1
|
Burgstaller SM, Auer KE, Rülicke T. A simple method for repeated in vivo sperm collection from laboratory mice. J Assist Reprod Genet 2024; 41:2537-2546. [PMID: 39017771 PMCID: PMC11405545 DOI: 10.1007/s10815-024-03201-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
PURPOSE Mouse spermatozoa for archiving laboratory mice or for in vitro fertilization (IVF) are routinely obtained from the cauda epididymis of adult males sacrificed for this purpose. To avoid the death of the donor, we tested whether a precisely timed interruption of the mating act could be used for repeated sperm collection from laboratory mice. METHODS Sperm donors (B6D2F1) were mated with a receptive female, and mating behavior was observed. The stud was separated from the female 1-2 s after the onset of the ejaculatory shudder. The ejected copulatory plug with the yellowish viscous ejaculate was carefully removed from the penile cup. RESULTS A total of 80 ejaculates were successfully obtained from 100 ejaculations. The latency to first mount was 1.1 ± 1.1 min (mean ± SD) and to ejaculation 8.1 ± 4.7 min. The average number of mounts to ejaculation was 10.5 ± 5.8, and the mean number of spermatozoa per collected ejaculate was 1.86 ± 1.05 × 106. An average fertilization rate of 76% was observed after IVF. CONCLUSIONS Separating the stud from the female just before ejaculation is feasible, easy to learn, and requires no special equipment. The sperm count of collected ejaculates is lower than natural ejaculations, but higher than previous in vivo sperm collection methods achieved. We recommend this simple sperm collection method in mice, especially when the donor cannot be sacrificed and/or repeated sperm collection from the same animal is required for experimental purposes.
Collapse
Affiliation(s)
- Sophie M Burgstaller
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin E Auer
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Thomas Rülicke
- Department of Biomedical Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria.
| |
Collapse
|
2
|
Liang Y, Luo H, Lin Y, Gao F. Recent advances in the characterization of essential genes and development of a database of essential genes. IMETA 2024; 3:e157. [PMID: 38868518 PMCID: PMC10989110 DOI: 10.1002/imt2.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 06/14/2024]
Abstract
Over the past few decades, there has been a significant interest in the study of essential genes, which are crucial for the survival of an organism under specific environmental conditions and thus have practical applications in the fields of synthetic biology and medicine. An increasing amount of experimental data on essential genes has been obtained with the continuous development of technological methods. Meanwhile, various computational prediction methods, related databases and web servers have emerged accordingly. To facilitate the study of essential genes, we have established a database of essential genes (DEG), which has become popular with continuous updates to facilitate essential gene feature analysis and prediction, drug and vaccine development, as well as artificial genome design and construction. In this article, we summarized the studies of essential genes, overviewed the relevant databases, and discussed their practical applications. Furthermore, we provided an overview of the main applications of DEG and conducted comprehensive analyses based on its latest version. However, it should be noted that the essential gene is a dynamic concept instead of a binary one, which presents both opportunities and challenges for their future development.
Collapse
Affiliation(s)
| | - Hao Luo
- Department of PhysicsTianjin UniversityTianjinChina
| | - Yan Lin
- Department of PhysicsTianjin UniversityTianjinChina
| | - Feng Gao
- Department of PhysicsTianjin UniversityTianjinChina
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education)Tianjin UniversityTianjinChina
- SynBio Research PlatformCollaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina
| |
Collapse
|
3
|
Mashiko D, Tokoro M, Yao T, Yamagata K. Intraperitoneal administration of mouse kisspeptin-10 to mice during estrus stage induces pseudopregnancy. Genes Cells 2023; 28:906-914. [PMID: 37886801 DOI: 10.1111/gtc.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023]
Abstract
A simple method for producing pseudopregnant mice supports pup production. In this study, pregnant ICR were obtained mice without mating with vasectomized mice via administration of mouse Kisspeptin-10 (mKp-10) and transferring blastocysts to the uterus. Blastocyst transfer after mKp-10 administration to mice with gapping and reddish pink vagina resulted in 65.2% (15/23) pregnancies, and 39.1% (34/87) of the transferred blastocysts showed full-term growth. Vaginal smears were observed for accurate estrus cycle determination, and subsequent administration of mKp10 to mice during the estrus stage and blastocyst transfer resulted in 95.2% (20/21) pregnancies and 50.7% (104/205) birth rates. Regarding 2-cell transfer after administration of mKp-10, 100% (8/8) of the mice became pregnant, and 45.0% (36/80) of the embryos were born. Administration of mKp-10 to mice during the estrus stage is a convenient way to generate pseudopregnant mice.
Collapse
Affiliation(s)
- Daisuke Mashiko
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| | - Mikiko Tokoro
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Japan
| | - Tatsuma Yao
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., Osaka, Japan
| | - Kazuo Yamagata
- Graduate School of Biology-Oriented Science and Technology, Kindai University, Wakayama, Japan
| |
Collapse
|
4
|
Huang X, Henck J, Qiu C, Sreenivasan VKA, Balachandran S, Amarie OV, Hrabě de Angelis M, Behncke RY, Chan WL, Despang A, Dickel DE, Duran M, Feuchtinger A, Fuchs H, Gailus-Durner V, Haag N, Hägerling R, Hansmeier N, Hennig F, Marshall C, Rajderkar S, Ringel A, Robson M, Saunders LM, da Silva-Buttkus P, Spielmann N, Srivatsan SR, Ulferts S, Wittler L, Zhu Y, Kalscheuer VM, Ibrahim DM, Kurth I, Kornak U, Visel A, Pennacchio LA, Beier DR, Trapnell C, Cao J, Shendure J, Spielmann M. Single-cell, whole-embryo phenotyping of mammalian developmental disorders. Nature 2023; 623:772-781. [PMID: 37968388 PMCID: PMC10665194 DOI: 10.1038/s41586-023-06548-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/16/2023] [Indexed: 11/17/2023]
Abstract
Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.
Collapse
Affiliation(s)
- Xingfan Huang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA, USA
| | - Jana Henck
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Varun K A Sreenivasan
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany
| | - Saranya Balachandran
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany
| | - Oana V Amarie
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Rose Yinghan Behncke
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Wing-Lee Chan
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Alexandra Despang
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Diane E Dickel
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Annette Feuchtinger
- Core Facility Pathology & Tissue Analytics, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Natja Haag
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Rene Hägerling
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Nils Hansmeier
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | | | - Cooper Marshall
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | | | - Alessa Ringel
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
| | - Michael Robson
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Nadine Spielmann
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sascha Ulferts
- Institute of Medical Genetics and Human Genetics of the Charité, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Lars Wittler
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Yiwen Zhu
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | | | - Daniel M Ibrahim
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BCRT, Berlin, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Uwe Kornak
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Axel Visel
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - David R Beier
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Junyue Cao
- Laboratory of Single-Cell Genomics and Population Dynamics, The Rockefeller University, New York, NY, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Malte Spielmann
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck & Kiel University, Lübeck, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Lübeck/Kiel, Lübeck, Germany.
| |
Collapse
|
5
|
Abstract
Viral transduction of the mouse trabecular meshwork using a variety of transgenes associated with glaucoma generates an inducible and reproducible method for generating ocular hypertension due to increased aqueous humor outflow resistance of the conventional outflow pathway. Both adenovirus serotype 5 (Ad5) and lentiviruses have selective tropism for the mouse trabecular meshwork with intraocular injections. Accurate intraocular pressures are easily measured using a rebound tonometer, and aqueous humor outflow facilities can be measured in anesthetized live mice.
Collapse
Affiliation(s)
- J Cameron Millar
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Yogapriya Sundaresan
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Gulab S Zode
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
- Department of Ophthalmology, Gaven Herbert Eye Institute, UC Irvine, Irvine, CA, USA
| | - Abbot F Clark
- Department of Pharmacology & Neuroscience, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
6
|
Hansen J, von Melchner H, Wurst W. Mutant non-coding RNA resource in mouse embryonic stem cells. Dis Model Mech 2021; 14:14/2/dmm047803. [PMID: 33729986 PMCID: PMC7875499 DOI: 10.1242/dmm.047803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
Gene trapping is a high-throughput approach that has been used to introduce insertional mutations into the genome of mouse embryonic stem (ES) cells. It is performed with generic gene trap vectors that simultaneously mutate and report the expression of the endogenous gene at the site of insertion and provide a DNA sequence tag for the rapid identification of the disrupted gene. Large-scale international efforts assembled a gene trap library of 566,554 ES cell lines with single gene trap integrations distributed throughout the genome. Here, we re-investigated this unique library and identified mutations in 2202 non-coding RNA (ncRNA) genes, in addition to mutations in 12,078 distinct protein-coding genes. Moreover, we found certain types of gene trap vectors preferentially integrating into genes expressing specific long non-coding RNA (lncRNA) biotypes. Together with all other gene-trapped ES cell lines, lncRNA gene-trapped ES cell lines are readily available for functional in vitro and in vivo studies.
Collapse
Affiliation(s)
- Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Harald von Melchner
- Department of Molecular Hematology, University Hospital Frankfurt, Goethe University, D-60590 Frankfurt am Main, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany .,Technische Universität München-Weihenstephan, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Feodor-Lynen-Str. 17, D-81377 Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen-Str. 17, D-81377 München, Germany
| |
Collapse
|
7
|
Abstract
Ubiquitin C-terminal Hydrolase L1 (UCHL1) is a deubiquitinating enzyme that was originally identified in neurons. Our recent study showed that UCHL1 was expressed in C2C12 myoblast cells and mouse skeletal muscle. Here we report that in mouse skeletal muscle, UCHL1 is primarily expressed in oxidative muscle fibers. Skeletal muscle specific gene knockout (smKO) of UCHL1 in mice reduced oxidative activity in skeletal muscle measured by SDH staining. The in situ muscle contraction test revealed that gastrocnemius muscle from UCHL1 smKO mice was more prone to fatigue in response to the repetitive stimulation. This data suggests that UCHL1 plays a role in maintenance of muscle oxidative metabolism. Moreover, UCHL1 smKO caused a significant reduction in key proteins that are involved in mitochondrial oxidative phosphorylation in soleus muscles, suggesting that UCHL1 may be involved in regulation of mitochondrial content and function. Immunostaining showed the co-localization of UCHL1 and mitochondrial marker VDAC in skeletal muscle. Mitochondrial fractionation assay revealed that, although UCHL1 was primarily present in the cytosolic fraction, a low level of UCHL1 protein was present in mitochondrial fraction. The level of phosphorylation of AMPKα, a master regulator of mitochondrial biogenesis, were unchanged in UCHL1 smKO muscle. On the other hand, immunoprecipitation from soleus muscle sample indicated the interaction between UCHL1 and HSP60, a chaperon protein that is involved in mitochondrial protein transport. There was a trend of downregulation of HSP60 in UCHL1 smKO muscle. Overall, our data suggests UCHL1 is a novel regulator of mitochondrial function and oxidative activity in skeletal muscle.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW We summarize recent evidence on the shared genetics within and outside the musculoskeletal system (mostly related to bone density and osteoporosis). RECENT FINDINGS Osteoporosis is determined by an interplay between multiple genetic and environmental factors. Significant progress has been made regarding its genetic background revealing a number of robustly validated loci and respective pathways. However, pleiotropic factors affecting bone and other tissues are not well understood. The analytical methods proposed to test for potential associations between genetic variants and multiple phenotypes can be applied to bone-related data. A number of recent genetic studies have shown evidence of pleiotropy between bone density and other different phenotypes (traits, conditions, or diseases), within and outside the musculoskeletal system. Power benefits of combining correlated phenotypes, as well as unbiased discovery, make these studies promising. Studies in humans are supported by evidence from animal models. Drug development and repurposing should benefit from the pleiotropic approach. We believe that future studies should take into account shared genetics between the bone and related traits.
Collapse
Affiliation(s)
- M A Christou
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | - E E Ntzani
- Clinical and Molecular Epidemiology Unit, Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece
- Center for Research Synthesis in Health, Department of Health Services, Policy and Practice, School of Public Health, Brown University, Providence, RI, USA
| | - D Karasik
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA.
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel.
| |
Collapse
|
9
|
UCHL1 regulates muscle fibers and mTORC1 activity in skeletal muscle. Life Sci 2019; 233:116699. [PMID: 31356902 DOI: 10.1016/j.lfs.2019.116699] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/25/2023]
Abstract
AIMS Skeletal muscle wasting is associated with many chronic diseases. Effective prevention and treatment of muscle wasting remain as a challenging task due to incomplete understanding of mechanisms by which muscle mass is maintained and regulated. This study investigated the functional role of Ubiquitin C-terminal hydrolase L1 (UCHL1) in skeletal muscle. MAIN METHODS Mice with skeletal muscle specific gene knockout of UCHL1 and C2C12 myoblast cells with UCHL1 knockdown were used. Muscle fiber types and size were measured using tissue or cell staining. The mammalian target of rapamycin complex 1 (mTORC1) and mTORC2 activities were assessed with the phosphorylation of their downstream targets. KEY FINDINGS In mouse skeletal muscle, UCHL1 was primarily expressed in slow twitch muscle fibers. Mice with skeletal muscle specific knockout (skmKO) of UCHL1 exhibited enlarged muscle fiber sizes in slow twitch soleus but not fast twitch extensor digitorum longus (EDL) muscle. Meanwhile, UCHL1 skmKO enhanced mTORC1 activity and reduced mTORC2 activity in soleus but not in EDL. Consistently, in C2C12 cells, UCHL1 knockdown increased the myotube size, enhanced mTORC1 activity, and reduced mTORC2 activities as compared with control cells. UCHL1 knockdown did not change the major proteins of mTOR complex but decreased the protein turnover of PRAS40, an inhibitory factor of mTORC1. SIGNIFICANCE These data revealed a novel function of UCHL1 in regulation of mTORC1 activity and skeletal muscle growth in slow twitch skeletal muscle. Given the upregulation of UCHL1 in denervation and spinal muscle atrophy, our finding advances understanding of regulators that are involved in muscle wasting.
Collapse
|
10
|
Abstract
Cell-type-specific gene targeting with the Cre/loxP system has become an indispensable technique in experimental neuroscience, particularly for the study of late-born glial cells that make myelin. A plethora of conditional mutants and Cre-expressing mouse lines is now available to the research community that allows laboratories to readily engage in in vivo analyses of oligodendrocytes and their precursor cells. This chapter summarizes concepts and strategies in targeting myelinating glial cells in mice for mutagenesis or imaging, and provides an overview of the most important Cre driver lines successfully used in this rapidly growing field.
Collapse
Affiliation(s)
- Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
11
|
Abstract
The study of gene function in normal human physiology and pathophysiology is complicated by countless factors such as genetic diversity (~98 million SNPs identified in the human genome as of June 2015), environmental exposure, epigenetic imprinting, maternal/in utero exposure, diet, exercise, age, sex, socioeconomic factors, and many other variables. Inbred mouse lines have allowed researchers to control for many of the variables that define human diversity but complicate the study of the human genome, gene/protein function, cellular and molecular pathways, and countless other genetic diseases. Furthermore, genetically modified mouse models enable us to generate and study mice whose genomes differ by as little as a single point mutation while controlling for non-genomic variables. This allows researchers to elucidate the quintessential function of a gene, which will further not only our scientific understanding, but provide key insight into human health and disease. Recent advances in CRISPR/Cas9 genome editing have revolutionized scientific protocols for introducing mutations into the mammalian genome. The ensuing chapter provides an overview of CRISPR/Cas9 genome editing in murine embryonic stem cells for the generation of genetically modified mouse models.
Collapse
|
12
|
Fisher CL, Marks H, Cho LTY, Andrews R, Wormald S, Carroll T, Iyer V, Tate P, Rosen B, Stunnenberg HG, Fisher AG, Skarnes WC. An efficient method for generation of bi-allelic null mutant mouse embryonic stem cells and its application for investigating epigenetic modifiers. Nucleic Acids Res 2017; 45:e174. [PMID: 28981838 PMCID: PMC5716182 DOI: 10.1093/nar/gkx811] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/25/2017] [Accepted: 09/04/2017] [Indexed: 11/18/2022] Open
Abstract
Mouse embryonic stem (ES) cells are a popular model system to study biological processes, though uncovering recessive phenotypes requires inactivating both alleles. Building upon resources from the International Knockout Mouse Consortium (IKMC), we developed a targeting vector for second allele inactivation in conditional-ready IKMC 'knockout-first' ES cell lines. We applied our technology to several epigenetic regulators, recovering bi-allelic targeted clones with a high efficiency of 60% and used Flp recombinase to restore expression in two null cell lines to demonstrate how our system confirms causality through mutant phenotype reversion. We designed our strategy to select against re-targeting the 'knockout-first' allele and identify essential genes in ES cells, including the histone methyltransferase Setdb1. For confirmation, we exploited the flexibility of our system, enabling tamoxifen inducible conditional gene ablation while controlling for genetic background and tamoxifen effects. Setdb1 ablated ES cells exhibit severe growth inhibition, which is not rescued by exogenous Nanog expression or culturing in naive pluripotency '2i' media, suggesting that the self-renewal defect is mediated through pluripotency network independent pathways. Our strategy to generate null mutant mouse ES cells is applicable to thousands of genes and repurposes existing IKMC Intermediate Vectors.
Collapse
Affiliation(s)
- Cynthia L. Fisher
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hendrik Marks
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Lily Ting-yin Cho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Robert Andrews
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
- Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Sam Wormald
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Thomas Carroll
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vivek Iyer
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Peri Tate
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Barry Rosen
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Hendrik G. Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, 6525 GA, Nijmegen, The Netherlands
| | - Amanda G. Fisher
- MRC London Institute of Medical Sciences and Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - William C. Skarnes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| |
Collapse
|
13
|
An siRNA-based screen in C2C12 myoblasts identifies novel genes involved in myogenic differentiation. Exp Cell Res 2017; 359:145-153. [DOI: 10.1016/j.yexcr.2017.07.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 07/16/2017] [Accepted: 07/31/2017] [Indexed: 11/19/2022]
|
14
|
Kaloff C, Anastassiadis K, Ayadi A, Baldock R, Beig J, Birling MC, Bradley A, Brown S, Bürger A, Bushell W, Chiani F, Collins FS, Doe B, Eppig JT, Finnel RH, Fletcher C, Flicek P, Fray M, Friedel RH, Gambadoro A, Gates H, Hansen J, Herault Y, Hicks GG, Hörlein A, Hrabé de Angelis M, Iyer V, de Jong PJ, Koscielny G, Kühn R, Liu P, Lloyd KC, Lopez RG, Marschall S, Martínez S, McKerlie C, Meehan T, von Melchner H, Moore M, Murray SA, Nagy A, Nutter L, Pavlovic G, Pombero A, Prosser H, Ramirez-Solis R, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Skarnes WC, Schick J, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Smedley D, Simpson EM, Stewart AF, Teboul L, Tocchini Valentini GP, Valenzuela D, West A, Wurst W. Genome Wide Conditional Mouse Knockout Resources. DRUG DISCOVERY TODAY. DISEASE MODELS 2017; 20:3-12. [PMID: 39132094 PMCID: PMC11315453 DOI: 10.1016/j.ddmod.2017.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The International Knockout Mouse Consortium (IKMC) developed high throughput gene trapping and gene targeting pipelines that produced mostly conditional mutations of more than 18,500 genes in C57BL/6N mouse embryonic stem (ES) cells which have been archived and are freely available to the research community as a frozen resource. From this unprecedented resource more than 6,000 mutant mouse strains have been produced by the IKMC and mostly the International Mouse Phenotyping Consortium (IMPC). In addition, a cre-driver resource was established including 250 inducible cre-driver mouse strains in a C57BL/6 background. Complementing the cre-driver resource, a collection of comprising 27 cre-driver rAAVs has also been produced. The resources can be easily accessed at the IKMC/IMPC web portal (www.mousephenotype.org). The IKMC/IMPC resource is a standardized reference library of mouse models with defined genetic backgrounds that enables the analysis of gene-disease associations in mice of different genetic makeup and should therefore have a major impact on biomedical research.
Collapse
Affiliation(s)
- C Kaloff
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - K Anastassiadis
- Biotechnology Center (BIOTEC) of the Technische Universität Dresden, 01307 Dresden, Germany
| | - A Ayadi
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - R Baldock
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, College of Medicine and Veterinary Medicine, Edinburgh, Scotland EH4 2XU, UK
| | - J Beig
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M-C Birling
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - A Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - S Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - A Bürger
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - W Bushell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - F Chiani
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - F S Collins
- Office of the Director, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - B Doe
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - J T Eppig
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - R H Finnel
- The Texas A&M Institute for Genomic Medicine, College Station, Texas, 77843-4485 USA; University of Texas at Austin, Austin, Texas, 78712, USA
| | - C Fletcher
- National Institutes of Health, Bethesda, Maryland, 20205, USA
| | - P Flicek
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - M Fray
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - R H Friedel
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - A Gambadoro
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - H Gates
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - J Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - Y Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - G G Hicks
- University of Manitoba, Manitoba Institute of Cell Biology, Winnipeg, MB, R3EOV9, Canada
| | - A Hörlein
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - V Iyer
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - P J de Jong
- Children's Hospital Oakland Research Institute, CHORI, Oakland, CA, 94609, USA
| | - G Koscielny
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - R Kühn
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - P Liu
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - K C Lloyd
- Mouse Biology Program, School of Veterinary Medicine, University of California, Davis, California 95616, USA
| | - R G Lopez
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - S Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - S Martínez
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - C McKerlie
- The Centre for Phenogenomics and Translation Medicine, The Hospital for Sick Children, Toronto, CANADA
| | - T Meehan
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
| | - H von Melchner
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - M Moore
- IMPC, San Anselmo, California, US
| | - S A Murray
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - A Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, ON, M5G1X5, Canada
| | - Lmj Nutter
- The Centre for Phenogenomics and Translation Medicine, The Hospital for Sick Children, Toronto, CANADA
| | - G Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - A Pombero
- Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante
| | - H Prosser
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - R Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - M Ringwald
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - B Rosen
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - N Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - J Rossant
- Research Institute, The Hospital for Sick Children, SickKids Foundation, Toronto, ON, M5G2L3, Canada
| | - P Ruiz Noppinger
- Department of Vertebrate Genomics, Charité, 10115 Berlin, Germany
| | - E Ryder
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - W C Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - J Schick
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - F Schnütgen
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - P Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB23EG, UK
| | - C Seisenberger
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
| | - M Selloum
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), CNRS, INSERM, University of Strasbourg, 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
| | - D Smedley
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB101ST, UK
- Clinical Pharmacology, Queen Mary, University of London, Gower Street, London WC1E 6BT, UK
| | - E M Simpson
- Centre for Molecular Medicine and Therapeutics at the BC Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - A F Stewart
- Biotechnology Center (BIOTEC) of the Technische Universität Dresden, 01307 Dresden, Germany
| | - L Teboul
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX110RD, UK
| | - G P Tocchini Valentini
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, I-00015 Rome, Italy
| | - D Valenzuela
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, New York, 10591, USA
| | - A West
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB101HH, UK
| | - W Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum Muenchen, D-85764 Neuherberg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München - Feodor-Lynen-Str. 17, 81377 München Germany
- Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany
- Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| |
Collapse
|
15
|
Meehan TF, Conte N, West DB, Jacobsen JO, Mason J, Warren J, Chen CK, Tudose I, Relac M, Matthews P, Karp N, Santos L, Fiegel T, Ring N, Westerberg H, Greenaway S, Sneddon D, Morgan H, Codner GF, Stewart ME, Brown J, Horner N, Haendel M, Washington N, Mungall CJ, Reynolds CL, Gallegos J, Gailus-Durner V, Sorg T, Pavlovic G, Bower LR, Moore M, Morse I, Gao X, Tocchini-Valentini GP, Obata Y, Cho SY, Seong JK, Seavitt J, Beaudet AL, Dickinson ME, Herault Y, Wurst W, de Angelis MH, Lloyd KK, Flenniken AM, Nutter LMJ, Newbigging S, McKerlie C, Justice MJ, Murray SA, Svenson KL, Braun RE, White JK, Bradley A, Flicek P, Wells S, Skarnes WC, Adams DJ, Parkinson H, Mallon AM, Brown SD, Smedley D. Disease model discovery from 3,328 gene knockouts by The International Mouse Phenotyping Consortium. Nat Genet 2017; 49:1231-1238. [PMID: 28650483 PMCID: PMC5546242 DOI: 10.1038/ng.3901] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/25/2017] [Indexed: 12/12/2022]
Abstract
Although next-generation sequencing has revolutionized the ability to associate variants with human diseases, diagnostic rates and development of new therapies are still limited by a lack of knowledge of the functions and pathobiological mechanisms of most genes. To address this challenge, the International Mouse Phenotyping Consortium is creating a genome- and phenome-wide catalog of gene function by characterizing new knockout-mouse strains across diverse biological systems through a broad set of standardized phenotyping tests. All mice will be readily available to the biomedical community. Analyzing the first 3,328 genes identified models for 360 diseases, including the first models, to our knowledge, for type C Bernard-Soulier, Bardet-Biedl-5 and Gordon Holmes syndromes. 90% of our phenotype annotations were novel, providing functional evidence for 1,092 genes and candidates in genetically uncharacterized diseases including arrhythmogenic right ventricular dysplasia 3. Finally, we describe our role in variant functional validation with The 100,000 Genomes Project and others.
Collapse
Affiliation(s)
- Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Nathalie Conte
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - David B. West
- Children’s Hospital Oakland Research Institute, Oakland, California 94609, USA
| | - Julius O. Jacobsen
- William Harvey Research Institute, Queen Mary University of London, London, E1 4NS, UK
| | - Jeremy Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Jonathan Warren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Chao-Kung Chen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ilinca Tudose
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Mike Relac
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Peter Matthews
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Natasha Karp
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Luis Santos
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Tanja Fiegel
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Natalie Ring
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Henrik Westerberg
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Simon Greenaway
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Duncan Sneddon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Hugh Morgan
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Gemma F Codner
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Michelle E Stewart
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - James Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Neil Horner
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | | | - Melissa Haendel
- Department of Medical Informatics and Clinical Epidemiology and OHSU Library, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Nicole Washington
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Christopher J. Mungall
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Corey L Reynolds
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Juan Gallegos
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Valerie Gailus-Durner
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
| | - Tania Sorg
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Guillaume Pavlovic
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Lynette R Bower
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Mark Moore
- IMPC, San Anselmo, California 94960, USA
| | - Iva Morse
- Charles River Laboratories, Wilmington, Massachusetts 01887, USA
| | - Xiang Gao
- SKL of Pharmaceutical Biotechnology and Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing 210061, China
| | - Glauco P Tocchini-Valentini
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Institute of Cell Biology and Neurobiology, Monterotondo Scalo I-00015, Italy
| | - Yuichi Obata
- RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Soo Young Cho
- Korea Mouse Phenotyping Center, 08826, Republic of Korea
- National Cancer Center, Goyang, Gyeonggi, 10408, Republic of Korea
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, 08826, Republic of Korea
- Research Institute for Veterinary Science, Seoul National University, Republic of Korea
| | - John Seavitt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Arthur L. Beaudet
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Mary E. Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yann Herault
- CELPHEDIA, PHENOMIN, Institut Clinique de la Souris (ICS), 1 rue Laurent Fries, F-67404 Illkirch-Graffenstaden, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
| | - Martin Hrabe de Angelis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Experimental Genetics, Neuherberg 85764, Germany
| | - K.C. Kent Lloyd
- Mouse Biology Program, University of California, Davis, California 95618, USA
| | - Ann M Flenniken
- The Centre for Phenogenomics, Toronto, Ontario M5T 3H7, Canada
| | | | | | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, Ontario M5T 3H7, Canada
| | - Monica J. Justice
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Ontario M5T 3H7, Canada
| | | | | | | | - Jacqueline K. White
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sara Wells
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - William C. Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David J. Adams
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ann-Marie Mallon
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Steve D.M. Brown
- Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK
| | - Damian Smedley
- William Harvey Research Institute, Queen Mary University of London, London, E1 4NS, UK
| |
Collapse
|
16
|
Oji A, Noda T, Fujihara Y, Miyata H, Kim YJ, Muto M, Nozawa K, Matsumura T, Isotani A, Ikawa M. CRISPR/Cas9 mediated genome editing in ES cells and its application for chimeric analysis in mice. Sci Rep 2016; 6:31666. [PMID: 27530713 PMCID: PMC4987700 DOI: 10.1038/srep31666] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/21/2016] [Indexed: 12/30/2022] Open
Abstract
Targeted gene disrupted mice can be efficiently generated by expressing a single guide RNA (sgRNA)/CAS9 complex in the zygote. However, the limited success of complicated genome editing, such as large deletions, point mutations, and knockins, remains to be improved. Further, the mosaicism in founder generations complicates the genotypic and phenotypic analyses in these animals. Here we show that large deletions with two sgRNAs as well as dsDNA-mediated point mutations are efficient in mouse embryonic stem cells (ESCs). The dsDNA-mediated gene knockins are also feasible in ESCs. Finally, we generated chimeric mice with biallelic mutant ESCs for a lethal gene, Dnajb13, and analyzed their phenotypes. Not only was the lethal phenotype of hydrocephalus suppressed, but we also found that Dnajb13 is required for sperm cilia formation. The combination of biallelic genome editing in ESCs and subsequent chimeric analysis provides a useful tool for rapid gene function analysis in the whole organism.
Collapse
Affiliation(s)
- Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871 Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 1020083, Japan
| | - Taichi Noda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 1020083, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Haruhiko Miyata
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Yeon Joo Kim
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
| | - Masanaga Muto
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871 Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 1020083, Japan
| | - Kaori Nozawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Tokyo 1020083, Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
| | - Takafumi Matsumura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871 Japan
| | - Ayako Isotani
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 5650871 Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 5650871 Japan
- Graduate School of Medicine, Osaka University, Suita, Osaka 5650871 Japan
- Immunology Frontier Research Center, Osaka University, Suita, Osaka 5650871 Japan
| |
Collapse
|
17
|
Bishop KA, Harrington A, Kouranova E, Weinstein EJ, Rosen CJ, Cui X, Liaw L. CRISPR/Cas9-Mediated Insertion of loxP Sites in the Mouse Dock7 Gene Provides an Effective Alternative to Use of Targeted Embryonic Stem Cells. G3 (BETHESDA, MD.) 2016; 6:2051-61. [PMID: 27175020 PMCID: PMC4938658 DOI: 10.1534/g3.116.030601] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/05/2016] [Indexed: 12/16/2022]
Abstract
Targeted gene mutation in the mouse is a primary strategy to understand gene function and relation to phenotype. The Knockout Mouse Project (KOMP) had an initial goal to develop a public resource of mouse embryonic stem (ES) cell clones that carry null mutations in all genes. Indeed, many useful novel mouse models have been generated from publically accessible targeted mouse ES cell lines. However, there are limitations, including incorrect targeting or cassette structure, and difficulties with germline transmission of the allele from chimeric mice. In our experience, using a small sample of targeted ES cell clones, we were successful ∼50% of the time in generating germline transmission of a correctly targeted allele. With the advent of CRISPR/Cas9 as a mouse genome modification tool, we assessed the efficiency of creating a conditional targeted allele in one gene, dedicator of cytokinesis 7 (Dock7), for which we were unsuccessful in generating a null allele using a KOMP targeted ES cell clone. The strategy was to insert loxP sites to flank either exons 3 and 4, or exons 3 through 7. By coinjecting Cas9 mRNA, validated sgRNAs, and oligonucleotide donors into fertilized eggs from C57BL/6J mice, we obtained a variety of alleles, including mice homozygous for the null alleles mediated by nonhomologous end joining, alleles with one of the two desired loxP sites, and correctly targeted alleles with both loxP sites. We also found frequent mutations in the inserted loxP sequence, which is partly attributable to the heterogeneity in the original oligonucleotide preparation.
Collapse
Affiliation(s)
- Kathleen A Bishop
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Anne Harrington
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | | | | | - Clifford J Rosen
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| | - Xiaoxia Cui
- Horizon Discovery, St. Louis, Missouri 63146
| | - Lucy Liaw
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine 04074
| |
Collapse
|
18
|
Abstract
Osteoporosis is characterized by low bone mass and an increased risk of fracture. Genetic factors, environmental factors and gene-environment interactions all contribute to a person's lifetime risk of developing an osteoporotic fracture. This Review summarizes key advances in understanding of the genetics of bone traits and their role in osteoporosis. Candidate-gene approaches dominated this field 20 years ago, but clinical and preclinical genetic studies published in the past 5 years generally utilize more-sophisticated and better-powered genome-wide association studies (GWAS). High-throughput DNA sequencing, large genomic databases and improved methods of data analysis have greatly accelerated the gene-discovery process. Linkage analyses of single-gene traits that segregate in families with extreme phenotypes have led to the elucidation of critical pathways controlling bone mass. For example, components of the Wnt-β-catenin signalling pathway have been validated (in both GWAS and functional studies) as contributing to various bone phenotypes. These notable advances in gene discovery suggest that the next decade will witness cataloguing of the hundreds of genes that influence bone mass and osteoporosis, which in turn will provide a roadmap for the development of new drugs that target diseases of low bone mass, including osteoporosis.
Collapse
|
19
|
Efficient Generation of Mice with Consistent Transgene Expression by FEEST. Sci Rep 2015; 5:16284. [PMID: 26573149 PMCID: PMC4648098 DOI: 10.1038/srep16284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/07/2015] [Indexed: 12/21/2022] Open
Abstract
Transgenic mouse models are widely used in biomedical research; however, current techniques for producing transgenic mice are limited due to the unpredictable nature of transgene expression. Here, we report a novel, highly efficient technique for the generation of transgenic mice with single-copy integration of the transgene and guaranteed expression of the gene-of-interest (GOI). We refer to this technique as functionally enriched ES cell transgenics, or FEEST. ES cells harboring an inducible Cre gene enabled the efficient selection of transgenic ES cell clones using hygromycin before Cre-mediated recombination. Expression of the GOI was confirmed by assaying for the GFP after Cre recombination. As a proof-of-principle, we produced a transgenic mouse line containing Cre-activatable tTA (cl-tTA6). This tTA mouse model was able to induce tumor formation when crossed with a transgenic mouse line containing a doxycycline-inducible oncogene. We also showed that the cl-tTA6 mouse is a valuable tool for faithfully recapitulating the clinical course of tumor development. We showed that FEEST can be easily adapted for other genes by preparing a transgenic mouse model of conditionally activatable EGFR L858R. Thus, FEEST is a technique with the potential to generate transgenic mouse models at a genome-wide scale.
Collapse
|
20
|
Rosen B, Schick J, Wurst W. Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mamm Genome 2015; 26:456-66. [PMID: 26340938 DOI: 10.1007/s00335-015-9598-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/13/2015] [Indexed: 11/29/2022]
Abstract
The International Knockout Mouse Consortium (IKMC; http://www.mousephenotype.org ) has generated mutations in almost every protein-coding mouse gene and is completing the companion Cre driver resource to expand tissue-specific conditional mutagenesis. Accordingly, the IKMC has carried out high-throughput gene trapping and targeting producing conditional mutations in murine embryonic stem cells in more than 18,500 genes, from which at least 4900 mutant mouse lines have been established to date. This resource is currently being upgraded with more powerful tools, such as visualization and manipulation cassettes that can be easily introduced into IKMC alleles for multifaceted functional studies. In addition, we discuss how existing IKMC products can be used in combination with CRISPR technology to accelerate genome engineering projects. All information and materials from this extraordinary biological resource together with coordinated phenotyping efforts can be retrieved at www.mousephenotype.org . The comprehensive IKMC knockout resource in combination with an extensive set of modular gene cassettes will continue to enhance functional gene annotation in the future and solidify its impact on biomedical research.
Collapse
Affiliation(s)
- B Rosen
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - J Schick
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - W Wurst
- German Research Center for Environmental Health, Institute of Developmental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany. .,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany. .,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München Feodor-Lynen Strasse 17, 81377, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Adolf-Butenandt-Institut, Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 17, 81377, Munich, Germany.
| |
Collapse
|
21
|
A mouse informatics platform for phenotypic and translational discovery. Mamm Genome 2015; 26:413-21. [PMID: 26314589 PMCID: PMC4602054 DOI: 10.1007/s00335-015-9599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/17/2015] [Indexed: 01/05/2023]
Abstract
The International Mouse Phenotyping Consortium (IMPC) is providing the world's first functional catalogue of a mammalian genome by characterising a knockout mouse strain for every gene. A robust and highly structured informatics platform has been developed to systematically collate, analyse and disseminate the data produced by the IMPC. As the first phase of the project, in which 5000 new knockout strains are being broadly phenotyped, nears completion, the informatics platform is extending and adapting to support the increasing volume and complexity of the data produced as well as addressing a large volume of users and emerging user groups. An intuitive interface helps researchers explore IMPC data by giving overviews and the ability to find and visualise data that support a phenotype assertion. Dedicated disease pages allow researchers to find new mouse models of human diseases, and novel viewers provide high-resolution images of embryonic and adult dysmorphologies. With each monthly release, the informatics platform will continue to evolve to support the increased data volume and to maintain its position as the primary route of access to IMPC data and as an invaluable resource for clinical and non-clinical researchers.
Collapse
|
22
|
Collaborative Cross and Diversity Outbred data resources in the Mouse Phenome Database. Mamm Genome 2015; 26:511-20. [PMID: 26286858 PMCID: PMC4602074 DOI: 10.1007/s00335-015-9595-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 08/10/2015] [Indexed: 10/27/2022]
Abstract
The Mouse Phenome Database was originally conceived as a platform for the integration of phenotype data collected on a defined collection of 40 inbred mouse strains--the "phenome panel." This model provided an impetus for community data sharing, and integration was readily achieved through the reproducible genotypes of the phenome panel strains. Advances in the development of mouse populations lead to an expanded role of the Mouse Phenome Database to encompass new strain panels and inbred strain crosses. The recent introduction of the Collaborative Cross and Diversity Outbred mice, which share an extensive pool of genetic variation from eight founder inbred strains, presents new opportunities and challenges for community data resources. A wide variety of molecular and clinical phenotypes are being collected across genotypes, tissues, ages, environmental exposures, interventions, and treatments. The Mouse Phenome Database provides a framework for retrieval, integration, analysis, and display of these data, enabling them to be evaluated in the context of existing data from standard inbred strains. Primary data in the Mouse Phenome Database are supported by extensive metadata on protocols and procedures. These are centrally curated to ensure accuracy and reproducibility and to provide data in consistent formats. The Mouse Phenome Database represents an established and growing community data resource for mouse phenotype data and encourages submissions from new mouse resources, enabling investigators to integrate existing data into their studies of the phenotypic consequences of genetic variation.
Collapse
|
23
|
PhenStat: A Tool Kit for Standardized Analysis of High Throughput Phenotypic Data. PLoS One 2015; 10:e0131274. [PMID: 26147094 PMCID: PMC4493137 DOI: 10.1371/journal.pone.0131274] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/06/2015] [Indexed: 12/31/2022] Open
Abstract
The lack of reproducibility with animal phenotyping experiments is a growing concern among the biomedical community. One contributing factor is the inadequate description of statistical analysis methods that prevents researchers from replicating results even when the original data are provided. Here we present PhenStat – a freely available R package that provides a variety of statistical methods for the identification of phenotypic associations. The methods have been developed for high throughput phenotyping pipelines implemented across various experimental designs with an emphasis on managing temporal variation. PhenStat is targeted to two user groups: small-scale users who wish to interact and test data from large resources and large-scale users who require an automated statistical analysis pipeline. The software provides guidance to the user for selecting appropriate analysis methods based on the dataset and is designed to allow for additions and modifications as needed. The package was tested on mouse and rat data and is used by the International Mouse Phenotyping Consortium (IMPC). By providing raw data and the version of PhenStat used, resources like the IMPC give users the ability to replicate and explore results within their own computing environment.
Collapse
|
24
|
Gene Perturbation Atlas (GPA): a single-gene perturbation repository for characterizing functional mechanisms of coding and non-coding genes. Sci Rep 2015; 5:10889. [PMID: 26039571 PMCID: PMC4650632 DOI: 10.1038/srep10889] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/22/2015] [Indexed: 01/14/2023] Open
Abstract
Genome-wide transcriptome profiling after gene perturbation is a powerful means of elucidating gene functional mechanisms in diverse contexts. The comprehensive collection and analysis of the resulting transcriptome profiles would help to systematically characterize context-dependent gene functional mechanisms and conduct experiments in biomedical research. To this end, we collected and curated over 3000 transcriptome profiles in human and mouse from diverse gene perturbation experiments, which involved 1585 different perturbed genes (microRNAs, lncRNAs and protein-coding genes) across 1170 different cell lines/tissues. For each profile, we identified differential genes and their associated functions and pathways, constructed perturbation networks, predicted transcription regulation and cancer/drug associations, and assessed cooperative perturbed genes. Based on these transcriptome analyses, the Gene Perturbation Atlas (GPA) can be used to detect (i) novel or cell-specific functions and pathways affected by perturbed genes, (ii) protein interactions and regulatory cascades affected by perturbed genes, and (iii) perturbed gene-mediated cooperative effects. The GPA is a user-friendly database to support the rapid searching and exploration of gene perturbations. Particularly, we visualized functional effects of perturbed genes from multiple perspectives. In summary, the GPA is a valuable resource for characterizing gene functions and regulatory mechanisms after single-gene perturbations. The GPA is freely accessible at http://biocc.hrbmu.edu.cn/GPA/.
Collapse
|
25
|
Abstract
Sleep is a complex behavior both in its manifestation and regulation, that is common to almost all animal species studied thus far. Sleep is not a unitary behavior and has many different aspects, each of which is tightly regulated and influenced by both genetic and environmental factors. Despite its essential role for performance, health, and well-being, genetic mechanisms underlying this complex behavior remain poorly understood. One important aspect of sleep concerns its homeostatic regulation, which ensures that levels of sleep need are kept within a range still allowing optimal functioning during wakefulness. Uncovering the genetic pathways underlying the homeostatic aspect of sleep is of particular importance because it could lead to insights concerning sleep's still elusive function and is therefore a main focus of current sleep research. In this chapter, we first give a definition of sleep homeostasis and describe the molecular genetics techniques that are used to examine it. We then provide a conceptual discussion on the problem of assessing a sleep homeostatic phenotype in various animal models. We finally highlight some of the studies with a focus on clock genes and adenosine signaling molecules.
Collapse
Affiliation(s)
- Géraldine M Mang
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne-Dorigny, Switzerland,
| | | |
Collapse
|
26
|
Bogue MA, Peters LL, Paigen B, Korstanje R, Yuan R, Ackert-Bicknell C, Grubb SC, Churchill GA, Chesler EJ. Accessing Data Resources in the Mouse Phenome Database for Genetic Analysis of Murine Life Span and Health Span. J Gerontol A Biol Sci Med Sci 2014; 71:170-7. [PMID: 25533306 PMCID: PMC4707687 DOI: 10.1093/gerona/glu223] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 10/28/2014] [Indexed: 01/18/2023] Open
Abstract
Understanding the source of genetic variation in aging and using this variation to define the molecular mechanisms of healthy aging require deep and broad quantification of a host of physiological, morphological, and behavioral endpoints. The murine model is a powerful system in which to understand the relations across age-related phenotypes and to identify research models with variation in life span and health span. The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging has performed broad characterization of aging in genetically diverse laboratory mice and has placed these data, along with data from several other major aging initiatives, into the interactive Mouse Phenome Database. The data may be accessed and analyzed by researchers interested in finding mouse models for specific aging processes, age-related health and disease states, and for genetic analysis of aging variation and trait covariation. We expect that by placing these data in the hands of the aging community that there will be (a) accelerated genetic analyses of aging processes, (b) discovery of genetic loci regulating life span, (c) identification of compelling correlations between life span and susceptibility for age-related disorders, and (d) discovery of concordant genomic loci influencing life span and aging phenotypes between mouse and humans.
Collapse
Affiliation(s)
- Molly A Bogue
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine.
| | - Luanne L Peters
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Beverly Paigen
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Ron Korstanje
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Rong Yuan
- Southern Illinois University School of Medicine, Springfield
| | - Cheryl Ackert-Bicknell
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Stephen C Grubb
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Gary A Churchill
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| | - Elissa J Chesler
- The Jackson Laboratory Nathan Shock Center of Excellence in the Basic Biology of Aging, The Jackson Laboratory, Bar Harbor, Maine
| |
Collapse
|
27
|
Early repositioning through compound set enrichment analysis: a knowledge-recycling strategy. Future Med Chem 2014; 6:563-75. [PMID: 24649958 DOI: 10.4155/fmc.14.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite famous serendipitous drug repositioning success stories, systematic projects have not yet delivered the expected results. However, repositioning technologies are gaining ground in different phases of routine drug development, together with new adaptive strategies. We demonstrate the power of the compound information pool, the ever-growing heterogeneous information repertoire of approved drugs and candidates as an invaluable catalyzer in this transition. Systematic, computational utilization of this information pool for candidates in early phases is an open research problem; we propose a novel application of the enrichment analysis statistical framework for fusion of this information pool, specifically for the prediction of indications. Pharmaceutical consequences are formulated for a systematic and continuous knowledge recycling strategy, utilizing this information pool throughout the drug-discovery pipeline.
Collapse
|
28
|
Karp NA, Speak AO, White JK, Adams DJ, Hrabé de Angelis M, Hérault Y, Mott RF. Impact of temporal variation on design and analysis of mouse knockout phenotyping studies. PLoS One 2014; 9:e111239. [PMID: 25343444 PMCID: PMC4208881 DOI: 10.1371/journal.pone.0111239] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
A significant challenge facing high-throughput phenotyping of in-vivo knockout mice is ensuring phenotype calls are robust and reliable. Central to this problem is selecting an appropriate statistical analysis that models both the experimental design (the workflow and the way control mice are selected for comparison with knockout animals) and the sources of variation. Recently we proposed a mixed model suitable for small batch-oriented studies, where controls are not phenotyped concurrently with mutants. Here we evaluate this method both for its sensitivity to detect phenotypic effects and to control false positives, across a range of workflows used at mouse phenotyping centers. We found the sensitivity and control of false positives depend on the workflow. We show that the phenotypes in control mice fluctuate unexpectedly between batches and this can cause the false positive rate of phenotype calls to be inflated when only a small number of batches are tested, when the effect of knockout becomes confounded with temporal fluctuations in control mice. This effect was observed in both behavioural and physiological assays. Based on this analysis, we recommend two approaches (workflow and accompanying control strategy) and associated analyses, which would be robust, for use in high-throughput phenotyping pipelines. Our results show the importance in modelling all sources of variability in high-throughput phenotyping studies.
Collapse
Affiliation(s)
- Natasha A. Karp
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
- * E-mail:
| | - Anneliese O. Speak
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, United Kingdom
| | - Martin Hrabé de Angelis
- German Mouse Clinic - Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technische Universität München, Freising-Weihenstephan, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Yann Hérault
- Institut Clinique de la Souris, Université de Strasbourg, Illkirch, France
| | - Richard F. Mott
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| |
Collapse
|
29
|
In amnio MRI of mouse embryos. PLoS One 2014; 9:e109143. [PMID: 25330230 PMCID: PMC4198080 DOI: 10.1371/journal.pone.0109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 09/01/2014] [Indexed: 11/19/2022] Open
Abstract
Mouse embryo imaging is conventionally carried out on ex vivo embryos excised from the amniotic sac, omitting vital structures and abnormalities external to the body. Here, we present an in amnio MR imaging methodology in which the mouse embryo is retained in the amniotic sac and demonstrate how important embryonic structures can be visualised in 3D with high spatial resolution (100 µm/px). To illustrate the utility of in amnio imaging, we subsequently apply the technique to examine abnormal mouse embryos with abdominal wall defects. Mouse embryos at E17.5 were imaged and compared, including three normal phenotype embryos, an abnormal embryo with a clear exomphalos defect, and one with a suspected gastroschisis phenotype. Embryos were excised from the mother ensuring the amnion remained intact and stereo microscopy was performed. Embryos were next embedded in agarose for 3D, high resolution MRI on a 9.4T scanner. Identification of the abnormal embryo phenotypes was not possible using stereo microscopy or conventional ex vivo MRI. Using in amnio MRI, we determined that the abnormal embryos had an exomphalos phenotype with varying severities. In amnio MRI is ideally suited to investigate the complex relationship between embryo and amnion, together with screening for other abnormalities located outside of the mouse embryo, providing a valuable complement to histology and existing imaging methods available to the phenotyping community.
Collapse
|
30
|
Mishra A, Bubela T. Legal agreements and the governance of research commons: lessons from materials sharing in mouse genomics. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2014; 18:254-73. [PMID: 24552652 PMCID: PMC3976585 DOI: 10.1089/omi.2013.0158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Omics research infrastructure such as databases and bio-repositories requires effective governance to support pre-competitive research. Governance includes the use of legal agreements, such as Material Transfer Agreements (MTAs). We analyze the use of such agreements in the mouse research commons, including by two large-scale resource development projects: the International Knockout Mouse Consortium (IKMC) and International Mouse Phenotyping Consortium (IMPC). We combine an analysis of legal agreements and semi-structured interviews with 87 members of the mouse model research community to examine legal agreements in four contexts: (1) between researchers; (2) deposit into repositories; (3) distribution by repositories; and (4) exchanges between repositories, especially those that are consortium members of the IKMC and IMPC. We conclude that legal agreements for the deposit and distribution of research reagents should be kept as simple and standard as possible, especially when minimal enforcement capacity and resources exist. Simple and standardized legal agreements reduce transactional bottlenecks and facilitate the creation of a vibrant and sustainable research commons, supported by repositories and databases.
Collapse
Affiliation(s)
- Amrita Mishra
- School of Public Health, University of Alberta , Edmonton, Alberta, Canada
| | | |
Collapse
|
31
|
Ishii T. Genetic manipulation to analyze pheromone responses: knockouts of multiple receptor genes. Methods Mol Biol 2014; 1068:133-54. [PMID: 24014359 DOI: 10.1007/978-1-62703-619-1_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Gene targeting in the mouse is an essential technique to study gene function in vivo. Multigene families encoding vomeronasal receptor (VR) type 1 and type 2 consist of ~300 intact genes, which are clustered at multiple loci in the mouse genome. To understand the function of VRs and neurons expressing a particular VR in vivo, individual endogenous receptor genes can be manipulated by conventional gene targeting to create loss-of-function mutations or to visualize neurons and their axons expressing the VR. Multiple receptor genes in a cluster can also be deleted simultaneously by chromosome engineering, allowing analysis of function of a particular VR subfamily. Here, we describe protocols for conventional gene targeting and chromosome engineering for deleting a large genomic region in mouse embryonic stem (ES) cells.
Collapse
Affiliation(s)
- Tomohiro Ishii
- Department of Cell Biology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
32
|
Nguyen C, Baten A, Morahan G. Comparison of sequence variants in transcriptomic control regions across 17 mouse genomes. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2014; 2014:bau020. [PMID: 24647628 PMCID: PMC3958616 DOI: 10.1093/database/bau020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The laboratory mouse is the most widely used mammalian model organism in biomedical research, so a thorough annotation of functional variation in the mouse genome would be of significant value. In this study, we compared sequence variation in a comprehensive list of functional elements (e.g. promoters, enhancers and CTCF binding sites) across 17 inbred mouse strains. Sequences were derived for ∼300 000 functional elements experimentally identified by the mouse ENCODE project as regulating gene expression in 19 different tissue sources. We aligned sequences for each predicted cis-regulatory element to genomes of 17 mouse strains. This yielded a database comprising ∼5 million aligned sequences, allowing interrogation of sequence variation of functional elements for each of the 19 tissues/cell types in commonly used mouse strains. We also developed an online tool to visualize the genome around each predicted cis-regulatory element in each tissue context and which allows efficient comparison of variation between any two sets of strains. This will be particularly useful in the context of the Collaborative Cross (CC), which was conceived as a powerful new systems genetics resource to accelerate gene discovery. Comprising a large number of inbred strains derived from eight genetically diverse founders, the CC offers rapid mapping and identification of genes that mediate complex traits. We show that, among the 17 sequenced strains, the set of CC founder strains captures the most variability in the ENCODE elements, further emphasizing the value of this resource. Database URL:www.sysgen.org/ecco
Collapse
Affiliation(s)
- Cao Nguyen
- Centre for Diabetes Research, The Western Australian Institute for Medical Research, Western Australia, Australia, Centre of Medical Research, University of Western Australia, Perth, Western Australia, Australia and Southern Cross Plant Science, Southern Cross University, Lismore, New South Wales, Australia
| | | | | |
Collapse
|
33
|
Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SDM, Flicek P, Skarnes WC, Mallon AM, Parkinson H. The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 2014; 42:D802-9. [PMID: 24194600 PMCID: PMC3964955 DOI: 10.1093/nar/gkt977] [Citation(s) in RCA: 209] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 09/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022] Open
Abstract
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated 'data wranglers' work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases.
Collapse
Affiliation(s)
- Gautier Koscielny
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Gagarine Yaikhom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Vivek Iyer
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Terrence F. Meehan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Hugh Morgan
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Julian Atienza-Herrero
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Andrew Blake
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Chao-Kung Chen
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Richard Easty
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Armida Di Fenza
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Tanja Fiegel
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Mark Grifiths
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Alan Horne
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Natasha A. Karp
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Natalja Kurbatova
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jeremy C. Mason
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Peter Matthews
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Darren J. Oakley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Asfand Qazi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jack Regnart
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ahmad Retha
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Luis A. Santos
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J. Sneddon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jonathan Warren
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Henrik Westerberg
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Robert J. Wilson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - David G. Melvin
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Damian Smedley
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Steve D. M. Brown
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - William C. Skarnes
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ann-Marie Mallon
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Helen Parkinson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK, Medical Research Council Harwell (Mammalian Genetics Unit and Mary Lyon Centre), Harwell, Oxfordshire OX11 0RD, UK and Mouse Informatics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
34
|
Abstract
The Mouse Phenome Database (MPD; phenome.jax.org) was launched in 2001 as the data coordination center for the international Mouse Phenome Project. MPD integrates quantitative phenotype, gene expression and genotype data into a common annotated framework to facilitate query and analysis. MPD contains >3500 phenotype measurements or traits relevant to human health, including cancer, aging, cardiovascular disorders, obesity, infectious disease susceptibility, blood disorders, neurosensory disorders, drug addiction and toxicity. Since our 2012 NAR report, we have added >70 new data sets, including data from Collaborative Cross lines and Diversity Outbred mice. During this time we have completely revamped our homepage, improved search and navigational aspects of the MPD application, developed several web-enabled data analysis and visualization tools, annotated phenotype data to public ontologies, developed an ontology browser and released new single nucleotide polymorphism query functionality with much higher density coverage than before. Here, we summarize recent data acquisitions and describe our latest improvements.
Collapse
Affiliation(s)
- Stephen C Grubb
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609 USA
| | | | | |
Collapse
|
35
|
Luo H, Lin Y, Gao F, Zhang CT, Zhang R. DEG 10, an update of the database of essential genes that includes both protein-coding genes and noncoding genomic elements. Nucleic Acids Res 2013; 42:D574-80. [PMID: 24243843 PMCID: PMC3965060 DOI: 10.1093/nar/gkt1131] [Citation(s) in RCA: 388] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The combination of high-density transposon-mediated mutagenesis and high-throughput sequencing has led to significant advancements in research on essential genes, resulting in a dramatic increase in the number of identified prokaryotic essential genes under diverse conditions and a revised essential-gene concept that includes all essential genomic elements, rather than focusing on protein-coding genes only. DEG 10, a new release of the Database of Essential Genes (available at http://www.essentialgene.org), has been developed to accommodate these quantitative and qualitative advancements. In addition to increasing the number of bacterial and archaeal essential genes determined by genome-wide gene essentiality screens, DEG 10 also harbors essential noncoding RNAs, promoters, regulatory sequences and replication origins. These essential genomic elements are determined not only in vitro, but also in vivo, under diverse conditions including those for survival, pathogenesis and antibiotic resistance. We have developed customizable BLAST tools that allow users to perform species- and experiment-specific BLAST searches for a single gene, a list of genes, annotated or unannotated genomes. Therefore, DEG 10 includes essential genomic elements under different conditions in three domains of life, with customizable BLAST tools.
Collapse
Affiliation(s)
- Hao Luo
- Department of Physics, Tianjin University, Tianjin 300072, People's Republic of China and Center for Molecular Medicine and Genetics, School of Medicine, Wayne State University, Detroit 48201, USA
| | | | | | | | | |
Collapse
|
36
|
Smith CM, Finger JH, Hayamizu TF, McCright IJ, Xu J, Berghout J, Campbell J, Corbani LE, Forthofer KL, Frost PJ, Miers D, Shaw DR, Stone KR, Eppig JT, Kadin JA, Richardson JE, Ringwald M. The mouse Gene Expression Database (GXD): 2014 update. Nucleic Acids Res 2013; 42:D818-24. [PMID: 24163257 PMCID: PMC3965015 DOI: 10.1093/nar/gkt954] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Gene Expression Database (GXD; http://www.informatics.jax.org/expression.shtml) is an extensive and well-curated community resource of mouse developmental expression information. GXD collects different types of expression data from studies of wild-type and mutant mice, covering all developmental stages and including data from RNA in situ hybridization, immunohistochemistry, RT-PCR, northern blot and western blot experiments. The data are acquired from the scientific literature and from researchers, including groups doing large-scale expression studies. Integration with the other data in Mouse Genome Informatics (MGI) and interconnections with other databases places GXD's gene expression information in the larger biological and biomedical context. Since the last report, the utility of GXD has been greatly enhanced by the addition of new data and by the implementation of more powerful and versatile search and display features. Web interface enhancements include the capability to search for expression data for genes associated with specific phenotypes and/or human diseases; new, more interactive data summaries; easy downloading of data; direct searches of expression images via associated metadata; and new displays that combine image data and their associated annotations. At present, GXD includes >1.4 million expression results and 250,000 images that are accessible to our search tools.
Collapse
|
37
|
Ryder E, Gleeson D, Sethi D, Vyas S, Miklejewska E, Dalvi P, Habib B, Cook R, Hardy M, Jhaveri K, Bottomley J, Wardle-Jones H, Bussell JN, Houghton R, Salisbury J, Skarnes WC, Ramirez-Solis R. Molecular characterization of mutant mouse strains generated from the EUCOMM/KOMP-CSD ES cell resource. Mamm Genome 2013; 24:286-94. [PMID: 23912999 PMCID: PMC3745610 DOI: 10.1007/s00335-013-9467-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/27/2013] [Indexed: 01/03/2023]
Abstract
The Sanger Mouse Genetics Project generates knockout mice strains using the EUCOMM/KOMP-CSD embryonic stem (ES) cell collection and characterizes the consequences of the mutations using a high-throughput primary phenotyping screen. Upon achieving germline transmission, new strains are subject to a panel of quality control (QC) PCR- and qPCR-based assays to confirm the correct targeting, cassette structure, and the presence of the 3' LoxP site (required for the potential conditionality of the allele). We report that over 86 % of the 731 strains studied showed the correct targeting and cassette structure, of which 97 % retained the 3' LoxP site. We discuss the characteristics of the lines that failed QC and postulate that the majority of these may be due to mixed ES cell populations which were not detectable with the original screening techniques employed when creating the ES cell resource.
Collapse
Affiliation(s)
- Edward Ryder
- The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bult CJ. Bioinformatics resources for behavior studies in the laboratory mouse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013. [PMID: 23195312 DOI: 10.1016/b978-0-12-398323-7.00004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
This chapter focuses on two database resources that can facilitate the use of the laboratory mouse for genetic and genomic studies of behavior. The Mouse Phenome Database (MPD) contains baseline measurement data for a wide variety of phenotypes in inbred strains of mice and commonly used reference populations. MPD also supports tools for the visualization and statistical analysis of phenotype data. The Mouse Genome Informatics (MGI) database is a comprehensive resource for genetics and genomics of the laboratory mouse. MGI collects and integrates information about function, phenotype, disease associations, and developmental gene expression for all genome features in the laboratory mouse.
Collapse
|
39
|
Rasouly HM, Lu W. Lower urinary tract development and disease. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2013; 5:307-42. [PMID: 23408557 PMCID: PMC3627353 DOI: 10.1002/wsbm.1212] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Congenital anomalies of the lower urinary tract (CALUT) are a family of birth defects of the ureter, the bladder, and the urethra. CALUT includes ureteral anomaliesc such as congenital abnormalities of the ureteropelvic junction (UPJ) and ureterovesical junction (UVJ), and birth defects of the bladder and the urethra such as bladder-exstrophy-epispadias complex (BEEC), prune belly syndrome (PBS), and posterior urethral valves (PUVs). CALUT is one of the most common birth defects and is often associated with antenatal hydronephrosis, vesicoureteral reflux (VUR), urinary tract obstruction, urinary tract infections (UTI), chronic kidney disease, and renal failure in children. Here, we discuss the current genetic and molecular knowledge about lower urinary tract development and genetic basis of CALUT in both human and mouse models. We provide an overview of the developmental processes leading to the formation of the ureter, the bladder, and the urethra, and different genes and signaling pathways controlling these developmental processes. Human genetic disorders that affect the ureter, the bladder and the urethra and associated gene mutations are also presented. As we are entering the postgenomic era of personalized medicine, information in this article may provide useful interpretation for the genetic and genomic test results collected from patients with lower urinary tract birth defects. With evidence-based interpretations, clinicians may provide more effective personalized therapies to patients and genetic counseling for their families.
Collapse
Affiliation(s)
- Hila Milo Rasouly
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| |
Collapse
|
40
|
Kettleborough RNW, Busch-Nentwich EM, Harvey SA, Dooley CM, de Bruijn E, van Eeden F, Sealy I, White RJ, Herd C, Nijman IJ, Fényes F, Mehroke S, Scahill C, Gibbons R, Wali N, Carruthers S, Hall A, Yen J, Cuppen E, Stemple DL. A systematic genome-wide analysis of zebrafish protein-coding gene function. Nature 2013; 496:494-7. [PMID: 23594742 PMCID: PMC3743023 DOI: 10.1038/nature11992] [Citation(s) in RCA: 458] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Accepted: 02/07/2013] [Indexed: 01/11/2023]
Abstract
Since the publication of the human reference genome, the identities of specific genes associated with human diseases are being discovered at a rapid rate. A central problem is that the biological activity of these genes is often unclear. Detailed investigations in model vertebrate organisms, typically mice, have been essential for understanding the activities of many orthologues of these disease-associated genes. Although gene-targeting approaches and phenotype analysis have led to a detailed understanding of nearly 6,000 protein-coding genes, this number falls considerably short of the more than 22,000 mouse protein-coding genes. Similarly, in zebrafish genetics, one-by-one gene studies using positional cloning, insertional mutagenesis, antisense morpholino oligonucleotides, targeted re-sequencing, and zinc finger and TAL endonucleases have made substantial contributions to our understanding of the biological activity of vertebrate genes, but again the number of genes studied falls well short of the more than 26,000 zebrafish protein-coding genes. Importantly, for both mice and zebrafish, none of these strategies are particularly suited to the rapid generation of knockouts in thousands of genes and the assessment of their biological activity. Here we describe an active project that aims to identify and phenotype the disruptive mutations in every zebrafish protein-coding gene, using a well-annotated zebrafish reference genome sequence, high-throughput sequencing and efficient chemical mutagenesis. So far we have identified potentially disruptive mutations in more than 38% of all known zebrafish protein-coding genes. We have developed a multi-allelic phenotyping scheme to efficiently assess the effects of each allele during embryogenesis and have analysed the phenotypic consequences of over 1,000 alleles. All mutant alleles and data are available to the community and our phenotyping scheme is adaptable to phenotypic analysis beyond embryogenesis.
Collapse
Affiliation(s)
- Ross N W Kettleborough
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
de Matos P, Cham JA, Cao H, Alcántara R, Rowland F, Lopez R, Steinbeck C. The Enzyme Portal: a case study in applying user-centred design methods in bioinformatics. BMC Bioinformatics 2013; 14:103. [PMID: 23514033 PMCID: PMC3623738 DOI: 10.1186/1471-2105-14-103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 02/08/2013] [Indexed: 11/29/2022] Open
Abstract
User-centred design (UCD) is a type of user interface design in which the needs and desires of users are taken into account at each stage of the design process for a service or product; often for software applications and websites. Its goal is to facilitate the design of software that is both useful and easy to use. To achieve this, you must characterise users' requirements, design suitable interactions to meet their needs, and test your designs using prototypes and real life scenarios.For bioinformatics, there is little practical information available regarding how to carry out UCD in practice. To address this we describe a complete, multi-stage UCD process used for creating a new bioinformatics resource for integrating enzyme information, called the Enzyme Portal (http://www.ebi.ac.uk/enzymeportal). This freely-available service mines and displays data about proteins with enzymatic activity from public repositories via a single search, and includes biochemical reactions, biological pathways, small molecule chemistry, disease information, 3D protein structures and relevant scientific literature.We employed several UCD techniques, including: persona development, interviews, 'canvas sort' card sorting, user workflows, usability testing and others. Our hope is that this case study will motivate the reader to apply similar UCD approaches to their own software design for bioinformatics. Indeed, we found the benefits included more effective decision-making for design ideas and technologies; enhanced team-working and communication; cost effectiveness; and ultimately a service that more closely meets the needs of our target audience.
Collapse
Affiliation(s)
- Paula de Matos
- EMBL-EBI, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Colledge WH, Doran J, Mei H. Model systems for studying kisspeptin signalling: mice and cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:481-503. [PMID: 23550020 DOI: 10.1007/978-1-4614-6199-9_22] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Kisspeptins are a family of overlapping neuropeptides, encoded by the Kiss1 gene, that are required for activation and maintenance of the mammalian reproductive axis. Kisspeptins act within the hypothalamus to stimulate release of gonadotrophic releasing hormone and activation of the pituitary-gonadal axis. Robust model systems are required to dissect the regulatory mechanisms that control Kiss1 neuronal activity and to examine the molecular consequences of kisspeptin signalling. While studies in normal animals have been important in this, transgenic mice with targeted mutations affecting the kisspeptin signalling pathway have played a significant role in extending our understanding of kisspeptin physiology. Knock-out mice recapitulate the reproductive defects associated with mutations in humans and provide an experimentally tractable model system to interrogate regulatory feedback mechanisms. In addition, transgenic mice with cell-specific expression of modulator proteins such as the CRE recombinase or fluorescent reporter proteins such as GFP allow more sophisticated analyses such as cell or gene ablation or electrophysiological profiling. At a less complex level, immortalized cell lines have been useful for studying the role of kisspeptin in cell migration and metastasis and examining the intracellular signalling events associated with kisspeptin signalling.
Collapse
|
43
|
Abstract
A significant challenge of in-vivo studies is the identification of phenotypes with a method that is robust and reliable. The challenge arises from practical issues that lead to experimental designs which are not ideal. Breeding issues, particularly in the presence of fertility or fecundity problems, frequently lead to data being collected in multiple batches. This problem is acute in high throughput phenotyping programs. In addition, in a high throughput environment operational issues lead to controls not being measured on the same day as knockouts. We highlight how application of traditional methods, such as a Student’s t-Test or a 2-way ANOVA, in these situations give flawed results and should not be used. We explore the use of mixed models using worked examples from Sanger Mouse Genome Project focusing on Dual-Energy X-Ray Absorptiometry data for the analysis of mouse knockout data and compare to a reference range approach. We show that mixed model analysis is more sensitive and less prone to artefacts allowing the discovery of subtle quantitative phenotypes essential for correlating a gene’s function to human disease. We demonstrate how a mixed model approach has the additional advantage of being able to include covariates, such as body weight, to separate effect of genotype from these covariates. This is a particular issue in knockout studies, where body weight is a common phenotype and will enhance the precision of assigning phenotypes and the subsequent selection of lines for secondary phenotyping. The use of mixed models with in-vivo studies has value not only in improving the quality and sensitivity of the data analysis but also ethically as a method suitable for small batches which reduces the breeding burden of a colony. This will reduce the use of animals, increase throughput, and decrease cost whilst improving the quality and depth of knowledge gained.
Collapse
|
44
|
Abstract
The genomes of many species have now been completely sequenced including human and mouse. Great progress has been made in understanding the complex genetics that underlie diabetes and obesity in human populations. One of the current challenges is the functional identification and characterization of the genes within loci that are being mapped. There are many approaches to this problem and this review outlines the valuable role that the mouse can play. We outline the mouse resources that are available to the research community, including knockouts with conditional potential for every gene, and the efforts of the International Mouse Phenotyping Consortium to attach phenotype information to these genes. We also briefly consider the potential of TALEN technology to tailor-make new mouse models of specific mutations discovered in humans. Finally, we consider the recent progress in characterizing the GWAS genes FTO, TCF7L2, CDKAL1, and SLC30A8 in engineered mouse models.
Collapse
Affiliation(s)
- Fiona McMurray
- MRC Harwell, Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | - Lee Moir
- MRC Harwell, Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | - Roger D. Cox
- MRC Harwell, Mammalian Genetics Unit, Medical Research Council, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| |
Collapse
|
45
|
Chaiyachati BH, Kaundal RK, Zhao J, Wu J, Flavell R, Chi T. LoxP-FRT Trap (LOFT): a simple and flexible system for conventional and reversible gene targeting. BMC Biol 2012. [PMID: 23198860 PMCID: PMC3529186 DOI: 10.1186/1741-7007-10-96] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Conditional gene knockout (cKO) mediated by the Cre/LoxP system is indispensable for exploring gene functions in mice. However, a major limitation of this method is that gene KO is not reversible. A number of methods have been developed to overcome this, but each method has its own limitations. Results We describe a simple method we have named LOFT [LoxP-flippase (FLP) recognition target (FRT) Trap], which is capable of reversible cKO and free of the limitations associated with existing techniques. This method involves two alleles of a target gene: a standard floxed allele, and a multi-functional allele bearing an FRT-flanked gene-trap cassette, which inactivates the target gene while reporting its expression with green fluorescent protein (GFP); the trapped allele is thus a null and GFP reporter by default, but is convertible into a wild-type allele. The floxed and trapped alleles can typically be generated using a single construct bearing a gene-trap cassette doubly flanked by LoxP and FRT sites, and can be used independently to achieve conditional and constitutive gene KO, respectively. More importantly, in mice bearing both alleles and also expressing the Cre and FLP recombinases, sequential function of the two enzymes should lead to deletion of the target gene, followed by restoration of its expression, thus achieving reversible cKO. LOFT should be generally applicable to mouse genes, including the growing numbers of genes already floxed; in the latter case, only the trapped alleles need to be generated to confer reversibility to the pre-existing cKO models. LOFT has other applications, including the creation and reversal of hypomorphic mutations. In this study we proved the principle of LOFT in the context of T-cell development, at a hypomorphic allele of Baf57/Smarce1 encoding a subunit of the chromatin-remodeling Brg/Brahma-associated factor (BAF) complex. Interestingly, the FLP used in the current work caused efficient reversal in peripheral T cells but not thymocytes, which is advantageous for studying developmental epigenetic programming of T-cell functions, a fundamental issue in immunology. Conclusions LOFT combines well-established basic genetic methods into a simple and reliable method for reversible gene targeting, with the flexibility of achieving traditional constitutive and conditional KO.
Collapse
Affiliation(s)
- Barbara H Chaiyachati
- Department of Immunobiology, Yale University Medical School, 300 Cedar Street, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
46
|
Schneider VA, Chen HC, Clausen C, Meric PA, Zhou Z, Bouk N, Husain N, Maglott DR, Church DM. Clone DB: an integrated NCBI resource for clone-associated data. Nucleic Acids Res 2012. [PMID: 23193260 PMCID: PMC3531087 DOI: 10.1093/nar/gks1164] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The National Center for Biotechnology Information (NCBI) Clone DB (http://www.ncbi.nlm.nih.gov/clone/) is an integrated resource providing information about and facilitating access to clones, which serve as valuable research reagents in many fields, including genome sequencing and variation analysis. Clone DB represents an expansion and replacement of the former NCBI Clone Registry and has records for genomic and cell-based libraries and clones representing more than 100 different eukaryotic taxa. Records provide details of library construction, associated sequences, map positions and information about resource distribution. Clone DB is indexed in the NCBI Entrez system and can be queried by fields that include organism, clone name, gene name and sequence identifier. Whenever possible, genomic clones are mapped to reference assemblies and their map positions provided in clone records. Clones mapping to specific genomic regions can also be searched for using the NCBI Clone Finder tool, which accepts queries based on sequence coordinates or features such as gene or transcript names. Clone DB makes reports of library, clone and placement data on its FTP site available for download. With Clone DB, users now have available to them a centralized resource that provides them with the tools they will need to make use of these important research reagents.
Collapse
Affiliation(s)
- Valerie A Schneider
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Alcántara R, Onwubiko J, Cao H, Matos PD, Cham JA, Jacobsen J, Holliday GL, Fischer JD, Rahman SA, Jassal B, Goujon M, Rowland F, Velankar S, López R, Overington JP, Kleywegt GJ, Hermjakob H, O'Donovan C, Martín MJ, Thornton JM, Steinbeck C. The EBI enzyme portal. Nucleic Acids Res 2012; 41:D773-80. [PMID: 23175605 PMCID: PMC3531056 DOI: 10.1093/nar/gks1112] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The availability of comprehensive information about enzymes plays an important role in answering questions relevant to interdisciplinary fields such as biochemistry, enzymology, biofuels, bioengineering and drug discovery. At the EMBL European Bioinformatics Institute, we have developed an enzyme portal (http://www.ebi.ac.uk/enzymeportal) to provide this wealth of information on enzymes from multiple in-house resources addressing particular data classes: protein sequence and structure, reactions, pathways and small molecules. The fact that these data reside in separate databases makes information discovery cumbersome. The main goal of the portal is to simplify this process for end users.
Collapse
Affiliation(s)
- Rafael Alcántara
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Genome-wide association studies (GWASs) have transformed the field of human genetics and have led to the discovery of hundreds of genes that are implicated in human disease. The technological advances that drove this revolution are now poised to transform genetic studies in model organisms, including mice. However, the design of GWASs in mouse strains is fundamentally different from the design of human GWASs, creating new challenges and opportunities. This Review gives an overview of the novel study designs for mouse GWASs, which dramatically improve both the statistical power and resolution compared to classical gene-mapping approaches.
Collapse
Affiliation(s)
- Jonathan Flint
- The Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
| | | |
Collapse
|
49
|
Ayadi A, Birling MC, Bottomley J, Bussell J, Fuchs H, Fray M, Gailus-Durner V, Greenaway S, Houghton R, Karp N, Leblanc S, Lengger C, Maier H, Mallon AM, Marschall S, Melvin D, Morgan H, Pavlovic G, Ryder E, Skarnes WC, Selloum M, Ramirez-Solis R, Sorg T, Teboul L, Vasseur L, Walling A, Weaver T, Wells S, White JK, Bradley A, Adams DJ, Steel KP, Hrabě de Angelis M, Brown SD, Herault Y. Mouse large-scale phenotyping initiatives: overview of the European Mouse Disease Clinic (EUMODIC) and of the Wellcome Trust Sanger Institute Mouse Genetics Project. Mamm Genome 2012; 23:600-10. [PMID: 22961258 PMCID: PMC3463797 DOI: 10.1007/s00335-012-9418-y] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/23/2012] [Indexed: 12/17/2022]
Abstract
Two large-scale phenotyping efforts, the European Mouse Disease Clinic (EUMODIC) and the Wellcome Trust Sanger Institute Mouse Genetics Project (SANGER-MGP), started during the late 2000s with the aim to deliver a comprehensive assessment of phenotypes or to screen for robust indicators of diseases in mouse mutants. They both took advantage of available mouse mutant lines but predominantly of the embryonic stem (ES) cells resources derived from the European Conditional Mouse Mutagenesis programme (EUCOMM) and the Knockout Mouse Project (KOMP) to produce and study 799 mouse models that were systematically analysed with a comprehensive set of physiological and behavioural paradigms. They captured more than 400 variables and an additional panel of metadata describing the conditions of the tests. All the data are now available through EuroPhenome database (www.europhenome.org) and the WTSI mouse portal (http://www.sanger.ac.uk/mouseportal/), and the corresponding mouse lines are available through the European Mouse Mutant Archive (EMMA), the International Knockout Mouse Consortium (IKMC), or the Knockout Mouse Project (KOMP) Repository. Overall conclusions from both studies converged, with at least one phenotype scored in at least 80% of the mutant lines. In addition, 57% of the lines were viable, 13% subviable, 30% embryonic lethal, and 7% displayed fertility impairments. These efforts provide an important underpinning for a future global programme that will undertake the complete functional annotation of the mammalian genome in the mouse model.
Collapse
Affiliation(s)
- Abdel Ayadi
- Institut Clinique de la Souris, PHENOMIN, IGBMC/ICS-MCI, CNRS, INSERM, Université de Strasbourg, UMR7104, UMR964, 1 rue Laurent Fries, 67404 Illkirch, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Bradley A, Anastassiadis K, Ayadi A, Battey JF, Bell C, Birling MC, Bottomley J, Brown SD, Bürger A, Bult CJ, Bushell W, Collins FS, Desaintes C, Doe B, Economides A, Eppig JT, Finnell RH, Fletcher C, Fray M, Frendewey D, Friedel RH, Grosveld FG, Hansen J, Hérault Y, Hicks G, Hörlein A, Houghton R, Hrabé de Angelis M, Huylebroeck D, Iyer V, de Jong PJ, Kadin JA, Kaloff C, Kennedy K, Koutsourakis M, Kent Lloyd KC, Marschall S, Mason J, McKerlie C, McLeod MP, von Melchner H, Moore M, Mujica AO, Nagy A, Nefedov M, Nutter LM, Pavlovic G, Peterson JL, Pollock J, Ramirez-Solis R, Rancourt DE, Raspa M, Remacle JE, Ringwald M, Rosen B, Rosenthal N, Rossant J, Ruiz Noppinger P, Ryder E, Schick JZ, Schnütgen F, Schofield P, Seisenberger C, Selloum M, Simpson EM, Skarnes WC, Smedley D, Stanford WL, Francis Stewart A, Stone K, Swan K, Tadepally H, Teboul L, Tocchini-Valentini GP, Valenzuela D, West AP, Yamamura KI, Yoshinaga Y, Wurst W. The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 2012; 23:580-6. [PMID: 22968824 PMCID: PMC3463800 DOI: 10.1007/s00335-012-9422-2] [Citation(s) in RCA: 240] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Accepted: 07/20/2012] [Indexed: 11/16/2022]
Abstract
In 2007, the International Knockout Mouse Consortium (IKMC) made the ambitious promise to generate mutations in virtually every protein-coding gene of the mouse genome in a concerted worldwide action. Now, 5 years later, the IKMC members have developed high-throughput gene trapping and, in particular, gene-targeting pipelines and generated more than 17,400 mutant murine embryonic stem (ES) cell clones and more than 1,700 mutant mouse strains, most of them conditional. A common IKMC web portal (www.knockoutmouse.org) has been established, allowing easy access to this unparalleled biological resource. The IKMC materials considerably enhance functional gene annotation of the mammalian genome and will have a major impact on future biomedical research.
Collapse
Affiliation(s)
- Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | | | - Abdelkader Ayadi
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | - James F. Battey
- National Institute on Deafness and Other Communication Disorders (NIH), Bethesda, MD 20892 USA
| | - Cindy Bell
- Genome Canada, Ottawa, ON K2P 1P1 Canada
| | - Marie-Christine Birling
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | - Joanna Bottomley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Steve D. Brown
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | - Antje Bürger
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | | | - Wendy Bushell
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | | | - Christian Desaintes
- Infectious Diseases and Public Health, European Commission, DG Research & Innovation, 1049 Brussels, Belgium
| | - Brendan Doe
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, 00015 Rome, Italy
| | - Aris Economides
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591 USA
| | | | - Richard H. Finnell
- The Texas A&M Institute for Genomic Medicine, College Station, TX 77843-4485 USA
- University of Texas at Austin, Austin, TX 78712 USA
| | | | - Martin Fray
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | - David Frendewey
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591 USA
| | - Roland H. Friedel
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
- Icahn Medical Institute, The Mount Sinai Hospital, New York, NY 10029 USA
| | - Frank G. Grosveld
- Department of Cell Biology, Center of Biomedical Genetics, Erasmus University Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Jens Hansen
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | - Yann Hérault
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | - Geoffrey Hicks
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, MB R3E OV9 Canada
| | - Andreas Hörlein
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | - Richard Houghton
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | | | - Danny Huylebroeck
- Department of Development and Regeneration, Faculty of Medicine, University of Leuven (KU Leuven), 3000 Leuven, Belgium
| | - Vivek Iyer
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Pieter J. de Jong
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, CA 94609 USA
| | | | - Cornelia Kaloff
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | - Karen Kennedy
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Manousos Koutsourakis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - K. C. Kent Lloyd
- Mouse Biology Program, School of Veterinary Medicine, University of California, Davis, CA 95616 USA
| | - Susan Marschall
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Jeremy Mason
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Colin McKerlie
- Research Institute, The Hospital for Sick Children, SickKids Foundation, Toronto, ON M5G2L3 Canada
| | - Michael P. McLeod
- The Texas A&M Institute for Genomic Medicine, College Station, TX 77843-4485 USA
| | - Harald von Melchner
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - Mark Moore
- National Institutes of Health, Bethesda, MD 20205 USA
| | - Alejandro O. Mujica
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591 USA
| | - Andras Nagy
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Joseph and Wolf Lebovic Health Complex, Toronto, ON M5G 1X5 Canada
| | - Mikhail Nefedov
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, CA 94609 USA
| | - Lauryl M. Nutter
- Research Institute, The Hospital for Sick Children, SickKids Foundation, Toronto, ON M5G2L3 Canada
| | - Guillaume Pavlovic
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | | | - Jonathan Pollock
- Division of Basic Neuroscience and Research, National Institute of Drug Abuse (NIDA), Bethesda, MD 20892-0001 USA
| | - Ramiro Ramirez-Solis
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Derrick E. Rancourt
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Marcello Raspa
- Istituto di Biologia Cellulare, Consiglio Nazionale delle Ricerche (CNR), Monterotondo-Scalo, 00015 Rome, Italy
| | - Jacques E. Remacle
- Infectious Diseases and Public Health, European Commission, DG Research & Innovation, 1049 Brussels, Belgium
| | | | - Barry Rosen
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Nadia Rosenthal
- European Molecular Biology Laboratory (EMBL), Monterotondo, 00015 Rome, Italy
| | - Janet Rossant
- Research Institute, The Hospital for Sick Children, SickKids Foundation, Toronto, ON M5G2L3 Canada
| | - Patricia Ruiz Noppinger
- Centre for Cardiovascular Research, Department of Vertebrate Genomics, Charité, 10115 Berlin, Germany
| | - Ed Ryder
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Joel Zupicich Schick
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | - Frank Schnütgen
- Department of Molecular Haematology, University of Frankfurt Medical School, 60590 Frankfurt am Main, Germany
| | - Paul Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG UK
| | - Claudia Seisenberger
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
| | - Mohammed Selloum
- Institut Clinique de la Souris and Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch Cedex, France
| | - Elizabeth M. Simpson
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics at the Child & Family Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4 Canada
| | - William C. Skarnes
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Damian Smedley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
- European Bioinformatics Institute (EBI), Hinxton, Cambridge, CB10 1ST UK
| | | | - A. Francis Stewart
- Biotechnology Center (BIOTEC) of the Technische Universität Dresden, 01307 Dresden, Germany
| | - Kevin Stone
- The Jackson Laboratory, Bar Harbor, ME 04609 USA
| | - Kate Swan
- Genome Canada, Ottawa, ON K2P 1P1 Canada
| | | | - Lydia Teboul
- Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire, OX11 0RD UK
| | | | - David Valenzuela
- Velocigene Division, Regeneron Pharmaceuticals Inc., Tarrytown, NY 10591 USA
| | - Anthony P. West
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1HH UK
| | - Ken-ichi Yamamura
- Division of Developmental Genetics, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, 860-0811 Japan
| | - Yuko Yoshinaga
- Children’s Hospital Oakland Research Institute (CHORI), Oakland, CA 94609 USA
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Technische Universität München, 85764 Neuherberg, Germany
- Max-Planck-Institute of Psychiatry, 80804 Munich, Germany
- Deutsches Zentrum fuer Neurodegenerative Erkrankungen e.V. (DZNE) Site Munich, 80336 Munich, Germany
| |
Collapse
|