1
|
Maezawa S, Yukawa M, Sakashita A, Barski A, Namekawa SH. Site-specific DNA demethylation during spermatogenesis presets the sites of nucleosome retention in mouse sperm. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632457. [PMID: 39829778 PMCID: PMC11741358 DOI: 10.1101/2025.01.10.632457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA methylation patterns are inherited from the parental germline to the embryo. In mature sperm, the sites of unmethylated DNA are tightly coupled to sites of histone retention at gene regulatory elements that are implicated in paternal epigenetic inheritance. The timing and mechanism of site-specific DNA demethylation in the male germline currently remains unknown. Here, we perform genome-wide profiling of DNA methylation during spermatogenesis by capturing methylated DNA through interaction with a methyl-DNA binding protein domain (MBD). Our data demonstrate that there is a site-specific change in DNA methylation during the mitosis-to-meiosis transition. Importantly, the genomic sites that are demethylated during this transition predetermine nucleosome retention sites in spermatozoa. These results suggest that site-specific DNA demethylation during the mitosis-to-meiosis transition of spermatogenesis prepares embryonic gene expression after fertilization. We therefore propose DNA demethylation during spermatogenesis as a novel phase of epigenetic reprogramming that contributes to embryonic gene regulation.
Collapse
Affiliation(s)
- So Maezawa
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Chiba 278-8510, Japan
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Masashi Yukawa
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Akihiko Sakashita
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582 Japan
| | - Artem Barski
- Division of Allergy and immunology, Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| | - Satoshi H. Namekawa
- Division of Reproductive Sciences, Division of Developmental Biology, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, 45229, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
2
|
Heraud-Farlow JE, Taylor SR, Chalk AM, Escudero A, Hu SB, Goradia A, Sun T, Li Q, Nikolic I, Li JB, Fidalgo M, Guallar D, Simpson KJ, Walkley CR. GGNBP2 regulates MDA5 sensing triggered by self double-stranded RNA following loss of ADAR1 editing. Sci Immunol 2024; 9:eadk0412. [PMID: 39576872 DOI: 10.1126/sciimmunol.adk0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 06/05/2024] [Accepted: 10/21/2024] [Indexed: 11/24/2024]
Abstract
Adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) by ADAR1 is an essential modifier of the immunogenicity of cellular dsRNA. The role of MDA5 in sensing unedited cellular dsRNA and the downstream activation of type I interferon (IFN) signaling are well established. However, we have an incomplete understanding of pathways that modify the response to unedited dsRNA. We performed a genome-wide CRISPR screen and showed that GGNBP2, CNOT10, and CNOT11 interact and regulate sensing of unedited cellular dsRNA. We found that GGNBP2 acts between dsRNA transcription and its cytoplasmic sensing by MDA5. GGNBP2 loss prevented induction of type I IFN and autoinflammation after the loss of ADAR1 editing activity by modifying the subcellular distribution of endogenous A-to-I editing substrates and reducing cytoplasmic dsRNA load. These findings reveal previously undescribed pathways to modify diseases associated with ADAR mutations and may be determinants of response or resistance to small-molecule ADAR1 inhibitors.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| | - Scott R Taylor
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Alistair M Chalk
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Adriana Escudero
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Shi-Bin Hu
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ankita Goradia
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Tao Sun
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Qin Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Miguel Fidalgo
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Diana Guallar
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela (USC) - Health Research Institute (IDIS), Santiago de Compostela 15782, Spain
| | - Kaylene J Simpson
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Victorian Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology and Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Carl R Walkley
- St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
- Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
3
|
Sun Y, Kronenberg NM, Sethi SK, Dash SN, Kovalik ME, Sempowski B, Strickland S, Raina R, Sperati CJ, Tian X, Ishibe S, Hall G, Gather MC. CRB2 Depletion Induces YAP Signaling and Disrupts Mechanosensing in Podocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619513. [PMID: 39484460 PMCID: PMC11527017 DOI: 10.1101/2024.10.22.619513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a histologic lesion caused by a variety of injurious stimuli that lead to dysfunction/loss of glomerular visceral epithelial cells (i.e. podocytes). Pathogenic mutations in CRB2, encoding the type 1 transmembrane protein Crumb 2 Homolog Protein, have been shown to cause early-onset corticosteroid-resistant nephrotic syndrome (SRNS)/FSGS. Here, we identified a 2-generation East Asian kindred (DUK40595) with biopsy-proven SRNS/FSGS caused by a compound heterozygous mutation in CRB2 comprised of the previously described truncating mutation p.Gly1036_Alafs*43 and a rare 9-bp deletion mutation p.Leu1074_Asp1076del. Because compound heterozygous mutations involving the truncating p.Gly1036_Alafs*43 variant have been associated with reduced CRB2 expression in podocytes and autosomal recessive SRNS/FSGS, we sought to define the pathogenic effects of CRB2 deficiency in podocytes. We show that CRB2 knockdown induces YAP activity and target gene expression in podocytes. It upregulates YAP-mediated mechanosignaling and increases the density of focal adhesion and F-actin. Using Elastic Resonator Interference Stress Microscopy (ERISM), we demonstrate that CRB2 knockdown also enhances podocyte contractility in a substrate stiffness-dependent manner. The knockdown effect decreases with increasing substrate stiffness, indicating impaired mechanosensing in CRB2 knockdown cells at low substrate stiffness. While the mechanical activation of CRB2 knockdown cells is associated with increased YAP activity, the enhanced cell contractility is not significantly reduced by the selective YAP inhibitors K-975 and verteporfin, suggesting that multiple pathways may be involved in mechanosignaling downstream of CRB2. Taken together, these studies provide the first evidence that CRB2 deficiency may impair podocyte mechanotransduction via disruption of YAP signaling in podocytes.
Collapse
Affiliation(s)
- Yingyu Sun
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Nils M. Kronenberg
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Sidharth K. Sethi
- Pediatric Nephrology and Pediatric Kidney Transplantation, Medanta Kidney and Urology Institute, The Medicity Hospital, Gurgaon, Haryana, India
| | - Surjya N. Dash
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Maria E. Kovalik
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Benjamin Sempowski
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Shelby Strickland
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Rupresh Raina
- Division of Nephrology, Department of Medicine, Yale University, New Haven, Connecticut, U.S.A
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - C. John Sperati
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, U.S.A
| | - Xuefei Tian
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Shuta Ishibe
- Cleveland Clinic Akron General Medical Center, Akron Nephrology Associates, Akron, Ohio, USA
| | - Gentzon Hall
- Division of Nephrology, Department of Medicine, Duke University, Durham, North Carolina, U.S.A
- Duke Molecular Physiology Institute, Duke University, Durham, North Carolina, U.S.A
| | - Malte C. Gather
- Humboldt Centre for Nano- and Biophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
- Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, U.K
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Gabel AM, Belleville AE, Thomas JD, Pineda JMB, Bradley RK. APC mutations dysregulate alternative polyadenylation in cancer. Genome Biol 2024; 25:255. [PMID: 39375704 PMCID: PMC11457450 DOI: 10.1186/s13059-024-03406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/29/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Alternative polyadenylation (APA) affects most human genes and is recurrently dysregulated in all studied cancers. However, the mechanistic origins of this dysregulation are incompletely understood. RESULTS We describe an unbiased analysis of molecular regulators of poly(A) site selection across The Cancer Genome Atlas and identify that colorectal adenocarcinoma is an outlier relative to all other cancer subtypes. This distinction arises from the frequent presence of loss-of-function APC mutations in colorectal adenocarcinoma, which are strongly associated with long 3' UTR expression relative to tumors lacking APC mutations. APC knockout similarly dysregulates APA in human colon organoids. By mining previously published APC eCLIP data, we show that APC preferentially binds G- and C-rich motifs just upstream of proximal poly(A) sites. Lastly, we find that reduced APC expression is associated with APA dysregulation in tumor types lacking recurrent APC mutations. CONCLUSIONS As APC has been previously identified as an RNA-binding protein that preferentially binds 3' UTRs during mouse neurogenesis, our results suggest that APC promotes proximal poly(A) site use and that APC loss and altered expression contribute to pervasive APA dysregulation in cancers.
Collapse
Affiliation(s)
- Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Belleville AE, Thomas JD, Tonnies J, Gabel AM, Borrero Rossi A, Singh P, Queitsch C, Bradley RK. An autoregulatory poison exon in Smndc1 is conserved across kingdoms and influences organism growth. PLoS Genet 2024; 20:e1011363. [PMID: 39150991 PMCID: PMC11357089 DOI: 10.1371/journal.pgen.1011363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 08/28/2024] [Accepted: 07/08/2024] [Indexed: 08/18/2024] Open
Abstract
Many of the most highly conserved elements in the human genome are "poison exons," alternatively spliced exons that contain premature termination codons and permit post-transcriptional regulation of mRNA abundance through induction of nonsense-mediated mRNA decay (NMD). Poison exons are widely assumed to be highly conserved due to their presumed importance for organismal fitness, but this functional importance has never been tested in the context of a whole organism. Here, we report that a poison exon in Smndc1 is conserved across mammals and plants and plays a molecular autoregulatory function in both kingdoms. We generated mouse and A. thaliana models lacking this poison exon to find its loss leads to deregulation of SMNDC1 protein levels, pervasive alterations in mRNA processing, and organismal size restriction. Together, these models demonstrate the importance of poison exons for both molecular and organismal phenotypes that likely explain their extraordinary conservation.
Collapse
Affiliation(s)
- Andrea E. Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - James D. Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Jackson Tonnies
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Graduate Program in Biology, University of Washington, Seattle, Washington, United States of America
| | - Austin M. Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Andrea Borrero Rossi
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Priti Singh
- Preclinical Modeling Core, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, United States of America
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
6
|
Krishnamoorthy GP, Glover AR, Untch BR, Sigcha-Coello N, Xu B, Vukel D, Liu Y, Tiedje V, Berman K, Tamarapu PP, Acuña-Ruiz A, Saqcena M, de Stanchina E, Boucai L, Ghossein RA, Knauf JA, Abdel-Wahab O, Bradley RK, Fagin JA. RBM10 loss induces aberrant splicing of cytoskeletal and extracellular matrix mRNAs and promotes metastatic fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602730. [PMID: 39026820 PMCID: PMC11257529 DOI: 10.1101/2024.07.09.602730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
RBM10 modulates transcriptome-wide cassette exon splicing. Loss-of-function RBM10 mutations are enriched in thyroid cancers with distant metastases. Analysis of transcriptomes and genes mis-spliced by RBM10 loss showed pro-migratory and RHO/RAC signaling signatures. RBM10 loss increases cell velocity. Cytoskeletal and ECM transcripts subject to exon-inclusion events included vinculin (VCL), tenascin C (TNC) and CD44. Knockdown of the VCL exon inclusion transcript in RBM10-null cells reduced cell velocity, whereas knockdown of TNC and CD44 exon-inclusion isoforms reduced invasiveness. RAC1-GTP levels were increased in RBM10-null cells. Mouse Hras G12V /Rbm1O KO thyrocytes develop metastases that are reversed by RBM10 or by combined knockdown of VCL, CD44 and TNC inclusion isoforms. Thus, RBM10 loss generates exon inclusions in transcripts regulating ECM-cytoskeletal interactions, leading to RAC1 activation and metastatic competency. Moreover, a CRISPR-Cas9 screen for synthetic lethality with RBM10 loss identified NFkB effectors as central to viability, providing a therapeutic target for these lethal thyroid cancers.
Collapse
Affiliation(s)
- Gnana P. Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anthony R. Glover
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Brian R. Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nickole Sigcha-Coello
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bin Xu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dina Vukel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yi Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vera Tiedje
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Berman
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Prasanna P. Tamarapu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Acuña-Ruiz
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mahesh Saqcena
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura Boucai
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald A. Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert K. Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - James A. Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
7
|
Pineda JMB, Bradley RK. DUX4 is a common driver of immune evasion and immunotherapy failure in metastatic cancers. eLife 2024; 12:RP89017. [PMID: 38829686 PMCID: PMC11147511 DOI: 10.7554/elife.89017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Cancer immune evasion contributes to checkpoint immunotherapy failure in many patients with metastatic cancers. The embryonic transcription factor DUX4 was recently characterized as a suppressor of interferon-γ signaling and antigen presentation that is aberrantly expressed in a small subset of primary tumors. Here, we report that DUX4 expression is a common feature of metastatic tumors, with ~10-50% of advanced bladder, breast, kidney, prostate, and skin cancers expressing DUX4. DUX4 expression is significantly associated with immune cell exclusion and decreased objective response to PD-L1 blockade in a large cohort of urothelial carcinoma patients. DUX4 expression is a significant predictor of survival even after accounting for tumor mutational burden and other molecular and clinical features in this cohort, with DUX4 expression associated with a median reduction in survival of over 1 year. Our data motivate future attempts to develop DUX4 as a biomarker and therapeutic target for checkpoint immunotherapy resistance.
Collapse
Affiliation(s)
- Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
- Medical Scientist Training Program, University of WashingtonSeattleUnited States
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Basic Sciences Division, Fred Hutchinson Cancer CenterSeattleUnited States
- Department of Genome Sciences, University of WashingtonSeattleUnited States
| |
Collapse
|
8
|
Reynolds AZ, Niedbalski SD. Sex-biased gene regulation varies across human populations as a result of adaptive evolution. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 183:e24888. [PMID: 38100225 PMCID: PMC11279473 DOI: 10.1002/ajpa.24888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVES Studies of human sexual dimorphism and gender disparities in health focus on ostensibly universal molecular sex differences, such as sex chromosomes and circulating hormone levels, while ignoring the extraordinary diversity in biology, behavior, and culture acquired by different human populations over their unique evolutionary histories. MATERIALS AND METHODS Using RNA-Seq data and whole genome sequences from 1000G and HGDP, we investigate variation in sex-biased gene expression across 11 human populations and test whether population-level variation in sex-biased expression may have resulted from adaptive evolution in regions containing sex-specific regulatory variants. RESULTS We find that sex-biased gene expression in humans is highly variable, mostly population-specific, and demonstrates between population reversals. Expression quantitative trait locus mapping reveals sex-specific regulatory regions with evidence of recent positive natural selection, suggesting that variation in sex-biased expression may have evolved as an adaptive response to ancestral environments experienced by human populations. DISCUSSION These results indicate that sex-biased gene expression is more flexible than previously thought and is not generally shared among human populations. Instead, molecular phenotypes associated with sex depend on complex interactions between population-specific molecular evolution and physiological responses to contemporary socioecologies.
Collapse
Affiliation(s)
- Adam Z. Reynolds
- Department of Anthropology, University of New Mexico, Albuquerque, NM
| | | |
Collapse
|
9
|
Gabel AM, Belleville AE, Thomas JD, McKellar SA, Nicholas TR, Banjo T, Crosse EI, Bradley RK. Multiplexed screening reveals how cancer-specific alternative polyadenylation shapes tumor growth in vivo. Nat Commun 2024; 15:959. [PMID: 38302465 PMCID: PMC10834521 DOI: 10.1038/s41467-024-44931-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Alternative polyadenylation (APA) is strikingly dysregulated in many cancers. Although global APA dysregulation is frequently associated with poor prognosis, the importance of most individual APA events is controversial simply because few have been functionally studied. Here, we address this gap by developing a CRISPR-Cas9-based screen to manipulate endogenous polyadenylation and systematically quantify how APA events contribute to tumor growth in vivo. Our screen reveals individual APA events that control mouse melanoma growth in an immunocompetent host, with concordant associations in clinical human cancer. For example, forced Atg7 3' UTR lengthening in mouse melanoma suppresses ATG7 protein levels, slows tumor growth, and improves host survival; similarly, in clinical human melanoma, a long ATG7 3' UTR is associated with significantly prolonged patient survival. Overall, our study provides an easily adaptable means to functionally dissect APA in physiological systems and directly quantifies the contributions of recurrent APA events to tumorigenic phenotypes.
Collapse
Affiliation(s)
- Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Siegen A McKellar
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Taylor R Nicholas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Toshihiro Banjo
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Edie I Crosse
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
10
|
Barquin M, Kouzel IU, Ehrmann B, Basler M, Gruber AJ. scTEA-db: a comprehensive database of novel terminal exon isoforms identified from human single cell transcriptomes. Nucleic Acids Res 2024; 52:D1018-D1023. [PMID: 37850641 PMCID: PMC10767918 DOI: 10.1093/nar/gkad878] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/12/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023] Open
Abstract
The usage of alternative terminal exons results in messenger RNA (mRNA) isoforms that differ in their 3' untranslated regions (3' UTRs) and often also in their protein-coding sequences. Alternative 3' UTRs contain different sets of cis-regulatory elements known to regulate mRNA stability, translation and localization, all of which are vital to cell identity and function. In previous work, we revealed that ∼25 percent of the experimentally observed RNA 3' ends are located within regions currently annotated as intronic, indicating that many 3' end isoforms remain to be uncovered. Also, the inclusion of not yet annotated terminal exons is more tissue specific compared to the already annotated ones. Here, we present the single cell-based Terminal Exon Annotation database (scTEA-db, www.scTEA-db.org) that provides the community with 12 063 so far not yet annotated terminal exons and associated transcript isoforms identified by analysing 53 069 publicly available single cell transcriptomes. Our scTEA-db web portal offers an array of features to find and explore novel terminal exons belonging to 5538 human genes, 110 of which are known cancer drivers. In summary, scTEA-db provides the foundation for studying the biological role of large numbers of so far not annotated terminal exon isoforms in cell identity and function.
Collapse
Affiliation(s)
- Miguel Barquin
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Ian U Kouzel
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Beat Ehrmann
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Michael Basler
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, 8280, Kreuzlingen, Switzerland
| | - Andreas J Gruber
- Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| |
Collapse
|
11
|
Liu Y, Zheng J, Xu Y, Lv J, Wu Z, Feng K, Liu J, Yan W, Wei L, Zhao J, Jiang L, Han M. Multigene testing panels reveal pathogenic variants in sporadic breast cancer patients in northern China. Front Genet 2023; 14:1271710. [PMID: 38028594 PMCID: PMC10666181 DOI: 10.3389/fgene.2023.1271710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Breast cancer, the most prevalent malignancy in women worldwide, presents diverse onset patterns and genetic backgrounds. This study aims to examine the genetic landscape and clinical implications of rare mutations in Chinese breast cancer patients. Methods: Clinical data from 253 patients, including sporadic and familial cases, were analyzed. Comprehensive genomic profiling was performed, categorizing identified rare variants according to the American College of Medical Genetics (ACMG) guidelines. In silico protein modeling was used to analyze potentially pathogenic variants' impact on protein structure and function. Results: We detected 421 rare variants across patients. The most frequently mutated genes were ALK (22.2%), BARD1 (15.6%), and BRCA2 (15.0%). ACMG classification identified 7% of patients harboring Pathogenic/Likely Pathogenic (P/LP) variants, with one case displaying a pathogenic BRCA1 mutation linked to triple-negative breast cancer (TNBC). Also identified were two pathogenic MUTYH variants, previously associated with colon cancer but increasingly implicated in breast cancer. Variants of uncertain significance (VUS) were identified in 112 patients, with PTEN c.C804A showing the highest frequency. The role of these variants in sporadic breast cancer oncogenesis was suggested. In-depth exploration of previously unreported variants led to the identification of three potential pathogenic variants: ATM c.C8573T, MSH3 c.A2723T, and CDKN1C c.C221T. Their predicted impact on protein structure and stability suggests a functional role in cancer development. Conclusion: This study reveals a comprehensive overview of the genetic variants landscape in Chinese breast cancer patients, highlighting the prevalence and potential implications of rare variants. We emphasize the value of comprehensive genomic profiling in breast cancer management and the necessity of continuous research into understanding the functional impacts of these variants.
Collapse
Affiliation(s)
- Yinfeng Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jie Zheng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Yue Xu
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Ji Lv
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Zizheng Wu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Kai Feng
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiani Liu
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Weitao Yan
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Liguang Wei
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| | - Jiangman Zhao
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Lisha Jiang
- Shanghai Biotecan Pharmaceuticals Co., Ltd., Shanghai, China
| | - Meng Han
- Breast Disease Diagnosis and Treatment Center, The First Hospital of Qinhuangdao, Qinhuangdao, Hebei, China
| |
Collapse
|
12
|
Schall PZ, Winkler PA, Petersen-Jones SM, Yuzbasiyan-Gurkan V, Kidd JM. Genome-wide methylation patterns from canine nanopore assemblies. G3 (BETHESDA, MD.) 2023; 13:jkad203. [PMID: 37681359 PMCID: PMC10627269 DOI: 10.1093/g3journal/jkad203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Abstract
Recent advances in long-read sequencing have enabled the creation of reference-quality genome assemblies for multiple individuals within a species. In particular, 8 long-read genome assemblies have recently been published for the canine model (dogs and wolves). These assemblies were created using a range of sequencing and computational approaches, with only limited comparisons described among subsets of the assemblies. Here we present 3 high-quality de novo reference assemblies based upon Oxford Nanopore long-read sequencing: 2 Bernese Mountain Dogs (BD & OD) and a Cairn terrier (CA611). These breeds are of particular interest due to the enrichment of unresolved genetic disorders. Leveraging advancement in software technologies, we utilized published data of Labrador Retriever (Yella) to generate a new assembly, resulting in a ∼280-fold increase in continuity (N50 size of 91 kbp vs 25.75 Mbp). In conjunction with these 4 new assemblies, we uniformly assessed 8 existing assemblies for generalized quality metrics, sequence divergence, and a detailed BUSCO assessment. We identified a set of ∼400 conserved genes during the BUSCO analysis missing in all assemblies. Genome-wide methylation profiles were generated from the nanopore sequencing, resulting in broad concordance with existing whole-genome and reduced-representation bisulfite sequencing, while highlighting superior overage of mobile elements. These analyses demonstrate the ability of Nanopore sequencing to resolve the sequence and epigenetic profile of canine genomes.
Collapse
Affiliation(s)
- Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Paige A Winkler
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Simon M Petersen-Jones
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Vilma Yuzbasiyan-Gurkan
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
- Department of Microbiology and Molecular Genetics, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
13
|
Rani S, Thamodaran V, Nandy K, Fouzia NA, Maddali M, Rajesh P, Vijayanand S, David E, Velayudhan SR. Establishment and characterization of CSCRi006-A: an induced pluripotent stem cell line generated from a patient with Diamond-Blackfan Anemia (DBA) carrying ribosomal protein S19 (RPS19) mutation. Hum Cell 2023; 36:2204-2213. [PMID: 37603219 DOI: 10.1007/s13577-023-00946-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital hypoplastic anemia characterized by ineffective erythropoiesis. DBA is majorly caused by mutations in the ribosomal protein (RP) genes (Gadhiya and Wills in Diamond-Blackfan Anemia, https://www.statpearls.com/ ; 2023). A suitable disease model that yields a continuous supply of erythroid cells is required to study disease pathogenesis and drug discovery. Toward this, we reprogrammed dermal fibroblasts from a DBA patient with a heterozygous mutation c.22-23delAG in the RPS19 gene identified through exome sequencing. To generate induced pluripotent stem cells (iPSCs), we induced episomal expression of the reprogramming factors OTC3/4, L-MYC, LIN28, SOX2, and KLF4, and a p53 shRNA2. The DBA-iPSC line CSCRi006-A generated during this study was extensively characterized for its pluripotency and genome stability. The clone retained normal karyotype and showed high expression levels of pluripotency markers, OCT4, NANOG, SOX2, TRA-I-60, TRA-I-81, and SSEA4. It could differentiate into cells originating from all three germ cell layers, as identified by immunostaining for SOX17 (endoderm), Brachyury (mesoderm), and PAX6 (ectoderm). IPSCs provide a renewable source of cells for in vitro disease modeling. CSCRi006-A, a thoroughly characterized iPSC line carrying heterozygous RPS19 c.22-23delAG mutation, is a valuable cell line for the disease modeling of DBA. This iPSC line can be differentiated into different blood cell types to study the mechanisms of disease development and identify potential treatments.
Collapse
Affiliation(s)
- Sonam Rani
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Vasanth Thamodaran
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
- Tata Institute for Genetics and Society, Bangalore, India
| | - Krittika Nandy
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - N A Fouzia
- Department of Hematology, Christian Medical College, Vellore, India
| | - Madhavi Maddali
- Department of Hematology, Christian Medical College, Vellore, India
| | - Praveena Rajesh
- Centre for Stem Cell Research, Christian Medical College, Vellore, India
| | - S Vijayanand
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, India
| | - Shaji R Velayudhan
- Centre for Stem Cell Research, Christian Medical College, Vellore, India.
- Department of Hematology, Christian Medical College, Vellore, India.
| |
Collapse
|
14
|
Xiong L, Helm EY, Dean JW, Sun N, Jimenez-Rondan FR, Zhou L. Nutrition impact on ILC3 maintenance and function centers on a cell-intrinsic CD71-iron axis. Nat Immunol 2023; 24:1671-1684. [PMID: 37709985 PMCID: PMC11256193 DOI: 10.1038/s41590-023-01612-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/04/2023] [Indexed: 09/16/2023]
Abstract
Iron metabolism is pivotal for cell fitness in the mammalian host; however, its role in group 3 innate lymphoid cells (ILC3s) is unknown. Here we show that transferrin receptor CD71 (encoded by Tfrc)-mediated iron metabolism cell-intrinsically controls ILC3 proliferation and host protection against Citrobacter rodentium infection and metabolically affects mitochondrial respiration by switching of oxidative phosphorylation toward glycolysis. Iron deprivation or Tfrc ablation in ILC3s reduces the expression and/or activity of the aryl hydrocarbon receptor (Ahr), a key ILC3 regulator. Genetic ablation or activation of Ahr in ILC3s leads to CD71 upregulation or downregulation, respectively, suggesting Ahr-mediated suppression of CD71. Mechanistically, Ahr directly binds to the Tfrc promoter to inhibit transcription. Iron overload partially restores the defective ILC3 compartment in the small intestine of Ahr-deficient mice, consistent with the compensatory upregulation of CD71. These data collectively demonstrate an under-appreciated role of the Ahr-CD71-iron axis in the regulation of ILC3 maintenance and function.
Collapse
Affiliation(s)
- Lifeng Xiong
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Eric Y Helm
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Joseph W Dean
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Na Sun
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Felix R Jimenez-Rondan
- Center for Nutritional Sciences and Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Liang Zhou
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Shapiro JA, Gaonkar KS, Spielman SJ, Savonen CL, Bethell CJ, Jin R, Rathi KS, Zhu Y, Egolf LE, Farrow BK, Miller DP, Yang Y, Koganti T, Noureen N, Koptyra MP, Duong N, Santi M, Kim J, Robins S, Storm PB, Mack SC, Lilly JV, Xie HM, Jain P, Raman P, Rood BR, Lulla RR, Nazarian J, Kraya AA, Vaksman Z, Heath AP, Kline C, Scolaro L, Viaene AN, Huang X, Way GP, Foltz SM, Zhang B, Poetsch AR, Mueller S, Ennis BM, Prados M, Diskin SJ, Zheng S, Guo Y, Kannan S, Waanders AJ, Margol AS, Kim MC, Hanson D, Van Kuren N, Wong J, Kaufman RS, Coleman N, Blackden C, Cole KA, Mason JL, Madsen PJ, Koschmann CJ, Stewart DR, Wafula E, Brown MA, Resnick AC, Greene CS, Rokita JL, Taroni JN. OpenPBTA: The Open Pediatric Brain Tumor Atlas. CELL GENOMICS 2023; 3:100340. [PMID: 37492101 PMCID: PMC10363844 DOI: 10.1016/j.xgen.2023.100340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/28/2023] [Accepted: 05/04/2023] [Indexed: 07/27/2023]
Abstract
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors. Transcriptomic classification reveals universal TP53 dysregulation in mismatch repair-deficient hypermutant high-grade gliomas and TP53 loss as a significant marker for poor overall survival in ependymomas and H3 K28-mutant diffuse midline gliomas. Already being actively applied to other pediatric cancers and PNOC molecular tumor board decision-making, OpenPBTA is an invaluable resource to the pediatric oncology community.
Collapse
Affiliation(s)
- Joshua A. Shapiro
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Krutika S. Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephanie J. Spielman
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Rowan University, Glassboro, NJ 08028, USA
| | - Candace L. Savonen
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Chante J. Bethell
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Run Jin
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura E. Egolf
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey K. Farrow
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel P. Miller
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yang Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Tejaswi Koganti
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nighat Noureen
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Mateusz P. Koptyra
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nhat Duong
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Mariarita Santi
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Shannon Robins
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Phillip B. Storm
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stephen C. Mack
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jena V. Lilly
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo M. Xie
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Payal Jain
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian R. Rood
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
| | - Rishi R. Lulla
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
| | - Javad Nazarian
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
| | - Adam A. Kraya
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zalman Vaksman
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Allison P. Heath
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Cassie Kline
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Laura Scolaro
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela N. Viaene
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xiaoyan Huang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gregory P. Way
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Steven M. Foltz
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Anna R. Poetsch
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
| | - Sabine Mueller
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
| | - Brian M. Ennis
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michael Prados
- University of California, San Francisco, San Francisco, CA 94115, USA
| | - Sharon J. Diskin
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Siyuan Zheng
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrivats Kannan
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Angela J. Waanders
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashley S. Margol
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
| | - Meen Chul Kim
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Derek Hanson
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | - Nicholas Van Kuren
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jessica Wong
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Rebecca S. Kaufman
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noel Coleman
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Christopher Blackden
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kristina A. Cole
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jennifer L. Mason
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Peter J. Madsen
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Carl J. Koschmann
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
| | - Douglas R. Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
| | - Eric Wafula
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A. Brown
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Adam C. Resnick
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Casey S. Greene
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jaclyn N. Taroni
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
| | - Children’s Brain Tumor Network
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pacific Pediatric Neuro-Oncology Consortium
- Childhood Cancer Data Lab, Alex’s Lemonade Stand Foundation, Bala Cynwyd, PA 19004, USA
- Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Division of Neurosurgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Bioinformatics and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Rowan University, Glassboro, NJ 08028, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
- Greehey Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20850, USA
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Children’s National Research Institute, Washington, DC 20012, USA
- George Washington University School of Medicine and Health Sciences, Washington, DC 20052, USA
- Division of Hematology/Oncology, Hasbro Children’s Hospital, Providence, RI 02903, USA
- Department of Pediatrics, The Warren Alpert School of Brown University, Providence, RI 02912, USA
- Department of Pediatrics, University of Zurich, Zurich, Switzerland
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, CO 80045, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Biotechnology Center, Technical University Dresden, Dresden, Germany
- National Center for Tumor Diseases, Dresden, Germany
- Department of Neurology, Neurosurgery and Pediatrics, University of California, San Francisco, San Francisco, CA 94115, USA
- University of California, San Francisco, San Francisco, CA 94115, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Division of Hematology, Oncology, Neuro-Oncology, and Stem Cell Transplant, Ann & Robert H Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Division of Hematology and Oncology, Children’s Hospital of Los Angeles, Los Angeles, CA 90027, USA
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA
- Hackensack Meridian School of Medicine, Nutley, NJ 07110, USA
- Hackensack University Medical Center, Hackensack, NJ 07601, USA
- Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pediatrics, University of Michigan Health, Ann Arbor, MI 48105, USA
- Pediatric Hematology Oncology, Mott Children’s Hospital, Ann Arbor, MI 48109, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
16
|
Hoppe ER, Udy DB, Bradley RK. Recursive splicing discovery using lariats in total RNA sequencing. Life Sci Alliance 2023; 6:e202201889. [PMID: 37137707 PMCID: PMC10156609 DOI: 10.26508/lsa.202201889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023] Open
Abstract
Recursive splicing is a non-canonical splicing mechanism in which an intron is removed in segments via multiple splicing reactions. Relatively few recursive splice sites have been identified with high confidence in human introns, and more comprehensive analyses are needed to better characterize where recursive splicing happens and whether or not it has a regulatory function. In this study, we use an unbiased approach using intron lariats to search for recursive splice sites in constitutive introns and alternative exons in the human transcriptome. We find evidence for recursive splicing in a broader range of intron sizes than previously reported and detail a new location for recursive splicing at the distal ends of cassette exons. In addition, we identify evidence for the conservation of these recursive splice sites among higher vertebrates and the use of these sites to influence alternative exon exclusion. Together, our data demonstrate the prevalence of recursive splicing and its potential influence on gene expression through alternatively spliced isoforms.
Collapse
Affiliation(s)
- Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Dylan B Udy
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
17
|
Dunker W, Zaver SA, Pineda JMB, Howard CJ, Bradley RK, Woodward JJ. The proto-oncogene SRC phosphorylates cGAS to inhibit an antitumor immune response. JCI Insight 2023; 8:e167270. [PMID: 37166992 PMCID: PMC10371251 DOI: 10.1172/jci.insight.167270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 05/12/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is a DNA sensor and responsible for inducing an antitumor immune response. Recent studies reveal that cGAS is frequently inhibited in cancer, and therapeutic targets to promote antitumor cGAS function remain elusive. SRC is a proto-oncogene tyrosine kinase and is expressed at elevated levels in numerous cancers. Here, we demonstrate that SRC expression in primary and metastatic bladder cancer negatively correlates with innate immune gene expression and immune cell infiltration. We determine that SRC restricts cGAS signaling in human cell lines through SRC small molecule inhibitors, depletion, and overexpression. cGAS and SRC interact in cells and in vitro, while SRC directly inhibits cGAS enzymatic activity and DNA binding in a kinase-dependent manner. SRC phosphorylates cGAS, and inhibition of cGAS Y248 phosphorylation partially reduces SRC inhibition. Collectively, our study demonstrates that cGAS antitumor signaling is hindered by the proto-oncogene SRC and describes how cancer-associated proteins can regulate the innate immune system.
Collapse
Affiliation(s)
| | - Shivam A. Zaver
- Department of Microbiology and
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
| | - Jose Mario Bello Pineda
- Medical Scientist Training Program, University of Washington, Seattle, Washington, USA
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | | - Robert K. Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|
18
|
Mendez Ruiz S, Chalk AM, Goradia A, Heraud-Farlow J, Walkley C. Over-expression of ADAR1 in mice does not initiate or accelerate cancer formation in vivo. NAR Cancer 2023; 5:zcad023. [PMID: 37275274 PMCID: PMC10233902 DOI: 10.1093/narcan/zcad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Adenosine to inosine editing (A-to-I) in regions of double stranded RNA (dsRNA) is mediated by adenosine deaminase acting on RNA 1 (ADAR1) or ADAR2. ADAR1 and A-to-I editing levels are increased in many human cancers. Inhibition of ADAR1 has emerged as a high priority oncology target, however, whether ADAR1 overexpression enables cancer initiation or progression has not been directly tested. We established a series of in vivo models to allow overexpression of full-length ADAR1, or its individual isoforms, to test if increased ADAR1 expression was oncogenic. Widespread over-expression of ADAR1 or the p110 or p150 isoforms individually as sole lesions was well tolerated and did not result in cancer initiation. Therefore, ADAR1 overexpression alone is not sufficient to initiate cancer. We demonstrate that endogenous ADAR1 and A-to-I editing increased upon immortalization in murine cells, consistent with the observations from human cancers. We tested if ADAR1 over-expression could co-operate with cancer initiated by loss of tumour suppressors using a model of osteosarcoma. We did not see a disease potentiating or modifying effect of overexpressing ADAR1 or its isoforms in the models assessed. We conclude that increased ADAR1 expression and A-to-I editing in cancers is most likely a consequence of tumor formation.
Collapse
Affiliation(s)
- Shannon Mendez Ruiz
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria 3065, Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | - Carl R Walkley
- To whom correspondence should be addressed. Tel: +61 3 9231 2480;
| |
Collapse
|
19
|
Liang Z, Chalk AM, Taylor S, Goradia A, Heraud‐Farlow JE, Walkley CR. The phenotype of the most common human ADAR1p150 Zα mutation P193A in mice is partially penetrant. EMBO Rep 2023; 24:e55835. [PMID: 36975179 PMCID: PMC10157378 DOI: 10.15252/embr.202255835] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
ADAR1 -mediated A-to-I RNA editing is a self-/non-self-discrimination mechanism for cellular double-stranded RNAs. ADAR mutations are one cause of Aicardi-Goutières Syndrome, an inherited paediatric encephalopathy, classed as a "Type I interferonopathy." The most common ADAR1 mutation is a proline 193 alanine (p.P193A) mutation, mapping to the ADAR1p150 isoform-specific Zα domain. Here, we report the development of an independent murine P195A knock-in mouse, homologous to human P193A. The Adar1P195A/P195A mice are largely normal and the mutation is well tolerated. When the P195A mutation is compounded with an Adar1 null allele (Adar1P195A/- ), approximately half the animals are runted with a shortened lifespan while the remaining Adar1P195A/- animals are normal, contrasting with previous reports. The phenotype of the Adar1P195A/- animals is both associated with the parental genotype and partly non-genetic/environmental. Complementation with an editing-deficient ADAR1 (Adar1P195A/E861A ), or the loss of MDA5, rescues phenotypes in the Adar1P195A/- mice.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Scott Taylor
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Jacki E Heraud‐Farlow
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| |
Collapse
|
20
|
Balasundaram A, Kumar S U, D TK, Anil Dedge A, R G, K SS, R S, C GPD. The targeted next-generation sequence revealed SMAD4, AKT1, and TP53 mutations from circulating cell-free DNA of breast cancer and its effect on protein structure - A computational approach. J Biomol Struct Dyn 2023; 41:15584-15597. [PMID: 37011004 DOI: 10.1080/07391102.2023.2191122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/06/2023] [Indexed: 04/04/2023]
Abstract
Breast cancer biomarkers that detect marginally advanced stages are still challenging. The detection of specific abnormalities, targeted therapy selection, prognosis, and monitoring of treatment effectiveness over time are all made possible by circulating free DNA (cfDNA) analysis. The proposed study will detect specific genetic abnormalities from the plasma cfDNA of a female breast cancer patient by sequencing a cancer-related gene panel (MGM455 - Oncotrack Ultima), including 56 theranostic genes (SNVs and small INDELs). Initially, we determined the pathogenicity of the observed mutations using PredictSNP, iStable, Align-GVGD, and ConSurf servers. As a next step, molecular dynamics (MD) was implemented to determine the functional significance of SMAD4 mutation (V465M). Lastly, the mutant gene relationships were examined using the Cytoscape plug-in GeneMANIA. Using ClueGO, we determined the gene's functional enrichment and integrative analysis. The structural characteristics of SMAD4 V465M protein by MD simulation analysis further demonstrated that the mutation was deleterious. The simulation showed that the native structure was more significantly altered by the SMAD4 (V465M) mutation. Our findings suggest that SMAD4 V465M mutation might be significantly associated with breast cancer, and other patient-found mutations (AKT1-E17K and TP53-R175H) are synergistically involved in the process of SMAD4 translocate to nuclease, which affects the target gene translation. Therefore, this combination of gene mutations could alter the TGF-β signaling pathway in BC. We further proposed that the SMAD4 protein loss may contribute to an aggressive phenotype by inhibiting the TGF-β signaling pathway. Thus, breast cancer's SMAD4 (V465M) mutation might increase their invasive and metastatic capabilities.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ambritha Balasundaram
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Thirumal Kumar D
- Meenakshi Academy of Higher Education and Research (Deemed to be University), Chennai, Tamil Nadu, India
| | - Aditi Anil Dedge
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Siva R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
21
|
Monteiro A, Pavithran PV, Puthukulangara M, Bhavani N, Nampoothiri S, Yesodharan D, Kumaran R. Cost-effective genotyping for classical congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) in resource-poor settings: multiplex ligation probe amplification (MLPA) with/without sequential next-generation sequencing (NGS). Hormones (Athens) 2023; 22:311-320. [PMID: 36952211 DOI: 10.1007/s42000-023-00445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/28/2023] [Indexed: 03/24/2023]
Abstract
PURPOSE Genotyping of classic congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency (21-OHD) is becoming increasingly significant beyond prenatal counseling in the current era of emerging gene therapy/editing technologies. While the knowledge of common variants helps in designing cost-effective genotyping strategies, limited data are currently available from the Indian subcontinent, especially South India, mainly due to financial constraints. The aim of this study is to assess the genotype of individuals with classic CAH from a South Indian cohort in a cost-effective manner. METHODS The genotypes of 46 unrelated subjects with classic CAH were studied through initial multiplex ligation-dependent probe amplification (MLPA) using the SALSA MLPA Probe-mix P050 CAH (MRC Holland). Next-generation sequencing (NGS) was done in 10 subjects, as their MLPA was either negative or showed heterozygous variants. RESULTS The common variants observed in our study population of 46 subjects were large deletions (35.8%), intron 2 variant [c.293-13A/C > G] (35.8%), 8 bp del [c.332_339del p.(Gly111Valfs*21)] (7.7%), and R356W [c.1069 C > T p.(Arg357Trp)] (6.6%). MLPA alone detected pathogenic variants in 78.2% of the initial study samples (36/46). Sequential NGS resulted in a 100% detection rate in our study population. CONCLUSION MLPA appears to be an effective first genotyping modality for this South Indian cohort due to the high prevalence of large deletions and common variants. MLPA as a first initial screening genotyping test with sequential NGS when required may be a cost-effective and highly sensitive approach to CYP21A2 genotyping in our part of the world and in resource-poor settings.
Collapse
Affiliation(s)
- Ana Monteiro
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Praveen V Pavithran
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India.
| | | | - Nisha Bhavani
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, Kochi, Kerala, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Dhanya Yesodharan
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| | - Reshma Kumaran
- Paediatric Clinical Genetics Laboratory, Amrita Institute of Medical Sciences, Kochi, Kerala, India
| |
Collapse
|
22
|
R HC, Kumar S U, R G, Naayanan PJ, Sathiyarajeswaren P, Devi MSS, K SS, Doss C GP. An integrated investigation of structural and pathway alteration caused by PIK3CA and TP53 mutations identified in cfDNA of metastatic breast cancer. J Cell Biochem 2023; 124:188-204. [PMID: 36563059 DOI: 10.1002/jcb.30354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/12/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
In peripheral blood, cell-free DNA (cfDNA) contains circulating tumor DNA (ctDNA), which indicates molecular abnormalities in metastatic breast tumor tissue. The sequencing of cfDNA of Metastatic Breast Cancer (MBC) patients allows assessment of therapy response and noninvasive treatment. In the proposed study, clinically significant alterations in PIK3CA and TP53 genes associated with MBC resulting in a missense substitution of His1047Arg and Arg282Trp from an next-generation sequencing-based multi-gene panel were reported in a cfDNA of a patient with MBC. To investigate the impact of the reported mutation, we used molecular docking, molecular dynamics simulation, network analysis, and pathway analysis. Molecular Docking analysis determined the distinct binding pattern revealing H1047R-ATP complex has a higher number of Hydrogen bonds (H-bonds) and binding affinity with a slight difference compared to the PIK3CA-ATP complex. Following, molecular dynamics simulation for 200 ns, of which H1047R-ATP complex resulted in the instability of PIK3CA. Similarly, for TP53 mutant R282W, the zinc-free state (apo) and zinc-bounded (holo) complexes were investigated for conformational change between apo and holo complexes, of which the holo complex mutant R282W was unstable. To validate the conformational change of PIK3CA and TP53, 80% mutation of H1047R in the kinase domain of p110α expressed ubiquitously in PIK3CA protein that alters PI3K pathway, while R282W mutation in DNA binding helix (H2) region of P53 protein inhibits the transcription factor in P53 pathway causing MBC. According to our findings, the extrinsic (hypoxia, oxidative stress, and acidosis); intrinsic factors (MYC amplification) in PIK3CA and TP53 mutations will provide potential insights for developing novel therapeutic methods for MBC therapy.
Collapse
Affiliation(s)
- Hephzibah Cathryn R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Udhaya Kumar S
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Gnanasambandan R
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | | | | - M S Shree Devi
- Siddha Central Research Institute (CCRS), Chennai, Tamil Nadu, India
| | - Satish Srinivas K
- Department of Radiation Oncology, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
23
|
Wang E, Pineda JMB, Kim WJ, Chen S, Bourcier J, Stahl M, Hogg SJ, Bewersdorf JP, Han C, Singer ME, Cui D, Erickson CE, Tittley SM, Penson AV, Knorr K, Stanley RF, Rahman J, Krishnamoorthy G, Fagin JA, Creger E, McMillan E, Mak CC, Jarvis M, Bossard C, Beaupre DM, Bradley RK, Abdel-Wahab O. Modulation of RNA splicing enhances response to BCL2 inhibition in leukemia. Cancer Cell 2023; 41:164-180.e8. [PMID: 36563682 PMCID: PMC9839614 DOI: 10.1016/j.ccell.2022.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 10/07/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Therapy resistance is a major challenge in the treatment of cancer. Here, we performed CRISPR-Cas9 screens across a broad range of therapies used in acute myeloid leukemia to identify genomic determinants of drug response. Our screens uncover a selective dependency on RNA splicing factors whose loss preferentially enhances response to the BCL2 inhibitor venetoclax. Loss of the splicing factor RBM10 augments response to venetoclax in leukemia yet is completely dispensable for normal hematopoiesis. Combined RBM10 and BCL2 inhibition leads to mis-splicing and inactivation of the inhibitor of apoptosis XIAP and downregulation of BCL2A1, an anti-apoptotic protein implicated in venetoclax resistance. Inhibition of splicing kinase families CLKs (CDC-like kinases) and DYRKs (dual-specificity tyrosine-regulated kinases) leads to aberrant splicing of key splicing and apoptotic factors that synergize with venetoclax, and overcomes resistance to BCL2 inhibition. Our findings underscore the importance of splicing in modulating response to therapies and provide a strategy to improve venetoclax-based treatments.
Collapse
Affiliation(s)
- Eric Wang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA.
| | - Jose Mario Bello Pineda
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA; Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Won Jun Kim
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sisi Chen
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessie Bourcier
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Simon J Hogg
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Phillipp Bewersdorf
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cuijuan Han
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Michael E Singer
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Cui
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline E Erickson
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Steven M Tittley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexander V Penson
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Katherine Knorr
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert F Stanley
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jahan Rahman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gnana Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Division of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medicine, Division of Endocrinology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | | | | | | | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
24
|
Wang R, Wu B, Jian J, Tang Y, Zhang T, Song Z, Zhang W, Qiong L. How to survive in the world's third poplar: Insights from the genome of the highest altitude woody plant, Hippophae tibetana (Elaeagnaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:1051587. [PMID: 36589082 PMCID: PMC9797102 DOI: 10.3389/fpls.2022.1051587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Hippophae tibetana (Tibetan sea-buckthorn) is one of the highest distributed woody plants in the world (3,000-5,200 meters a.s.l.). It is characterized by adaptation to extreme environment and important economic values. Here, we combined PacBio Hifi platform and Hi-C technology to assemble a 1,452.75 Mb genome encoding 33,367 genes with a Contig N50 of 74.31 Mb, and inferred its sexual chromosome. Two Hippophae-specific whole-genome duplication events (18.7-21.2 million years ago, Ma; 28.6-32.4 Ma) and long terminal repeats retroelements (LTR-RTs) amplifications were detected. Comparing with related species at lower altitude, Ziziphus jujuba (<1, 700 meters a.s.l.), H. tibetana had some significantly rapid evolving genes involved in adaptation to high altitude habitats. However, comparing with Hippophae rhamnoides (<3, 700 meters a.s.l.), no rapid evolving genes were found except microtubule and microtubule-based process genes, H. tibetana has a larger genome, with extra 2, 503 genes (7.5%) and extra 680.46 Mb transposable elements (TEs) (46.84%). These results suggest that the changes in the copy number and regulatory pattern of genes play a more important role for H. tibetana adapting to more extreme and variable environments at higher altitude by more TEs and more genes increasing genome variability and expression plasticity. This suggestion was supported by two findings: nitrogen-fixing genes of H. tibetana having more copies, and intact TEs being significantly closer genes than fragmentary TEs. This study provided new insights into the evolution of alpine plants.
Collapse
Affiliation(s)
- Ruoqiu Wang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Wu
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiwei Tang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ticao Zhang
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhiping Song
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenju Zhang
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - La Qiong
- Tibet University-Fudan University Joint Laboratory for Biodiversity and Global Change, School of Life Sciences, Fudan University, Shanghai, China
- Research Center for Ecology, College of Science, Tibet University, Lhasa, China
| |
Collapse
|
25
|
Meena JP, Pathak N, Gupta AK, Bakhshi S, Gupta R, Makkar H, Seth R. Molecular evaluation of gene mutation profiles and copy number variations in pediatric acute myeloid leukemia. Leuk Res 2022; 122:106954. [PMID: 36162216 DOI: 10.1016/j.leukres.2022.106954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/19/2022] [Accepted: 09/17/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The objectives of this study were to investigate the mutation profiles of targeted genes and copy number variations (CNVs) in normal cytogenetics (CN) pediatric acute myeloid leukemia (AML). METHODS This prospective study was conducted from October 2018 to December 2020. The next-generation sequencing (NGS) and chromosomal microarray analyses (CMA) were performed in pediatric CN-AML patients. RESULTS Out of 94 children (aged ≤18 years), 70 patients with AML (24 excluded) underwent conventional karyotyping/cytogenetic analyses. Forty-five (64.3%) of patients had abnormal/ recurrent cytogenetic abnormalities and 25 (35.7%) had normal cytogenetics. Twenty-three out of 25 CN-AML were further processed for gene mutation profile and CNVs using NGS and CMA, respectively. Twenty-two out of 23 (95.7%) patients were detected to have mutations in various genes. The common mutations were: NRAS, NPM1, CEBPA, KRAS, KIT, RUNX1, NOTCH1, WT1, GATA1, GATA2, FLT3, KMT2D, FLT3-TKD, and PHF6. Copy number variations (CNVs) were detected in nine patients (39%), and eight (34.8%) had a long contiguous stretch of homozygosity (LCSH) /loss of heterozygosity (LOH). An LCSH was detected on chromosomes 5, 7, 11, and 19. The gains were more common than losses (8 vs 2). The gains were observed on chromosomes 8, 9, 14, 19, 21, and 22, and the losses were detected on chromosomes 7 and 10. Monosomy was observed in three patients. Three patients (monosomy7, n = 2, and FLT-ITD, n = 1) were reclassified into the high-risk category. Post-induction, complete remission was achieved in all evaluable patients. CONCLUSION CN-AML patients have genetic abnormalities that can be detected by more advanced techniques like NGS and CMA. These genetic abnormalities play a role in risk stratification that may remain hidden in otherwise CN-AML.
Collapse
Affiliation(s)
- Jagdish Prasad Meena
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Nivedita Pathak
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Aditya Kumar Gupta
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Sameer Bakhshi
- Department of Medical Oncology, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Ritu Gupta
- Laboratory Oncology Unit, Dr. B.R.A. IRCH, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Harshita Makkar
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| | - Rachna Seth
- Division of Pediatric Oncology, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi 110029, India.
| |
Collapse
|
26
|
Mamgain G, Naithani M, Patra P, Mamgain M, Morang S, Nayak J, Kumar K, Singh S, Bakliwal A, Rajoreya A, Vaniyath S, Chattopadhyay D, Chetia R, Gupta A, Dhingra G, Sundriyal D, Nath UK. Next-Generation Sequencing Highlights of Diffuse Large B-cell Lymphoma in a Tertiary Care Hospital in North India. Cureus 2022; 14:e28241. [PMID: 36158348 PMCID: PMC9489829 DOI: 10.7759/cureus.28241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2022] [Indexed: 11/24/2022] Open
Abstract
Introduction: Next-generation sequencing (NGS) elucidates the diffuse large B-cell lymphoma (DLBCL) genetic characteristics by finding recurrent and novel somatic mutations. This observational study attempted to create an NGS panel with a focus on identifying novel somatic mutations which could have potential clinical and therapeutic implications. This panel was created to look for mutations in 133 genes chosen on basis of a literature review and it was used to sequence the tumor DNA of 20 DLBCL patients after a centralized histopathologic review. Methods: The study included 20 patients having DLBCL. The quality and quantity of tumor cells were accessed by H&E staining and correlated with histopathology and Immunohistochemistry (IHC) status. Patients were grouped as ABC (activated B-cell), PMBL (primary mediastinal large B-cell lymphoma), and other or unclassified subtypes. The lymphoma panel of 133 was designed on targeted sequencing of multiple genes for the coding regions through NGS. The libraries were prepared and sequenced using the Illumina platform. The alignment of obtained sequences was performed using Burrows-Wheeler Aligner and identification of somatic mutations was done using LoFreq (version 2) variant caller. The mutations were annotated using an annotation pipeline (VariMAT). Previously published literature and databases were used for the annotation of clinically relevant mutations. The common variants were filtered for reporting based on the presence in various population databases (1000G, ExAC, EVS, 1000Japanese, dbSNP, UK10K, MedVarDb). A custom read-depth-based algorithm was used to determine CNV (Copy Number Variants) from targeted sequencing experiments. Rare CNVs were detected using a comparison of the test data read-depths with the matched reference dataset. Reportable mutations were prioritized and prepared based on AMP-ASCO-CAP (Association for Molecular Pathology-American Society of Clinical Oncology-College of American Pathologists), WHO guidelines, and also based on annotation metrics from OncoMD (a knowledge base of genomic alterations). Results: The informativity of the panel was 95 percent. NOTCH 1 was the most frequently mutated gene in 16.1% of patients followed by 12.9% who had ARID1A mutations. MYD88 and TP53 mutations were detected in 9.6% of the patient while 6.4% of patients had CSF3R mutations. NOTCH 1 and TP 53 are the most frequently reported gene in the middle age group (40-60). Mutation in MYD88 is reported in every age group. MYD88 (51%) is the most common mutation in ABC subtypes of DLBCL, followed by NOTCH 1 (44%) and SOCS 1 (33%) according to our findings. NOTCH 1 mutations are frequent in ABC and PMBL subtypes. Closer investigation reveals missense mutation is the most frequent mutation observed in the total cohort targeting 68.4% followed by frameshift deletion reported in 26.3%. Six novel variants have been discovered in this study. Conclusions: This study demonstrates the high yield of information in DLBCL using the NGS Lymphoma panel. Results also highlight the molecular heterogeneity of DLBCL subtypes which indicates the need for further studies to make the results of the NGS more clinically relevant.
Collapse
|
27
|
Taylor AM, Sun JM, Yu A, Voicu H, Shen J, Barkauskas DA, Triche TJ, Gastier-Foster JM, Man TK, Lau CC. Integrated DNA Copy Number and Expression Profiling Identifies IGF1R as a Prognostic Biomarker in Pediatric Osteosarcoma. Int J Mol Sci 2022; 23:ijms23148036. [PMID: 35887382 PMCID: PMC9319262 DOI: 10.3390/ijms23148036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
Osteosarcoma is a primary malignant bone tumor arising from bone-forming mesenchymal cells in children and adolescents. Despite efforts to understand the biology of the disease and identify novel therapeutics, the survival of osteosarcoma patients remains dismal. We have concurrently profiled the copy number and gene expression of 226 osteosarcoma samples as part of the Strategic Partnering to Evaluate Cancer Signatures (SPECS) initiative. Our results demonstrate the heterogeneous landscape of osteosarcoma in younger populations by showing the presence of genome-wide copy number abnormalities occurring both recurrently among samples and in a high frequency. Insulin growth factor receptor 1 (IGF1R) is a receptor tyrosine kinase which binds IGF1 and IGF2 to activate downstream pathways involved in cell apoptosis and proliferation. We identify prevalent amplification of IGF1R corresponding with increased gene expression in patients with poor survival outcomes. Our results substantiate previously tenuously associated copy number abnormalities identified in smaller datasets (13q34+, 20p13+, 4q35-, 20q13.33-), and indicate the significance of high fibroblast growth factor receptor 2 (FGFR2) expression in distinguishing patients with poor prognosis. FGFR2 is involved in cellular proliferation processes such as division, growth and angiogenesis. In summary, our findings demonstrate the prognostic significance of several genes associated with osteosarcoma pathogenesis.
Collapse
Affiliation(s)
- Aaron M. Taylor
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiayi M. Sun
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Yu
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Horatiu Voicu
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jianhe Shen
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
| | - Donald A. Barkauskas
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Timothy J. Triche
- Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | | | - Tsz-Kwong Man
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Ching C. Lau
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA;
- Department of Pediatrics-Oncology, Baylor College of Medicine, Houston, TX 77030, USA; (J.M.S.); (A.Y.); (J.S.); (T.-K.M.)
- Program of Quantitative & Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Cancer Center-Bioinformatics, Baylor College of Medicine, Houston, TX 77030, USA;
- Cancer and Hematology Center, Texas Children’s Hospital, Houston, TX 77030, USA;
- Correspondence: ; Tel.: +1-207-288-6000
| |
Collapse
|
28
|
North K, Benbarche S, Liu B, Pangallo J, Chen S, Stahl M, Bewersdorf JP, Stanley RF, Erickson C, Cho H, Pineda JMB, Thomas JD, Polaski JT, Belleville AE, Gabel AM, Udy DB, Humbert O, Kiem HP, Abdel-Wahab O, Bradley RK. Synthetic introns enable splicing factor mutation-dependent targeting of cancer cells. Nat Biotechnol 2022; 40:1103-1113. [PMID: 35241838 PMCID: PMC9288984 DOI: 10.1038/s41587-022-01224-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/17/2022] [Indexed: 11/16/2022]
Abstract
Many cancers carry recurrent, change-of-function mutations affecting RNA splicing factors. Here, we describe a method to harness this abnormal splicing activity to drive splicing factor mutation-dependent gene expression to selectively eliminate tumor cells. We engineered synthetic introns that were efficiently spliced in cancer cells bearing SF3B1 mutations, but unspliced in otherwise isogenic wild-type cells, to yield mutation-dependent protein production. A massively parallel screen of 8,878 introns delineated ideal intronic size and mapped elements underlying mutation-dependent splicing. Synthetic introns enabled mutation-dependent expression of herpes simplex virus-thymidine kinase (HSV-TK) and subsequent ganciclovir (GCV)-mediated killing of SF3B1-mutant leukemia, breast cancer, uveal melanoma and pancreatic cancer cells in vitro, while leaving wild-type cells unaffected. Delivery of synthetic intron-containing HSV-TK constructs to leukemia, breast cancer and uveal melanoma cells and GCV treatment in vivo significantly suppressed the growth of these otherwise lethal xenografts and improved mouse host survival. Synthetic introns provide a means to exploit tumor-specific changes in RNA splicing for cancer gene therapy.
Collapse
Affiliation(s)
- Khrystyna North
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Salima Benbarche
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph Pangallo
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Sisi Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Maximilian Stahl
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jan Philipp Bewersdorf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert F Stanley
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Caroline Erickson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose Mario Bello Pineda
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jacob T Polaski
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Andrea E Belleville
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Dylan B Udy
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
| | - Olivier Humbert
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Hans-Peter Kiem
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
29
|
Maurya N, Mohanty P, Dhangar S, Panchal P, Jijina F, Mathan SLP, Shanmukhaiah C, Madkaikar M, Vundinti BR. Comprehensive analysis of genetic factors predicting overall survival in Myelodysplastic syndromes. Sci Rep 2022; 12:5925. [PMID: 35396491 PMCID: PMC8993876 DOI: 10.1038/s41598-022-09864-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/19/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a group of clonal hematological disease with high risk of progression to AML. Accurate risk stratification is of importance for the proper management of MDS. Genetic lesions (Cytogenetic and Molecular mutations) are known to help in prognosticating the MDS patients. We have studied 152 MDS patients using cytogenetics and next generation sequencing (NGS). These patients were evaluated and as per cytogenetic prognostic group, majority (92.1%) of the patients classified as good (81.6%) and intermediate (10.5%) group. The NGS identified 38 different gene mutations in our cohort. Among 111 MDS patients with mutations, the most frequent mutated genes were SF3B1 (25.2%), SRSF2 (19%) U2AF1 (14.4%) ASXL1 (9.9%) RUNX1 (9.9%) TET2 (9%), TP53 (9%), ATM (6.3%), NRAS (5.4%) and JAK2/3 (5.4%). The survival analysis revealed that the mutations in TP53, JAK2/3, KRAS, NRAS and ASXL1 were significantly (P < 0.05) associated with poor survival of the patients. The univariate cox and multivariate cox analysis of our study suggested that the age, marrow morphology, cytogenetic and gene mutations with IPSS-R should be considered for prognosticating the MDS patients. We have proposed M-IPSS-R which changed the risk stratification i.e. 66.3% patients had decreased risk whereas 33.75% showed increased risk compared to IPSS-R. The survival analysis also showed that the M-IPSS-R were more significant in separating the patients as per their risk than the IPSS-R alone. The change in risk stratification could help in proper strategy for the treatment planning.
Collapse
Affiliation(s)
- Nehakumari Maurya
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Mohanty
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Somprakash Dhangar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Purvi Panchal
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Farah Jijina
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | - S Leo Prince Mathan
- Department of Clinical Hematology, King Edward Memorial Hospital, Mumbai, Maharashtra, India
| | | | - Manisha Madkaikar
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India
| | - Babu Rao Vundinti
- Department of Cytogenetics, ICMR-National Institute of Immunohematology, K.E.M. Hospital Campus, Mumbai, Maharashtra, 400012, India.
| |
Collapse
|
30
|
Ojo O, Williams DL, Adams LB, Lahiri R. Mycobacterium leprae Transcriptome During In Vivo Growth and Ex Vivo Stationary Phases. Front Cell Infect Microbiol 2022; 11:817221. [PMID: 35096659 PMCID: PMC8790229 DOI: 10.3389/fcimb.2021.817221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium leprae, the causative agent of leprosy, is an obligate intracellular pathogen primarily residing within host macrophages and Schwann cells. Whole genome sequencing predicts a highly degraded genome with approximately one third of the coding capacity resulting in the loss of many catabolic pathways. Therefore, it can be assumed that M. leprae obtains many of the necessary metabolites for intracellular survival and growth from the host cells. In this study, global transcriptomic analyses were done on freshly harvested M. leprae growing in athymic mouse footpads for five months (MFP5) and compared to those held in axenic medium for 48 (ML48) and 96 (ML96) hours. Results show that all of the genes and pseudogenes were transcribed under both in vivo and in vitro conditions. 24% and 33% of gene transcript levels were significantly altered in ML48 and ML96 respectively, compared to MFP5. Approximately 45% (39/86) of lipid metabolism genes were significantly downregulated in ML96 compared to MFP5, majority of which are in the β-oxidation pathway. Cholesterol oxidase, acyl-CoA dehydrogenase, and coenzyme F420-dependent oxidoreductase, were significantly upregulated in both ML48 and ML96 compared to MFP5. 30% of cell wall and cell processes functional category genes had altered gene transcription at 96hr compared to MFP5. 40% of 57 genes associated with mycobacterial virulence showed significantly altered transcript levels with 52% significantly downregulated in ML96, including most of the Pro-Glu/Pro-Pro-Glu genes. All 111 hypothetical protein genes with unknown function were expressed. Adenosine triphosphate (ATP) synthesis in M. leprae appears to be significantly downregulated under ex vivo conditions. This is the first study comparing M. leprae global gene expression during in vivo growth and ex vivo stationery phase in axenic medium confirming that during the growth phase in the footpads of experimentally infected mice, M. leprae is metabolically active and its primary source of energy production is probably lipids.
Collapse
Affiliation(s)
- Olabisi Ojo
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Diana L Williams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Linda B Adams
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| | - Ramanuj Lahiri
- United States Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, LA, United States
| |
Collapse
|
31
|
Choi J, Jeon S, Kim D, Chua M, Do S. A scalable artificial intelligence platform that automatically finds copy number variations (CNVs) in journal articles and transforms them into a database: CNV extraction, transformation, and loading AI (CNV-ETLAI). Comput Biol Med 2022; 144:105332. [DOI: 10.1016/j.compbiomed.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022]
|
32
|
Smirnova VV, Shestakova ED, Nogina DS, Mishchenko PA, Prikazchikova TA, Zatsepin TS, Kulakovskiy IV, Shatsky IN, Terenin IM. Ribosomal leaky scanning through a translated uORF requires eIF4G2. Nucleic Acids Res 2022; 50:1111-1127. [PMID: 35018467 PMCID: PMC8789081 DOI: 10.1093/nar/gkab1286] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/07/2021] [Accepted: 12/18/2021] [Indexed: 11/21/2022] Open
Abstract
eIF4G2 (DAP5 or Nat1) is a homologue of the canonical translation initiation factor eIF4G1 in higher eukaryotes but its function remains poorly understood. Unlike eIF4G1, eIF4G2 does not interact with the cap-binding protein eIF4E and is believed to drive translation under stress when eIF4E activity is impaired. Here, we show that eIF4G2 operates under normal conditions as well and promotes scanning downstream of the eIF4G1-mediated 40S recruitment and cap-proximal scanning. Specifically, eIF4G2 facilitates leaky scanning for a subset of mRNAs. Apparently, eIF4G2 replaces eIF4G1 during scanning of 5′ UTR and the necessity for eIF4G2 only arises when eIF4G1 dissociates from the scanning complex. In particular, this event can occur when the leaky scanning complexes interfere with initiating or elongating 80S ribosomes within a translated uORF. This mechanism is therefore crucial for higher eukaryotes which are known to have long 5′ UTRs with highly frequent uORFs. We suggest that uORFs are not the only obstacle on the way of scanning complexes towards the main start codon, because certain eIF4G2 mRNA targets lack uORF(s). Thus, higher eukaryotes possess two distinct scanning complexes: the principal one that binds mRNA and initiates scanning, and the accessory one that rescues scanning when the former fails.
Collapse
Affiliation(s)
- Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Daria S Nogina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Polina A Mishchenko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | | | - Timofei S Zatsepin
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow 121205, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Ivan V Kulakovskiy
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia.,Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia.,Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia.,Sirius University of Science and Technology, Sochi, Olimpiyskiy ave. b.1, 354349, Russia
| |
Collapse
|
33
|
Pillai KKB, Shah SAV, Reddy LL, Ashavaid TF, Vishwanathan S. Targeted Exome Sequencing in South Indian patients with Familial Hypercholesterolemia. Clin Chim Acta 2022; 527:47-55. [PMID: 34998859 DOI: 10.1016/j.cca.2021.12.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant genetic disorder with elevated LDL-C levels which can ultimately lead to premature Coronary Artery Disease (CAD). OBJECTIVES In presence of limited genetic data on FH in India, the present study was aimed to determine the mutation spectrum in Indian FH patients using a targeted exome sequencing. METHODS 54 FH cases (31 index cases + 23 extended family members) were categorized according to Dutch Lipid Clinic Network Criteria (DLCNC). Targeted exome sequencing was performed using 23 gene panel associated with lipid metabolism. RESULTS All subjects showed the presence of family history of CAD, 38(70%) patients had corneal arcus whereas only 06(11%) subjects had xanthomas. As per the DLCNC, definite, probable, possible and unlikely FH were 48%, 30%, 11% and 11% respectively. Mutations were observed in 12 of the 23 gene panel with CETP, APOA5, EPHX2 and SREBP2 genes were identified for the first time in Indian FH patients. All 19 mutations including a novel frame-shift mutation in LDLR gene were reported for the first time in Indian FH patients. These mutations were identified in 28(52%) subjects and interestingly ∼73% of the clinically identified FH patients didn't harbour mutations in FH classical genes (LDLR, ApoB, PCSK9). CONCLUSION This is the first study in the South Indian FH patients to perform targeted exome sequencing. Absence of mutations in the FH classical genes strongly indicates the polygenic nature of FH, further underscoring the importance of targeted exome sequencing for identifying mutations in genetically diverse Indian population.
Collapse
Affiliation(s)
| | | | | | | | - Sunitha Vishwanathan
- Department of Cardiology, Government Medical College, Trivandrum, Kerala, India.
| |
Collapse
|
34
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
35
|
Hanasoge Somasundara AV, Moss MA, Feigman MJ, Chen C, Cyrill SL, Ciccone MF, Trousdell MC, Vollbrecht M, Li S, Kendall J, Beyaz S, Wilkinson JE, Dos Santos CO. Parity-induced changes to mammary epithelial cells control NKT cell expansion and mammary oncogenesis. Cell Rep 2021; 37:110099. [PMID: 34879282 PMCID: PMC8719356 DOI: 10.1016/j.celrep.2021.110099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/25/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Pregnancy reprograms mammary epithelial cells (MECs) to control their responses to pregnancy hormone re-exposure and carcinoma progression. However, the influence of pregnancy on the mammary microenvironment is less clear. Here, we used single-cell RNA sequencing to profile the composition of epithelial and non-epithelial cells in mammary tissue from nulliparous and parous female mice. Our analysis indicates an expansion of γδ natural killer T-like immune cells (NKTs) following pregnancy and upregulation of immune signaling molecules in post-pregnancy MECs. We show that expansion of NKTs following pregnancy is due to elevated expression of the antigen-presenting molecule CD1d on MECs. Loss of CD1d expression on post-pregnancy MECs, or overall lack of activated NKTs, results in mammary oncogenesis. Collectively, our findings illustrate how pregnancy-induced changes modulate the communication between MECs and the immune microenvironment and establish a causal link between pregnancy, the immune microenvironment, and mammary oncogenesis.
Collapse
MESH Headings
- Animals
- Antigens, CD1d/metabolism
- Cell Communication
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/immunology
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Female
- Gene Expression Regulation, Neoplastic
- Genes, BRCA1
- Genes, myc
- Lymphocyte Activation
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred BALB C
- Mice, Inbred NOD
- Mice, SCID
- Mice, Transgenic
- Natural Killer T-Cells/immunology
- Natural Killer T-Cells/metabolism
- Parity
- Pregnancy
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
| | - Matthew A Moss
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Mary J Feigman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Chen Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | | | | | | - Macy Vollbrecht
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Siran Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - John E Wilkinson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
36
|
Lal A, Pike JFW, Polley EL, Huang S, Sanni M, Hailat T, Zimmerman S, Clay-Gilmour A, Bruce TF, Marcus KR, Roudebush WE, Chosed RJ. Comparison of RNA content from hydrophobic interaction chromatography-isolated seminal plasma exosomes from intrauterine insemination (IUI) pregnancies. Andrologia 2021; 54:e14325. [PMID: 34837240 DOI: 10.1111/and.14325] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 11/14/2021] [Indexed: 11/26/2022] Open
Abstract
Male factors account for roughly half of infertility cases, with most male infertility diagnosed as idiopathic. Researchers predicting intrauterine insemination success rates have identified multiple prognostic factors, including semen parameters and seminal fluid composition. Seminal plasma contains extracellular exosomes, which contain RNAs and proteins involved in spermatogenesis. The contents of seminal plasma exosomes may be an indicator of overall sperm quality or fertility potential; therefore, analysis of exosomes may provide a measure for sperm viability and fertilization potential. In our study, exosomes were isolated and purified from seminal plasma obtained from IUI treatments with known pregnancy outcomes. We used a unique method to isolate the exosomes which made use of the hydrophobic interaction chromatography method. RNASeq was performed on RNAs from the purified exosomes. This analysis revealed holistic trends, including increased expression associated with RNA originating from chromosomes 1, 10, 12, 16 and 21. Overall, total RNA was significantly decreased and rRNA was significantly increased in successful IUI attempts. Furthermore, we found specific mRNAs and lincRNAs associated with positive versus negative pregnancy outcomes. Our study isolated and purified seminal plasma exosomes without ultracentrifugation, and it provides further evidence for differences in seminal plasma exosome molecular contents associated with pregnancy status.
Collapse
Affiliation(s)
- Arnav Lal
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - James Frederick W Pike
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Emily L Polley
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Sisi Huang
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Mustapha Sanni
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Tareq Hailat
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | | | - Alyssa Clay-Gilmour
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Greenville, South Carolina, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Kenneth R Marcus
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - William E Roudebush
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| | - Renee J Chosed
- Department of Biomedical Sciences, University of South Carolina School of Medicine Greenville, Greenville, South Carolina, USA
| |
Collapse
|
37
|
Wen J, Rusch M, Brady SW, Shao Y, Edmonson MN, Shaw TI, Powers BB, Tian L, Easton J, Mullighan CG, Gruber T, Ellison D, Zhang J. The landscape of coding RNA editing events in pediatric cancer. BMC Cancer 2021; 21:1233. [PMID: 34789196 PMCID: PMC8597231 DOI: 10.1186/s12885-021-08956-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/02/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND RNA editing leads to post-transcriptional variation in protein sequences and has important biological implications. We sought to elucidate the landscape of RNA editing events across pediatric cancers. METHODS Using RNA-Seq data mapped by a pipeline designed to minimize mapping ambiguity, we investigated RNA editing in 711 pediatric cancers from the St. Jude/Washington University Pediatric Cancer Genome Project focusing on coding variants which can potentially increase protein sequence diversity. We combined de novo detection using paired tumor DNA-RNA data with analysis of known RNA editing sites. RESULTS We identified 722 unique RNA editing sites in coding regions across pediatric cancers, 70% of which were nonsynonymous recoding variants. Nearly all editing sites represented the canonical A-to-I (n = 706) or C-to-U sites (n = 14). RNA editing was enriched in brain tumors compared to other cancers, including editing of glutamate receptors and ion channels involved in neurotransmitter signaling. RNA editing profiles of each pediatric cancer subtype resembled those of the corresponding normal tissue profiled by the Genotype-Tissue Expression (GTEx) project. CONCLUSIONS In this first comprehensive analysis of RNA editing events in pediatric cancer, we found that the RNA editing profile of each cancer subtype is similar to its normal tissue of origin. Tumor-specific RNA editing events were not identified indicating that successful immunotherapeutic targeting of RNA-edited peptides in pediatric cancer should rely on increased antigen presentation on tumor cells compared to normal but not on tumor-specific RNA editing per se.
Collapse
Affiliation(s)
- Ji Wen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael Rusch
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Samuel W Brady
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Ying Shao
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael N Edmonson
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Timothy I Shaw
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brent B Powers
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Liqing Tian
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Tanja Gruber
- Department of Pediatrics, Stanford University, Palo Alto, California, 94305, USA
| | - David Ellison
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jinghui Zhang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
38
|
Utilization of Whole Exome Sequencing in Non-Syndromic Premature Ovarian Failure: Ficolin-3 Gene Mutation in an Iranian Family. IRANIAN BIOMEDICAL JOURNAL 2021; 25:441-6. [PMID: 34641644 DOI: 10.52547/ibj.25.6.441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Premature ovarian failure is a heterogeneous disorder, leading to early menopause. Several genes have been identified as the cause of non-syndromic premature ovarian failure (POF). Our aim was to explore the genetic defects in Iranian patients with POF. Methods We studied a family with three females exhibiting non-syndromic POF. WES was performed for one of the affected individuals after ruling out the presence of CGG repeat expansion at fragile X mental retardation 1 gene in the family. Sanger sequencing was used to confirm the candidate sequence variants in the proband, and screening of the detected mutation was performed for the other affected and unaffected members of the family. Results A homozygous frameshift mutation, c.349delC, was identified in ficolin-3 (FCN3) gene in the proband and two other patients. The parents and two healthy brothers were heterozygous for the mutation, and an unaffected sister was homozygous for wild type. Conclusion This is the first report of a mutation in FCN3 gene in a family with POF. Our findings can lead to the enhancement of genetic databases of patients with POF, specifically for families with high-risk background.
Collapse
|
39
|
Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, Gallì A, Castellano CA, McConkey M, Tarun A, Wong W, Schenone M, Stanclift C, Tanenbaum B, Malolepsza E, Nilsson B, Bick AG, Weinstock JS, Miller M, Niroula A, Dunford A, Taylor-Weiner A, Wood T, Barbera A, Anand S, Psaty BM, Desai P, Cho MH, Johnson AD, Loos R, MacArthur DG, Lek M, Neuberg DS, Lage K, Carr SA, Hellstrom-Lindberg E, Malcovati L, Papaemmanuil E, Stewart C, Getz G, Bradley RK, Jaiswal S, Ebert BL. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov 2021; 2:500-517. [PMID: 34568833 PMCID: PMC8462124 DOI: 10.1158/2643-3230.bcd-20-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/14/2021] [Accepted: 07/07/2021] [Indexed: 12/17/2022] Open
Abstract
Clonal hematopoiesis results from somatic mutations in cancer driver genes in hematopoietic stem cells. We sought to identify novel drivers of clonal expansion using an unbiased analysis of sequencing data from 84,683 persons and identified common mutations in the 5-methylcytosine reader, ZBTB33, as well as in YLPM1, SRCAP, and ZNF318. We also identified these mutations at low frequency in myelodysplastic syndrome patients. Zbtb33 edited mouse hematopoietic stem and progenitor cells exhibited a competitive advantage in vivo and increased genome-wide intron retention. ZBTB33 mutations potentially link DNA methylation and RNA splicing, the two most commonly mutated pathways in clonal hematopoiesis and MDS.
Collapse
Affiliation(s)
- Ellen M Beauchamp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Matthew Leventhal
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Elsa Bernard
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Emma R Hoppe
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Gabriele Todisco
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Creignou
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Gallì
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cecilia A Castellano
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Marie McConkey
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Akansha Tarun
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Waihay Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Monica Schenone
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Caroline Stanclift
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Benjamin Tanenbaum
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Edyta Malolepsza
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Björn Nilsson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Alexander G Bick
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Joshua S Weinstock
- Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Abhishek Niroula
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Andrew Dunford
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Amaro Taylor-Weiner
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Timothy Wood
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Alex Barbera
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Services, University of Washington, Seattle, Washington
- Kaiser Permanente Washington Health Research Institute, Seattle, Washington
| | - Pinkal Desai
- Division of Hematology and Oncology, Weill Cornell Medical College, New York, New York
| | - Michael H Cho
- Division of Network Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Andrew D Johnson
- National Heart, Lung, and Blood Institute Center for Population Studies, the Framingham Heart Study, Framingham, Massachusetts
| | - Ruth Loos
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daniel G MacArthur
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
| | - Donna S Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasper Lage
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Eva Hellstrom-Lindberg
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Luca Malcovati
- Department of Molecular Medicine, University of Pavia, and Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elli Papaemmanuil
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chip Stewart
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Center for Cancer Research, Massachusetts General Hospital, Boston, Massachusetts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Siddhartha Jaiswal
- Department of Pathology, Stanford University School of Medicine, Stanford, California.
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
40
|
Gupta H, Malaichamy S, Mallipatna A, Murugan S, Jeyabalan N, Suresh Babu V, Ghosh A, Ghosh A, Santhosh S, Seshagiri S, Ramprasad VL, Kumaramanickavel G. Retinoblastoma genetics screening and clinical management. BMC Med Genomics 2021; 14:188. [PMID: 34294096 PMCID: PMC8296631 DOI: 10.1186/s12920-021-01034-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND India accounts for 20% of the global retinoblastoma (RB) burden. However, the existing data on RB1 gene germline mutations and its influence on clinical decisions is minimally explored. METHODS Fifty children with RB underwent complete clinical examination and appropriate multidisciplinary management. Screening of germline RB1 gene mutations was performed through next-generation sequencing and Multiplex Ligation-dependent Probe Amplification (MLPA) analysis. The mutation and non-mutation groups were compared for clinical parameters especially severity, progression and recurrence. RESULTS Twenty-nine patients had bilateral RB (BLRB) and 21 had unilateral RB (ULRB). The genetic analysis revealed 20 RB1 variations in 29 probands, inclusive of 3 novel mutations, known 16 mutations and heterozygous whole gene deletions. The mutation detection rate (MDR) was 86.2% in BLRB and 19% in ULRB. Associations of disease recurrence (p = 0.021), progression (p = 0.000) and higher percentage of optic nerve invasion, subretinal seeds and high-risk pathological factors were observed in the mutation group. Clinical management was influenced by the presence of germline mutations, particularly while deciding on enucleation, frequency of periodic follow up and radiotherapy. CONCLUSIONS We identified novel RB1 mutations, and our mutation detection rate was on par with the previous global studies. In our study, genetic results influenced clinical management and we suggest that it should be an essential and integral component of RB-care in India and elsewhere.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anuprita Ghosh
- Grow Lab, Narayana Nethralaya Foundation, Bangalore, India
| | | | | | | | | | | |
Collapse
|
41
|
Lu SX, De Neef E, Thomas JD, Sabio E, Rousseau B, Gigoux M, Knorr DA, Greenbaum B, Elhanati Y, Hogg SJ, Chow A, Ghosh A, Xie A, Zamarin D, Cui D, Erickson C, Singer M, Cho H, Wang E, Lu B, Durham BH, Shah H, Chowell D, Gabel AM, Shen Y, Liu J, Jin J, Rhodes MC, Taylor RE, Molina H, Wolchok JD, Merghoub T, Diaz LA, Abdel-Wahab O, Bradley RK. Pharmacologic modulation of RNA splicing enhances anti-tumor immunity. Cell 2021; 184:4032-4047.e31. [PMID: 34171309 PMCID: PMC8684350 DOI: 10.1016/j.cell.2021.05.038] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 05/24/2021] [Indexed: 01/26/2023]
Abstract
Although mutations in DNA are the best-studied source of neoantigens that determine response to immune checkpoint blockade, alterations in RNA splicing within cancer cells could similarly result in neoepitope production. However, the endogenous antigenicity and clinical potential of such splicing-derived epitopes have not been tested. Here, we demonstrate that pharmacologic modulation of splicing via specific drug classes generates bona fide neoantigens and elicits anti-tumor immunity, augmenting checkpoint immunotherapy. Splicing modulation inhibited tumor growth and enhanced checkpoint blockade in a manner dependent on host T cells and peptides presented on tumor MHC class I. Splicing modulation induced stereotyped splicing changes across tumor types, altering the MHC I-bound immunopeptidome to yield splicing-derived neoepitopes that trigger an anti-tumor T cell response in vivo. These data definitively identify splicing modulation as an untapped source of immunogenic peptides and provide a means to enhance response to checkpoint blockade that is readily translatable to the clinic.
Collapse
Affiliation(s)
- Sydney X Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Emma De Neef
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - James D Thomas
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Erich Sabio
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Center for Immunotherapy and Precision-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Benoit Rousseau
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Mathieu Gigoux
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - David A Knorr
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Benjamin Greenbaum
- Department of Epidemiology and Biostatistics, Computational Oncology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Yuval Elhanati
- Department of Epidemiology and Biostatistics, Computational Oncology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Andrew Chow
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Arnab Ghosh
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Abigail Xie
- Medical Scientist Training Program, Weill Cornell Medical School, New York, NY 10065, USA
| | - Dmitriy Zamarin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Daniel Cui
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Caroline Erickson
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Michael Singer
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Eric Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Bin Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Harshal Shah
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Diego Chowell
- Center for Immunotherapy and Precision-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA; The Precision Immunology Institute, The Tisch Cancer Institute, Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Austin M Gabel
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Medical Scientist Training Program, University of Washington, Seattle, WA 98195, USA
| | - Yudao Shen
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jing Liu
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Matthew C Rhodes
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Richard E Taylor
- The Warren Family Research Center for Drug Discovery and Development and the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Jedd D Wolchok
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Taha Merghoub
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Luis A Diaz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA.
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
42
|
Defective folate metabolism causes germline epigenetic instability and distinguishes Hira as a phenotype inheritance biomarker. Nat Commun 2021; 12:3714. [PMID: 34140513 PMCID: PMC8211854 DOI: 10.1038/s41467-021-24036-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/29/2021] [Indexed: 02/02/2023] Open
Abstract
The mechanism behind transgenerational epigenetic inheritance is unclear, particularly through the maternal grandparental line. We previously showed that disruption of folate metabolism in mice by the Mtrr hypomorphic mutation results in transgenerational epigenetic inheritance of congenital malformations. Either maternal grandparent can initiate this phenomenon, which persists for at least four wildtype generations. Here, we use genome-wide approaches to reveal genetic stability in the Mtrr model and genome-wide differential DNA methylation in the germline of Mtrr mutant maternal grandfathers. We observe that, while epigenetic reprogramming occurs, wildtype grandprogeny and great grandprogeny exhibit transcriptional changes that correlate with germline methylation defects. One region encompasses the Hira gene, which is misexpressed in embryos for at least three wildtype generations in a manner that distinguishes Hira transcript expression as a biomarker of maternal phenotypic inheritance.
Collapse
|
43
|
Utility of clinical exome sequencing in the evaluation of neonates with suspected genetic condition - An observational study from tertiary neonatal care unit in South India. Eur J Med Genet 2021; 64:104247. [PMID: 34000440 DOI: 10.1016/j.ejmg.2021.104247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/27/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To study the utility of clinical exome sequencing (CES) using next generation sequencing (NGS) in evaluating neonates with suspected genetic conditions. METHODS This is an observational study conducted in a tertiary care neonatal unit. We included neonates with suspected genetic conditions, for whom CES were done either by direct sampling or from stored DNA. Data was collected from the Sri Ramachandra centre of excellence in perinatal health (SCOPE) case records of 2016-2019. Yield of CES, percentage of pathogenic, non-pathogenic and variant of uncertain significance (VUS) and associated disorders were studied. RESULTS CES was done in 36 neonates. Variants were detected in 78% (28/36). However, significant variants with clinical correlation were present in 20 (56%) babies. Test was carried out from the stored sample in 10 (28%) babies. Mean turn-around time was 39 ± 7 days. Specialist was involved in 1 and treatment changes were done in 5 neonates. Five out of 8 VUS were clinically correlating. Inborn errors of metabolism were the commonest (60%). Two VUS were ascertained as likely pathogenic after parental segregation analysis. CONCLUSION CES has a definite role in evaluation of suspected genetic conditions for diagnosis and prognostication. It also helps scientific society to build in additional evidence so that the "VUS" could be asserted as "likely pathogenic" . Our experience reiterates the importance of storing and archiving DNA of the affected child.
Collapse
|
44
|
Inoue D, Polaski JT, Taylor J, Castel P, Chen S, Kobayashi S, Hogg SJ, Hayashi Y, Pineda JMB, El Marabti E, Erickson C, Knorr K, Fukumoto M, Yamazaki H, Tanaka A, Fukui C, Lu SX, Durham BH, Liu B, Wang E, Mehta S, Zakheim D, Garippa R, Penson A, Chew GL, McCormick F, Bradley RK, Abdel-Wahab O. Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nat Genet 2021; 53:707-718. [PMID: 33846634 PMCID: PMC8177065 DOI: 10.1038/s41588-021-00828-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022]
Abstract
Most eukaryotes harbor two distinct pre-mRNA splicing machineries: the major spliceosome, which removes >99% of introns, and the minor spliceosome, which removes rare, evolutionarily conserved introns. Although hypothesized to serve important regulatory functions, physiologic roles of the minor spliceosome are not well understood. For example, the minor spliceosome component ZRSR2 is subject to recurrent, leukemia-associated mutations, yet functional connections among minor introns, hematopoiesis and cancers are unclear. Here, we identify that impaired minor intron excision via ZRSR2 loss enhances hematopoietic stem cell self-renewal. CRISPR screens mimicking nonsense-mediated decay of minor intron-containing mRNA species converged on LZTR1, a regulator of RAS-related GTPases. LZTR1 minor intron retention was also discovered in the RASopathy Noonan syndrome, due to intronic mutations disrupting splicing and diverse solid tumors. These data uncover minor intron recognition as a regulator of hematopoiesis, noncoding mutations within minor introns as potential cancer drivers and links among ZRSR2 mutations, LZTR1 regulation and leukemias.
Collapse
Affiliation(s)
- Daichi Inoue
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Jacob T Polaski
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pau Castel
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Sisi Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Susumu Kobayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Division of Cellular Therapy, The Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Simon J Hogg
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Yasutaka Hayashi
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Jose Mario Bello Pineda
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ettaib El Marabti
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Caroline Erickson
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Katherine Knorr
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Miki Fukumoto
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hiromi Yamazaki
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Atsushi Tanaka
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
- Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Chie Fukui
- Department of Hematology-Oncology, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Sydney X Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Eric Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Sanjoy Mehta
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel Zakheim
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ralph Garippa
- Gene Editing & Screening Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alex Penson
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA
| | - Guo-Liang Chew
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Robert K Bradley
- Public Health Sciences and Basic Sciences Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan KetterAbsolute numbers of live mature hematopoietic cellsing Cancer Center, New York, NY, USA.
| |
Collapse
|
45
|
Shastry A, Aravind S, Sunil M, Ramesh K, Ashley B, T. N, Ramprasad VL, Gupta R, Seshagiri S, Nongthomba U, Phalke S. Matrilineal analysis of mutations in the DMD gene in a multigenerational South Indian cohort using DMD gene panel sequencing. Mol Genet Genomic Med 2021; 9:e1633. [PMID: 33960727 PMCID: PMC8172192 DOI: 10.1002/mgg3.1633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is an X-linked recessive neuromuscular disorder characterised by progressive irreversible muscle weakness, primarily of the skeletal and the cardiac muscles. DMD is characterised by mutations in the dystrophin gene, resulting in the absence or sparse quantities of dystrophin protein. A precise and timely molecular detection of DMD mutations encourages interventions such as carrier genetic counselling and in undertaking therapeutic measures for the DMD patients. RESULTS In this study, we developed a 2.1 Mb custom DMD gene panel that spans the entire DMD gene, including the exons and introns. The panel also includes the probes against 80 additional genes known to be mutated in other muscular dystrophies. This custom DMD gene panel was used to identify single nucleotide variants (SNVs) and large deletions with precise breakpoints in 77 samples that included 24 DMD patients and their matrilineage across four generations. We used this panel to evaluate the inheritance pattern of DMD mutations in maternal subjects representing 24 DMD patients. CONCLUSION Here we report our observations on the inheritance pattern of DMD gene mutations in matrilineage samples across four generations. Additionally, our data suggest that the DMD gene panel designed by us can be routinely used as a single genetic test to identify all DMD gene variants in DMD patients and the carrier mothers.
Collapse
Affiliation(s)
- Arun Shastry
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Sankaramoorthy Aravind
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
- Indian Institute of Science (IISc)BangaloreIndia
| | | | - Keerthi Ramesh
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | - Berty Ashley
- Dystrophy Annihilation Research Trust (DART)BangaloreIndia
| | | | | | | | | | | | - Sameer Phalke
- MedGenome LabsBangaloreIndia
- SciGenom Labs Pvt LtdCochinIndia
| |
Collapse
|
46
|
Choin J, Mendoza-Revilla J, Arauna LR, Cuadros-Espinoza S, Cassar O, Larena M, Ko AMS, Harmant C, Laurent R, Verdu P, Laval G, Boland A, Olaso R, Deleuze JF, Valentin F, Ko YC, Jakobsson M, Gessain A, Excoffier L, Stoneking M, Patin E, Quintana-Murci L. Genomic insights into population history and biological adaptation in Oceania. Nature 2021; 592:583-589. [PMID: 33854233 DOI: 10.1038/s41586-021-03236-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/13/2021] [Indexed: 12/27/2022]
Abstract
The Pacific region is of major importance for addressing questions regarding human dispersals, interactions with archaic hominins and natural selection processes1. However, the demographic and adaptive history of Oceanian populations remains largely uncharacterized. Here we report high-coverage genomes of 317 individuals from 20 populations from the Pacific region. We find that the ancestors of Papuan-related ('Near Oceanian') groups underwent a strong bottleneck before the settlement of the region, and separated around 20,000-40,000 years ago. We infer that the East Asian ancestors of Pacific populations may have diverged from Taiwanese Indigenous peoples before the Neolithic expansion, which is thought to have started from Taiwan around 5,000 years ago2-4. Additionally, this dispersal was not followed by an immediate, single admixture event with Near Oceanian populations, but involved recurrent episodes of genetic interactions. Our analyses reveal marked differences in the proportion and nature of Denisovan heritage among Pacific groups, suggesting that independent interbreeding with highly structured archaic populations occurred. Furthermore, whereas introgression of Neanderthal genetic information facilitated the adaptation of modern humans related to multiple phenotypes (for example, metabolism, pigmentation and neuronal development), Denisovan introgression was primarily beneficial for immune-related functions. Finally, we report evidence of selective sweeps and polygenic adaptation associated with pathogen exposure and lipid metabolism in the Pacific region, increasing our understanding of the mechanisms of biological adaptation to island environments.
Collapse
Affiliation(s)
- Jeremy Choin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Lara R Arauna
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Sebastian Cuadros-Espinoza
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
- Sorbonne Université, Collège doctoral, Paris, France
| | - Olivier Cassar
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Maximilian Larena
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Albert Min-Shan Ko
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Christine Harmant
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Romain Laurent
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Paul Verdu
- Muséum National d'Histoire Naturelle, UMR7206, CNRS, Université de Paris, Paris, France
| | - Guillaume Laval
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Anne Boland
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Robert Olaso
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Jean-François Deleuze
- Centre National de Recherche en Génomique Humaine (CNRGH), Institut de Biologie François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Frédérique Valentin
- Maison de l'Archéologie et de l'Ethnologie, UMR 7041, CNRS, Nanterre, France
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Center, China Medical University and Hospital, Taichung, Taiwan
| | - Mattias Jakobsson
- Human Evolution, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Antoine Gessain
- Oncogenic Virus Epidemiology and Pathophysiology, Institut Pasteur, UMR 3569, CNRS, Paris, France
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Mark Stoneking
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Etienne Patin
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
| | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France.
- Collège de France, Paris, France.
| |
Collapse
|
47
|
Wakim V, Abi Khalil E, Salloum AK, Khazen G, Ghassibe-Sabbagh M, Zalloua PA. New susceptibility alleles associated with severe coronary artery stenosis in the Lebanese population. BMC Med Genomics 2021; 14:90. [PMID: 33766035 PMCID: PMC7993530 DOI: 10.1186/s12920-021-00942-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Coronary Artery Disease (CAD) is the narrowing or blockage of the coronary arteries. It is closely associated with numerous genetics and environmental factors that have been extensively evaluated in various populations. In recent studies, severe phenotypes have been strongly linked to genetic risk factors. METHODS This study investigated the association of clinical, demographic, and genetic factors with severe coronary artery stenosis phenotypes in our population composed of 1734 individuals with severe coronary stenosis (≥ 50% in coronary vessels) and comparing them to 757 controls with no evidence of stenosis on angiography. We performed generalized linear model (GLM) genome-wide association studies to evaluate three stratification models and their associations to characteristics of the clinical disease. In model 1, patients were not stratified. In model 2, patients were stratified based on presence or absence of CAD family history (FxCAD). In model 3, patients were stratified by young age of CAD onset. RESULTS Eight SNPs (single nucleotide polymorphism) were significantly associated with severe CAD phenotypes in the various models [Formula: see text], four of these SNPs were associated with severe CAD and the four others were specifically significant for young CAD patients. While these SNPs were not previously reported for association with CAD, six of them are present in genes that have already been linked to coronary disease. CONCLUSION In conclusion, this study presents new genetic factors associated with severe stenosis and highlights different risk factors associated with a young age at diagnosis of CAD.
Collapse
Affiliation(s)
- Victor Wakim
- School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Elie Abi Khalil
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | | - Georges Khazen
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Michella Ghassibe-Sabbagh
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| | - Pierre A Zalloua
- School of Medicine, Lebanese American University, Beirut, Lebanon.
- Harvard School of Public Health, Boston, MA, 02215, USA.
| |
Collapse
|
48
|
Sathyan S, Pournami F, Madhavilatha GK, Tuteja A, Nandakumar A, Prabhakar J, Jain N. Homozygous Missense Mutation on Exon 22 of PKHD1 Gene Causing Fatal Autosomal Recessive Polycystic Kidney Disease. JOURNAL OF CHILD SCIENCE 2021. [DOI: 10.1055/s-0041-1725175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractAutosomal recessive polycystic kidney disease, described as a congenital hepatorenal fibrocystic syndrome, is a significant inherited cause of end stage renal failure in children with reported incidence of 1 in 20,000 live births. The clinical spectrum is wide. Antenatal findings of echogenic reniform enlarged kidneys associated with evidence of intrauterine renal failure in the form of severe oligoamnios are pathognomonic. Postnatal illness ranges from fatal respiratory failure due to pulmonary hypoplasia in neonates to chronic kidney disease in children, or later presentation of ductal plate malformation and portal hypertension. Advances in genetic diagnostic techniques have allowed recognition of genotypes. We report a novel homozygous missense variant on exon 22 of PKHD1 gene (chr6:51915067G > A; c.2167C > T) that results in the amino acid substitution of cysteine for arginine at codon 723 (p.Arg723Cys). The affected neonate presented with antenatal anhydramnios, classical radiological features, and severe hypoxic respiratory failure likely due to pulmonary hypoplasia and succumbed. The parents were found to be heterozygous carriers. Detection of the specific variant in the proband facilitated prenatal investigation in the next pregnancy.
Collapse
Affiliation(s)
- Sajina Sathyan
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| | - Femitha Pournami
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| | | | - Amrit Tuteja
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| | - Anand Nandakumar
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| | - Jyothi Prabhakar
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| | - Naveen Jain
- Department of Neonatology, Kerala Institute of Medical Sciences, Kerala, India
| |
Collapse
|
49
|
Chiou KL, Bergey CM, Burrell AS, Disotell TR, Rogers J, Jolly CJ, Phillips-Conroy JE. Genome-wide ancestry and introgression in a Zambian baboon hybrid zone. Mol Ecol 2021; 30:1907-1920. [PMID: 33624366 DOI: 10.1111/mec.15858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 10/22/2022]
Abstract
Hybridization in nature offers unique insights into the process of natural selection in incipient species and their hybrids. In order to evaluate the patterns and targets of selection, we examine a recently discovered baboon hybrid zone in the Kafue River Valley of Zambia, where Kinda baboons (Papio kindae) and grey-footed chacma baboons (P. ursinus griseipes) coexist with hybridization. We genotyped baboons at 14,962 variable genome-wide autosomal markers using double-digest RADseq. We compared ancestry patterns from this genome-wide data set to previously reported ancestry from mitochondrial-DNA and Y-chromosome sources. We also fit a Bayesian genomic cline model to scan for genes with extreme patterns of introgression. We show that the Kinda baboon Y chromosome has penetrated the species boundary to a greater extent than either mitochondrial DNA or the autosomal chromosomes. We also find evidence for overall restricted introgression in the JAK/STAT signalling pathway. Echoing results in other species including humans, we find evidence for enhanced and/or directional introgression of immune-related genes or pathways including the toll-like receptor pathway, the blood coagulation pathway, and the LY96 gene. Finally we show enhanced introgression and excess chacma baboon ancestry in the sperm tail gene ODF2. Together, our results elucidate the dynamics of introgressive hybridization in a primate system while identifying genes and pathways possibly under selection.
Collapse
Affiliation(s)
- Kenneth L Chiou
- Department of Anthropology, Washington University, St. Louis, MO, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA
| | - Christina M Bergey
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.,Department of Anthropology, New York University, New York, NY, USA
| | - Andrew S Burrell
- Department of Anthropology, New York University, New York, NY, USA
| | - Todd R Disotell
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA.,Department of Anthropology, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jeffrey Rogers
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Clifford J Jolly
- Department of Anthropology, New York University, New York, NY, USA.,New York Consortium in Evolutionary Primatology, New York, NY, USA
| | - Jane E Phillips-Conroy
- Department of Anthropology, Washington University, St. Louis, MO, USA.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
50
|
Sadeghan AA, Soltaninejad H, Dadmehr M, Hamidieh AA, Asadollahi MA, Hosseini M, Ganjali MR, Hosseinkhani S. Fluorimetric detection of methylated DNA of Sept9 promoter by silver nanoclusters at intrastrand 6C-loop. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119081. [PMID: 33128948 DOI: 10.1016/j.saa.2020.119081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/07/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Methylation of DNA at carbon 5 of cytosines is the most common epigenetic modification of human genome. Due to its critical role in many normal cell processes such as growth and development, any aberrant methylation pattern in a particular locus may lead to abnormal functions and diseases such as cancer. Development of methods to detect methylation state of DNA which may eliminate labor-intensive chemical or enzymatic treatments has received considerable attention in recent years. Herein, we report a DNA methylation detection procedure based on fluorescence turn-on strategy. Target sequence was selected from Sept9 promoter region that has been reported as one of the most frequently methylated sites in colorectal cancer. Probe DNA was designed to be complementary to this sequence with an additional six cytosines in the middle to form an internal loop to host silver nanoclusters. The fluorescence intensity of the synthesized silver nanoclusters with the duplexes of probe-non-methylated target was significantly different from that of probe-methylated target. The fluorescence enhanced with increasing the methylated DNA concentration with a linear relation in the range of 1.0 × 10-8 M to 5.0 × 10-7 M with the detection limit of 8.2 × 10-9 M, and quenched with non-methylated ones. The method was very specific in the presence of non-complementary sequences with maximum similarity of 40%. Circular dichroism spectra indicated that silver ions significantly affected the structure of methylated and non-methylated DNA into different extents which could further influence the nanocluster fluorescence. Finally, a method was introduced to meet the concerns in the applicability of the proposed method in real situation.
Collapse
Affiliation(s)
- Amir Amiri Sadeghan
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Soltaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran; Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | - Amir Ali Hamidieh
- Pediatric Cell Therapy Research Center, Tehran University of Medical Scienses, Iran
| | - Mohammad Ali Asadollahi
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Morteza Hosseini
- Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology & Metabolism Molecular - Cellular Sciences Institute, Iran
| | - Saman Hosseinkhani
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|