1
|
Toyama Y, Shimada I. NMR characterization of RNA binding property of the DEAD-box RNA helicase DDX3X and its implications for helicase activity. Nat Commun 2024; 15:3303. [PMID: 38664397 PMCID: PMC11045745 DOI: 10.1038/s41467-024-47659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The DEAD-box RNA helicase (DDX) plays a central role in many aspects of RNA metabolism by remodeling the defined structure of RNA molecules. While a number of structural studies have revealed the atomistic details of the interaction between DDX and RNA ligands, the molecular mechanism of how this molecule unwinds a structured RNA into an unstructured single-stranded RNA (ssRNA) has largely remained elusive. This is due to challenges in structurally characterizing the unwinding intermediate state and the lack of thermodynamic details underlying this process. In this study, we use solution nuclear magnetic resonance (NMR) spectroscopy to characterize the interaction of human DDX3X, a member of the DDX family, with various RNA ligands. Our results show that the inherent binding affinity of DDX3X for ssRNA is significantly higher than that for structured RNA elements. This preferential binding, accompanied by the formation of a domain-closed conformation in complex with ssRNA, effectively stabilizes the denatured ssRNA state and thus underlies the unwinding activity of DDX3X. Our results provide a thermodynamic and structural basis for the DDX function, whereby DDX can recognize and remodel a distinct set of structured RNAs to participate in a wide range of physiological processes.
Collapse
Affiliation(s)
- Yuki Toyama
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Ichio Shimada
- RIKEN Center for Biosystems Dynamics Research (BDR), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
2
|
Costantino A, Pham LBT, Barbieri L, Calderone V, Ben‐Nissan G, Sharon M, Banci L, Luchinat E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein Sci 2024; 33:e4910. [PMID: 38358125 PMCID: PMC10868450 DOI: 10.1002/pro.4910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/16/2024]
Abstract
Fluorinated aromatic amino acids (FAAs) are promising tools when studying protein structure and dynamics by NMR spectroscopy. The incorporation FAAs in mammalian expression systems has been introduced only recently. Here, we investigate the effects of FAAs incorporation in proteins expressed in human cells, focusing on the probability of incorporation and its consequences on the 19 F NMR spectra. By combining 19 F NMR, direct MS and x-ray crystallography, we demonstrate that the probability of FAA incorporation is only a function of the FAA concentration in the expression medium and is a pure stochastic phenomenon. In contrast with the MS data, the x-ray structures of carbonic anhydrase II reveal that while the 3D structure is not affected, certain positions lack fluorine, suggesting that crystallization selectively excludes protein molecules featuring subtle conformational modifications. This study offers a predictive model of the FAA incorporation efficiency and provides a framework for controlling protein fluorination in mammalian expression systems.
Collapse
Affiliation(s)
- Azzurra Costantino
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Lan B. T. Pham
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Letizia Barbieri
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
| | - Vito Calderone
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Gili Ben‐Nissan
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Michal Sharon
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovotIsrael
| | - Lucia Banci
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| | - Enrico Luchinat
- CERM – Magnetic Resonance CenterUniversità degli Studi di FirenzeSesto FiorentinoItaly
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine – CIRMMPSesto FiorentinoItaly
- Dipartimento di ChimicaUniversità degli Studi di FirenzeSesto FiorentinoItaly
| |
Collapse
|
3
|
Eichler C, Himmelstoß M, Plangger R, Weber LI, Hartl M, Kreutz C, Micura R. Advances in RNA Labeling with Trifluoromethyl Groups. Chemistry 2023; 29:e202302220. [PMID: 37534701 PMCID: PMC10947337 DOI: 10.1002/chem.202302220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Fluorine labeling of ribonucleic acids (RNA) in conjunction with 19 F NMR spectroscopy has emerged as a powerful strategy for spectroscopic analysis of RNA structure and dynamics, and RNA-ligand interactions. This study presents the first syntheses of 2'-OCF3 guanosine and uridine phosphoramidites, their incorporation into oligoribonucleotides by solid-phase synthesis and a comprehensive study of their properties. NMR spectroscopic analysis showed that the 2'-OCF3 modification is associated with preferential C2'-endo conformation of the U and G ribose in single-stranded RNA. When paired to the complementary strand, slight destabilization of the duplex caused by the modification was revealed by UV melting curve analysis. Moreover, the power of the 2'-OCF3 label for NMR spectroscopy is demonstrated by dissecting RNA pseudoknot folding and its binding to a small molecule. Furthermore, the 2'-OCF3 modification has potential for applications in therapeutic oligonucleotides. To this end, three 2'-OCF3 modified siRNAs were tested in silencing of the BASP1 gene which indicated enhanced performance for one of them. Importantly, together with earlier work, the present study completes the set of 2'-OCF3 nucleoside phosphoramidites to all four standard nucleobases (A, U, C, G) and hence enables applications that utilize the favorable properties of the 2'-OCF3 group without any restrictions in placing the modification into the RNA target sequence.
Collapse
Affiliation(s)
- Clemens Eichler
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Maximilian Himmelstoß
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Leonie I. Weber
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Markus Hartl
- Institute of BiochemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| | - Ronald Micura
- Institute of Organic ChemistryCenter for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80–826020InnsbruckAustria
| |
Collapse
|
4
|
Pallan PS, Lybrand TP, Rozners E, Abramov M, Schepers G, Eremeeva E, Herdewijn P, Egli M. Conformational Morphing by a DNA Analogue Featuring 7-Deazapurines and 5-Halogenpyrimidines and the Origins of Adenine-Tract Geometry. Biochemistry 2023; 62:2854-2867. [PMID: 37694722 PMCID: PMC11062489 DOI: 10.1021/acs.biochem.3c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Several efforts are currently directed at the creation and cellular implementation of alternative genetic systems composed of pairing components that are orthogonal to the natural dA/dT and dG/dC base pairs. In an alternative approach, Watson-Crick-type pairing is conserved, but one or all of the four letters of the A, C, G, and T alphabet are substituted by modified components. Thus, all four nucleobases were altered to create halogenated deazanucleic acid (DZA): dA was replaced by 7-deaza-2'-deoxyadenosine (dzA), dG by 7-deaza-2'-deoxyguanosine (dzG), dC by 5-fluoro-2'-deoxycytidine (FdC), and dT by 5-chloro-2'-deoxyuridine (CldU). This base-pairing system was previously shown to retain function in Escherichia coli. Here, we analyze the stability, hydration, structure, and dynamics of a DZA Dickerson-Drew Dodecamer (DDD) of sequence 5'-FdC-dzG-FdC-dzG-dzA-dzA-CldU-CldU-FdC-dzG-FdC-dzG-3'. Contrary to similar stabilities of DDD and DZA-DDD, osmotic stressing revealed a dramatic loss of hydration for the DZA-DDD relative to that for the DDD. The parent DDD 5'-d(CGCGAATTCGCG)-3' features an A-tract, a run of adenosines uninterrupted by a TpA step, and exhibits a hallmark narrow minor groove. Crystal structures─in the presence of RNase H─and MD simulations show increased conformational plasticity ("morphing") of DZA-DDD relative to that of the DDD. The narrow dzA-tract minor groove in one structure widens to resemble that in canonical B-DNA in a second structure. These changes reflect an indirect consequence of altered DZA major groove electrostatics (less negatively polarized compared to that in DNA) and hydration (reduced compared to that in DNA). Therefore, chemical modifications outside the minor groove that lead to collapse of major groove electrostatics and hydration can modulate A-tract geometry.
Collapse
Affiliation(s)
- Pradeep S Pallan
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Terry P Lybrand
- Department of Chemistry and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Mikhail Abramov
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Guy Schepers
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Elena Eremeeva
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Piet Herdewijn
- Laboratory of Medicinal Chemistry, KU Leuven, Rega Institute for Medical Research, Minderbroedersstraat 10, Leuven 3000, Belgium
| | - Martin Egli
- School of Medicine, Department of Biochemistry, and Center for Structural Biology, Vanderbilt University, Nashville, Tennessee 37232, United States
| |
Collapse
|
5
|
Krempl C, Sprangers R. Assessing the applicability of 19F labeled tryptophan residues to quantify protein dynamics. JOURNAL OF BIOMOLECULAR NMR 2023; 77:55-67. [PMID: 36639431 PMCID: PMC10149471 DOI: 10.1007/s10858-022-00411-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is uniquely suited to study the dynamics of biomolecules in solution. Most NMR studies exploit the spins of proton, carbon and nitrogen isotopes, as these atoms are highly abundant in proteins and nucleic acids. As an alternative and complementary approach, fluorine atoms can be introduced into biomolecules at specific sites of interest. These labels can then be used as sensitive probes for biomolecular structure, dynamics or interactions. Here, we address if the replacement of tryptophan with 5-fluorotryptophan residues has an effect on the overall dynamics of proteins and if the introduced fluorine probe is able to accurately report on global exchange processes. For the four different model proteins (KIX, Dcp1, Dcp2 and DcpS) that we examined, we established that 15N CPMG relaxation dispersion or EXSY profiles are not affected by the 5-fluorotryptophan, indicating that this replacement of a proton with a fluorine has no effect on the protein motions. However, we found that the motions that the 5-fluorotryptophan reports on can be significantly faster than the backbone motions. This implies that care needs to be taken when interpreting fluorine relaxation data in terms of global protein motions. In summary, our results underscore the great potential of fluorine NMR methods, but also highlight potential pitfalls that need to be considered.
Collapse
Affiliation(s)
- Christina Krempl
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Remco Sprangers
- Department of Biophysics I, Regensburg Center for Biochemistry, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
6
|
Le Pham NS, Kwon Y, Shin H, Sohn JH. Copper-promoted dehydrosulfurative carbon-nitrogen cross-coupling with concomitant aromatization for synthesis of 2-aminopyrimidines. RSC Adv 2022; 13:172-177. [PMID: 36605669 PMCID: PMC9764426 DOI: 10.1039/d2ra05180j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Copper-promoted dehydrosulfurative C-N cross-coupling of 3,4-dihydropyrimidin-1H-2-thione with amine accompanied by concomitant aromatization to generate 2-aryl(alkyl)aminopyrimidine derivatives is described. The reaction proceeded well with a wide range of thiono substrates and aryl/aliphatic amines as the coupling partners, offering efficient access to biologically and pharmacologically valuable 2-aryl(alkyl)aminopyrimidines with rapid diversification.
Collapse
Affiliation(s)
- Ngoc Son Le Pham
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| | - Yujeong Kwon
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| | - Hyunik Shin
- Yonsung Fine Chemicals R&D CenterSuwon 16675Republic of Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, Chungnam National UniversityDaejeon 34134Republic of Korea
| |
Collapse
|
7
|
Porat-Dahlerbruch G, Struppe J, Quinn CM, Gronenborn AM, Polenova T. 19F fast MAS (60-111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101831. [PMID: 36182713 DOI: 10.1016/j.ssnmr.2022.101831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60-111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60-111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
8
|
Li Q, Trajkovski M, Fan C, Chen J, Zhou Y, Lu K, Li H, Su X, Xi Z, Plavec J, Zhou C. 4'-SCF 3 -Labeling Constitutes a Sensitive 19 F NMR Probe for Characterization of Interactions in the Minor Groove of DNA. Angew Chem Int Ed Engl 2022; 61:e202201848. [PMID: 36163470 PMCID: PMC9828712 DOI: 10.1002/anie.202201848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/12/2023]
Abstract
Fluorinated nucleotides are invaluable for 19 F NMR studies of nucleic acid structure and function. Here, we synthesized 4'-SCF3 -thymidine (T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ ) and incorporated it into DNA by means of solid-phase DNA synthesis. NMR studies showed that the 4'-SCF3 group exhibited a flexible orientation in the minor groove of DNA duplexes and was well accommodated by various higher order DNA structures. The three magnetically equivalent fluorine atoms in 4'-SCF3 -DNA constitute an isolated spin system, offering high 19 F NMR sensitivity and excellent resolution of the positioning of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ within various secondary and tertiary DNA structures. The high structural adaptability and high sensitivity of T 4 ' - SCF 3 ${{^{4{^\prime}\hbox{-}{\rm SCF}{_{3}}}}}$ make it a valuable 19 F NMR probe for quantitatively distinguishing diverse DNA structures with single-nucleotide resolution and for monitoring the dynamics of interactions in the minor groove of double-stranded DNA.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China,Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Marko Trajkovski
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chaochao Fan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Jialiang Chen
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Yifei Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Kuan Lu
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Hongjun Li
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Xuncheng Su
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| | - Janez Plavec
- Slovenian NMR CentreNational Institute of ChemistryHajdrihova 19SI-1000LjubljanaSlovenia
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical BiologyCollege of ChemistryNankai UniversityTianjin300071China
| |
Collapse
|
9
|
Binding of 30S Ribosome Induces Single-stranded Conformation Within and Downstream of the Expression Platform in a Translational Riboswitch. J Mol Biol 2022; 434:167668. [PMID: 35667471 DOI: 10.1016/j.jmb.2022.167668] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 11/23/2022]
Abstract
Translational riboswitches are bacterial gene regulatory elements found in the 5'-untranslated region of mRNAs. They operate through a conformational refolding reaction that is triggered by a concentration change of a modulating small molecular ligand. The translation initiation region (TIR) is either released from or incorporated into base pairing interactions through the conformational switch. Hence, initiation of translation is regulated by the accessibility of the Shine-Dalgarno sequence and start codon. Interaction with the 30S ribosome is indispensable for the structural switch between functional OFF and ON states. However, on a molecular level it is still not fully resolved how the ribosome is accommodated near or at the translation initiation region in the context of translational riboswitches. The standby model of translation initiation postulates a binding site where the mRNA enters the ribosome and where it resides until the initiation site becomes unstructured and accessible. We here investigated the adenine-sensing riboswitch from Vibrio vulnificus. By application of a 19F labelling strategy for NMR spectroscopy that utilizes ligation techniques to synthesize differentially 19F labelled riboswitch molecules we show that nucleotides directly downstream of the riboswitch domain are first involved in productive interaction with the 30S ribosomal subunit. Upon the concerted action of ligand and the ribosomal protein rS1 the TIR becomes available and subsequently the 30S ribosome can slide towards the TIR. It will be interesting to see whether this is a general feature in translational riboswitches or if riboswitches exist where this region is structured and represent yet another layer of regulation.
Collapse
|
10
|
Hirashima S, Sugiyama H, Park S. Characterization of 2-Fluoro-2'-deoxyadenosine in Duplex, G-quadruplex and I-motif. Chembiochem 2022; 23:e202200222. [PMID: 35438834 DOI: 10.1002/cbic.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Indexed: 11/12/2022]
Abstract
Among various kinds of fluorine-substituted biomolecules, 2-fluoroadenine (2FA) and its derivatives have been actively investigated as therapeutic reagents, radio-sensitizers, and 19F-NMR probe. In spite of their excellent properties, DNA containing 2FA has not been studied well. Toward fundamental understanding and future applications to the development of functional nucleic acids, we characterized 2FA-containing oligonucleotides for canonical right-handed DNA duplex, G-quadruplex, and i-motif structures. Properties of 2FA were similar to native adenine due to the small size of fluorine atom, but it showed unique features caused by high electronegativity. This work provides useful information for future application of 2FA-modified DNA.
Collapse
Affiliation(s)
- Shingo Hirashima
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku,, 606-8502, Kyoto, JAPAN
| | - Hiroshi Sugiyama
- Kyoto University: Kyoto Daigaku, Chemistry, Kitashirakawa-oiwakecho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| | - Soyoung Park
- Osaka University: Osaka Daigaku, Immunology Research Frontier Center, 3-1 Ymadaoka Suita, 565-0871, Osaka, JAPAN
| |
Collapse
|
11
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Ursu A, Baisden JT, Bush JA, Taghavi A, Choudhary S, Zhang YJ, Gendron TF, Petrucelli L, Yildirim I, Disney MD. A Small Molecule Exploits Hidden Structural Features within the RNA Repeat Expansion That Causes c9ALS/FTD and Rescues Pathological Hallmarks. ACS Chem Neurosci 2021; 12:4076-4089. [PMID: 34677935 DOI: 10.1021/acschemneuro.1c00470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The hexanucleotide repeat expansion GGGGCC [r(G4C2)exp] within intron 1 of C9orf72 causes genetically defined amyotrophic lateral sclerosis and frontotemporal dementia, collectively named c9ALS/FTD. , the repeat expansion causes neurodegeneration via deleterious phenotypes stemming from r(G4C2)exp RNA gain- and loss-of-function mechanisms. The r(G4C2)exp RNA folds into both a hairpin structure with repeating 1 × 1 nucleotide GG internal loops and a G-quadruplex structure. Here, we report the identification of a small molecule (CB253) that selectively binds the hairpin form of r(G4C2)exp. Interestingly, the small molecule binds to a previously unobserved conformation in which the RNA forms 2 × 2 nucleotide GG internal loops, as revealed by a series of binding and structural studies. NMR and molecular dynamics simulations suggest that the r(G4C2)exp hairpin interconverts between 1 × 1 and 2 × 2 internal loops through the process of strand slippage. We provide experimental evidence that CB253 binding indeed shifts the equilibrium toward the 2 × 2 GG internal loop conformation, inhibiting mechanisms that drive c9ALS/FTD pathobiology, such as repeat-associated non-ATG translation formation of stress granules and defective nucleocytoplasmic transport in various cellular models of c9ALS/FTD.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jared T. Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Amirhossein Taghavi
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
13
|
Harismah K, Hajali N, Mirzaei M, Salarrezaei E. Quantum processing of cytidine derivatives and evaluating their in silico interactions with the COVID-19 main protease. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This work was performed by the importance of exploring possible medications for COVID-19 pandemic. In this regard, cytidine (Cyd) derivatives were investigated to reach a point to see their benefit of employing for the purpose. Each of halogenated models of Cyd including CydF, CydCl, CydBr, and CydI were investigated in addition to the original CydH model. Density functional theory (DFT) based quantum processing were performed to obtain stabilized structures in addition to evaluation of frontier molecular orbitals features. Next, molecular docking (MD) simulations were performed to reach a point of formations of interacting ligand-target complexes. Among the investigated models CydH and CydI were working better than other model for reaching the purpose of this work, in which the derived CydI model was indeed the ligand with the highest suitability for formation of ligand-target complexes. As a consequence, such ligands of original and halogenated Cyd models might work for inhibition of main protease (MPro) enzyme of COVID-19 based on the obtained meaningful vales for complex strengths in addition interacting with the amino acids of active site. More precisely, the CydI model could be proposed as promising ligand for showing the inhibitory effects towards the MPro target of COVID-19.
Collapse
Affiliation(s)
- Kun Harismah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Narjes Hajali
- Department of Chemistry, Faculty of Science, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahmoud Mirzaei
- Medical Image & Signal Processing Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Salarrezaei
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Wee WA, Yum JH, Hirashima S, Sugiyama H, Park S. Synthesis and application of a 19F-labeled fluorescent nucleoside as a dual-mode probe for i-motif DNAs. RSC Chem Biol 2021; 2:876-882. [PMID: 34458815 PMCID: PMC8382138 DOI: 10.1039/d1cb00020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/04/2021] [Indexed: 11/21/2022] Open
Abstract
Because of their stable orientations and their minimal interference with native DNA interactions and folding, emissive isomorphic nucleoside analogues are versatile tools for the accurate analysis of DNA structural heterogeneity. Here, we report on a bifunctional trifluoromethylphenylpyrrolocytidine derivative (FPdC) that displays an unprecedented quantum yield and highly sensitive 19F NMR signal. This is the first report of a cytosine-based dual-purpose probe for both fluorescence and 19F NMR spectroscopic DNA analysis. FPdC and FPdC-containing DNA were synthesized and characterized; our robust dual probe was successfully used to investigate the noncanonical DNA structure, i-motifs, through changes in fluorescence intensity and 19F chemical shift in response to i-motif formation. The utility of FPdC was exemplified through reversible fluorescence switching of an FPdC-containing i-motif oligonucleotide in the presence of Ag(i) and cysteine.
Collapse
Affiliation(s)
- Wen Ann Wee
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Shingo Hirashima
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University Yoshida-ushinomiyacho, Sakyo-ku Kyoto 606-8501 Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
15
|
Bereiter R, Himmelstoß M, Renard E, Mairhofer E, Egger M, Breuker K, Kreutz C, Ennifar E, Micura R. Impact of 3-deazapurine nucleobases on RNA properties. Nucleic Acids Res 2021; 49:4281-4293. [PMID: 33856457 PMCID: PMC8096147 DOI: 10.1093/nar/gkab256] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Deazapurine nucleosides such as 3-deazaadenosine (c3A) are crucial for atomic mutagenesis studies of functional RNAs. They were the key for our current mechanistic understanding of ribosomal peptide bond formation and of phosphodiester cleavage in recently discovered small ribozymes, such as twister and pistol RNAs. Here, we present a comprehensive study on the impact of c3A and the thus far underinvestigated 3-deazaguanosine (c3G) on RNA properties. We found that these nucleosides can decrease thermodynamic stability of base pairing to a significant extent. The effects are much more pronounced for 3-deazapurine nucleosides compared to their constitutional isomers of 7-deazapurine nucleosides (c7G, c7A). We furthermore investigated base pair opening dynamics by solution NMR spectroscopy and revealed significantly enhanced imino proton exchange rates. Additionally, we solved the X-ray structure of a c3A-modified RNA and visualized the hydration pattern of the minor groove. Importantly, the characteristic water molecule that is hydrogen-bonded to the purine N3 atom and always observed in a natural double helix is lacking in the 3-deazapurine-modified counterpart. Both, the findings by NMR and X-ray crystallographic methods hence provide a rationale for the reduced pairing strength. Taken together, our comparative study is a first major step towards a comprehensive understanding of this important class of nucleoside modifications.
Collapse
Affiliation(s)
- Raphael Bereiter
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Maximilian Himmelstoß
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Eva Renard
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Elisabeth Mairhofer
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Michaela Egger
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| | - Eric Ennifar
- Architecture et Réactivité de l’ARN - CNRS UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Gimenez D, Phelan A, Murphy CD, Cobb SL. 19F NMR as a tool in chemical biology. Beilstein J Org Chem 2021; 17:293-318. [PMID: 33564338 PMCID: PMC7849273 DOI: 10.3762/bjoc.17.28] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
We previously reviewed the use of 19F NMR in the broad field of chemical biology [Cobb, S. L.; Murphy, C. D. J. Fluorine Chem. 2009, 130, 132-140] and present here a summary of the literature from the last decade that has the technique as the central method of analysis. The topics covered include the synthesis of new fluorinated probes and their incorporation into macromolecules, the application of 19F NMR to monitor protein-protein interactions, protein-ligand interactions, physiologically relevant ions and in the structural analysis of proteins and nucleic acids. The continued relevance of the technique to investigate biosynthesis and biodegradation of fluorinated organic compounds is also described.
Collapse
Affiliation(s)
- Diana Gimenez
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| | - Aoife Phelan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven L Cobb
- Department of Chemistry, Durham University, South Road, Durham, DH13LE, UK
| |
Collapse
|
17
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In-Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2021; 60:865-872. [PMID: 32975353 PMCID: PMC7839747 DOI: 10.1002/anie.202007184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/22/2020] [Indexed: 12/14/2022]
Abstract
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
Collapse
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - S. Dzatko
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - M. Krafcikova
- National Centre for Biomolecular ResearchMasaryk UniversityKamenice 5625 00BrnoCzech Republic
- Institute of BiophysicsCzech Academy of SciencesKralovopolska 135612 65BrnoCzech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine CologneRobert-Koch-Str. 2150931CologneGermany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute of Biophysical ChemistryGoethe UniversityMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC)Masaryk UniversityKamenice 753/5625 00BrnoCzech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ)Institute for Organic Chemistry and Chemical BiologyGoethe UniversityMax-von-Laue-Str. 760438Frankfurt/M.Germany
| |
Collapse
|
18
|
Ursu A, Wang KW, Bush JA, Choudhary S, Chen JL, Baisden JT, Zhang YJ, Gendron TF, Petrucelli L, Yildirim I, Disney MD. Structural Features of Small Molecules Targeting the RNA Repeat Expansion That Causes Genetically Defined ALS/FTD. ACS Chem Biol 2020; 15:3112-3123. [PMID: 33196168 DOI: 10.1021/acschembio.0c00049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Genetically defined amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), collectively named c9ALS/FTD, are triggered by hexanucleotide GGGGCC repeat expansions [r(G4C2)exp] within the C9orf72 gene. In these diseases, neuronal loss occurs through an interplay of deleterious phenotypes, including r(G4C2)exp RNA gain-of-function mechanisms. Herein, we identified a benzimidazole derivative, CB096, that specifically binds to a repeating 1 × 1 GG internal loop structure, 5'CGG/3'GGC, that is formed when r(G4C2)exp folds. Structure-activity relationship (SAR) studies and molecular dynamics (MD) simulations were used to define the molecular interactions formed between CB096 and r(G4C2)exp that results in the rescue of disease-associated pathways. Overall, this study reveals a unique structural feature within r(G4C2)exp that can be exploited for the development of lead medicines and chemical probes.
Collapse
Affiliation(s)
- Andrei Ursu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Kye Won Wang
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Jessica A. Bush
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Shruti Choudhary
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Jared T. Baisden
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Tania F. Gendron
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Rd., Jacksonville, Florida 32224, United States
| | - Ilyas Yildirim
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
19
|
Sacre L, Pontarelli A, Bahsoun Y, Wilds CJ. Influence of C5‐Substituents on Repair of
O
4
‐Methyl Adducts of Pyrimidines by
O
6
‐Alkylguanine DNA Alkyltransferases. ChemistrySelect 2020. [DOI: 10.1002/slct.202003893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lauralicia Sacre
- Department of Chemistry and Biochemistry Concordia University 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
| | - Alexander Pontarelli
- Department of Chemistry and Biochemistry Concordia University 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
| | - Yehya Bahsoun
- Department of Chemistry and Biochemistry Concordia University 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
| | - Christopher J. Wilds
- Department of Chemistry and Biochemistry Concordia University 7141 Sherbrooke Street West Montréal Québec H4B 1R6 Canada
| |
Collapse
|
20
|
Broft P, Dzatko S, Krafcikova M, Wacker A, Hänsel‐Hertsch R, Dötsch V, Trantirek L, Schwalbe H. In‐Cell NMR Spectroscopy of Functional Riboswitch Aptamers in Eukaryotic Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- P. Broft
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - S. Dzatko
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - M. Krafcikova
- National Centre for Biomolecular Research Masaryk University Kamenice 5 625 00 Brno Czech Republic
- Institute of Biophysics Czech Academy of Sciences Kralovopolska 135 612 65 Brno Czech Republic
| | - A. Wacker
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| | - Robert Hänsel‐Hertsch
- Present address: Center for Molecular Medicine Cologne Robert-Koch-Str. 21 50931 Cologne Germany
| | - Volker Dötsch
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute of Biophysical Chemistry Goethe University Max-von-Laue-Str. 9 60438 Frankfurt/M. Germany
| | - L. Trantirek
- Central European Institute of Technology (CEITEC) Masaryk University Kamenice 753/5 625 00 Brno Czech Republic
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ) Institute for Organic Chemistry and Chemical Biology Goethe University Max-von-Laue-Str. 7 60438 Frankfurt/M. Germany
| |
Collapse
|
21
|
Hansen PE. Isotope effects on chemical shifts in the study of hydrogen bonded biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:109-117. [PMID: 33198966 DOI: 10.1016/j.pnmrs.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
This review deals with biological systems and with deuterium isotope effects on chemical shifts caused by the replacement of OH, NH or SH protons by deuterons. Hydrogen bonding is clearly of central importance. Isotope effects on chemical shifts seems very suitable for use in studies of structures and reactions in the interior of proteins, as exchange of the label can be expected to be slow. One-bond deuterium isotope effects on 15N chemical shifts, and two-bond effects on 1H chemical shifts for N(D)Hx systems can be used to gauge hydrogen bond strength in proteins as well as in salt bridges. Solvent isotope effects on 19F chemical shifts show promise in monitoring solvent access. Equilibrium isotope effects need in some cases to be taken into account. Schemes for calculation of deuterium isotope effects on chemical shifts are discussed and it is demonstrated how calculations may be used in the study of complex biological systems.
Collapse
Affiliation(s)
- Poul Erik Hansen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
22
|
Himmelstoß M, Erharter K, Renard E, Ennifar E, Kreutz C, Micura R. 2'- O-Trifluoromethylated RNA - a powerful modification for RNA chemistry and NMR spectroscopy. Chem Sci 2020; 11:11322-11330. [PMID: 34094374 PMCID: PMC8162808 DOI: 10.1039/d0sc04520a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
New RNA modifications are needed to advance our toolbox for targeted manipulation of RNA. In particular, the development of high-performance reporter groups facilitating spectroscopic analysis of RNA structure and dynamics, and of RNA-ligand interactions has attracted considerable interest. To this end, fluorine labeling in conjunction with 19F-NMR spectroscopy has emerged as a powerful strategy. Appropriate probes for RNA previously focused on single fluorine atoms attached to the 5-position of pyrimidine nucleobases or at the ribose 2'-position. To increase NMR sensitivity, trifluoromethyl labeling approaches have been developed, with the ribose 2'-SCF3 modification being the most prominent one. A major drawback of the 2'-SCF3 group, however, is its strong impact on RNA base pairing stability. Interestingly, RNA containing the structurally related 2'-OCF3 modification has not yet been reported. Therefore, we set out to overcome the synthetic challenges toward 2'-OCF3 labeled RNA and to investigate the impact of this modification. We present the syntheses of 2'-OCF3 adenosine and cytidine phosphoramidites and their incorporation into oligoribonucleotides by solid-phase synthesis. Importantly, it turns out that the 2'-OCF3 group has only a slight destabilizing effect when located in double helical regions which is consistent with the preferential C3'-endo conformation of the 2'-OCF3 ribose as reflected in the 3 J (H1'-H2') coupling constants. Furthermore, we demonstrate the exceptionally high sensitivity of the new label in 19F-NMR analysis of RNA structure equilibria and of RNA-small molecule interactions. The study is complemented by a crystal structure at 0.9 Å resolution of a 27 nt hairpin RNA containing a single 2'-OCF3 group that well integrates into the minor groove. The new label carries high potential to outcompete currently applied fluorine labels for nucleic acid NMR spectroscopy because of its significantly advanced performance.
Collapse
Affiliation(s)
- Maximilian Himmelstoß
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Kevin Erharter
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Eva Renard
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Eric Ennifar
- Université de Strasbourg, Architecture et Réactivité de l'ARN-CNRS UPR 9002, Institut de Biologie Moléculaire et Cellulaire 67000 Strasbourg France
| | - Christoph Kreutz
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| | - Ronald Micura
- University of Innsbruck, Institute of Organic Chemistry, Center for Molecular Biosciences (CMBI) Innrain 80-82 6020 Innsbruck Austria
| |
Collapse
|
23
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic
19
F–
13
C TROSY—[
19
F,
13
C]‐Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI) University of Innsbruck Innrain 80/82 6020 Innsbruck Austria
| |
Collapse
|
24
|
Nußbaumer F, Plangger R, Roeck M, Kreutz C. Aromatic 19 F- 13 C TROSY-[ 19 F, 13 C]-Pyrimidine Labeling for NMR Spectroscopy of RNA. Angew Chem Int Ed Engl 2020; 59:17062-17069. [PMID: 32558232 PMCID: PMC7540360 DOI: 10.1002/anie.202006577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 12/22/2022]
Abstract
We present the access to [5-19 F, 5-13 C]-uridine and -cytidine phosphoramidites for the production of site-specifically modified RNAs up to 65 nucleotides (nts). The amidites were used to introduce [5-19 F, 5-13 C]-pyrimidine labels into five RNAs-the 30 nt human immunodeficiency virus trans activation response (HIV TAR) 2 RNA, the 61 nt human hepatitis B virus ϵ (hHBV ϵ) RNA, the 49 nt SAM VI riboswitch aptamer domain from B. angulatum, the 29 nt apical stem loop of the pre-microRNA (miRNA) 21 and the 59 nt full length pre-miRNA 21. The main stimulus to introduce the aromatic 19 F-13 C-spin topology into RNA comes from a work of Boeszoermenyi et al., in which the dipole-dipole interaction and the chemical shift anisotropy relaxation mechanisms cancel each other leading to advantageous TROSY properties shown for aromatic protein sidechains. This aromatic 13 C-19 F labeling scheme is now transferred to RNA. We provide a protocol for the resonance assignment by solid phase synthesis based on diluted [5-19 F, 5-13 C]/[5-19 F] pyrimidine labeling. For the 61 nt hHBV ϵ we find a beneficial 19 F-13 C TROSY enhancement, which should be even more pronounced in larger RNAs and will facilitate the NMR studies of larger RNAs. The [19 F, 13 C]-labeling of the SAM VI aptamer domain and the pre-miRNA 21 further opens the possibility to use the biorthogonal stable isotope reporter nuclei in in vivo NMR to observe ligand binding and microRNA processing in a biological relevant setting.
Collapse
Affiliation(s)
- Felix Nußbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Raphael Plangger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Manuel Roeck
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnrain 80/826020InnsbruckAustria
| |
Collapse
|
25
|
Baranowski MR, Warminski M, Jemielity J, Kowalska J. 5'-fluoro(di)phosphate-labeled oligonucleotides are versatile molecular probes for studying nucleic acid secondary structure and interactions by 19F NMR. Nucleic Acids Res 2020; 48:8209-8224. [PMID: 32514551 PMCID: PMC7470941 DOI: 10.1093/nar/gkaa470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 01/03/2023] Open
Abstract
The high sensitivity of 19F nucleus to changes in the chemical environment has promoted the use of fluorine-labeled molecular probes to study structure and interactions of nucleic acids by 19F NMR. So far, most efforts have focused on incorporating the fluorine atom into nucleobase and ribose moieties using either monomer building blocks for solid-phase synthesis, or nucleoside triphosphates for enzymatic synthesis. Here, we report a simple and efficient synthesis of 5'-fluoromonophosphorylated and 5'-fluorodiphosphorylated oligodeoxyribonucleotides, which combines solid-phase and in-solution synthesis methods and requires only commercially available nucleoside phosphoramidites, followed by their evaluation as 19F NMR probes. We confirmed that the fluorine atom at the oligonucleotide 5' end did not alter the secondary structure of DNA fragments. Moreover, at the same time, it enabled real-time 19F NMR monitoring of various DNA-related biophysical processes, such as oligonucleotide hybridization (including mismatch identification), G-quadruplex folding/unfolding and its interactions with thrombin, as well as formation of an i-motif structure and its interaction with small-molecule ligands.
Collapse
Affiliation(s)
- Marek R Baranowski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Marcin Warminski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Jacek Jemielity
- Centre of New Technologies, University of Warsaw, Stefana Banacha 2c, 02-097 Warsaw, Poland
| | - Joanna Kowalska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
26
|
Boeszoermenyi A, Ogórek B, Jain A, Arthanari H, Wagner G. The precious fluorine on the ring: fluorine NMR for biological systems. JOURNAL OF BIOMOLECULAR NMR 2020; 74:365-379. [PMID: 32651751 PMCID: PMC7539674 DOI: 10.1007/s10858-020-00331-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 05/08/2023]
Abstract
The fluorine-19 nucleus was recognized early to harbor exceptional properties for NMR spectroscopy. With 100% natural abundance, a high gyromagnetic ratio (83% sensitivity compared to 1H), a chemical shift that is extremely sensitive to its surroundings and near total absence in biological systems, it was destined to become a favored NMR probe, decorating small and large molecules. However, after early excitement, where uptake of fluorinated aromatic amino acids was explored in a series of animal studies, 19F-NMR lost popularity, especially in large molecular weight systems, due to chemical shift anisotropy (CSA) induced line broadening at high magnetic fields. Recently, two orthogonal approaches, (i) CF3 labeling and (ii) aromatic 19F-13C labeling leveraging the TROSY (Transverse Relaxation Optimized Spectroscopy) effect have been successfully applied to study large biomolecular systems. In this perspective, we will discuss the fascinating early work with fluorinated aromatic amino acids, which reveals the enormous potential of these non-natural amino acids in biological NMR and the potential of 19F-NMR to characterize protein and nucleic acid structure, function and dynamics in the light of recent developments. Finally, we explore how fluorine NMR might be exploited to implement small molecule or fragment screens that resemble physiological conditions and discuss the opportunity to follow the fate of small molecules in living cells.
Collapse
Affiliation(s)
- Andras Boeszoermenyi
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| | - Barbara Ogórek
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA, 02115, USA
| | - Akshay Jain
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Schnieders R, Keyhani S, Schwalbe H, Fürtig B. More than Proton Detection-New Avenues for NMR Spectroscopy of RNA. Chemistry 2020; 26:102-113. [PMID: 31454110 PMCID: PMC6973061 DOI: 10.1002/chem.201903355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Indexed: 12/16/2022]
Abstract
Ribonucleic acid oligonucleotides (RNAs) play pivotal roles in cellular function (riboswitches), chemical biology applications (SELEX-derived aptamers), cell biology and biomedical applications (transcriptomics). Furthermore, a growing number of RNA forms (long non-coding RNAs, circular RNAs) but also RNA modifications are identified, showing the ever increasing functional diversity of RNAs. To describe and understand this functional diversity, structural studies of RNA are increasingly important. However, they are often more challenging than protein structural studies as RNAs are substantially more dynamic and their function is often linked to their structural transitions between alternative conformations. NMR is a prime technique to characterize these structural dynamics with atomic resolution. To extend the NMR size limitation and to characterize large RNAs and their complexes above 200 nucleotides, new NMR techniques have been developed. This Minireview reports on the development of NMR methods that utilize detection on low-γ nuclei (heteronuclei like 13 C or 15 N with lower gyromagnetic ratio than 1 H) to obtain unique structural and dynamic information for large RNA molecules in solution. Experiments involve through-bond correlations of nucleobases and the phosphodiester backbone of RNA for chemical shift assignment and make information on hydrogen bonding uniquely accessible. Previously unobservable NMR resonances of amino groups in RNA nucleobases are now detected in experiments involving conformational exchange-resistant double-quantum 1 H coherences, detected by 13 C NMR spectroscopy. Furthermore, 13 C and 15 N chemical shifts provide valuable information on conformations. All the covered aspects point to the advantages of low-γ nuclei detection experiments in RNA.
Collapse
Affiliation(s)
- Robbin Schnieders
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Sara Keyhani
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical BiologyCenter for Biomolecular Magnetic Resonance (BMRZ)Johann Wolfgang Goethe-Universität FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| |
Collapse
|
28
|
Aro-Heinilä A, Lönnberg T, Virta P. 3-Fluoro-2-mercuri-6-methylaniline Nucleotide as a High-Affinity Nucleobase-Specific Hybridization Probe. Bioconjug Chem 2019; 30:2183-2190. [PMID: 31246432 DOI: 10.1021/acs.bioconjchem.9b00405] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A 3-fluoro-6-methylaniline nucleoside was synthesized and incorporated into an oligonucleotide, and its ability to form mercury-mediated base pairs was studied. UV melting experiments revealed increased duplex stability with thymine, guanine, and cytosine opposite to the probe and a clear nucleobase-specific binding preference (T > G > C > A). Moreover, the 3-fluoro group was utilized as a spin label that showed distinct 19F NMR resonance shifts depending on the complementary nucleobase, providing more detailed information on Hg(II)-mediated base pairing.
Collapse
Affiliation(s)
- Asmo Aro-Heinilä
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Tuomas Lönnberg
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| | - Pasi Virta
- Department of Chemistry , University of Turku , Vatselankatu 2 , 20014 Turku , Finland
| |
Collapse
|
29
|
Affiliation(s)
- Zhenchuang Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Chao Liu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Shujuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Si Chen
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| | - Yanchuan Zhao
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China
| |
Collapse
|
30
|
Walunj MB, Tanpure AA, Srivatsan SG. Post-transcriptional labeling by using Suzuki-Miyaura cross-coupling generates functional RNA probes. Nucleic Acids Res 2018; 46:e65. [PMID: 29546376 PMCID: PMC6009664 DOI: 10.1093/nar/gky185] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/12/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Pd-catalyzed C-C bond formation, an important vertebra in the spine of synthetic chemistry, is emerging as a valuable chemoselective transformation for post-synthetic functionalization of biomacromolecules. While methods are available for labeling protein and DNA, development of an analogous procedure to label RNA by cross-coupling reactions remains a major challenge. Herein, we describe a new Pd-mediated RNA oligonucleotide (ON) labeling method that involves post-transcriptional functionalization of iodouridine-labeled RNA transcripts by using Suzuki-Miyaura cross-coupling reaction. 5-Iodouridine triphosphate (IUTP) is efficiently incorporated into RNA ONs at one or more sites by T7 RNA polymerase. Further, using a catalytic system made of Pd(OAc)2 and 2-aminopyrimidine-4,6-diol (ADHP) or dimethylamino-substituted ADHP (DMADHP), we established a modular method to functionalize iodouridine-labeled RNA ONs in the presence of various boronic acid and ester substrates under very mild conditions (37°C and pH 8.5). This method is highly chemoselective, and offers direct access to RNA ONs labeled with commonly used fluorescent and affinity tags and new fluorogenic environment-sensitive nucleoside probes in a ligand-controlled stereoselective fashion. Taken together, this simple approach of generating functional RNA ON probes by Suzuki-Miyaura coupling will be a very important addition to the resources and tools available for analyzing RNA motifs.
Collapse
Affiliation(s)
- Manisha B Walunj
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| | - Arun A Tanpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road, Pune 411008, India
| |
Collapse
|
31
|
Olszewska A, Pohl R, Hocek M. Trifluoroacetophenone-Linked Nucleotides and DNA for Studying of DNA-Protein Interactions by 19F NMR Spectroscopy. J Org Chem 2018; 82:11431-11439. [PMID: 28991457 DOI: 10.1021/acs.joc.7b01920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of 7-[4-(trifluoroacetyl)phenyl]-7-deazaadenine and -7-deazaguanine as well as 5-substituted uracil and cytosine 2'-deoxyribonucleosides and mono- and triphosphates were synthesized through aqueous Suzuki-Miyaura crosscoupling of halogenated nucleosides or nucleotides with 4-(trifluoroacetyl)phenylboronic acid. The modified nucleoside triphosphates were good substrates for DNA polymerases applicable in primer extension or PCR synthesis of modified oligonucleotides or DNA. Attempted cross-linking with a serine-containing protein did not proceed, however the trifluoroacetophenone group was a sensitive probe for the study of DNA-protein interactions by 19F NMR.
Collapse
Affiliation(s)
- Agata Olszewska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences , Flemingovo namesti 2, 160 00 Prague 6, Czech Republic.,Department of Organic Chemistry, Faculty of Science, Charles University in Prague , Hlavova 8, 12843 Prague 2, Czech Republic
| |
Collapse
|
32
|
Kim H, Lee J, Shin H, Sohn JH. Boric Ester and Thiourea as Coupling Partners in a Copper-Mediated Oxidative Dehydrosulfurative Carbon–Oxygen Cross-Coupling Reaction. Org Lett 2018; 20:1961-1965. [DOI: 10.1021/acs.orglett.8b00502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyeji Kim
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Dajeon 305-706, Korea
| | - Jihong Lee
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Dajeon 305-706, Korea
| | - Hyunik Shin
- Yonsung Fine Chemicals R&D Center, 602 Innoplex 2, 306 Sinwon-ro, Yeongtong-gu, Suwon 443-380 Korea
| | - Jeong-Hun Sohn
- Department of Chemistry, College of Natural Sciences, Chungnam National University, Dajeon 305-706, Korea
| |
Collapse
|
33
|
Guo F, Li Q, Zhou C. Synthesis and biological applications of fluoro-modified nucleic acids. Org Biomol Chem 2018; 15:9552-9565. [PMID: 29086791 DOI: 10.1039/c7ob02094e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Owing to the unique physical properties of a fluorine atom, incorporating fluoro-modifications into nucleic acids offers striking biophysical and biochemical features, and thus significantly extends the breadth and depth of biological applications of nucleic acids. In this review, fluoro-modified nucleic acids that have been synthesized through either solid phase synthesis or the enzymatic approach are briefly summarised, followed by a section describing their biomedical applications in nucleic acid-based therapeutics, 18F PET imaging and mechanistic studies of DNA modifying enzymes. In the last part, the utility of 19F NMR and MRI for probing the structure, dynamics and molecular interactions of fluorinated nucleic acids is reviewed.
Collapse
Affiliation(s)
- Fengmin Guo
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China.
| | | | | |
Collapse
|
34
|
Application of Heteronuclear NMR Spectroscopy to Bioinorganic and Medicinal Chemistry ☆. REFERENCE MODULE IN CHEMISTRY, MOLECULAR SCIENCES AND CHEMICAL ENGINEERING 2018. [PMCID: PMC7157447 DOI: 10.1016/b978-0-12-409547-2.10947-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Toulmin A, Baltierra-Jasso LE, Morten MJ, Sabir T, McGlynn P, Schröder GF, Smith BO, Magennis SW. Conformational Heterogeneity in a Fully Complementary DNA Three-Way Junction with a GC-Rich Branchpoint. Biochemistry 2017; 56:4985-4991. [PMID: 28820590 DOI: 10.1021/acs.biochem.7b00677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
Collapse
Affiliation(s)
- Anita Toulmin
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Laura E Baltierra-Jasso
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Michael J Morten
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| | - Tara Sabir
- The School of Chemistry, The University of Manchester , Oxford Road, Manchester M13 9PL, U.K.,The Photon Science Institute, The University of Manchester , Alan Turing Building, Oxford Road, Manchester M13 9PL, U.K
| | - Peter McGlynn
- Department of Biology, University of York , Wentworth Way, York YO10 5DD, U.K
| | - Gunnar F Schröder
- Institute of Complex Systems (ICS-6), Forschungszentrum Jülich , 52425 Jülich, Germany.,Physics Department, Heinrich-Heine Universität Düsseldorf , Düsseldorf, Germany
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology, University of Glasgow , Glasgow G12 8QQ, U.K
| | - Steven W Magennis
- School of Chemistry, WestCHEM, University of Glasgow , Joseph Black Building, University Avenue, Glasgow G12 8QQ, U.K
| |
Collapse
|
36
|
Francis AJ, Resendiz MJE. Protocol for the Solid-phase Synthesis of Oligomers of RNA Containing a 2'-O-thiophenylmethyl Modification and Characterization via Circular Dichroism. J Vis Exp 2017. [PMID: 28784951 DOI: 10.3791/56189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Solid-phase synthesis has been used to obtain canonical and modified polymers of nucleic acids, specifically of DNA or RNA, which has made it a popular methodology for applications in various fields and for different research purposes. The procedure described herein focuses on the synthesis, purification, and characterization of dodecamers of RNA 5'-[CUA CGG AAU CAU]-3' containing zero, one, or two modifications located at the C2'-O-position. The probes are based on 2-thiophenylmethyl groups, incorporated into RNA nucleotides via standard organic synthesis and introduced into the corresponding oligonucleotides via their respective phosphoramidites. This report makes use of phosphoramidite chemistry via the four canonical nucleobases (Uridine (U), Cytosine (C), Guanosine (G), Adenosine (A)), as well as 2-thiophenylmethyl functionalized nucleotides modified at the 2'-O-position; however, the methodology is amenable for a large variety of modifications that have been developed over the years. The oligonucleotides were synthesized on a controlled-pore glass (CPG) support followed by cleavage from the resin and deprotection under standard conditions, i.e., a mixture of ammonia and methylamine (AMA) followed by hydrogen fluoride/triethylamine/N-methylpyrrolidinone. The corresponding oligonucleotides were purified via polyacrylamide electrophoresis (20% denaturing) followed by elution, desalting, and isolation via reversed-phase chromatography (Sep-pak, C18-column). Quantification and structural parameters were assessed via ultraviolet-visible (UV-vis) and circular dichroism (CD) photometric analysis, respectively. This report aims to serve as a resource and guide for beginner and expert researchers interested in embarking in this field. It is expected to serve as a work-in-progress as new technologies and methodologies are developed. The description of the methodologies and techniques within this document correspond to a DNA/RNA synthesizer (refurbished and purchased in 2013) that uses phosphoramidite chemistry.
Collapse
|
37
|
Chen JL, VanEtten DM, Fountain MA, Yildirim I, Disney MD. Structure and Dynamics of RNA Repeat Expansions That Cause Huntington's Disease and Myotonic Dystrophy Type 1. Biochemistry 2017; 56:3463-3474. [PMID: 28617590 PMCID: PMC5810133 DOI: 10.1021/acs.biochem.7b00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
RNA repeat expansions cause a host of incurable, genetically defined diseases. The most common class of RNA repeats consists of trinucleotide repeats. These long, repeating transcripts fold into hairpins containing 1 × 1 internal loops that can mediate disease via a variety of mechanism(s) in which RNA is the central player. Two of these disorders are Huntington's disease and myotonic dystrophy type 1, which are caused by r(CAG) and r(CUG) repeats, respectively. We report the structures of two RNA constructs containing three copies of a r(CAG) [r(3×CAG)] or r(CUG) [r(3×CUG)] motif that were modeled with nuclear magnetic resonance spectroscopy and simulated annealing with restrained molecular dynamics. The 1 × 1 internal loops of r(3×CAG) are stabilized by one-hydrogen bond (cis Watson-Crick/Watson-Crick) AA pairs, while those of r(3×CUG) prefer one- or two-hydrogen bond (cis Watson-Crick/Watson-Crick) UU pairs. Assigned chemical shifts for the residues depended on the identity of neighbors or next nearest neighbors. Additional insights into the dynamics of these RNA constructs were gained by molecular dynamics simulations and a discrete path sampling method. Results indicate that the global structures of the RNA are A-form and that the loop regions are dynamic. The results will be useful for understanding the dynamic trajectory of these RNA repeats but also may aid in the development of therapeutics.
Collapse
Affiliation(s)
- Jonathan L. Chen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Damian M. VanEtten
- Department of Chemistry and Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Matthew A. Fountain
- Department of Chemistry and Biochemistry, State University of New York at Fredonia, Fredonia, New York 14063, United States
| | - Ilyas Yildirim
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| | - Matthew D. Disney
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Chemistry and Biochemistry, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
38
|
Muttach F, Muthmann N, Rentmeister A. Chemo-enzymatic modification of eukaryotic mRNA. Org Biomol Chem 2017; 15:278-284. [DOI: 10.1039/c6ob02144a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Posttranscriptional modification at its 5′ cap renders mRNA amenable to bioorthogonal click reactions which can be performed in living cells.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| | - Nils Muthmann
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| | - Andrea Rentmeister
- University of Münster
- Department of Chemistry
- Institute of Biochemistry
- 48149 Münster
- Germany
| |
Collapse
|
39
|
Nakamura S, Fujimoto K. Photo-cross-linking using trifluorothymidine and 3-cyanovinylcarbazole induced a large shifted (19)F MR signal. Chem Commun (Camb) 2016; 51:11765-8. [PMID: 26027537 DOI: 10.1039/c5cc02972d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photo-cross-linking of trifluorothymidine ((TF)T) using 3-cyanovinylcarbazole ((CNV)K) clearly shifted its (19)F nuclear magnetic resonance (NMR) signal 8 ppm. This (CNV)K mediated ultrafast photo-cross-linking-induced shift can be utilized for miRNA detection by hybridization chain reaction (HCR) to detect 10 nM of a target in a sequence-specific manner.
Collapse
Affiliation(s)
- Shigetaka Nakamura
- Materials Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa 923-1292, Japan.
| | | |
Collapse
|
40
|
Sochor F, Silvers R, Müller D, Richter C, Fürtig B, Schwalbe H. (19)F-labeling of the adenine H2-site to study large RNAs by NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2016; 64:63-74. [PMID: 26704707 DOI: 10.1007/s10858-015-0006-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/20/2015] [Indexed: 05/24/2023]
Abstract
In comparison to proteins and protein complexes, the size of RNA amenable to NMR studies is limited despite the development of new isotopic labeling strategies including deuteration and ligation of differentially labeled RNAs. Due to the restricted chemical shift dispersion in only four different nucleotides spectral resolution remains limited in larger RNAs. Labeling RNAs with the NMR-active nucleus (19)F has previously been introduced for small RNAs up to 40 nucleotides (nt). In the presented work, we study the natural occurring RNA aptamer domain of the guanine-sensing riboswitch comprising 73 nucleotides from Bacillus subtilis. The work includes protocols for improved in vitro transcription of 2-fluoroadenosine-5'-triphosphat (2F-ATP) using the mutant P266L of the T7 RNA polymerase. Our NMR analysis shows that the secondary and tertiary structure of the riboswitch is fully maintained and that the specific binding of the cognate ligand hypoxanthine is not impaired by the introduction of the (19)F isotope. The thermal stability of the (19)F-labeled riboswitch is not altered compared to the unmodified sequence, but local base pair stabilities, as measured by hydrogen exchange experiments, are modulated. The characteristic change in the chemical shift of the imino resonances detected in a (1)H,(15)N-HSQC allow the identification of Watson-Crick base paired uridine signals and the (19)F resonances can be used as reporters for tertiary and secondary structure transitions, confirming the potential of (19)F-labeling even for sizeable RNAs in the range of 70 nucleotides.
Collapse
Affiliation(s)
- F Sochor
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - R Silvers
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
- Department of Chemistry, Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - D Müller
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - C Richter
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany
| | - B Fürtig
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| | - H Schwalbe
- Institut für Organische Chemie und Chemische Biologie, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Str. 7, 60438, Frankfurt/M., Germany.
| |
Collapse
|
41
|
Virgilio A, Petraccone L, Vellecco V, Bucci M, Varra M, Irace C, Santamaria R, Pepe A, Mayol L, Esposito V, Galeone A. Site-specific replacement of the thymine methyl group by fluorine in thrombin binding aptamer significantly improves structural stability and anticoagulant activity. Nucleic Acids Res 2015; 43:10602-11. [PMID: 26582916 PMCID: PMC4678827 DOI: 10.1093/nar/gkv1224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/29/2015] [Indexed: 12/20/2022] Open
Abstract
Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2′-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the ‘chair-like’ conformation typical of the TBA. However, only ODNs TBA-F4 and TBA-F13 have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications.
Collapse
Affiliation(s)
- Antonella Virgilio
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Luigi Petraccone
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II,via Cintia, I-80126 Napoli, Italy
| | - Valentina Vellecco
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Mariarosaria Bucci
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Michela Varra
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Carlo Irace
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Rita Santamaria
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Antonietta Pepe
- Dipartimento di Scienze, Università degli Studi della Basilicata, Viale dell'Ateneo Lucano 10, I-85100 Potenza, Italy
| | - Luciano Mayol
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Veronica Esposito
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Aldo Galeone
- Dipartimento di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
42
|
Jud L, Košutić M, Schwarz V, Hartl M, Kreutz C, Bister K, Micura R. Expanding the Scope of 2'-SCF3 Modified RNA. Chemistry 2015; 21:10400-7. [PMID: 26074479 PMCID: PMC4515092 DOI: 10.1002/chem.201500415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Indexed: 11/14/2022]
Abstract
The 2'-trifluoromethylthio (2'-SCF3 ) modification endows ribonucleic acids with exceptional properties and has attracted considerable interest as a reporter group for NMR spectroscopic applications. However, only modified pyrimidine nucleosides have been generated so far. Here, the syntheses of 2'-SCF3 adenosine and guanosine phosphoramidites of which the latter was obtained in highly efficient manner by an unconventional Boc-protecting group strategy, are reported. RNA solid-phase synthesis provided site-specifically 2'-SCF3 -modified oligoribonucleotides that were investigated intensively. Their excellent behavior in (19) F NMR spectroscopic probing of RNA ligand binding was exemplified for a noncovalent small molecule-RNA interaction. Moreover, comparably to the 2'-SCF3 pyrimidine nucleosides, the purine counterparts were also found to cause a significant thermodynamic destabilization when located in double helical regions. This property was considered beneficial for siRNA design under the aspect to minimize off-target effects and their performance in silencing of the BASP1 gene was demonstrated.
Collapse
Affiliation(s)
- Lukas Jud
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Marija Košutić
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Veronika Schwarz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Markus Hartl
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Christoph Kreutz
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Klaus Bister
- Institute of Biochemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria)
| | - Ronald Micura
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, 6020 Innsbruck (Austria).
| |
Collapse
|
43
|
Applying Thymine Isostere 2,4-Difluoro-5-Methylbenzene as a NMR Assignment Tool and Probe of Homopyrimidine/Homopurine Tract Structural Dynamics. Methods Enzymol 2015; 566:89-110. [PMID: 26791977 DOI: 10.1016/bs.mie.2015.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Proton assignment of nuclear magnetic resonance (NMR) spectra of homopyrimidine/homopurine tract oligonucleotides becomes extremely challenging with increasing helical length due to severe cross-peak overlap. As an alternative to the more standard practice of (15)N and (13)C labeling of oligonucleotides, here, we describe a method for assignment of highly redundant DNA sequences that uses single-site substitution of the thymine isostere 2,4-difluoro-5-methylbenzene (dF). The impact of this approach in facilitating the assignment of intractable spectra and analyzing oligonucleotide structure and dynamics is demonstrated using A-tract and TATA box DNA and two polypurine tract-containing RNA:DNA hybrids derived from HIV-1 and the Saccharomyces cerevisiae long-terminal repeat-containing retrotransposon Ty3. Only resonances proximal to the site of dF substitution exhibit sizable chemical shift changes, providing spectral dispersion while still allowing chemical shift mapping of resonances from unaffected residues distal to the site of modification directly back to the unmodified sequence. It is further illustrated that dF incorporation can subtly alter the conformation and dynamics of homopyrimidine/homopurine tract oligonucleotides, and how these NMR observations can be correlated, in the cases of the TATA box DNA, with modulation in the TATA box-binding protein interaction using an orthogonal gel assay.
Collapse
|
44
|
Scott LG, Hennig M. ¹⁹F-Site-Specific-Labeled Nucleotides for Nucleic Acid Structural Analysis by NMR. Methods Enzymol 2015; 566:59-87. [PMID: 26791976 DOI: 10.1016/bs.mie.2015.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Naturally occurring RNA lacks fluorine-19 ((19)F), thus, their specifically fluorinated counterparts are particularly well suited to noninvasively monitoring the dynamic conformational properties and ligand-binding interactions of the RNA. For nuclear magnetic resonance (NMR) spectroscopy, (19)F-NMR of fluorine-substituted RNA provides an attractive, site-specific probe for structure determination in solution. Advantages of (19)F include high NMR sensitivity (83% of (1)H), high natural abundance (100%), and the extreme sensitivity of (19)F to the chemical environment leading to a large range of chemical shifts. The preparation of base-substituted 2-fluoropurine and 5-fluoropyrimidine 5'-triphosphates (2F-ATP/5F-CTP/5F-UTP) can be carried out using efficient enzymatic synthesis methods. Both pyrimidine analogs, 5-fluorouridine and 5-fluorocytidine, as well as, 2-fluoroadenosine are readily incorporated into RNA transcribed in vitro using T7 RNA polymerase.
Collapse
Affiliation(s)
| | - Mirko Hennig
- Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA.
| |
Collapse
|
45
|
Iannazzo L, Benedetti E, Catala M, Etheve-Quelquejeu M, Tisné C, Micouin L. Monitoring of reversible boronic acid–diol interactions by fluorine NMR spectroscopy in aqueous media. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01362c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A new convenient method for monitoring boronic acid–diol interactions in aqueous media based on 19F NMR spectroscopy with fluorinated boronic acid probes is described.
Collapse
Affiliation(s)
- L. Iannazzo
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - E. Benedetti
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - M. Catala
- UMR 8015 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- Faculté des Sciences Pharmaceutiques et Biologiques
- 75006 Paris
| | - M. Etheve-Quelquejeu
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| | - C. Tisné
- UMR 8015 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- Faculté des Sciences Pharmaceutiques et Biologiques
- 75006 Paris
| | - L. Micouin
- UMR 8601 CNRS
- Université Paris Descartes
- Sorbonne Paris Cité
- UFR Biomédicale
- 75006 Paris
| |
Collapse
|
46
|
Zhao C, Devany M, Greenbaum NL. Measurement of chemical exchange between RNA conformers by 19F NMR. Biochem Biophys Res Commun 2014; 453:692-5. [PMID: 25301553 DOI: 10.1016/j.bbrc.2014.09.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 09/18/2014] [Indexed: 01/03/2023]
Abstract
Many noncoding RNA molecules adopt alternative secondary and tertiary conformations that are critical for their roles in gene expression. Although many of these rearrangements are mediated by other biomolecular components, it is important to evaluate the equilibrium relationship of the conformers. To measure the spontaneous interconversion in a bi-stable RNA stem loop sequence into which a single (19)F-uridine label was incorporated, a (19)F-(19)F EXSY experiment was employed. The kinetic exchange rate measured from EXSY experiments for this system was 37.3±2.8s(-1). The advantage of this approach is that exchange kinetics can be monitored in any RNA sequence into which a single (19)F nucleotide is incorporated by commercial synthesis. This method is therefore suitable for application to biologically significant systems in which dynamic conformational rearrangement is important for function and may therefore facilitate studies of RNA structure-function relationships.
Collapse
Affiliation(s)
- Caijie Zhao
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Matthew Devany
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States
| | - Nancy L Greenbaum
- Department of Chemistry and Biochemistry, Hunter College of The City University of New York, New York, NY, United States.
| |
Collapse
|
47
|
Kruspe S, Hahn U. An aptamer intrinsically comprising 5-fluoro-2'-deoxyuridine for targeted chemotherapy. Angew Chem Int Ed Engl 2014; 53:10541-4. [PMID: 25145319 DOI: 10.1002/anie.201405778] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Indexed: 12/20/2022]
Abstract
An aptamer specifically binding the interleukin-6 receptor and intrinsically comprising multiple units of the nucleoside analogue 5-fluoro-2'-deoxyuridine can exert a cytostatic effect direcly on certain cells presenting the receptor. Thus the modified aptamer fulfils the requirements for active drug targeting in an unprecedented manner. It can easily be synthesized in a single enzymatic step and it binds to a cell surface receptor that is conveyed into the lysosome. Upon degradation of the aptamer by intracellular nucleases the active drug is released within the targeted cells exclusively. In this way the aptamer acts as a prodrug meeting two major prerequisites of a drug delivery system: specific cell targeting and the controlled release of the drug triggered by an endogenous stimulus.
Collapse
Affiliation(s)
- Sven Kruspe
- Institut für Biochemie und Molekularbiologie, Universität Hamburg, Martin-Luther-King Platz 6, 20146 Hamburg (Germany)
| | | |
Collapse
|
48
|
Kruspe S, Hahn U. Ein intrinsisch 5-Fluor-2′-desoxyuridin beinhaltendes Aptamer für die gezielte Chemotherapie. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201405778] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
49
|
Košutić M, Jud L, Da Veiga C, Frener M, Fauster K, Kreutz C, Ennifar E, Micura R. Surprising base pairing and structural properties of 2'-trifluoromethylthio-modified ribonucleic acids. J Am Chem Soc 2014; 136:6656-63. [PMID: 24766131 PMCID: PMC4021565 DOI: 10.1021/ja5005637] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
The chemical synthesis of ribonucleic
acids (RNA) with novel chemical
modifications is largely driven by the motivation to identify eligible
functional probes for the various applications in life sciences. To
this end, we have a strong focus on the development of novel fluorinated
RNA derivatives that are powerful in NMR spectroscopic analysis of
RNA folding and RNA ligand interactions. Here, we report on the synthesis
of 2′-SCF3 pyrimidine nucleoside containing oligoribonucleotides
and the comprehensive investigation of their structure and base pairing
properties. While this modification has a modest impact on thermodynamic
stability when it resides in single-stranded regions, it was found
to be destabilizing to a surprisingly high extent when located in
double helical regions. Our NMR spectroscopic investigations on short
single-stranded RNA revealed a strong preference for C2′-endo
conformation of the 2′-SCF3 ribose unit. Together
with a recent computational study (L. Li, J. W. Szostak, J.
Am. Chem. Soc. 2014, 136, 2858–2865)
that estimated the extent of destabilization caused by a single C2′-endo
nucleotide within a native RNA duplex to amount to 6 kcal mol−1 because of disruption of the planar base pair structure,
these findings support the notion that the intrinsic preference for
C2′-endo conformation of 2′-SCF3 nucleosides
is most likely responsible for the pronounced destabilization of double
helices. Importantly, we were able to crystallize 2′-SCF3 modified RNAs and solved their X-ray structures at atomic
resolution. Interestingly, the 2′-SCF3 containing
nucleosides that were engaged in distinct mismatch arrangements, but
also in a standard Watson–Crick base pair, adopted the same
C3′-endo ribose conformations as observed in the structure
of the unmodified RNA. Likely, strong crystal packing interactions
account for this observation. In all structures, the fluorine atoms
made surprisingly close contacts to the oxygen atoms of the corresponding
pyrimidine nucleobase (O2), and the 2′-SCF3 moieties
participated in defined water-bridged hydrogen-bonding networks in
the minor groove. All these features allow a rationalization of the
structural determinants of the 2′-SCF3 nucleoside
modification and correlate them to base pairing properties.
Collapse
Affiliation(s)
- Marija Košutić
- Institute of Organic Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck , 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhao C, Anklin C, Greenbaum NL. Use of 19F NMR Methods to Probe Conformational Heterogeneity and Dynamics of Exchange in Functional RNA Molecules. Methods Enzymol 2014; 549:267-85. [DOI: 10.1016/b978-0-12-801122-5.00012-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|