1
|
Sanese P, Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Grossi V, Simone C. Methyltransferases in cancer drug resistance: Unlocking the potential of targeting SMYD3 to sensitize cancer cells. Biochim Biophys Acta Rev Cancer 2024; 1879:189203. [PMID: 39461625 DOI: 10.1016/j.bbcan.2024.189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/27/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Drug resistance is a significant challenge in oncology and is driven by various mechanisms, among which a crucial role is played by enhanced DNA repair. Thus, targeting DNA damage response (DDR) factors with specific inhibitors is emerging as a promising therapeutic strategy. An important process involved in the modulation of DNA repair pathways, and hence in drug resistance, is post-translational modification (PTM). PTMs such as methylation affect protein function and are critical in cancer biology. Methylation is catalyzed by specific enzymes called protein methyltransferases. In recent years, the SET domain-containing N-lysine methyltransferase SMYD3 has emerged as a significant oncogenic driver. It is overexpressed in several tumor types and plays a signal-dependent role in promoting gastrointestinal cancer formation and development. Recent evidence indicates that SMYD3 is involved in the maintenance of cancer genome integrity and contributes to drug resistance in response to genotoxic stress by regulating DDR mechanisms. Several potential SMYD3 interactors implicated in DNA repair, especially in the homologous recombination and non-homologous end-joining pathways, have been identified by in silico analyses and confirmed by experimental validation, showing that SMYD3 promotes DDR protein interactions and enzymatic activity, thereby sustaining cancer cell survival. Targeting SMYD3, in combination with standard or targeted therapy, shows promise in overcoming drug resistance in colorectal, gastric, pancreatic, breast, endometrial, and lung cancer models, supporting the integration of SMYD3 inhibition into cancer treatment regimens. In this review, we describe the role played by SMYD3 in drug resistance and analyze its potential as a molecular target to sensitize cancer cells to treatment.
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS "Saverio de Bellis" Research Hospital, Castellana Grotte (Ba), 70013, Italy; Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, Bari 70124, Italy.
| |
Collapse
|
2
|
Schnee P, Pleiss J, Jeltsch A. Approaching the catalytic mechanism of protein lysine methyltransferases by biochemical and simulation techniques. Crit Rev Biochem Mol Biol 2024; 59:20-68. [PMID: 38449437 DOI: 10.1080/10409238.2024.2318547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/10/2024] [Indexed: 03/08/2024]
Abstract
Protein lysine methyltransferases (PKMTs) transfer up to three methyl groups to the side chains of lysine residues in proteins and fulfill important regulatory functions by controlling protein stability, localization and protein/protein interactions. The methylation reactions are highly regulated, and aberrant methylation of proteins is associated with several types of diseases including neurologic disorders, cardiovascular diseases, and various types of cancer. This review describes novel insights into the catalytic machinery of various PKMTs achieved by the combined application of biochemical experiments and simulation approaches during the last years, focusing on clinically relevant and well-studied enzymes of this group like DOT1L, SMYD1-3, SET7/9, G9a/GLP, SETD2, SUV420H2, NSD1/2, different MLLs and EZH2. Biochemical experiments have unraveled many mechanistic features of PKMTs concerning their substrate and product specificity, processivity and the effects of somatic mutations observed in PKMTs in cancer cells. Structural data additionally provided information about the substrate recognition, enzyme-substrate complex formation, and allowed for simulations of the substrate peptide interaction and mechanism of PKMTs with atomistic resolution by molecular dynamics and hybrid quantum mechanics/molecular mechanics methods. These simulation technologies uncovered important mechanistic details of the PKMT reaction mechanism including the processes responsible for the deprotonation of the target lysine residue, essential conformational changes of the PKMT upon substrate binding, but also rationalized regulatory principles like PKMT autoinhibition. Further developments are discussed that could bring us closer to a mechanistic understanding of catalysis of this important class of enzymes in the near future. The results described here illustrate the power of the investigation of enzyme mechanisms by the combined application of biochemical experiments and simulation technologies.
Collapse
Affiliation(s)
- Philipp Schnee
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Huang YC, Yuan W, Jacob Y. The Role of the TSK/TONSL-H3.1 Pathway in Maintaining Genome Stability in Multicellular Eukaryotes. Int J Mol Sci 2022; 23:9029. [PMID: 36012288 PMCID: PMC9409234 DOI: 10.3390/ijms23169029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Replication-dependent histone H3.1 and replication-independent histone H3.3 are nearly identical proteins in most multicellular eukaryotes. The N-terminal tails of these H3 variants, where the majority of histone post-translational modifications are made, typically differ by only one amino acid. Despite extensive sequence similarity with H3.3, the H3.1 variant has been hypothesized to play unique roles in cells, as it is specifically expressed and inserted into chromatin during DNA replication. However, identifying a function that is unique to H3.1 during replication has remained elusive. In this review, we discuss recent findings regarding the involvement of the H3.1 variant in regulating the TSK/TONSL-mediated resolution of stalled or broken replication forks. Uncovering this new function for the H3.1 variant has been made possible by the identification of the first proteins containing domains that can selectively bind or modify the H3.1 variant. The functional characterization of H3-variant-specific readers and writers reveals another layer of chromatin-based information regulating transcription, DNA replication, and DNA repair.
Collapse
Affiliation(s)
| | | | - Yannick Jacob
- Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, Yale University, 260 Whitney Avenue, New Haven, CT 06511, USA
| |
Collapse
|
5
|
Unique SMYD5 Structure Revealed by AlphaFold Correlates with Its Functional Divergence. Biomolecules 2022; 12:biom12060783. [PMID: 35740908 PMCID: PMC9221539 DOI: 10.3390/biom12060783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/04/2022] Open
Abstract
SMYD5 belongs to a special class of protein lysine methyltransferases with an MYND (Myeloid-Nervy-DEAF1) domain inserted into a SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) domain. Despite recent advances in its functional characterization, the lack of the crystal structure has hindered our understanding of the structure-and-function relationships of this most unique member of the SMYD protein family. Here, we demonstrate the reliability of using AlphaFold structures for understanding the structure and function of SMYD5 by comparing the AlphaFold structures to the known crystal structures of SMYD proteins, using an inter-residue distance maps-based metric. We found that the AlphaFold confidence scores are inversely associated with the refined B-factors and can serve as a structural indicator of conformational flexibility. We also found that the N-terminal sequence of SMYD5, predicted to be a mitochondrial targeting signal, contains a novel non-classical nuclear localization signal. This sequence is structurally flexible and does not have a well-defined conformation, which might facilitate its recognition for SMYD5’s cytonuclear transport. The structure of SMYD5 is unique in many aspects. The “crab”-like structure with a large negatively charged cleft provides a potential binding site for basic molecules such as protamines. The less positively charged MYND domain is associated with the undetectable DNA-binding ability. The most surprising feature is an incomplete target lysine access channel that lacks the evolutionarily conserved tri-aromatic arrangement, being associated with the low H3/H4 catalytic activity. This study expands our understanding of the SMYD protein family from a classical two-lobed structure to a structure of its own kind, being as a fundamental determinant of its functional divergence.
Collapse
|
6
|
Feoli A, Viviano M, Cipriano A, Milite C, Castellano S, Sbardella G. Lysine methyltransferase inhibitors: where we are now. RSC Chem Biol 2022; 3:359-406. [PMID: 35441141 PMCID: PMC8985178 DOI: 10.1039/d1cb00196e] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Protein lysine methyltransferases constitute a large family of epigenetic writers that catalyse the transfer of a methyl group from the cofactor S-adenosyl-l-methionine to histone- and non-histone-specific substrates. Alterations in the expression and activity of these proteins have been linked to the genesis and progress of several diseases, including cancer, neurological disorders, and growing defects, hence they represent interesting targets for new therapeutic approaches. Over the past two decades, the identification of modulators of lysine methyltransferases has increased tremendously, clarifying the role of these proteins in different physio-pathological states. The aim of this review is to furnish an updated outlook about the protein lysine methyltransferases disclosed modulators, reporting their potency, their mechanism of action and their eventual use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alessandra Feoli
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Monica Viviano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Alessandra Cipriano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Ciro Milite
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Sabrina Castellano
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| | - Gianluca Sbardella
- Department of Pharmacy, Epigenetic Med Chem Lab, University of Salerno via Giovanni Paolo II 132 I-84084 Fisciano SA Italy +39-089-96-9602 +39-089-96-9770
| |
Collapse
|
7
|
Lin Z, Ding Q, Li X, Feng Y, He H, Huang C, Zhu Y. Targeting Epigenetic Mechanisms in Vascular Aging. Front Cardiovasc Med 2022; 8:806988. [PMID: 35059451 PMCID: PMC8764463 DOI: 10.3389/fcvm.2021.806988] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
Environment, diseases, lack of exercise, and aged tendency of population have becoming crucial factors that induce vascular aging. Vascular aging is unmodifiable risk factor for diseases like diabetes, hypertension, atherosclerosis, and hyperlipidemia. Effective interventions to combat this vascular function decline is becoming increasingly urgent as the rising hospitalization rate caused by vascular aging-related diseases. Fortunately, recent transformative omics approaches have enabled us to examine vascular aging mechanisms at unprecedented levels and precision, which make our understanding of slowing down or reversing vascular aging become possible. Epigenetic viz. DNA methylation, histone modifications, and non-coding RNA-based mechanisms, is a hallmark of vascular aging, its deregulation leads to aberrant transcription changes in tissues. Epigenetics mechanisms by mediating covalent modifications to DNA and histone proteins, consequently, influence the sensitivity and activities of signaling pathways in cells and tissues. A growing body of evidence supports correlations between epigenetic changes and vascular aging. In this article, we will provide a comprehensive overview of epigenetic changes associated with vascular aging based on the recent findings with a focus on molecular mechanisms of action, strategies to reverse epigenetic changes, and future perspectives.
Collapse
Affiliation(s)
- Zhongxiao Lin
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Xinzhi Li
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Yuliang Feng
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Hao He
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - Chuoji Huang
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
| | - YiZhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine and School of Pharmacy, Macau University of Science and Technology, Macao SAR, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
8
|
The Methyltransferase Smyd1 Mediates LPS-Triggered Up-Regulation of IL-6 in Endothelial Cells. Cells 2021; 10:cells10123515. [PMID: 34944023 PMCID: PMC8700543 DOI: 10.3390/cells10123515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
The lysine methyltransferase Smyd1 with its characteristic catalytic SET-domain is highly enriched in the embryonic heart and skeletal muscles, participating in cardiomyogenesis, sarcomere assembly and chromatin remodeling. Recently, significant Smyd1 levels were discovered in endothelial cells (ECs) that responded to inflammatory cytokines. Based on these biochemical properties, we hypothesized that Smyd1 is involved in inflammation-triggered signaling in ECs and therefore, investigated its role within the LPS-induced signaling cascade. Human endothelial cells (HUVECs and EA.hy926 cells) responded to LPS stimulation with higher intrinsic Smyd1 expression. By transfection with expression vectors containing gene inserts encoding either intact Smyd1, a catalytically inactive Smyd1-mutant or Smyd1-specific siRNAs, we show that Smyd1 contributes to LPS-triggered expression and secretion of IL-6 in EA.hy926 cells. Further molecular analysis revealed this process to be based on two signaling pathways: Smyd1 increased the activity of NF-κB and promoted the trimethylation of lysine-4 of histone-3 (H3K4me3) within the IL-6 promoter, as shown by ChIP-RT-qPCR combined with IL-6-promoter-driven luciferase reporter gene assays. In summary, our experimental analysis revealed that LPS-binding to ECs leads to the up-regulation of Smyd1 expression to transduce the signal for IL-6 up-regulation via activation of the established NF-κB pathway as well as via epigenetic trimethylation of H3K4.
Collapse
|
9
|
Mechanism of the Conformational Change of the Protein Methyltransferase SMYD3: A Molecular Dynamics Simulation Study. Int J Mol Sci 2021; 22:ijms22137185. [PMID: 34281237 PMCID: PMC8267938 DOI: 10.3390/ijms22137185] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/26/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
SMYD3 is a SET-domain-containing methyltransferase that catalyzes the transfer of methyl groups onto lysine residues of substrate proteins. Methylation of MAP3K2 by SMYD3 has been implicated in Ras-driven tumorigenesis, which makes SMYD3 a potential target for cancer therapy. Of all SMYD family proteins, SMYD3 adopt a closed conformation in a crystal structure. Several studies have suggested that the conformational changes between the open and closed forms may regulate the catalytic activity of SMYD3. In this work, we carried out extensive molecular dynamics simulations on a series of complexes with a total of 21 μs sampling to investigate the conformational changes of SMYD3 and unveil the molecular mechanisms. Based on the C-terminal domain movements, the simulated models could be depicted in three different conformational states: the closed, intermediate and open states. Only in the case that both the methyl donor binding pocket and the target lysine-binding channel had bound species did the simulations show SMYD3 maintaining its conformation in the closed state, indicative of a synergetic effect of the cofactors and target lysine on regulating the conformational change of SMYD3. In addition, we performed analyses in terms of structure and energy to shed light on how the two regions might regulate the C-terminal domain movement. This mechanistic study provided insights into the relationship between the conformational change and the methyltransferase activity of SMYD3. The more complete understanding of the conformational dynamics developed here together with further work may lay a foundation for the rational drug design of SMYD3 inhibitors.
Collapse
|
10
|
Cheeseman K, Jannot G, Lourenço N, Villares M, Berthelet J, Calegari-Silva T, Hamroune J, Letourneur F, Rodrigues-Lima F, Weitzman JB. Dynamic methylation of histone H3K18 in differentiating Theileria parasites. Nat Commun 2021; 12:3221. [PMID: 34050145 PMCID: PMC8163883 DOI: 10.1038/s41467-021-23477-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
Lysine methylation on histone tails impacts genome regulation and cell fate determination in many developmental processes. Apicomplexa intracellular parasites cause major diseases and they have developed complex life cycles with fine-tuned differentiation events. Yet, apicomplexa genomes have few transcription factors and little is known about their epigenetic control systems. Tick-borne Theileria apicomplexa species have relatively small, compact genomes and a remarkable ability to transform leucocytes in their bovine hosts. Here we report enriched H3 lysine 18 monomethylation (H3K18me1) on the gene bodies of repressed genes in Theileria macroschizonts. Differentiation to merozoites (merogony) leads to decreased H3K18me1 in parasite nuclei. Pharmacological manipulation of H3K18 acetylation or methylation impacted parasite differentiation and expression of stage-specific genes. Finally, we identify a parasite SET-domain methyltransferase (TaSETup1) that can methylate H3K18 and represses gene expression. Thus, H3K18me1 emerges as an important epigenetic mark which controls gene expression and stage differentiation in Theileria parasites.
Collapse
Affiliation(s)
- Kevin Cheeseman
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Guillaume Jannot
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Nelly Lourenço
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Marie Villares
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France
| | - Jérémy Berthelet
- Université de Paris, Epigenetics and Cell Fate, CNRS, Paris, France.,Université de Paris, Functional and Adaptive Biology, CNRS, Paris, France
| | | | | | | | | | | |
Collapse
|
11
|
Talibov VO, Fabini E, FitzGerald EA, Tedesco D, Cederfeldt D, Talu MJ, Rachman MM, Mihalic F, Manoni E, Naldi M, Sanese P, Forte G, Lepore Signorile M, Barril X, Simone C, Bartolini M, Dobritzsch D, Del Rio A, Danielson UH. Discovery of an Allosteric Ligand Binding Site in SMYD3 Lysine Methyltransferase. Chembiochem 2021; 22:1597-1608. [PMID: 33400854 PMCID: PMC8248052 DOI: 10.1002/cbic.202000736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/30/2020] [Indexed: 12/15/2022]
Abstract
SMYD3 is a multifunctional epigenetic enzyme with lysine methyltransferase activity and various interaction partners. It is implicated in the pathophysiology of cancers but with an unclear mechanism. To discover tool compounds for clarifying its biochemistry and potential as a therapeutic target, a set of drug-like compounds was screened in a biosensor-based competition assay. Diperodon was identified as an allosteric ligand; its R and S enantiomers were isolated, and their affinities to SMYD3 were determined (KD =42 and 84 μM, respectively). Co-crystallization revealed that both enantiomers bind to a previously unidentified allosteric site in the C-terminal protein binding domain, consistent with its weak inhibitory effect. No competition between diperodon and HSP90 (a known SMYD3 interaction partner) was observed although SMYD3-HSP90 binding was confirmed (KD =13 μM). Diperodon clearly represents a novel starting point for the design of tool compounds interacting with a druggable allosteric site, suitable for the exploration of noncatalytic SMYD3 functions and therapeutics with new mechanisms of action.
Collapse
Affiliation(s)
- Vladimir O. Talibov
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Edoardo Fabini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Edward A. FitzGerald
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Beactica Therapeutics ABVirdings allé 2754 50UppsalaSweden
| | - Daniele Tedesco
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Daniela Cederfeldt
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Martin J. Talu
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Moira M. Rachman
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
| | - Filip Mihalic
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Elisabetta Manoni
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
| | - Marina Naldi
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
- Centre for Applied Biomedical ResearchAlma Mater Studiorum University of BolognaVia Zamboni, 33Bologna40126Italy
| | - Paola Sanese
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Giovanna Forte
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
| | - Xavier Barril
- Institut de Biomedicina de la Universitat de Barcelona (IBUB) and Facultat de FarmaciaUniversitat de BarcelonaAv. Joan XXIII 27–3108028BarcelonaSpain
- Catalan Institution for Research and Advanced Studies (ICREA)Passeig Lluis Companys 2308010BarcelonaSpain
| | - Cristiano Simone
- Medical Genetics, National Institute for GastroenterologyIRCCS ‘S. de Bellis' Research Hospital70013BariItaly
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO)University of Bari Aldo Moro70124BariItaly
| | - Manuela Bartolini
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum University of BolognaVia Belmeloro 640126BolognaItaly
| | - Doreen Dobritzsch
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
| | - Alberto Del Rio
- Institute for Organic Synthesis and PhotoreactivityNational Research CouncilVia P. Gobetti 10140129BolognaItaly
- Innovamol Consulting SrlVia Giardini 470/H41124ModenaItaly
| | - U. Helena Danielson
- Department of Chemistry–BMCUppsala UniversityHusargatan 3754 24UppsalaSweden
- Science for Life LaboratoryUppsala UniversityUppsala752 37Sweden
| |
Collapse
|
12
|
Sarkar T, Raghavan VV, Chen F, Riley A, Zhou S, Xu W. Exploring the effectiveness of the TSR-based protein 3-D structural comparison method for protein clustering, and structural motif identification and discovery of protein kinases, hydrolases, and SARS-CoV-2's protein via the application of amino acid grouping. Comput Biol Chem 2021; 92:107479. [PMID: 33951604 DOI: 10.1016/j.compbiolchem.2021.107479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 03/14/2021] [Accepted: 03/23/2021] [Indexed: 12/26/2022]
Abstract
Development of protein 3-D structural comparison methods is essential for understanding protein functions. Some amino acids share structural similarities while others vary considerably. These structures determine the chemical and physical properties of amino acids. Grouping amino acids with similar structures potentially improves the ability to identify structurally conserved regions and increases the global structural similarity between proteins. We systematically studied the effects of amino acid grouping on the numbers of Specific/specific, Common/common, and statistically different keys to achieve a better understanding of protein structure relations. Common keys represent substructures found in all types of proteins and Specific keys represent substructures exclusively belonging to a certain type of proteins in a data set. Our results show that applying amino acid grouping to the Triangular Spatial Relationship (TSR)-based method, while computing structural similarity among proteins, improves the accuracy of protein clustering in certain cases. In addition, applying amino acid grouping facilitates the process of identification or discovery of conserved structural motifs. The results from the principal component analysis (PCA) demonstrate that applying amino acid grouping captures slightly more structural variation than when amino acid grouping is not used, indicating that amino acid grouping reduces structure diversity as predicted. The TSR-based method uniquely identifies and discovers binding sites for drugs or interacting proteins. The binding sites of nsp16 of SARS-CoV-2, SARS-CoV and MERS-CoV that we have defined will aid future antiviral drug design for improving therapeutic outcome. This approach for incorporating the amino acid grouping feature into our structural comparison method is promising and provides a deeper insight into understanding of structural relations of proteins.
Collapse
Affiliation(s)
- Titli Sarkar
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Vijay V Raghavan
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Feng Chen
- High Performance Computing, 329 Frey Computing Services Center, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Andrew Riley
- The Center for Advanced Computer Studies, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Sophia Zhou
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA.
| |
Collapse
|
13
|
Sawicka-Gutaj N, Shawkat S, Andrusiewicz M, Ziółkowska P, Czarnywojtek A, Gut P, Ruchała M. EZH2 and SMYD3 expression in papillary thyroid cancer. Oncol Lett 2021; 21:342. [PMID: 33747199 PMCID: PMC7967944 DOI: 10.3892/ol.2021.12603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
Recent studies have revealed the significant role of SMYD3 and EZH2 genes in the development and aggressiveness of numerous types of malignant tumor. Therefore, the present study aimed to investigate the expression of SMYD3 and EZH2 in papillary thyroid cancer, and to determine the correlation between the expression of these genes and clinical characteristics. Resected thyroid tissue samples from 62 patients with papillary thyroid cancer were investigated. Thyroid tissue derived from the healthy regions of removed nodular goiters from 30 patients served as the control group. Reverse transcription-quantitative PCR analysis was employed to detect relative mRNA expression levels. Primer sequences and TaqMan® hydrolysis probe positions for EZH2 and SMYD3 were determined using the Roche Universal ProbeLibrary Assay Design Center version 2.50. EZH2 expression was detected in all thyroid cancer samples and in 83.3% of benign lesions. Notably, EZH2 was revealed to be upregulated in thyroid cancer tissues compared with control tissues (P=0.0002). EZH2 expression was positively correlated with tumor stage (P<0.0001; r=0.504), and multiple comparison analysis revealed that the highest expression of EZH2 was detected in samples staged pT4 (P=0.0001). SMYD3 expression was detected in all thyroid cancer samples and in 96.7% of healthy thyroid tissues; notably, the expression levels were similar in both groups. In addition, there was no correlation between SMYD3 expression and the aggressiveness of papillary thyroid cancer. In conclusion, overexpression of the EZH2 gene may be associated with the development of papillary thyroid cancer and EZH2 may be a potential therapeutic target in papillary thyroid cancer.
Collapse
Affiliation(s)
- Nadia Sawicka-Gutaj
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Sara Shawkat
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paulina Ziółkowska
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Agata Czarnywojtek
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland.,Department of Pharmacology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paweł Gut
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| | - Marek Ruchała
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
14
|
Liu M, Liu Q, Fan S, Su F, Jiang C, Cai G, Wang Y, Liao G, Lei X, Chen W, Bi J, Cheng W, Zhao L, Ruan Y, Li J. LncRNA LTSCCAT promotes tongue squamous cell carcinoma metastasis via targeting the miR-103a-2-5p/SMYD3/TWIST1 axis. Cell Death Dis 2021; 12:144. [PMID: 33542221 PMCID: PMC7862618 DOI: 10.1038/s41419-021-03415-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022]
Abstract
Abnormal expression of long-noncoding RNA is involved in the tumorigenesis and progression of various cancers, but the potential molecular regulatory mechanisms are unclear. Microbial flora and chronic inflammation, such as periodontitis, which is associated with oral cancer, affect the occurrence and progression of tumors. Accordingly, we stimulated the tongue squamous cell carcinoma (TSCC) cell lines CAL27 and SCC15 with a low concentration of lipopolysaccharide (LPS) from Porphyromonas gingivalis (P.g) for 6 days and then performed LncRNA sequencing on P.g-LPS-treated CAL27 cells and untreated CAL27 cells. LTSCCAT was upregulated in P.g-LPS-treated CAL27 cells compared with untreated CAL27 cells. LTSCCAT induced epithelial–mesenchymal transition and promoted the invasion and metastasis of TSCC in vitro and in vivo. LncRNA LTSCCAT was upregulated in TSCC patients with periodontitis and was correlated with metastasis and poor prognosis. We predicted through an online database and confirmed by dual-luciferase reporter assays that LTSCCAT is a competitive endogenous RNA for the regulation of miR-103a-2-5p. Another dual-luciferase reporter assay confirmed that miR-103a-2-5p has a binding site at the 3′-UTR of the histone methylation transferase SMYD3 and inhibits its translation. Chromatin immunoprecipitation experiments demonstrated that SMYD3 binds directly to the promoter region of TWIST1 and promotes its transcription, which is related to H3K4 trimethylation. The effect of pcDNA/LTSCCAT on expression was attenuated by miR-103a-2-5p mimics. The RF and SVM classifier predicts that LTSCCAT can bind to SMYD3, whereas the RNA immunoprecipitation (RIP) assay confirms that it cannot. In addition, we predicted the combination of LTSCCAT and SMYD3 through software, but the RIP assay confirmed that LTSCCAT could not be combined with SMYD3. For the first time, we showed that periodontitis promotes the invasion and metastasis of TSCC and clarified the molecular mechanism of LTSCCAT to promote invasion and metastasis of TSCC, providing a potential therapeutic target for clinical treatment of TSCC.
Collapse
Affiliation(s)
- Mo Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qingwen Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Song Fan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Feng Su
- Department of Urology, Shunde Hospital, Southern Medical University, Foshan City, Guangdong Province, China
| | - Chun Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Urology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guanming Cai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Youyuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Guiqing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Sun Yat-Sen University, Guangdong, China
| | - Xinyuan Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weixiong Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Junming Bi
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China.,Department of Urology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Weiqi Cheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - LuoDan Zhao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China
| | - Yi Ruan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China. .,Department of Periodontology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| | - Jinsong Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation of Sun Yat-Sen Memorial Hospital, Guangzhou, China. .,Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
15
|
Zheng J, Li J, Luo H, Sun L, Sang M, Yu X. Controlled "off-on" fluorescent probe for the specific detection of hyperhomocysteinemia. RSC Adv 2021; 11:4356-4364. [PMID: 35424387 PMCID: PMC8694285 DOI: 10.1039/d0ra08710f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Hyperhomocysteinemia is an established risk factor for atherosclerosis and vascular disease. Therefore, designing a hyperhomocysteinemia specific probe is of great significance for the early warning of cardiovascular diseases. However, developing probes that can efficiently and specifically recognize homocysteine (Hcy) remains a tremendous challenge. Therefore, we designed an Hcy-specific fluorescent probe (HSFP) with excellent selectivity and anti-interference capability. Interestingly, this probe can automatically “off–on” in water solution, but the fluorescence of HSFP remains “off” when Hcy is present in the solution. The spectroscopic data demonstrated that the fluorescence of HSFP attenuated 13.8 folds toward Hcy in water without interference from other biothiols and amino acids. Furthermore, HSFP can sensitively reflect the change of Hcy content in cells. Therefore, HSFP was further applied to detect hyperhomocysteinemia in vivo with high efficiency. In summary, we have developed an Hcy-specific fluorescent probe to efficiently detect Hcy in vivo and in vitro, which may contribute to basic or clinical research. An Hcy-specific fluorescent probe (HSFP) with excellent selectivity and anti-interference capability was developed for the detection of hyperhomocysteinemia.![]()
Collapse
Affiliation(s)
- Jinrong Zheng
- Xiamen Cardiovascular Hospital, Xiamen University Xiamen 361006 China
| | - Jianlong Li
- Department of Imaging Radiology, Rizhao People's Hospital Rizhao 276800 China
| | - Hongli Luo
- Department of Hepatobiliary Surgery, Yongchuan Hospital, Chongqing Medical University Chongqing 400000 China
| | - Lingbin Sun
- Department of Anesthesiology, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University Shenzhen 518055 China
| | - Mangmang Sang
- Xiamen Cardiovascular Hospital, Xiamen University Xiamen 361006 China
| | - Xiu Yu
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen Institute of Respiratory Diseases Shenzhen 518055 China +86-755-25533018
| |
Collapse
|
16
|
Zhang L, Jin Y, Yang H, Li Y, Wang C, Shi Y, Wang Y. SMYD3 promotes epithelial ovarian cancer metastasis by downregulating p53 protein stability and promoting p53 ubiquitination. Carcinogenesis 2020; 40:1492-1503. [PMID: 31002112 DOI: 10.1093/carcin/bgz078] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Epithelial ovarian cancer (EOC) has a very poor prognosis because of tumor invasiveness. Here, we reported that SET and MYND domain containing protein 3 (SMYD3), a lysine methyltransferase, was frequently upregulated in EOC and associated with poor prognosis. A series of in vitro assays demonstrated that SMYD3 significantly upgraded the migration ability of EOC cells. The results of in vivo EOC metastasis models further confirmed that overexpression of SMYD3 promoted EOC progression. Mechanistic investigations indicated that SMYD3 cloud decrease p53 protein stability and induce epithelial-mesenchymal transition in EOC cells. SMYD3 interacts with p53 directly via the post-SET domain and destabilizes p53 by inducing p53 translocation from the nucleus to the cytoplasm and promoting p53 ubiquitination modification independent of MDM2. Furthermore, the mass spectrometry results showed that SMYD3 interacts with UBE2R2, an ubiquitin-conjugating enzyme (E2) of the ubiquitin-proteasome pathway. The combination of UBE2R2-SMYD3-p53 significantly promotes the ubiquitination and degradation of p53. These results pointed that SMYD3 might be a new E3 ligase of p53. Further analysis confirmed that lysines 381, 382 and 386 of p53 are the key sites for the ubiquitination modification of SMYD3 to p53. In summary, our results define the important role of SMYD3 in the metastasis process of EOC and present a new therapeutic target against EOC.
Collapse
Affiliation(s)
- Liwei Zhang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Yue Jin
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Hao Yang
- Shanghai Key Laboratory for Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yu Li
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Chao Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| | - Yongheng Shi
- Department of Pathology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Wang
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Key Laboratory of Gynecologic Oncology, Shanghai, China
| |
Collapse
|
17
|
Zhou H, Liu Y, Liang Y, Zhou D, Li S, Lin S, Dong H, Huang L. The function of histone lysine methylation related SET domain group proteins in plants. Protein Sci 2020; 29:1120-1137. [PMID: 32134523 DOI: 10.1002/pro.3849] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/30/2020] [Accepted: 03/03/2020] [Indexed: 11/08/2022]
Abstract
Histone methylation, which is mediated by the histone lysine (K) methyltransferases (HKMTases), is a mechanism associated with many pathways in eukaryotes. Most HKMTases have a conserved SET (Su(var) 3-9,E(z),Trithorax) domain, while the HKMTases with SET domains are called the SET domain group (SDG) proteins. In plants, only SDG proteins can work as HKMTases. In this review, we introduced the classification of SDG family proteins in plants and the structural characteristics of each subfamily, surmise the functions of SDG family members in plant growth and development processes, including pollen and female gametophyte development, flowering, plant morphology and the responses to stresses. This review will help researchers better understand the SDG proteins and histone methylation in plants and lay a basic foundation for further studies on SDG proteins.
Collapse
Affiliation(s)
- Huiyan Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yanhong Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Yuwei Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Dong Zhou
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| | - Shuifeng Li
- Hangzhou Xiaoshan District Agricultural Technology Extension Center, Hangzhou, China
| | - Sue Lin
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Heng Dong
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, School of Medicine, Holistic Integrative Pharmacy Institutes (HIPI), Hangzhou Normal University, Hangzhou, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers (Basel) 2020; 12:cancers12010142. [PMID: 31935919 PMCID: PMC7017119 DOI: 10.3390/cancers12010142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.
Collapse
|
19
|
Chen J, He Z, Yuan Y, Huang F, Luo B, Zhang J, Pan T, Zhang H, Zhang J. Host factor SMYD3 is recruited by Ebola virus nucleoprotein to facilitate viral mRNA transcription. Emerg Microbes Infect 2020; 8:1347-1360. [PMID: 31516086 PMCID: PMC6758638 DOI: 10.1080/22221751.2019.1662736] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The polymerase complex of Ebola virus (EBOV) is the functional unit for transcription and replication of viral genome. Nucleoprotein (NP) is a multifunctional protein with high RNA binding affinity and recruits other viral proteins to form functional polymerase complex. In our study, we investigated host proteins associated with EBOV polymerase complex using NP as bait in a transcription and replication competent minigenome system by mass spectrometry analysis and identified SET and MYND domain-containing protein 3 (SMYD3) as a novel host protein which was required for the replication of EBOV. SMYD3 specifically interacted with NP and was recruited to EBOV inclusion bodies through NP. The depletion of SMYD3 dramatically suppressed EBOV mRNA production. A mimic of non-phosphorylated VP30, which is a transcription activator, could partially rescue the viral mRNA production downregulated by the depletion of SMYD3. In addition, SMYD3 promoted NP-VP30 interaction in a dose-dependent manner. These results revealed that SMYD3 was a novel host factor recruited by NP to supporting EBOV mRNA transcription through increasing the binding of VP30 to NP. Thus, our study provided a new understanding of mechanism underlying the transcription of EBOV genome, and a novel anti-EBOV drug design strategy by targeting SMYD3.
Collapse
Affiliation(s)
- Jingliang Chen
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Zhangping He
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Yaochang Yuan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Feng Huang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China.,Department of Respiration, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Baohong Luo
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Jianhua Zhang
- CAS Key Laboratory for Pathogenic Microbiology, Institute of Microbiology, Chinese Academy of Sciences , Beijing , People's Republic of China
| | - Ting Pan
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Hui Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| | - Junsong Zhang
- Institute of Human Virology, Key Laboratory of Tropical Disease Control of Ministry of Education, Guangdong Engineering Research Center for Antimicrobial Agent and Immunotechnology, Zhongshan School of Medicine, Sun Yat-Sen University , Guangzhou , People's Republic of China
| |
Collapse
|
20
|
Function of the MYND Domain and C-Terminal Region in Regulating the Subcellular Localization and Catalytic Activity of the SMYD Family Lysine Methyltransferase Set5. Mol Cell Biol 2020; 40:MCB.00341-19. [PMID: 31685550 DOI: 10.1128/mcb.00341-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/01/2019] [Indexed: 11/20/2022] Open
Abstract
SMYD lysine methyltransferases target histones and nonhistone proteins for methylation and are critical regulators of muscle development and implicated in neoplastic transformation. They are characterized by a split catalytic SET domain and an intervening MYND zinc finger domain, as well as an extended C-terminal domain. Saccharomyces cerevisiae contains two SMYD proteins, Set5 and Set6, which share structural elements with the mammalian SMYD enzymes. Set5 is a histone H4 lysine 5, 8, and 12 methyltransferase, implicated in the regulation of stress responses and genome stability. While the SMYD proteins have diverse roles in cells, there are many gaps in our understanding of how these enzymes are regulated. Here, we performed mutational analysis of Set5, combined with phosphoproteomics, to identify regulatory mechanisms for its enzymatic activity and subcellular localization. Our results indicate that the MYND domain promotes Set5 chromatin association in cells and is required for its role in repressing subtelomeric genes. Phosphoproteomics revealed extensive phosphorylation of Set5, and phosphomimetic mutations enhance Set5 catalytic activity but diminish its ability to interact with chromatin in cells. These studies uncover multiple regions within Set5 that regulate its localization and activity and highlight potential avenues for understanding mechanisms controlling the diverse roles of SMYD enzymes.
Collapse
|
21
|
Li B, Pan R, Zhou C, Dai J, Mao Y, Chen M, Huang T, Ying X, Hu H, Zhao J, Zhang W, Duan S. SMYD3 promoter hypomethylation is associated with the risk of colorectal cancer. Future Oncol 2018; 14:1825-1834. [PMID: 29969917 DOI: 10.2217/fon-2017-0682] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM SMYD3 encodes histone lysine methyltransferase. The goal of our study was to investigate the association between SMYD3 methylation and colorectal cancer (CRC). MATERIALS & METHODS SMYD3 methylation was measured by quantitative methylation-specific PCR method in 117 pairs of CRC tumor and para-tumor tissues. RESULTS Significantly lower SMYD3 methylation was observed in CRC tumor tissues than para-tumor tissues (p = 0.002). Further subgroup analysis by clinical features showed that significantly lower SMYD3 methylation were only observed in the CRC patients with tumors of moderately and well differentiation, positive lymph node metastasis, and stage III + IV. CONCLUSION Our work reported for the first time that SMYD3 promoter hypomethylation was associated with CRC.
Collapse
Affiliation(s)
- Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Ranran Pan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Cong Zhou
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jie Dai
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yiyi Mao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Min Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Tianyi Huang
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Xiuru Ying
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jun Zhao
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Wei Zhang
- Department of Preventive Medicine & The Robert H Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, PR China
| |
Collapse
|
22
|
Zhang SJ, Wang Y, Yang YL, Zheng H. Aberrant DNA Methylation Involved in Obese Women with Systemic Insulin Resistance. Open Life Sci 2018; 13:201-207. [PMID: 33817084 PMCID: PMC7874722 DOI: 10.1515/biol-2018-0024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/08/2018] [Indexed: 01/03/2023] Open
Abstract
Background Epigenetics has been recognized as a significant regulator in many diseases. White adipose tissue (WAT) epigenetic dysregulation is associated with systemic insulin resistance (IR). The aim of this study was to survey the differential methylation of genes in obese women with systemic insulin resistance by DNA methylation microarray. Methods The genome-wide methylation profile of systemic insulin resistant obese women was obtained from Gene Expression Omnibus database. After data preprocessing, differing methylation patterns between insulin resistant and sensitive obese women were identified by Student's t-test and methylation value differences. Network analysis was then performed to reveal co-regulated genes of differentially methylated genes. Functional analysis was also implemented to reveal the underlying biological processes related to systemic insulin resistance in obese women. Results Relative to insulin sensitive obese women, we initially screened 10,874 differentially methylated CpGs, including 7402 hyper-methylated sites and 6073 hypo-methylated CpGs. Our analysis identified 4 significantly differentially methylated genes, including SMYD3, UST, BCL11A, and BAI3. Network and functional analyses found that these differentially methylated genes were mainly involved in chondroitin and dermatan sulfate biosynthetic processes. Conclusion Based on our study, we propose several epigenetic biomarkers that may be related to obesity-associated insulin resistance. Our results provide new insights into the epigenetic regulation of disease etiology and also identify novel targets for insulin resistance treatment in obese women.
Collapse
Affiliation(s)
- Shao-Jun Zhang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China.,Department of Endocrinology, The Sixth Division Hospital of Xinjiang Production and Construction Corps, Wujiaqu, Xinjiang 830025, China
| | - Yan Wang
- Medical Laboratory Diagnosis Center, Jinan Central Hospital, Jinan, Shandong 250013, China
| | - Yan-Lan Yang
- Department of Endocrinology, The People's Hospital of Shanxi Province, Taiyuan, Shanxi 030012, China
| | - Hong Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Shahekou District, Dalian, Liaoning 116023, China
| |
Collapse
|
23
|
Tracy C, Warren JS, Szulik M, Wang L, Garcia J, Makaju A, Russell K, Miller M, Franklin S. The Smyd Family of Methyltransferases: Role in Cardiac and Skeletal Muscle Physiology and Pathology. CURRENT OPINION IN PHYSIOLOGY 2017; 1:140-152. [PMID: 29435515 DOI: 10.1016/j.cophys.2017.10.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein methylation plays a pivotal role in the regulation of various cellular processes including chromatin remodeling and gene expression. SET and MYND domain-containing proteins (Smyd) are a special class of lysine methyltransferases whose catalytic SET domain is split by an MYND domain. The hallmark feature of this family was thought to be the methylation of histone H3 (on lysine 4). However, several studies suggest that the role of the Smyd family is dynamic, targeting unique histone residues associated with both transcriptional activation and repression. Smyd proteins also methylate several non-histone proteins to regulate various cellular processes. Although we are only beginning to understand their specific molecular functions and role in chromatin remodeling, recent studies have advanced our understanding of this relatively uncharacterized family, highlighting their involvement in development, cell growth and differentiation and during disease in various animal models. This review summarizes our current knowledge of the structure, function and methylation targets of the Smyd family and provides a compilation of data emphasizing their prominent role in cardiac and skeletal muscle physiology and pathology.
Collapse
Affiliation(s)
- Christopher Tracy
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Junco S Warren
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Marta Szulik
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Li Wang
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - June Garcia
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Aman Makaju
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Kristi Russell
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Mickey Miller
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| | - Sarah Franklin
- Department of Internal Medicine, Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT
| |
Collapse
|
24
|
Liu N, Sun S, Yang X. Prognostic significance of stromal SMYD3 expression in colorectal cancer of TNM stage I-III. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:8901-8907. [PMID: 31966758 PMCID: PMC6965370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/26/2017] [Indexed: 06/10/2023]
Abstract
BACKGROUND SET and MYND domain-containing protein 3 (SMYD3) is a histone methyltransferases and it promotes progression of many kinds of cancers including lung cancer, ovarian cancer and gastric cancer. In colorectal cancer (CRC), SMYD3 is proved to stimulate the proliferation of cancer cells, but the clinical significance of SMYD3 in CRC has not been elucidated. METHODS In our study, we detected the expression of SMYD3 in CRC samples in TNM stage I-III with immunohistochemistry. The correlation between the expression of SMYD3 and the clinicopathological factors was analyzed with Chi-square test. The survival curve was displayed by Kaplan-Meier test and the statistical difference of subgroups was analyzed with log-rank test. Independent prognostic factors were identified by the Cox proportional hazards regression model. RESULTS The percentage of high SMYD3 expression and low expression accounts for 47.98% and 52.02% respectively. High expression of SMYD3 was significantly associated with advance T stage (P=0.006) and lower survival rates (P=0.010), and it could be identified as an independent prognostic factor indicating unfavorable prognosis of patients with CRC (P=0.032, HR=1.98, 95% CI=1.06-3.70). CONCLUSIONS SMYD3 high-expression is a high risk for poorer prognosis of CRC in TNM stage I-III. Our findings suggested that detecting SMYD3 may help stratify patients by risk more preciously and help make the individual treatment strategy.
Collapse
Affiliation(s)
- Naiqing Liu
- Department of General Surgery, Linyi Central HospitalLinyi, Shandong, China
| | - Shuxiang Sun
- Department of Infectious Disease, Linyi Central HospitalLinyi, Shandong, China
| | - Xiaoqing Yang
- Department of Pathology, Qianfoshan HospitalJinan, Shandong, China
| |
Collapse
|
25
|
Huang L, Xu AM. SET and MYND domain containing protein 3 in cancer. Am J Transl Res 2017; 9:1-14. [PMID: 28123630 PMCID: PMC5250700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/21/2016] [Indexed: 06/06/2023]
Abstract
Lysine methylation plays a vital role in histone modification. Deregulations of lysine methyltransferases and demethylases have been frequently observed in human cancers. The SET and MYND domain containing protein 3 (SMYD3) is a novel histone lysine methyltransferase and it functions by regulating chromatin during the development of myocardial and skeletal muscle. It has been recently unveiled to play significant roles in human cancer genesis and progression via regulating various key cancer-associated genes and pathways and promoting cell proliferation and migration. Upregulation of SMYD3 expression is present in multiple cancer types, suggesting it as a potential prognostic marker. Herein the structure, substrates and targets of SMYD3, and its effects on initiation, invasion and metastasis of diverse tumors (e.g., esophageal squamous cell carcinoma, gastric cancer, hepatocellular carcinoma, cholangiocarcinoma, breast cancer, prostate cancer, and leukemia) are systematically reviewed, providing clues for the development of novel SMYD3-specific personalized anti-cancer therapy. SMYD3 inhibitors (e.g., BCI-121 and novobiocin) could hopefully fight against tumors with efficacy.
Collapse
Affiliation(s)
- Lei Huang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
- German Cancer Research Center (DKFZ)Heidelberg, Germany
| | - A-Man Xu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Anhui Medical UniversityHefei, China
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical UniversityHefei, China
| |
Collapse
|
26
|
Liu TT, Xu H, Gao WP, Zhang SX, Zhou XH, Tang J, Liu QN. SET and MYND Domain-Containing Protein 3 (SMYD3) Polymorphism as a Risk Factor for Susceptibility and Poor Prognosis in Ovarian Cancer. Med Sci Monit 2016; 22:5131-5140. [PMID: 28024138 PMCID: PMC5207010 DOI: 10.12659/msm.898095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/26/2016] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND We investigated the relationship of the polymorphisms of SET and MYND domain-containing protein 3 (SMYD3) with risk and prognosis of ovarian cancer. MATERIAL AND METHODS The polymerase chain reaction (PCR) amplification method was applied to detect the polymorphisms of variable number of tandem repeats (VNTR) in the SMYD3 gene promoter region for 156 patients with ovarian cancer (case group) and 174 healthy people (control group). Quantitative reverse transcription polymerase chain reaction and Western blot were applied to detect SMYD3 mRNA and protein expressions. RESULTS The frequencies of VNTR genotype 3/3 and allele genotype 3 in the case group were significantly higher than those in the control group, while the frequency of genotype 2/2 in the control group was significantly higher than that in case group (all P<0.05). The proportion of poorly differentiated patients carrying VNTR genotype 3/3 was significantly higher than the proportion of poorly differentiated patients carrying VNTR genotype 2/2+2/3, while the proportion of patients carrying genotype 3/3 with International Federation of Gynecology and Obstetrics (FIGO) stage III-IV disease was significantly higher than the proportion of patients carrying genotype 2/2 +2/3 with FIGO stage III-IV disease (all P<0.05). SMYD3 mRNA and protein expressions were higher in the patients carrying genotype 3/3 than they were in the patients with the 2/2+2/3 genotype (all P<0.05). The 5-year survival rate for patients carrying VNTR genotype 3/3 was significantly lower than that of patients carrying genotype 2/2+2/3, and Cox regression analysis showed that VNTR genotype 3/3 was an independent risk factor for ovarian cancer prognosis (all P<0.05). CONCLUSIONS VNTR genotype 3/3 of the SMYD3 gene was associated with the risk of ovarian cancer. The polymorphism of VNTR genotype could be recognized as an indicator for the poor prognosis of patients with ovarian cancer.
Collapse
|
27
|
Rajajeyabalachandran G, Kumar S, Murugesan T, Ekambaram S, Padmavathy R, Jegatheesan SK, Mullangi R, Rajagopal S. Therapeutical potential of deregulated lysine methyltransferase SMYD3 as a safe target for novel anticancer agents. Expert Opin Ther Targets 2016; 21:145-157. [PMID: 28019723 DOI: 10.1080/14728222.2017.1272580] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION SET and MYND domain containing-3 (SMYD3) is a member of the lysine methyltransferase family of proteins, and plays an important role in the methylation of various histone and non-histone targets. Proper functioning of SMYD3 is very important for the target molecules to determine their different roles in chromatin remodeling, signal transduction and cell cycle control. Due to the abnormal expression of SMYD3 in tumors, it is projected as a prognostic marker in various solid cancers. Areas covered: Here we elaborate on the general information, structure and the pathological role of SMYD3 protein. We summarize the role of SMYD3-mediated protein interactions in oncology pathways, mutational effects and regulation of SMYD3 in specific types of cancer. The efficacy and mechanisms of action of currently available SMYD3 small molecule inhibitors are also addressed. Expert opinion: The findings analyzed herein demonstrate that aberrant levels of SMYD3 protein exert tumorigenic effects by altering the epigenetic regulation of target genes. The partial involvement of SMYD3 in some distinct pathways provides a vital opportunity in targeting cancer effectively with fewer side effects. Further, identification and co-targeting of synergistic oncogenic pathways is suggested, which could provide much more beneficial effects for the treatment of solid cancers.
Collapse
Affiliation(s)
| | - Swetha Kumar
- a Bioinformatics, Jubilant Biosys Ltd ., Bangalore , India
| | | | | | | | | | | | | |
Collapse
|
28
|
Spellmon N, Sun X, Xue W, Holcomb J, Chakravarthy S, Shang W, Edwards B, Sirinupong N, Li C, Yang Z. New open conformation of SMYD3 implicates conformational selection and allostery. AIMS BIOPHYSICS 2016; 4:1-18. [PMID: 28050603 PMCID: PMC5189988 DOI: 10.3934/biophy.2017.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SMYD3 plays a key role in cancer cell viability, adhesion, migration and invasion. SMYD3 promotes formation of inducible regulatory T cells and is involved in reducing autoimmunity. However, the nearly “closed” substrate-binding site and poor in vitro H3K4 methyltransferase activity have obscured further understanding of this oncogenically related protein. Here we reveal that SMYD3 can adopt an “open” conformation using molecular dynamics simulation and small-angle X-ray scattering. This ligand-binding-capable open state is related to the crystal structure-like closed state by a striking clamshell-like inter-lobe dynamics. The two states are characterized by many distinct structural and dynamical differences and the conformational transition pathway is mediated by a reversible twisting motion of the C-terminal domain (CTD). The spontaneous transition from the closed to open states suggests two possible, mutually non-exclusive models for SMYD3 functional regulation and the conformational selection mechanism and allostery may regulate the catalytic or ligand binding competence of SMYD3. This study provides an immediate clue to the puzzling role of SMYD3 in epigenetic gene regulation.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Xiaonan Sun
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Wen Xue
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Srinivas Chakravarthy
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Weifeng Shang
- Center for Synchrotron Radiation Research and Instrumentation and Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Brian Edwards
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Chunying Li
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
29
|
Chandramouli B, Chillemi G. Conformational Dynamics of Lysine Methyltransferase Smyd2. Insights into the Different Substrate Crevice Characteristics of Smyd2 and Smyd3. J Chem Inf Model 2016; 56:2467-2475. [PMID: 27959541 DOI: 10.1021/acs.jcim.6b00652] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smyd2, the SET and MYND domain containing protein lysine methyltransferase, targets histone and nonhistone substrates. Methylation of nonhistone substrates has direct implications in cancer development and progression. Dynamic regulation of Smyd2 activity and the structural basis of broad substrate specificity still remain elusive. Herein, we report on extensive molecular dynamics simulations on a full length Smyd2 in the presence and absence of AdoMet cofactor (covering together 1.3 μs of sampling), and the accompanying conformational transitions. Additionally, dynamics of the C-terminal domain (CTD) and structural features of substrate crevices of Smyd2 and Smyd3 are compared. The CTD of Smyd2 exhibits conformational flexibility in both states. In the holo form, however, it undergoes larger hinge motions resulting in more opened configurations than the apo form, which is confined around the partially open starting X-ray configuration. AdoMet binding triggers increased elasticity of the CTD leading Smyd2 to adopt fully opened configurations, which completely exposes the substrate binding crevice. These long-range concerted motions highlight Smyd2's ability to target substrates of varying sizes. Substrate crevices of Smyd2 and Smyd3 show distinct features in terms of spatial, hydration, and electrostatic properties that emphasize their characteristic modes of substrates interaction and entry pathways for inhibitor binding. On the whole, our study shows how the elasticity and hinge motion of the CTD regulate its functional role and underpin the basis of broad substrate specificity of Smyd2. We also highlight the specific structural principles that guide substrate and inhibitor binding to Smyd2 and Smyd3.
Collapse
Affiliation(s)
| | - Giovanni Chillemi
- SCAI-SuperComputing Applications and Innovation Department, CINECA ,Via dei Tizii 6, 00185 Rome, Italy
| |
Collapse
|
30
|
Abstract
SMYD3 is a member of the SET and MYND-domain family of methyl-transferases, the increased expression of which correlates with poor prognosis in various types of cancer. In liver and colon tumors, SMYD3 is localized in the nucleus, where it interacts with RNA Pol II and H3K4me3 and functions as a selective transcriptional amplifier of oncogenes and genes that control cell proliferation and metastatic spread. Smyd3 expression has a high discriminative power for the characterization of liver tumors and positively correlates with poor prognosis. In lung and pancreatic cancer, SMYD3 acts in the cytoplasm, potentiating oncogenic Ras/ERK signaling through the methylation of the MAP3K2 kinase and the subsequent release from its inhibitor. A clinico-pathological analysis of lung cancer patients uncovers prognostic significance of SMYD3 only for first progression survival. However, stratification of patients according to their smoking history significantly expands the prognostic value of SMYD3 to overall survival and other features, suggesting that smoking-related effects saturate the clinical analysis and mask the function of SMYD3 as an oncogenic potentiator.
Collapse
|
31
|
Al-Shar'i NA, Alnabulsi SM. Explaining the autoinhibition of the SMYD enzyme family: A theoretical study. J Mol Graph Model 2016; 68:147-157. [PMID: 27447830 DOI: 10.1016/j.jmgm.2016.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/09/2016] [Accepted: 07/11/2016] [Indexed: 10/21/2022]
Abstract
The SMYD enzymes (SMYD1-5) are lysine methyltransferases that have diverse biological functions including gene expression and regulation of skeletal and cardiac muscle development and function. Recently, they have gained more attention as potential drug targets because of their involvement in cardiovascular diseases and in the progression of different cancer types. Their activity has been suggested to be regulated by a posttranslational mechanism and by autoinhibition. The later relies on a hinge-like movement of the N- and C-lobes to adopt an open or closed conformation, consequently, determining the accessibility of the active site and substrate specificity. In this study we aim to investigate and explain the possibility of the regulatory autoinhibition process of the SMYD enzymes by a thorough computational exploration of their dynamic, energetic, and structural changes by using extended molecular dynamics simulations; normal mode analysis (NMA); and energy correlations. Three SMYD models (SMYD1-3) were used in this study. Our results showed an obvious hinge-like motion between the N- and C-lobes. Also, we identified interaction energy pathways within the 3D structures of the proteins, and hot spots on their surfaces that could be of particular importance for the regulation of their activities via allosteric means. These results can help in a better understanding of the nature of these promising drug targets; and in designing selective drugs that can interfere with (inhibit) the function of a specific SMYD member by disrupting its dynamical and conformational behaviour without disrupting the function of the entire SMYD proteins.
Collapse
Affiliation(s)
- Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| | - Soraya M Alnabulsi
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan.
| |
Collapse
|
32
|
Chandramouli B, Silvestri V, Scarno M, Ottini L, Chillemi G. Smyd3 open & closed lock mechanism for substrate recruitment: The hinge motion of C-terminal domain inferred from μ-second molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2016; 1860:1466-74. [PMID: 27085704 DOI: 10.1016/j.bbagen.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 03/08/2016] [Accepted: 04/09/2016] [Indexed: 11/19/2022]
Abstract
BACKGROUND The human lysine methyltransferase Smyd3, a member of the SET and MYND domain containing protein family, harbors methylation activity on both histone and non-histone targets in a tightly regulated manner. The mechanism of how Smyd3 dynamically regulates substrate recognition is still not fully unveiled. METHODS Here, we employed molecular dynamics simulations on full length human Smyd3, performed to a total of 1.2 μ-second, in the presence (holo) and absence (apo) of the S-Adenosyl methionine (AdoMet) cofactor. The dynamical features of Smyd3 in apo and holo states have been examined and compared via examining geometrical and electrostatic properties. RESULTS The results show a distinct dynamics of the C-terminal domain (CTD) in the two states. In the apo state, the CTD undergoes a large hinge like motion and samples more opened configurations, thus acting like a loosened clamp and resulting in expanded substrate binding crevice. In the holo state, the CTD exhibits a restricted motion while the overall structure remains compact, mimicking a closed clamp. This leads to a localized increase in the negative potential at the substrate binding cleft. Further, solvent accessibility of critical residues at the target lysine access channel, important for methylation activity, is increased. CONCLUSIONS We postulate that AdoMet cofactor acts like a key and locks Smyd3 in a closed conformation. In effect, the cofactor binding restricts the elasticity of the CTD, presenting a compact substrate binding cleft with high negative potential, which may have implications on substrate recruitment via long range electrostatics. GENERAL SIGNIFICANCE The deletion of the CTD from Smyd3 has been shown to abolish the basal histone methylation activity. Our study highlights the importance of the CTD elasticity in shaping the substrate binding site for recognition and supports the previously proposed role of the CTD in stabilizing the active site for methylation activity.
Collapse
Affiliation(s)
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Marco Scarno
- CINECA, SCAI - SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Giovanni Chillemi
- CINECA, SCAI - SuperComputing Applications and Innovation Department, Via dei Tizii 6, 00185 Rome, Italy.
| |
Collapse
|
33
|
Structure-Based Design of a Novel SMYD3 Inhibitor that Bridges the SAM-and MEKK2-Binding Pockets. Structure 2016; 24:774-781. [PMID: 27066749 DOI: 10.1016/j.str.2016.03.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/14/2016] [Accepted: 03/10/2016] [Indexed: 01/28/2023]
Abstract
SMYD3 is a lysine methyltransferase overexpressed in colorectal, breast, prostate, and hepatocellular tumors, and has been implicated as an oncogene in human malignancies. Methylation of MEKK2 by SMYD3 is important for regulation of the MEK/ERK pathway, suggesting the possibility of selectively targeting SMYD3 in RAS-driven cancers. Structural and kinetic characterization of SMYD3 was undertaken leading to a co-crystal structure of SMYD3 with a MEKK2-peptide substrate bound, and the observation that SMYD3 follows a partially processive mechanism. These insights allowed for the design of GSK2807, a potent and selective, SAM-competitive inhibitor of SMYD3 (Ki = 14 nM). A high-resolution crystal structure reveals that GSK2807 bridges the gap between the SAM-binding pocket and the substrate lysine tunnel of SMYD3. Taken together, our data demonstrate that small-molecule inhibitors of SMYD3 can be designed to prevent methylation of MEKK2 and these could have potential use as anticancer therapeutics.
Collapse
|
34
|
Sarris ME, Moulos P, Haroniti A, Giakountis A, Talianidis I. Smyd3 Is a Transcriptional Potentiator of Multiple Cancer-Promoting Genes and Required for Liver and Colon Cancer Development. Cancer Cell 2016; 29:354-366. [PMID: 26908355 DOI: 10.1016/j.ccell.2016.01.013] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 12/22/2022]
Abstract
Smyd3 is a protein methyltransferase implicated in cancer development. Here we show that Smyd3 expression in mice is required for chemically induced liver and colon cancer formation. In these organs Smyd3 functions in the nucleus, stimulating the transcription of several key regulators involved in cell proliferation, epithelial-mesenchymal transition, the JAK/Stat3 oncogenic pathway, as well as the Myc and Ctnnb1 oncogenes. Smyd3 interacts with H3K4Me3-modified histone tails, which facilitates its recruitment to the core promoter regions of most active genes. Smyd3 binding density on target genes positively correlates with increased RNA polymerase-II density and transcriptional outputs. Despite its widespread distribution, the transcription-potentiating function of Smyd3 is restricted to a particular set of genes, whose expression is induced specifically during carcinogenesis.
Collapse
Affiliation(s)
- Michalis E Sarris
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece; School of Medicine, University of Crete, 71003 Herakleion, Crete, Greece
| | - Panagiotis Moulos
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Anna Haroniti
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Antonis Giakountis
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece
| | - Iannis Talianidis
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece.
| |
Collapse
|
35
|
Fu W, Liu N, Qiao Q, Wang M, Min J, Zhu B, Xu RM, Yang N. Structural Basis for Substrate Preference of SMYD3, a SET Domain-containing Protein Lysine Methyltransferase. J Biol Chem 2016; 291:9173-80. [PMID: 26929412 DOI: 10.1074/jbc.m115.709832] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 01/05/2023] Open
Abstract
SMYD3 is a SET domain-containing N-lysine methyltransferase associated with multiple cancers. Its reported substrates include histones (H3K4 and H4K5), vascular endothelial growth factor receptor 1 (VEGFR1 Lys(831)) and MAP3 kinase kinase (MAP3K2 Lys(260)). To reveal the structural basis for substrate preference and the catalytic mechanism of SMYD3, we have solved its co-crystal structures with VEGFR1 and MAP3K2 peptides. Our structural and biochemical analyses show that MAP3K2 serves as a robust substrate of SMYD3 because of the presence of a phenylalanine residue at the -2 position. A shallow hydrophobic pocket on SMYD3 accommodates the binding of the phenylalanine and promotes efficient catalytic activities of SMYD3. By contrast, SMYD3 displayed a weak activity toward a VEGFR1 peptide, and the location of the acceptor lysine in the folded kinase domain of VEGFR1 requires drastic conformational rearrangements for juxtaposition of the acceptor lysine with the enzymatic active site. Our results clearly revealed structural determinants for the substrate preference of SMYD3 and provided mechanistic insights into lysine methylation of MAP3K2. The knowledge should be useful for the development of SMYD3 inhibitors in the fight against MAP3K2 and Ras-driven cancer.
Collapse
Affiliation(s)
- Weiqi Fu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Nan Liu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Qiao
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Mingzhu Wang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinrong Min
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Bing Zhu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Rui-Ming Xu
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| | - Na Yang
- From the National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China, the University of Chinese Academy of Sciences, Beijing 100049, China, and
| |
Collapse
|
36
|
Spellmon N, Sun X, Sirinupong N, Edwards B, Li C, Yang Z. Molecular Dynamics Simulation Reveals Correlated Inter-Lobe Motion in Protein Lysine Methyltransferase SMYD2. PLoS One 2015; 10:e0145758. [PMID: 26717235 PMCID: PMC4696779 DOI: 10.1371/journal.pone.0145758] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 01/10/2023] Open
Abstract
SMYD proteins are an exciting field of study as they are linked to many types of cancer-related pathways. Cardiac and skeletal muscle development and function also depend on SMYD proteins opening a possible avenue for cardiac-related treatment. Previous crystal structure studies have revealed that this special class of protein lysine methyltransferases have a bilobal structure, and an open–closed motion may regulate substrate specificity. Here we use the molecular dynamics simulation to investigate the still-poorly-understood SMYD2 dynamics. Cross-correlation analysis reveals that SMYD2 exhibits a negative correlated inter-lobe motion. Principle component analysis suggests that this correlated dynamic is contributed to by a twisting motion of the C-lobe with respect to the N-lobe and a clamshell-like motion between the lobes. Dynamical network analysis defines possible allosteric paths for the correlated dynamics. There are nine communities in the dynamical network with six in the N-lobe and three in the C-lobe, and the communication between the lobes is mediated by a lobe-bridging β hairpin. This study provides insight into the dynamical nature of SMYD2 and could facilitate better understanding of SMYD2 substrate specificity.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Xiaonan Sun
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Brian Edwards
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Chunying Li
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (ZY); (CL)
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- * E-mail: (ZY); (CL)
| |
Collapse
|
37
|
Boriack-Sjodin PA, Swinger KK. Protein Methyltransferases: A Distinct, Diverse, and Dynamic Family of Enzymes. Biochemistry 2015; 55:1557-69. [PMID: 26652298 DOI: 10.1021/acs.biochem.5b01129] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methyltransferase proteins make up a superfamily of enzymes that add one or more methyl groups to substrates that include protein, DNA, RNA, and small molecules. The subset of proteins that act upon arginine and lysine side chains are characterized as epigenetic targets because of their activity on histone molecules and their ability to affect transcriptional regulation. However, it is now clear that these enzymes target other protein substrates, as well, greatly expanding their potential impact on normal and disease biology. Protein methyltransferases are well-characterized structurally. In addition to revealing the overall architecture of the subfamilies of enzymes, structures of complexes with substrates and ligands have permitted detailed analysis of biochemical mechanism, substrate recognition, and design of potent and selective inhibitors. This review focuses on how knowledge gained from structural studies has impacted the understanding of this large class of epigenetic enzymes.
Collapse
Affiliation(s)
- P Ann Boriack-Sjodin
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Kerren K Swinger
- Epizyme, Inc. , 400 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Kim JM, Kim K, Schmidt T, Punj V, Tucker H, Rice JC, Ulmer TS, An W. Cooperation between SMYD3 and PC4 drives a distinct transcriptional program in cancer cells. Nucleic Acids Res 2015; 43:8868-83. [PMID: 26350217 PMCID: PMC4605318 DOI: 10.1093/nar/gkv874] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 08/19/2015] [Indexed: 01/17/2023] Open
Abstract
SET and MYND domain containing protein 3 (SMYD3) is a histone methyltransferase, which has been implicated in cell growth and cancer pathogenesis. Increasing evidence suggests that SMYD3 can influence distinct oncogenic processes by acting as a gene-specific transcriptional regulator. However, the mechanistic aspects of SMYD3 transactivation and whether SMYD3 acts in concert with other transcription modulators remain unclear. Here, we show that SMYD3 interacts with the human positive coactivator 4 (PC4) and that such interaction potentiates a group of genes whose expression is linked to cell proliferation and invasion. SMYD3 cooperates functionally with PC4, because PC4 depletion results in the loss of SMYD3-mediated H3K4me3 and target gene expression. Individual depletion of SMYD3 and PC4 diminishes the recruitment of both SMYD3 and PC4, indicating that SMYD3 and PC4 localize at target genes in a mutually dependent manner. Artificial tethering of a SMYD3 mutant incapable of binding to its cognate elements and interacting with PC4 to target genes is sufficient for achieving an active transcriptional state in SMYD3-deficient cells. These observations suggest that PC4 contributes to SMYD3-mediated transactivation primarily by stabilizing SMYD3 occupancy at target genes. Together, these studies define expanded roles for SMYD3 and PC4 in gene regulation and provide an unprecedented documentation of their cooperative functions in stimulating oncogenic transcription.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Thomas Schmidt
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Vasu Punj
- Department of Medicine, Norris Comprehensive Cancer Center, 1450 Biggy Street, Los Angeles, CA 90033, USA
| | - Haley Tucker
- University of Texas at Austin, Institute for Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Judd C Rice
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo Street, Los Angeles, CA 90033, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
39
|
Du SJ, Tan X, Zhang J. SMYD proteins: key regulators in skeletal and cardiac muscle development and function. Anat Rec (Hoboken) 2015; 297:1650-62. [PMID: 25125178 DOI: 10.1002/ar.22972] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/07/2022]
Abstract
Muscle fibers are composed of myofibrils, one of the most highly ordered macromolecular assemblies in cells. Recent studies demonstrate that members of the Smyd family play critical roles in myofibril assembly of skeletal and cardiac muscle during development. The Smyd family consists of five members including Smyd1, Smyd2, Smyd3, Smyd4, and Smyd5. They share two highly conserved structural and functional domains, namely the SET and MYND domains involved in lysine methylation and protein-protein interaction, respectively. Smyd1 is specifically expressed in muscle cells under the regulation of myogenic transcriptional factors of the MyoD and Mef2 families and the serum responsive factor. Loss of function studies reveal that Smyd1 is required for cardiomyogenesis and sarcomere assembly in skeletal and cardiac muscles. Smyd2, on another hand, is dispensable for heart development in mice. However, Smyd2 appears to play a role in myofilament organization in both skeletal and cardiac muscles via Hsp90 methylation. A Drosophila Smyd4 homologue is a muscle-specific transcriptional modulator involved in the development or function of adult muscle. The molecular mechanisms by which Smyd family proteins function in muscle cells are not well understood. It has been suggested that members of the Smyd family may use multiple mechanisms to control muscle development and cell differentiation, including transcriptional regulation, epigenetic regulation via histone methylation, and methylation of proteins other than histones, such as molecular chaperone Hsp90.
Collapse
Affiliation(s)
- Shao Jun Du
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
40
|
Brown MA, Foreman K, Harriss J, Das C, Zhu L, Edwards M, Shaaban S, Tucker H. C-terminal domain of SMYD3 serves as a unique HSP90-regulated motif in oncogenesis. Oncotarget 2015; 6:4005-19. [PMID: 25738358 PMCID: PMC4414169 DOI: 10.18632/oncotarget.2970] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/16/2014] [Indexed: 01/25/2023] Open
Abstract
The SMYD3 histone methyl transferase (HMTase) and the nuclear chaperone, HSP90, have been independently implicated as proto-oncogenes in several human malignancies. We show that a degenerate tetratricopeptide repeat (TPR)-like domain encoded in the SMYD3 C-terminal domain (CTD) mediates physical interaction with HSP90. We further demonstrate that the CTD of SMYD3 is essential for its basal HMTase activity and that the TPR-like structure is required for HSP90-enhanced enzyme activity. Loss of SMYD3-HSP90 interaction leads to SMYD3 mislocalization within the nucleus, thereby losing its chromatin association. This results in reduction of SMYD3-mediated cell proliferation and, potentially, impairment of SMYD3's oncogenic activity. These results suggest a novel approach for blocking HSP90-driven malignancy in SMYD3-overexpressing cells with a reduced toxicity profile over current HSP90 inhibitors.
Collapse
Affiliation(s)
- Mark A. Brown
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - June Harriss
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Chhaya Das
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Li Zhu
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | - Melissa Edwards
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| | | | - Haley Tucker
- University of Texas at Austin, Institute of Cellular and Molecular Biology, Austin, TX 78712, USA
| |
Collapse
|
41
|
McGrath J, Trojer P. Targeting histone lysine methylation in cancer. Pharmacol Ther 2015; 150:1-22. [PMID: 25578037 DOI: 10.1016/j.pharmthera.2015.01.002] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/03/2014] [Indexed: 02/06/2023]
Abstract
Within the vast landscape of histone modifications lysine methylation has gained increasing attention because of its profound regulatory potential. The methylation of lysine residues on histone proteins modulates chromatin structure and thereby contributes to the regulation of DNA-based nuclear processes such as transcription, replication and repair. Protein families with opposing catalytic activities, lysine methyltransferases (KMTs) and demethylases (KDMs), dynamically control levels of histone lysine methylation and individual enzymes within these families have become candidate oncology targets in recent years. A number of high quality small molecule inhibitors of these enzymes have been identified. Several of these compounds elicit selective cancer cell killing in vitro and robust efficacy in vivo, suggesting that targeting 'histone lysine methylation pathways' may be a relevant, emerging cancer therapeutic strategy. Here, we discuss individual histone lysine methylation pathway targets, the properties of currently available small molecule inhibitors and their application in the context of cancer.
Collapse
Affiliation(s)
- John McGrath
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA
| | - Patrick Trojer
- Constellation Pharmaceuticals, 215 1st Street Suite 200, Cambridge, MA, 02142, USA.
| |
Collapse
|
42
|
Spellmon N, Holcomb J, Trescott L, Sirinupong N, Yang Z. Structure and function of SET and MYND domain-containing proteins. Int J Mol Sci 2015; 16:1406-28. [PMID: 25580534 PMCID: PMC4307310 DOI: 10.3390/ijms16011406] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/26/2022] Open
Abstract
SET (Suppressor of variegation, Enhancer of Zeste, Trithorax) and MYND (Myeloid-Nervy-DEAF1) domain-containing proteins (SMYD) have been found to methylate a variety of histone and non-histone targets which contribute to their various roles in cell regulation including chromatin remodeling, transcription, signal transduction, and cell cycle control. During early development, SMYD proteins are believed to act as an epigenetic regulator for myogenesis and cardiomyocyte differentiation as they are abundantly expressed in cardiac and skeletal muscle. SMYD proteins are also of therapeutic interest due to the growing list of carcinomas and cardiovascular diseases linked to SMYD overexpression or dysfunction making them a putative target for drug intervention. This review will examine the biological relevance and gather all of the current structural data of SMYD proteins.
Collapse
Affiliation(s)
- Nicholas Spellmon
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Joshua Holcomb
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Laura Trescott
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| | - Nualpun Sirinupong
- Nutraceuticals and Functional Food Research and Development Center, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand.
| | - Zhe Yang
- Department of Biochemistry and Molecular Biology, Wayne State University School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA.
| |
Collapse
|
43
|
Liu Y, Luo X, Deng J, Pan Y, Zhang L, Liang H. SMYD3 overexpression was a risk factor in the biological behavior and prognosis of gastric carcinoma. Tumour Biol 2014; 36:2685-94. [PMID: 25472580 DOI: 10.1007/s13277-014-2891-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/21/2014] [Indexed: 02/07/2023] Open
Abstract
SET and MYND domain-containing protein 3 (SMYD3), a histone methyltransferase, plays a key function in the progression of human cancer. However, the role of SMYD3 in gastric carcinoma carcinogenesis has yet to be elucidated. This study aimed to determine the relationships of SMYD3 expression with clinicopathological characteristics and prognosis in gastric carcinoma. The expression of SMYD3 was detected by real-time quantitative reverse transcription PCR and Western blot in gastric carcinoma (GC) cell lines, normal gastric mucosa cell line, GC tissues, and adjacent non-tumor tissues. SMYD3 expression in tissue sections of 180 gastric carcinoma samples were evaluated using immunohistochemistry. The staining results were compared with clinicopathological characteristics and to the outcome of patients. The expression levels of SMYD3 messenger RNA (mRNA) and protein in GC tissues were both higher than those in adjacent non-tumor tissues (p < 0.05). SMYD3 mRNA and protein expression levels were higher in GC cell lines MKN28, SGC7901, and MGC803 than normal gastric mucosa cell line GES-1. SMYD3 expression in gastric carcinoma was significantly correlated with primary tumor size (p < 0.001), lymph node metastasis (p < 0.001), and TNM stage (p = 0.011). Degree of differentiation [hazard ratio (HR) = 5.113; p = 0.006], serosal invasion (HR = 2.074; p = 0.024), lymph node metastasis (HR = 1.354; p < 0.001), and SMYD3 expression (HR = 0.564; p = 0.004) were identified as the independent factors of the overall survival (OS) in all enrolled GC patients. For patients with positive lymph node metastasis, degree of differentiation (HR = 5.974; p = 0.015), lymph node metastasis (HR = 1.257; p < 0.001), and SMYD3 expression (HR = 0.529; p = 0.004) were the independent prognostic factors of the OS. SMYD3 performed an important function in the aggressiveness of gastric carcinoma and may act as a promising target for prognostic prediction.
Collapse
Affiliation(s)
- Yong Liu
- Department of Gastric Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | | | | | | | | | | |
Collapse
|
44
|
Dong S, Zhang P. [Advances of histone methyltransferase SMYD3 in tumors]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2014; 17:689-94. [PMID: 25248712 PMCID: PMC6000504 DOI: 10.3779/j.issn.1009-3419.2014.09.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Shangwen Dong
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China
| | - Peng Zhang
- Department of Cardiothoracic Surgery, Tianjin General Hospital, Tianjin 300052, China;Tianjin Lung Cancer Research Institute, Tianjin 300052, China
| |
Collapse
|
45
|
Eberle CA, Zayas M, Stukalov A, Pichlmair A, Alvisi G, Müller AC, Bennett KL, Bartenschlager R, Superti-Furga G. The lysine methyltransferase SMYD3 interacts with hepatitis C virus NS5A and is a negative regulator of viral particle production. Virology 2014; 462-463:34-41. [PMID: 25092459 PMCID: PMC4139193 DOI: 10.1016/j.virol.2014.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 02/28/2014] [Accepted: 05/14/2014] [Indexed: 01/19/2023]
Abstract
Hepatitis C virus (HCV) is a considerable global health and economic burden. The HCV nonstructural protein (NS) 5A is essential for the viral life cycle. The ability of NS5A to interact with different host and viral proteins allow it to manipulate cellular pathways and regulate viral processes, including RNA replication and virus particle assembly. As part of a proteomic screen, we identified several NS5A-binding proteins, including the lysine methyltransferase SET and MYND domain containing protein 3 (SMYD3). We confirmed the interaction in the context of viral replication by co-immunoprecipitation and co-localization studies. Mutational analyses revealed that the MYND-domain of SMYD3 and domain III of NS5A are required for the interaction. Overexpression of SMYD3 resulted in decreased intracellular and extracellular virus titers, whilst viral RNA replication remained unchanged, suggesting that SMYD3 negatively affects HCV particle production in a NS5A-dependent manner. Identification of SMYD3 as interactor of the HCV protein NS5A using a proteomic approach. Confirmation of SMYD3 as interactor of NS5A in the context of active viral replication. Identification of SMYD3 as negative regulator of HCV infectious particle assembly.
Collapse
Affiliation(s)
- Carol-Ann Eberle
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Margarita Zayas
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| | - Alexey Stukalov
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Andreas Pichlmair
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Max-Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gualtiero Alvisi
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany; Department of Molecular Medicine, Via Gabelli 63, 35121 Padua, Italy
| | - André C Müller
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria
| | - Ralf Bartenschlager
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany.
| | - Giulio Superti-Furga
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria.
| |
Collapse
|
46
|
Mathiyalagan P, Keating ST, Du XJ, El-Osta A. Interplay of chromatin modifications and non-coding RNAs in the heart. Epigenetics 2013; 9:101-12. [PMID: 24247090 DOI: 10.4161/epi.26405] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Precisely regulated patterns of gene expression are dependent on the binding of transcription factors and chromatin-associated determinants referred to as co-activators and co-repressors. These regulatory components function with the core transcriptional machinery to serve in critical activities to alter chromatin modification and regulate gene expression. While we are beginning to understand that cell-type specific patterns of gene expression are necessary to achieve selective cardiovascular developmental programs, we still do not know the molecular machineries that localize these determinants in the heart. With clear implications for the epigenetic control of gene expression signatures, the ENCODE (Encyclopedia of DNA Elements) Project Consortium determined that about 90% of the human genome is transcribed while only 1-2% of transcripts encode proteins. Emerging evidence suggests that non-coding RNA (ncRNA) serves as a signal for decoding chromatin modifications and provides a potential molecular basis for cell type-specific and promoter-specific patterns of gene expression. The discovery of the histone methyltransferase enzyme EZH2 in the regulation of gene expression patterns implicated in cardiac hypertrophy suggests a novel role for chromatin-associated ncRNAs and is the focus of this article.
Collapse
Affiliation(s)
- Prabhu Mathiyalagan
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Samuel T Keating
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia
| | - Xiao-Jun Du
- Experimental Cardiology Laboratory; Baker IDI Heart and Diabetes Institute; Melbourne, VIC Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease Laboratory; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Epigenomics Profiling Facility; Baker IDI Heart and Diabetes Institute; The Alfred Medical Research and Education Precinct; Melbourne, VIC Australia; Department of Pathology; The University of Melbourne; Melbourne, VIC Australia; Faculty of Medicine; Monash University; Melbourne, VIC Australia
| |
Collapse
|
47
|
Proserpio V, Fittipaldi R, Ryall JG, Sartorelli V, Caretti G. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy. Genes Dev 2013; 27:1299-312. [PMID: 23752591 DOI: 10.1101/gad.217240.113] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein-protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause-release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting.
Collapse
|
48
|
Voelkel T, Andresen C, Unger A, Just S, Rottbauer W, Linke WA. Lysine methyltransferase Smyd2 regulates Hsp90-mediated protection of the sarcomeric titin springs and cardiac function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:812-22. [DOI: 10.1016/j.bbamcr.2012.09.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/17/2012] [Accepted: 09/18/2012] [Indexed: 11/16/2022]
|
49
|
Kateb F, Perrin H, Tripsianes K, Zou P, Spadaccini R, Bottomley M, Franzmann TM, Buchner J, Ansieau S, Sattler M. Structural and functional analysis of the DEAF-1 and BS69 MYND domains. PLoS One 2013; 8:e54715. [PMID: 23372760 PMCID: PMC3555993 DOI: 10.1371/journal.pone.0054715] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/04/2012] [Indexed: 11/18/2022] Open
Abstract
DEAF-1 is an important transcriptional regulator that is required for embryonic development and is linked to clinical depression and suicidal behavior in humans. It comprises various structural domains, including a SAND domain that mediates DNA binding and a MYND domain, a cysteine-rich module organized in a Cys(4)-Cys(2)-His-Cys (C4-C2HC) tandem zinc binding motif. DEAF-1 transcription regulation activity is mediated through interactions with cofactors such as NCoR and SMRT. Despite the important biological role of the DEAF-1 protein, little is known regarding the structure and binding properties of its MYND domain.Here, we report the solution structure, dynamics and ligand binding of the human DEAF-1 MYND domain encompassing residues 501-544 determined by NMR spectroscopy. The structure adopts a ββα fold that exhibits tandem zinc-binding sites with a cross-brace topology, similar to the MYND domains in AML1/ETO and other proteins. We show that the DEAF-1 MYND domain binds to peptides derived from SMRT and NCoR corepressors. The binding surface mapped by NMR titrations is similar to the one previously reported for AML1/ETO. The ligand binding and molecular functions of the related BS69 MYND domain were studied based on a homology model and mutational analysis. Interestingly, the interaction between BS69 and its binding partners (viral and cellular proteins) seems to require distinct charged residues flanking the predicted MYND domain fold, suggesting a different binding mode. Our findings demonstrate that the MYND domain is a conserved zinc binding fold that plays important roles in transcriptional regulation by mediating distinct molecular interactions with viral and cellular proteins.
Collapse
Affiliation(s)
- Fatiha Kateb
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Helene Perrin
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Konstantinos Tripsianes
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Peijian Zou
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Roberta Spadaccini
- Dipartimento di Chimica, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | | | - Titus M. Franzmann
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Stephane Ansieau
- Institut National de la Santé Et de la Recherche Médicale U590, Centre Léon Bérard, Université Claude Bernard Lyon I, Lyon, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
50
|
Chu Y, Yao J, Guo H. QM/MM MD and free energy simulations of G9a-like protein (GLP) and its mutants: understanding the factors that determine the product specificity. PLoS One 2012; 7:e37674. [PMID: 22624060 PMCID: PMC3356298 DOI: 10.1371/journal.pone.0037674] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/25/2012] [Indexed: 12/02/2022] Open
Abstract
Certain lysine residues on histone tails could be methylated by protein lysine methyltransferases (PKMTs) using S-adenosyl-L-methionine (AdoMet) as the methyl donor. Since the methylation states of the target lysines play a fundamental role in the regulation of chromatin structure and gene expression, it is important to study the property of PKMTs that allows a specific number of methyl groups (one, two or three) to be added (termed as product specificity). It has been shown that the product specificity of PKMTs may be controlled in part by the existence of specific residues at the active site. One of the best examples is a Phe/Tyr switch found in many PKMTs. Here quantum mechanical/molecular mechanical (QM/MM) molecular dynamics (MD) and free energy simulations are performed on wild type G9a-like protein (GLP) and its F1209Y and Y1124F mutants for understanding the energetic origin of the product specificity and the reasons for the change of product specificity as a result of single-residue mutations at the Phe/Tyr switch as well as other positions. The free energy barriers of the methyl transfer processes calculated from our simulations are consistent with experimental data, supporting the suggestion that the relative free energy barriers may determine, at least in part, the product specificity of PKMTs. The changes of the free energy barriers as a result of the mutations are also discussed based on the structural information obtained from the simulations. The results suggest that the space and active-site interactions around the ε-amino group of the target lysine available for methyl addition appear to among the key structural factors in controlling the product specificity and activity of PKMTs.
Collapse
Affiliation(s)
- Yuzhuo Chu
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Jianzhuang Yao
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Hong Guo
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee, United States of America
- University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America
| |
Collapse
|