ç(f). EPR spectra of Ç-labeled three-, four- and five-base symmetrical interior DNA bulges at 20 °C showed low mobility, indicating that the spin-label was stacked within the loop. The spin-label mobility at 37 °C increased as the loops became larger. A considerable variation in fluorescence between different loops was observed, as well as a temperature-dependence within constructs. Fluorescence unexpectedly increased as the size of the loop decreased at 2 °C. Fluorescence of the smallest loops, where a single T·T mismatch was located between the stem region and the probe, was even larger than for the single strand, indicating a considerable local structural deformation of these loops from regular B-DNA. These results show the value of combining EPR and fluorescence spectroscopy to study non-helical regions of nucleic acids.
Collapse
Affiliation(s)
- Pavol Cekan
- University of Iceland, Science Institute, Dunhaga 3, 107 Reykjavik, Iceland
| | | |
Collapse
|
43
|
|
44
|
Strehlitz B, Reinemann C, Linkorn S, Stoltenburg R. Aptamers for pharmaceuticals and their application in environmental analytics. ACTA ACUST UNITED AC 2011; 4:1-30. [PMID: 22389661 PMCID: PMC3281204 DOI: 10.1007/s12566-011-0026-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 11/10/2011] [Indexed: 01/07/2023]
Abstract
Aptamers are single-stranded DNA or RNA oligonucleotides, which are able to bind with high affinity and specificity to their target. This property is used for a multitude of applications, for instance as molecular recognition elements in biosensors and other assays. Biosensor application of aptamers offers the possibility for fast and easy detection of environmental relevant substances. Pharmaceutical residues, deriving from human or animal medical treatment, are found in surface, ground, and drinking water. At least the whole range of frequently administered drugs can be detected in noticeable concentrations. Biosensors and assays based on aptamers as specific recognition elements are very convenient for this application because aptamer development is possible for toxic targets. Commonly used biological receptors for biosensors like enzymes or antibodies are mostly unavailable for the detection of pharmaceuticals. This review describes the research activities of aptamer and sensor developments for pharmaceutical detection, with focus on environmental applications.
Collapse
Affiliation(s)
- Beate Strehlitz
- UFZ-Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
45
|
Atsumi H, Maekawa K, Nakazawa S, Shiomi D, Sato K, Kitagawa M, Takui T, Nakatani K. Tandem Arrays of TEMPO and Nitronyl Nitroxide Radicals with Designed Arrangements on DNA. Chemistry 2011; 18:178-83. [DOI: 10.1002/chem.201102693] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 12/24/2022]
|
46
|
Reinstein O, Neves MAD, Saad M, Boodram SN, Lombardo S, Beckham SA, Brouwer J, Audette GF, Groves P, Wilce MCJ, Johnson PE. Engineering a structure switching mechanism into a steroid-binding aptamer and hydrodynamic analysis of the ligand binding mechanism. Biochemistry 2011; 50:9368-76. [PMID: 21942676 DOI: 10.1021/bi201361v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The steroid binding mechanism of a DNA aptamer was studied using isothermal titration calorimetry (ITC), NMR spectroscopy, quasi-elastic light scattering (QELS), and small-angle X-ray spectroscopy (SAXS). Binding affinity determination of a series of steroid-binding aptamers derived from a parent cocaine-binding aptamer demonstrates that substituting a GA base pair with a GC base pair governs the switch in binding specificity from cocaine to the steroid deoxycholic acid (DCA). Binding of DCA to all aptamers is an enthalpically driven process with an unfavorable binding entropy. We engineered into the steroid-binding aptamer a ligand-induced folding mechanism by shortening the terminal stem by two base pairs. NMR methods were used to demonstrate that there is a transition from a state where base pairs are formed in one stem of the free aptamer, to where three stems are formed in the DCA-bound aptamer. The ability to generate a ligand-induced folding mechanism into a DNA aptamer architecture based on the three-way junction of the cocaine-binding aptamer opens the door to obtaining a series of aptamers all with ligand-induced folding mechanisms but triggered by different ligands. Hydrodynamic data from diffusion NMR spectroscopy, QELS, and SAXS show that for the aptamer with the full-length terminal stem there is a small amount of structure compaction with DCA binding. For ligand binding by the short terminal stem aptamer, we propose a binding mechanism where secondary structure forms upon DCA binding starting from a free structure where the aptamer exists in a compact form.
Collapse
Affiliation(s)
- Oren Reinstein
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Nguyen P, Qin PZ. RNA dynamics: perspectives from spin labels. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 3:62-72. [PMID: 21882345 DOI: 10.1002/wrna.104] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dynamics are important and indispensible physical attributes that play essential roles in RNA function. RNA dynamics are complex, spanning vast timescales, and encompassing a large number of physical modes. The technique of site-directed spin labeling (SDSL), which derives information on local structural and dynamic features of a macromolecule by monitoring a chemically stable nitroxide radical using electron paramagnetic resonance spectroscopy, has been applied to monitor intrinsic dynamics at defined structural states as well as to probe conformational transition dynamics of RNAs. The current state of SDSL studies of RNA dynamics is summarized here. Further development and application of SDSL promise to open up many more opportunities for probing RNA dynamics and connecting dynamics to structure and function.
Collapse
Affiliation(s)
- Phuong Nguyen
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
48
|
Edwards TE, Cekan P, Reginsson GW, Shelke SA, Ferré-D'Amaré AR, Schiemann O, Sigurdsson ST. Crystal structure of a DNA containing the planar, phenoxazine-derived bi-functional spectroscopic probe C. Nucleic Acids Res 2011; 39:4419-26. [PMID: 21252294 PMCID: PMC3105401 DOI: 10.1093/nar/gkr015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Previously, we developed the deoxycytosine analog Ç (C-spin) as a bi-functional spectroscopic probe for the study of nucleic acid structure and dynamics using electron paramagnetic resonance (EPR) and fluorescence spectroscopy. To understand the effect of Ç on nucleic acid structure, we undertook a detailed crystallographic analysis. A 1.7 Å resolution crystal structure of Ç within a decamer duplex A-form DNA confirmed that Ç forms a non-perturbing base pair with deoxyguanosine, as designed. In the context of double-stranded DNA Ç adopted a planar conformation. In contrast, a crystal structure of the free spin-labeled base ç displayed a ∼ 20° bend at the oxazine linkage. Density function theory calculations revealed that the bent and planar conformations are close in energy and exhibit the same frequency for bending. These results indicate a small degree of flexibility around the oxazine linkage, which may be a consequence of the antiaromaticity of a 16-π electron ring system. Within DNA, the amplitude of the bending motion is restricted, presumably due to base-stacking interactions. This structural analysis shows that the Ç forms a planar, structurally non-perturbing base pair with G indicating it can be used with high confidence in EPR- or fluorescence-based structural and dynamics studies.
Collapse
|
49
|
Studying biomolecular complexes with pulsed electron–electron double resonance spectroscopy. Biochem Soc Trans 2011; 39:128-39. [DOI: 10.1042/bst0390128] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The function of biomolecules is intrinsically linked to their structure and the complexes they form during function. Techniques for the determination of structures and dynamics of these nanometre assemblies are therefore important for an understanding on the molecular level. PELDOR (pulsed electron–electron double resonance) is a pulsed EPR method that can be used to reliably and precisely measure distances in the range 1.5–8 nm, to unravel orientations and to determine the number of monomers in complexes. In conjunction with site-directed spin labelling, it can be applied to biomolecules of all sizes in aqueous solutions or membranes. PELDOR is therefore complementary to the methods of X-ray crystallography, NMR and FRET (fluorescence resonance energy transfer) and is becoming a powerful method for structural determination of biomolecules. In the present review, the methods of PELDOR are discussed and examples where PELDOR has been used to obtain structural information on biomolecules are summarized.
Collapse
|
50
|
Neves MA, Reinstein O, Saad M, Johnson PE. Defining the secondary structural requirements of a cocaine-binding aptamer by a thermodynamic and mutation study. Biophys Chem 2010; 153:9-16. [DOI: 10.1016/j.bpc.2010.09.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/09/2010] [Accepted: 09/09/2010] [Indexed: 10/19/2022]
|