1
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. mBio 2024:e0046524. [PMID: 39404354 DOI: 10.1128/mbio.00465-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents that potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into phase 2a clinical trials. Previous cell culture-based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. Although both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect the direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor-mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR-induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared with the WT virus. By rationally modifying PIR, we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.IMPORTANCEAntiretroviral therapies save the lives of millions of people living with HIV (PLWH). However, the evolution of multi-drug-resistant viral phenotypes is a major clinical problem, and there are limited or no treatment options for heavily treatment-experienced PLWH. Allosteric HIV-1 integrase inhibitors (ALLINIs) are a novel class of antiretroviral compounds that work by a unique mechanism of binding to the non-catalytic site on the viral protein and inducing aberrant integrase multimerization. Accordingly, ALLINIs potently inhibit both wild-type HIV-1 and all drug-resistant viral phenotypes that have so far emerged against currently used therapies. Pirmitegravir, a highly potent and safe investigational ALLINI, is currently advancing through clinical trials. Here, we have elucidated the structural and mechanistic bases behind the emergence of HIV-1 integrase mutations in infected cells that confer resistance to pirmitegravir. In turn, our findings allowed us to rationally develop an improved ALLINI with substantially enhanced potency against the pirmitegravir-resistant virus.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Pathak R, Esnault C, Radhakrishnan R, Singh PK, Zhang H, Dale R, Anand A, Bedwell GJ, Engelman AN, Rabi A, Hormoz S, Singh P, Levin HL. The role of LEDGF in transcription is exploited by HIV-1 to position integration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.29.601340. [PMID: 39005447 PMCID: PMC11244883 DOI: 10.1101/2024.06.29.601340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
HIV-1 integration occurs across actively transcribed genes due to the interaction of integrase with host chromatin factor LEDGF. Although LEDGF was originally isolated as a co-activator that stimulates promoter activity in purified systems, this role is inconsistent with LEDGF-mediated integration across gene bodies and with data indicating LEDGF is a histone chaperone that promotes transcriptional elongation. We found LEDGF is enriched in pronounced peaks that match the enrichments of H3K4me3 and RNA Pol II at transcription start sites (TSSs) of active promoters. Our genome-wide chromatin mapping revealed that MLL1 had a dominant role in recruiting LEDGF to promoters and the presence of LEDGF recruits RNA Pol II. Enrichment of LEDGF at TSSs correlates strongly with levels of integration across the transcribed sequences, indicating that LEDGF at TSSs contributed to integration across gene bodies. Although the N-terminal Pro-Trp-Trp-Pro (PWWP) domain of LEDGF interacts with nucleosomes containing H3K36me3, a modification thought to recruit LEDGF to chromatin, we found H3K36me3 does not contribute to gene specificity of integration. These data support a dual role model of LEDGF where it is tethered to promoters by MLL1 and recruits RNA Pol II. Subsequently, LEDGF travels across genes to effect HIV-1 integration. Our data also provides a mechanistic context for the contribution made by LEDGF to MLL1-based infant acute leukemia and acute myeloid leukemia in adults.
Collapse
|
3
|
Dinh T, Tber Z, Rey JS, Mengshetti S, Annamalai AS, Haney R, Briganti L, Amblard F, Fuchs JR, Cherepanov P, Kim K, Schinazi RF, Perilla JR, Kim B, Kvaratskhelia M. The structural and mechanistic bases for the viral resistance to allosteric HIV-1 integrase inhibitor pirmitegravir. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577387. [PMID: 38328097 PMCID: PMC10849636 DOI: 10.1101/2024.01.26.577387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are investigational antiretroviral agents which potently impair virion maturation by inducing hyper-multimerization of IN and inhibiting its interaction with viral genomic RNA. The pyrrolopyridine-based ALLINI pirmitegravir (PIR) has recently advanced into Phase 2a clinical trials. Previous cell culture based viral breakthrough assays identified the HIV-1(Y99H/A128T IN) variant that confers substantial resistance to this inhibitor. Here, we have elucidated the unexpected mechanism of viral resistance to PIR. While both Tyr99 and Ala128 are positioned within the inhibitor binding V-shaped cavity at the IN catalytic core domain (CCD) dimer interface, the Y99H/A128T IN mutations did not substantially affect direct binding of PIR to the CCD dimer or functional oligomerization of full-length IN. Instead, the drug-resistant mutations introduced a steric hindrance at the inhibitor mediated interface between CCD and C-terminal domain (CTD) and compromised CTD binding to the CCDY99H/A128T + PIR complex. Consequently, full-length INY99H/A128T was substantially less susceptible to the PIR induced hyper-multimerization than the WT protein, and HIV-1(Y99H/A128T IN) conferred >150-fold resistance to the inhibitor compared to the WT virus. By rationally modifying PIR we have developed its analog EKC110, which readily induced hyper-multimerization of INY99H/A128T in vitro and was ~14-fold more potent against HIV-1(Y99H/A128T IN) than the parent inhibitor. These findings suggest a path for developing improved PIR chemotypes with a higher barrier to resistance for their potential clinical use.
Collapse
Affiliation(s)
- Tung Dinh
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Zahira Tber
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan S Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Seema Mengshetti
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Arun S Annamalai
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reed Haney
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Franck Amblard
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - James R Fuchs
- College of Pharmacy, The Ohio State University, Columbus, Ohio, United States
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Raymond F Schinazi
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Baek Kim
- Center for ViroScience and Cure, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
4
|
Dharan A, Campbell EM. Monitoring HIV-1 Nuclear Import Kinetics Using a Chemically Induced Nuclear Pore Blockade Assay. Methods Mol Biol 2024; 2807:141-151. [PMID: 38743226 DOI: 10.1007/978-1-0716-3862-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
To integrate with host chromatin and establish a productive infection, HIV-1 must translocate the viral Ribonucleoprotein (RNP) complex through the nuclear pore complex (NPC). Current assay to measure HIV-1 nuclear import relies on a transient byproduct of HIV-1 integration failure called 2-LTR circles. However, 2-LTR circles require complete or near-complete reverse transcription and association with the non-homologous end joining (NHEJ) machinery in the nucleus, which can complicate interpretation of 2-LTR circle formation as a measure of nuclear import kinetics. Here, we describe an approach to measure nuclear import of infectious HIV-1 particles. This involves chemically induced dimerization of Nup62, a central FG containing nucleoporin. Using this technique, nuclear import of infectious particles can be monitored in both primary and cell culture models. In response to host factor depletion or restriction factors, changes in HIV-1 nuclear import can be effectively measured using the nuclear import kinetics (NIK) assay.
Collapse
Affiliation(s)
- Adarsh Dharan
- Department of Biology, Indiana University, Bloomington, IN, USA.
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Chicago, IL, USA.
| | - Edward M Campbell
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University, Maywood, Chicago, IL, USA.
| |
Collapse
|
5
|
Anisenko A, Galkin S, Mikhaylov AA, Khrenova MG, Agapkina Y, Korolev S, Garkul L, Shirokova V, Ikonnikova VA, Korlyukov A, Dorovatovskii P, Baranov M, Gottikh M. KuINins as a New Class of HIV-1 Inhibitors That Block Post-Integration DNA Repair. Int J Mol Sci 2023; 24:17354. [PMID: 38139188 PMCID: PMC10744174 DOI: 10.3390/ijms242417354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Integration of HIV-1 genomic cDNA results in the formation of single-strand breaks in cellular DNA, which must be repaired for efficient viral replication. Post-integration DNA repair mainly depends on the formation of the HIV-1 integrase complex with the Ku70 protein, which promotes DNA-PK assembly at sites of integration and its activation. Here, we have developed a first-class inhibitor of the integrase-Ku70 complex formation that inhibits HIV-1 replication in cell culture by acting at the stage of post-integration DNA repair. This inhibitor, named s17, does not affect the main cellular function of Ku70, namely its participation in the repair of double-strand DNA breaks through the non-homologous end-joining pathway. Using a molecular dynamics approach, we have constructed a model for the interaction of s17 with Ku70. According to this model, the interaction of two phenyl radicals of s17 with the L76 residue of Ku70 is important for this interaction. The requirement of two phenyl radicals in the structure of s17 for its inhibitory properties was confirmed using a set of s17 derivatives. We propose to stimulate compounds that inhibit post-integration repair by disrupting the integrase binding to Ku70 KuINins.
Collapse
Affiliation(s)
- Andrey Anisenko
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Simon Galkin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Andrey A. Mikhaylov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
| | - Maria G. Khrenova
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Yulia Agapkina
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Sergey Korolev
- Chemistry Department, Lomonosov Moscow State University, 119992 Moscow, Russia; (M.G.K.); (Y.A.); (S.K.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Lidia Garkul
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
| | - Vasilissa Shirokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Viktoria A. Ikonnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Higher Chemical College, D.I. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Alexander Korlyukov
- Nesmeyanov Institute of Organoelement Compounds, 119334 Moscow, Russia;
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | | | - Mikhail Baranov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia (V.S.); (V.A.I.); (M.B.)
- Institute of Translational Medicine and Institute of Pharmacy and Medicinal Chemistry, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Marina Gottikh
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia; (S.G.); (L.G.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| |
Collapse
|
6
|
Sanchez-Hernandez ES, Ochoa PT, Suzuki T, Ortiz-Hernandez GL, Unternaehrer JJ, Alkashgari HR, Diaz Osterman CJ, Martinez SR, Chen Z, Kremsky I, Wang C, Casiano CA. Glucocorticoid Receptor Regulates and Interacts with LEDGF/p75 to Promote Docetaxel Resistance in Prostate Cancer Cells. Cells 2023; 12:2046. [PMID: 37626856 PMCID: PMC10453226 DOI: 10.3390/cells12162046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with advanced prostate cancer (PCa) invariably develop resistance to anti-androgen therapy and taxane-based chemotherapy. Glucocorticoid receptor (GR) has been implicated in PCa therapy resistance; however, the mechanisms underlying GR-mediated chemoresistance remain unclear. Lens epithelium-derived growth factor p75 (LEDGF/p75, also known as PSIP1 and DFS70) is a glucocorticoid-induced transcription co-activator implicated in cancer chemoresistance. We investigated the contribution of the GR-LEDGF/p75 axis to docetaxel (DTX)-resistance in PCa cells. GR silencing in DTX-sensitive and -resistant PCa cells decreased LEDGF/p75 expression, and GR upregulation in enzalutamide-resistant cells correlated with increased LEDGF/p75 expression. ChIP-sequencing revealed GR binding sites in the LEDGF/p75 promoter. STRING protein-protein interaction analysis indicated that GR and LEDGF/p75 belong to the same transcriptional network, and immunochemical studies demonstrated their co-immunoprecipitation and co-localization in DTX-resistant cells. The GR modulators exicorilant and relacorilant increased the sensitivity of chemoresistant PCa cells to DTX-induced cell death, and this effect was more pronounced upon LEDGF/p75 silencing. RNA-sequencing of DTX-resistant cells with GR or LEDGF/p75 knockdown revealed a transcriptomic overlap targeting signaling pathways associated with cell survival and proliferation, cancer, and therapy resistance. These studies implicate the GR-LEDGF/p75 axis in PCa therapy resistance and provide a pre-clinical rationale for developing novel therapeutic strategies for advanced PCa.
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Tise Suzuki
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
| | - Juli J. Unternaehrer
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
| | - Hossam R. Alkashgari
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Department of Physiology, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Carlos J. Diaz Osterman
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Shannalee R. Martinez
- Department of Basic Sciences, Ponce Health Sciences University, Ponce, PR 00716, USA; (C.J.D.O.); (S.R.M.)
| | - Zhong Chen
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Isaac Kremsky
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Charles Wang
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (E.S.S.-H.); (T.S.); (G.L.O.-H.); (J.J.U.); (H.R.A.)
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA; (Z.C.); (I.K.); (C.W.)
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| |
Collapse
|
7
|
Eilers G, Gupta K, Allen A, Montermoso S, Murali H, Sharp R, Hwang Y, Bushman FD, Van Duyne G. Structure of a HIV-1 IN-Allosteric inhibitor complex at 2.93 Å resolution: Routes to inhibitor optimization. PLoS Pathog 2023; 19:e1011097. [PMID: 36867659 PMCID: PMC10016701 DOI: 10.1371/journal.ppat.1011097] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 03/15/2023] [Accepted: 01/03/2023] [Indexed: 03/04/2023] Open
Abstract
HIV integrase (IN) inserts viral DNA into the host genome and is the target of the strand transfer inhibitors (STIs), a class of small molecules currently in clinical use. Another potent class of antivirals is the allosteric inhibitors of integrase, or ALLINIs. ALLINIs promote IN aggregation by stabilizing an interaction between the catalytic core domain (CCD) and carboxy-terminal domain (CTD) that undermines viral particle formation in late replication. Ongoing challenges with inhibitor potency, toxicity, and viral resistance motivate research to understand their mechanism. Here, we report a 2.93 Å X-ray crystal structure of the minimal ternary complex between CCD, CTD, and the ALLINI BI-224436. This structure reveals an asymmetric ternary complex with a prominent network of π-mediated interactions that suggest specific avenues for future ALLINI development and optimization.
Collapse
Affiliation(s)
- Grant Eilers
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Kushol Gupta
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Audrey Allen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Saira Montermoso
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Hemma Murali
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert Sharp
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Young Hwang
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gregory Van Duyne
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
8
|
Singer MR, Dinh T, Levintov L, Annamalai AS, Rey JS, Briganti L, Cook NJ, Pye VE, Taylor IA, Kim K, Engelman AN, Kim B, Perilla JR, Kvaratskhelia M, Cherepanov P. The Drug-Induced Interface That Drives HIV-1 Integrase Hypermultimerization and Loss of Function. mBio 2023; 14:e0356022. [PMID: 36744954 PMCID: PMC9973045 DOI: 10.1128/mbio.03560-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are an emerging class of small molecules that disrupt viral maturation by inducing the aberrant multimerization of IN. Here, we present cocrystal structures of HIV-1 IN with two potent ALLINIs, namely, BI-D and the drug candidate Pirmitegravir. The structures reveal atomistic details of the ALLINI-induced interface between the HIV-1 IN catalytic core and carboxyl-terminal domains (CCD and CTD). Projecting from their principal binding pocket on the IN CCD dimer, the compounds act as molecular glue by engaging a triad of invariant HIV-1 IN CTD residues, namely, Tyr226, Trp235, and Lys266, to nucleate the CTD-CCD interaction. The drug-induced interface involves the CTD SH3-like fold and extends to the beginning of the IN carboxyl-terminal tail region. We show that mutations of HIV-1 IN CTD residues that participate in the interface with the CCD greatly reduce the IN-aggregation properties of Pirmitegravir. Our results explain the mechanism of the ALLINI-induced condensation of HIV-1 IN and provide a reliable template for the rational development of this series of antiretrovirals through the optimization of their key contacts with the viral target. IMPORTANCE Despite the remarkable success of combination antiretroviral therapy, HIV-1 remains among the major causes of human suffering and loss of life in poor and developing nations. To prevail in this drawn-out battle with the pandemic, it is essential to continue developing advanced antiviral agents to fight drug resistant HIV-1 variants. Allosteric integrase inhibitors (ALLINIs) are an emerging class of HIV-1 antagonists that are orthogonal to the current antiretroviral drugs. These small molecules act as highly specific molecular glue, which triggers the aggregation of HIV-1 integrase. In this work, we present high-resolution crystal structures that reveal the crucial interactions made by two potent ALLINIs, namely, BI-D and Pirmitegravir, with HIV-1 integrase. Our results explain the mechanism of drug action and will inform the development of this promising class of small molecules for future use in antiretroviral regimens.
Collapse
Affiliation(s)
- Matthew R. Singer
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Tung Dinh
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Lev Levintov
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Arun S. Annamalai
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Juan S. Rey
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Lorenzo Briganti
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Nicola J. Cook
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Valerie E. Pye
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, United Kingdom
| | | | - Alan N. Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Baek Kim
- Center for Drug Discovery, Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, USA
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, School of Medicine, University of Colorado, Aurora, Colorado, USA
| | - Peter Cherepanov
- Chromatin Structure & Mobile DNA Laboratory, The Francis Crick Institute, London, United Kingdom
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Wistner SC, MacDonald IA, Stanley KA, Hathaway NA. Characterization of Hepatoma-Derived Growth Factor-Related Protein 2 Interactions with Heterochromatin. Cells 2023; 12:325. [PMID: 36672260 PMCID: PMC9856275 DOI: 10.3390/cells12020325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
The expression of genetic information is tightly controlled by chromatin regulatory proteins, including those in the heterochromatin gene repression family. Many of these regulatory proteins work together on the chromatin substrate to precisely regulate gene expression during mammalian development, giving rise to many different tissues in higher organisms from a fixed genomic template. Here we identify and characterize the interactions of two related heterochromatin regulatory proteins, heterochromatin protein 1 alpha (HP1α) and M-phase phosphoprotein 8 (MPP8), with hepatoma-derived growth factor-related protein 2 (HRP2). We find in biochemical experiments that HRP2 copurifies and co-sediments with heterochromatin-associated proteins, including HP1α and MPP8. Using the Chromatin in vivo Assay in multiple cell types, we demonstrate that HP1α-mediated gene repression dynamics are altered by the presence of HRP2. Furthermore, the knockout of HRP2 in MDA-MB-231 cells results in significant changes to chromatin structure and stability, which alter gene expression patterns. Here, we detail a mechanism by which HRP2 contributes to epigenetic transcriptional regulation through engagement with heterochromatin-associated proteins to stabilize the chromatin landscape and influence gene expression.
Collapse
Affiliation(s)
- Sarah C. Wistner
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ian A. MacDonald
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karly A. Stanley
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Sanchez-Hernandez ES, Ortiz-Hernandez GL, Ochoa PT, Reeves M, Bizzaro N, Andrade LEC, Mahler M, Casiano CA. The Nuclear Dense Fine Speckled (DFS) Immunofluorescence Pattern: Not All Roads Lead to DFS70/LEDGFp75. Diagnostics (Basel) 2023; 13:diagnostics13020222. [PMID: 36673033 PMCID: PMC9858485 DOI: 10.3390/diagnostics13020222] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The monospecific dense fine speckled (DFS) immunofluorescence assay (IFA) pattern is considered a potential marker to aid in exclusion of antinuclear antibody (ANA)-associated rheumatic diseases (AARD). This pattern is typically produced by autoantibodies against transcription co-activator DFS70/LEDGFp75, which are frequently found in healthy individuals and patients with miscellaneous inflammatory conditions. In AARD patients, these antibodies usually co-exist with disease-associated ANAs. Previous studies reported the occurrence of monospecific autoantibodies that generate a DFS-like or pseudo-DFS IFA pattern but do not react with DFS70/LEDGFp75. We characterized this pattern using confocal microscopy and immunoblotting. The target antigen associated with this pattern partially co-localized with DFS70/LEDGFp75 and its interacting partners H3K36me2, an active chromatin marker, and MLL, a transcription factor, in HEp-2 cells, suggesting a role in transcription. Immunoblotting did not reveal a common protein band immunoreactive with antibodies producing the pseudo-DFS pattern, suggesting they may recognize diverse proteins or conformational epitopes. Given the subjectivity of the HEp-2 IFA test, the awareness of pseudo-DFS autoantibodies reinforces recommendations for confirmatory testing when reporting patient antibodies producing a putative DFS pattern in a clinical setting. Future studies should focus on defining the potential diagnostic utility of the pseudo-DFS pattern and its associated antigen(s).
Collapse
Affiliation(s)
- Evelyn S. Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Greisha L. Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Pedro T. Ochoa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Michael Reeves
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Nicola Bizzaro
- Laboratorio di Patologia Clinica, Ospedale San Antonio, Azienda Sanitaria Universitaria Integrata, 33100 Udine, Italy
| | - Luis E. C. Andrade
- Rheumatology Division, Department of Medicine, Federal University of Sao Paulo, São Paulo 04021-001, Brazil
- Immunology Division, Fleury Medicine and Health Laboratory, São Paulo 04023-062, Brazil
| | | | - Carlos A. Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Rheumatology Division, Department of Medicine, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence: ; Tel.: +909-558-1000 (ext. 42759); Fax: +909-558-0196
| |
Collapse
|
11
|
Pellaers E, Bhat A, Christ F, Debyser Z. Determinants of Retroviral Integration and Implications for Gene Therapeutic MLV-Based Vectors and for a Cure for HIV-1 Infection. Viruses 2022; 15:32. [PMID: 36680071 PMCID: PMC9861059 DOI: 10.3390/v15010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
To complete their replication cycle, retroviruses need to integrate a DNA copy of their RNA genome into a host chromosome. Integration site selection is not random and is driven by multiple viral and cellular host factors specific to different classes of retroviruses. Today, overwhelming evidence from cell culture, animal experiments and clinical data suggests that integration sites are important for retroviral replication, oncogenesis and/or latency. In this review, we will summarize the increasing knowledge of the mechanisms underlying the integration site selection of the gammaretrovirus MLV and the lentivirus HIV-1. We will discuss how host factors of the integration site selection of retroviruses may steer the development of safer viral vectors for gene therapy. Next, we will discuss how altering the integration site preference of HIV-1 using small molecules could lead to a cure for HIV-1 infection.
Collapse
Affiliation(s)
| | | | | | - Zeger Debyser
- Molecular Virology and Gene Therapy, KU Leuven, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
12
|
Shema Mugisha C, Dinh T, Kumar A, Tenneti K, Eschbach JE, Davis K, Gifford R, Kvaratskhelia M, Kutluay SB. Emergence of Compensatory Mutations Reveals the Importance of Electrostatic Interactions between HIV-1 Integrase and Genomic RNA. mBio 2022; 13:e0043122. [PMID: 35975921 PMCID: PMC9601147 DOI: 10.1128/mbio.00431-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/27/2022] [Indexed: 01/11/2023] Open
Abstract
HIV-1 integrase (IN) has a noncatalytic function in virion maturation through its binding to the viral RNA genome (gRNA). Class II IN substitutions inhibit IN-gRNA binding and result in the formation of virions with aberrant morphologies marked by mislocalization of the gRNA between the capsid lattice and the lipid envelope. These viruses are noninfectious due to a block at an early reverse transcription stage in target cells. HIV-1 IN utilizes basic residues within its C-terminal domain (CTD) to bind to the gRNA; however, the molecular nature of how these residues mediate gRNA binding and whether other regions of IN are involved remain unknown. To address this, we have isolated compensatory substitutions in the background of a class II IN mutant virus bearing R269A/K273A substitutions within the IN-CTD. We found that the nearby D256N and D270N compensatory substitutions restored the ability of IN to bind gRNA and led to the formation of mature infectious virions. Reinstating the local positive charge of the IN-CTD through individual D256R, D256K, D278R, and D279R substitutions was sufficient to specifically restore IN-gRNA binding and reverse transcription for the IN R269A/K273A as well as the IN R262A/R263A class II mutants. Structural modeling suggested that compensatory substitutions in the D256 residue created an additional interaction interface for gRNA binding, whereas other substitutions acted locally within the unstructured C-terminal tail of IN. Taken together, our findings highlight the essential role of CTD in gRNA binding and reveal the importance of pliable electrostatic interactions between the IN-CTD and the gRNA. IMPORTANCE In addition to its catalytic function, HIV-1 integrase (IN) binds to the viral RNA genome (gRNA) through positively charged residues (i.e., R262, R263, R269, K273) within its C-terminal domain (CTD) and regulates proper virion maturation. Mutation of these residues results in the formation of morphologically aberrant viruses blocked at an early reverse transcription stage in cells. Here we show that compensatory substitutions in nearby negatively charged aspartic acid residues (i.e., D256N, D270N) restore the ability of IN to bind gRNA for these mutant viruses and result in the formation of accurately matured infectious virions. Similarly, individual charge reversal substitutions at D256 as well as other nearby positions (i.e., D278, D279) are all sufficient to enable the respective IN mutants to bind gRNA, and subsequently restore reverse transcription and virion infectivity. Taken together, our findings reveal the importance of highly pliable electrostatic interactions in IN-gRNA binding.
Collapse
Affiliation(s)
- Christian Shema Mugisha
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Tung Dinh
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Abhishek Kumar
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Kasyap Tenneti
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Keanu Davis
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Bearsden, Glasgow, United Kingdom
| | - Mamuka Kvaratskhelia
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
13
|
Complex Relationships between HIV-1 Integrase and Its Cellular Partners. Int J Mol Sci 2022; 23:ijms232012341. [PMID: 36293197 PMCID: PMC9603942 DOI: 10.3390/ijms232012341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
RNA viruses, in pursuit of genome miniaturization, tend to employ cellular proteins to facilitate their replication. HIV-1, one of the most well-studied retroviruses, is not an exception. There is numerous evidence that the exploitation of cellular machinery relies on nucleic acid-protein and protein-protein interactions. Apart from Vpr, Vif, and Nef proteins that are known to regulate cellular functioning via interaction with cell components, another viral protein, integrase, appears to be crucial for proper virus-cell dialog at different stages of the viral life cycle. The goal of this review is to summarize and systematize existing data on known cellular partners of HIV-1 integrase and their role in the HIV-1 life cycle.
Collapse
|
14
|
Allosteric Integrase Inhibitor Influences on HIV-1 Integration and Roles of LEDGF/p75 and HDGFL2 Host Factors. Viruses 2022; 14:v14091883. [PMID: 36146690 PMCID: PMC9502684 DOI: 10.3390/v14091883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/11/2022] [Accepted: 08/24/2022] [Indexed: 02/01/2023] Open
Abstract
Allosteric integrase (IN) inhibitors (ALLINIs), which are promising preclinical compounds that engage the lens epithelium-derived growth factor (LEDGF)/p75 binding site on IN, can inhibit different aspects of human immunodeficiency virus 1 (HIV-1) replication. During the late phase of replication, ALLINIs induce aberrant IN hyper-multimerization, the consequences of which disrupt IN binding to genomic RNA and virus particle morphogenesis. During the early phase of infection, ALLINIs can suppress HIV-1 integration into host genes, which is also observed in LEDGF/p75-depelted cells. Despite this similarity, the roles of LEDGF/p75 and its paralog hepatoma-derived growth factor like 2 (HDGFL2) in ALLINI-mediated integration retargeting are untested. Herein, we mapped integration sites in cells knocked out for LEDGF/p75, HDGFL2, or both factors, which revealed that these two proteins in large part account for ALLINI-mediated integration retargeting during the early phase of infection. We also determined that ALLINI-treated viruses are defective during the subsequent round of infection for integration into genes associated with speckle-associated domains, which are naturally highly targeted for HIV-1 integration. Class II IN mutant viruses with alterations distal from the LEDGF/p75 binding site moreover shared this integration retargeting phenotype. Altogether, our findings help to inform the molecular bases and consequences of ALLINI action.
Collapse
|
15
|
BET-Independent Murine Leukemia Virus Integration Is Retargeted
In Vivo
and Selects Distinct Genomic Elements for Lymphomagenesis. Microbiol Spectr 2022; 10:e0147822. [PMID: 35852337 PMCID: PMC9431007 DOI: 10.1128/spectrum.01478-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Moloney murine leukemia virus (MLV) infects BALB/c mice and induces T-cell lymphoma in mice. Retroviral integration is mediated by the interaction of the MLV integrase (IN) with members of the bromodomain and extraterminal motif (BET) protein family (BRD2, BRD3, and BRD4). The introduction of the W390A mutation into MLV IN abolishes the BET interaction. Here, we compared the replication of W390A MLV to that of wild-type (WT) MLV in adult BALB/c mice to study the role of BET proteins in replication, integration, and tumorigenesis in vivo. Comparing WT and W390A MLV infections revealed similar viral loads in the blood, thymus, and spleen cells. Interestingly, W390A MLV integration was retargeted away from GC-enriched genomic regions. However, both WT MLV- and W390A MLV-infected mice developed T-cell lymphoma after similar latencies represented by an enlarged thymus and spleen and multiorgan tumor infiltration. Integration site sequencing from splenic tumor cells revealed clonal expansion in all WT MLV- and W390A MLV-infected mice. However, the integration profiles of W390A MLV and WT MLV differed significantly. Integrations were enriched in enhancers and promoters, but compared to the WT, W390A MLV integrated less frequently into enhancers and more frequently into oncogene bodies such as Notch1 and Ppp1r16b. We conclude that host factors direct MLV in vivo integration site selection. Although BET proteins target WT MLV integration preferentially toward enhancers and promoters, insertional lymphomagenesis can occur independently from BET, likely due to the intrinsically strong enhancer/promoter of the MLV long terminal repeat (LTR). IMPORTANCE In this study, we have shown that the in vivo replication of murine leukemia virus happens independently of BET proteins, which are key host determinants involved in retroviral integration site selection. This finding opens a new research line in the discovery of alternative viral or host factors that may complement the dominant host factor. In addition, our results show that BET-independent murine leukemia virus uncouples insertional mutagenesis from gene enhancers, although lymphomagenesis still occurs despite the lack of an interaction with BET proteins. Our findings also have implications for the engineering of BET-independent MLV-based vectors for gene therapy, which may not be a safe alternative.
Collapse
|
16
|
Ballandras-Colas A, Chivukula V, Gruszka DT, Shan Z, Singh PK, Pye VE, McLean RK, Bedwell GJ, Li W, Nans A, Cook NJ, Fadel HJ, Poeschla EM, Griffiths DJ, Vargas J, Taylor IA, Lyumkis D, Yardimci H, Engelman AN, Cherepanov P. Multivalent interactions essential for lentiviral integrase function. Nat Commun 2022; 13:2416. [PMID: 35504909 PMCID: PMC9065133 DOI: 10.1038/s41467-022-29928-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
A multimer of retroviral integrase (IN) synapses viral DNA ends within a stable intasome nucleoprotein complex for integration into a host cell genome. Reconstitution of the intasome from the maedi-visna virus (MVV), an ovine lentivirus, revealed a large assembly containing sixteen IN subunits1. Herein, we report cryo-EM structures of the lentiviral intasome prior to engagement of target DNA and following strand transfer, refined at 3.4 and 3.5 Å resolution, respectively. The structures elucidate details of the protein-protein and protein-DNA interfaces involved in lentiviral intasome formation. We show that the homomeric interfaces involved in IN hexadecamer formation and the α-helical configuration of the linker connecting the C-terminal and catalytic core domains are critical for MVV IN strand transfer activity in vitro and for virus infectivity. Single-molecule microscopy in conjunction with photobleaching reveals that the MVV intasome can bind a variable number, up to sixteen molecules, of the lentivirus-specific host factor LEDGF/p75. Concordantly, ablation of endogenous LEDGF/p75 results in gross redistribution of MVV integration sites in human and ovine cells. Our data confirm the importance of the expanded architecture observed in cryo-EM studies of lentiviral intasomes and suggest that this organization underlies multivalent interactions with chromatin for integration targeting to active genes.
Collapse
Affiliation(s)
- Allison Ballandras-Colas
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Institut de Biologie Structurale (IBS) CNRS, CEA, University Grenoble, Grenoble, France
| | - Vidya Chivukula
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Dominika T Gruszka
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Zelin Shan
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Parmit K Singh
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Valerie E Pye
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Rebecca K McLean
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Gregory J Bedwell
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Wen Li
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Nicola J Cook
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK
| | - Hind J Fadel
- Division of Infectious Diseases, Mayo Clinic, Rochester, MN, USA
| | - Eric M Poeschla
- Division of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Griffiths
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, UK
| | - Javier Vargas
- Departmento de Óptica, Universidad Complutense de Madrid, Madrid, Spain
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Dmitry Lyumkis
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| | - Hasan Yardimci
- Single Molecule Imaging of Genome Duplication and Maintenance Laboratory, The Francis Crick Institute, London, UK.
| | - Alan N Engelman
- Department of Cancer Immunology & Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Peter Cherepanov
- Chromatin Structure and Mobile DNA Laboratory, The Francis Crick Institute, London, UK.
- Department of Infectious Disease, St-Mary's Campus, Imperial College London, London, UK.
| |
Collapse
|
17
|
Targeting the Nucleosome Acidic Patch by Viral Proteins: Two Birds with One Stone? mBio 2022; 13:e0173321. [PMID: 35343785 PMCID: PMC9040877 DOI: 10.1128/mbio.01733-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The past decade illuminated the H2A-H2B acidic patch as a cornerstone for both nucleosome recognition and chromatin structure regulation. Higher-order folding of chromatin arrays is mediated by interactions of histone H4 tail with an adjacent nucleosome acidic patch. Dynamic chromatin folding ensures a proper regulation of nuclear functions fundamental to cellular homeostasis. Many cellular factors have been shown to act on chromatin by tethering nucleosomes via an arginine anchor binding to the acidic patch. This tethering mechanism has also been described for several viral proteins. In this minireview, we will discuss the structural basis for acidic patch engagement by viral proteins and the implications during respective viral infections. We will also discuss a model in which acidic patch occupancy by these non-self viral proteins alters the local chromatin state by preventing H4 tail-mediated higher-order chromatin folding.
Collapse
|
18
|
Wang J, Zhu X, Dang L, Jiang H, Xie Y, Li X, Guo J, Wang Y, Peng Z, Wang M, Wang J, Wang S, Li Q, Wang Y, Wang Q, Ye L, Zhang L, Liu Z. Epigenomic reprogramming via HRP2-MINA dictates response to proteasome inhibitors in multiple myeloma with t(4;14) translocation. J Clin Invest 2022; 132:149526. [PMID: 35166240 PMCID: PMC8843744 DOI: 10.1172/jci149526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain–containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow–bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.
Collapse
Affiliation(s)
- Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Yixuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Mengqi Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
19
|
Passos DO, Li M, Craigie R, Lyumkis D. Retroviral integrase: Structure, mechanism, and inhibition. Enzymes 2021; 50:249-300. [PMID: 34861940 DOI: 10.1016/bs.enz.2021.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The retroviral protein Integrase (IN) catalyzes concerted integration of viral DNA into host chromatin to establish a permanent infection in the target cell. We learned a great deal about the mechanism of catalytic integration through structure/function studies over the previous four decades of IN research. As one of three essential retroviral enzymes, IN has also been targeted by antiretroviral drugs to treat HIV-infected individuals. Inhibitors blocking the catalytic integration reaction are now state-of-the-art drugs within the antiretroviral therapy toolkit. HIV-1 IN also performs intriguing non-catalytic functions that are relevant to the late stages of the viral replication cycle, yet this aspect remains poorly understood. There are also novel allosteric inhibitors targeting non-enzymatic functions of IN that induce a block in the late stages of the viral replication cycle. In this chapter, we will discuss the function, structure, and inhibition of retroviral IN proteins, highlighting remaining challenges and outstanding questions.
Collapse
Affiliation(s)
| | - Min Li
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Robert Craigie
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, United States; The Scripps Research Institute, La Jolla, CA, United States.
| |
Collapse
|
20
|
The LEDGF/p75 Integrase Binding Domain Interactome Contributes to the Survival, Clonogenicity, and Tumorsphere Formation of Docetaxel-Resistant Prostate Cancer Cells. Cells 2021; 10:cells10102723. [PMID: 34685704 PMCID: PMC8534522 DOI: 10.3390/cells10102723] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Patients with prostate cancer (PCa) receiving docetaxel chemotherapy invariably develop chemoresistance. The transcription co-activator lens epithelium-derived growth factor p75 (LEDGF/p75), also known as DFS70 and PSIP1, is upregulated in several human cancers, including PCa and promotes resistance to docetaxel and other drugs. The C-terminal region of LEDGF/p75 contains an integrase binding domain (IBD) that tethers nuclear proteins, including the HIV-1 integrase and transcription factors, to active chromatin to promote viral integration and transcription of cellular survival genes. Here, we investigated the contribution of the LEDGF/p75 IBD interactome to PCa chemoresistance. Quantitative immunoblotting revealed that LEDGF/p75 and its IBD-interacting partners are endogenously upregulated in docetaxel-resistant PCa cell lines compared to docetaxel-sensitive parental cells. Using specific human autoantibodies, we co-immunoprecipitated LEDGF/p75 with its endogenous IBD-interacting partners JPO2, menin, MLL, IWS1, ASK1, and PogZ, as well as transcription factors c-MYC and HRP2, in docetaxel-resistant cells, and confirmed their nuclear co-localization by confocal microscopy. Depletion of LEDGF/p75 and selected interacting partners robustly decreased the survival, clonogenicity, and tumorsphere formation capacity of docetaxel-resistant cells. These results implicate the LEDGF/p75 IBD interactome in PCa chemoresistance and could lead to novel therapeutic strategies targeting this protein complex for the treatment of docetaxel-resistant tumors.
Collapse
|
21
|
Waybright JM, Clinkscales SE, Barnash KD, Budziszewski GR, Rectenwald JM, Chiarella AM, Norris-Drouin JL, Cholensky SH, Pearce KH, Herring LE, McGinty RK, Hathaway NA, James LI. A Peptidomimetic Ligand Targeting the Chromodomain of MPP8 Reveals HRP2's Association with the HUSH Complex. ACS Chem Biol 2021; 16:1721-1736. [PMID: 34415726 DOI: 10.1021/acschembio.1c00429] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interpretation of histone post-translational modifications (PTMs), specifically lysine methylation, by specific classes of "reader" proteins marks an important aspect of epigenetic control of gene expression. Methyl-lysine (Kme) readers often regulate gene expression patterns through the recognition of a specific Kme PTM while participating in or recruiting large protein complexes that contain enzymatic or chromatin remodeling activity. Understanding the composition of these Kme-reader-containing protein complexes can serve to further our understanding of the biological roles of Kme readers, while small molecule chemical tools can be valuable reagents in interrogating novel protein-protein interactions. Here, we describe our efforts to target the chromodomain of M-phase phosphoprotein 8 (MPP8), a member of the human silencing hub (HUSH) complex and a histone 3 lysine 9 trimethyl (H3K9me3) reader that is vital for heterochromatin formation and has specific roles in cancer metastasis. Utilizing a one-bead, one-compound (OBOC) combinatorial screening approach, we identified UNC5246, a peptidomimetic ligand capable of interacting with the MPP8 chromodomain in the context of the HUSH complex. Additionally, a biotinylated derivative of UNC5246 facilitated chemoproteomics studies which revealed hepatoma-derived growth factor-related protein 2 (HRP2) as a novel protein associated with MPP8. HRP2 was further shown to colocalize with MPP8 at the E-cadherin gene locus, suggesting a possible role in cancer cell plasticity.
Collapse
Affiliation(s)
- Jarod M. Waybright
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sarah E. Clinkscales
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | - Gabrielle R. Budziszewski
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Justin M. Rectenwald
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Anna M. Chiarella
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacqueline L. Norris-Drouin
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stephanie H. Cholensky
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Kenneth H. Pearce
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Laura E. Herring
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Robert K. McGinty
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- UNC Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Nathaniel A. Hathaway
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I. James
- Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
22
|
Optimized binding of substituted quinoline ALLINIs within the HIV-1 integrase oligomer. J Biol Chem 2021; 296:100363. [PMID: 33539919 PMCID: PMC7949159 DOI: 10.1016/j.jbc.2021.100363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
During the integration step, human immunodeficiency virus type 1 integrase (IN) interacts with viral DNA and the cellular cofactor LEDGF/p75 to effectively integrate the reverse transcript into the host chromatin. Allosteric human immunodeficiency virus type 1 integrase inhibitors (ALLINIs) are a new class of antiviral agents that bind at the dimer interface of the IN catalytic core domain and occupy the binding site of LEDGF/p75. While originally designed to block IN-LEDGF/p75 interactions during viral integration, several of these compounds have been shown to also severely impact viral maturation through an IN multimerization mechanism. In this study, we tested the hypothesis that these dual properties of ALLINIs could be decoupled toward late stage viral replication effects by generating additional contact points between the bound ALLINI and a third subunit of IN. By sequential derivatization at position 7 of a quinoline-based ALLINI scaffold, we show that IN multimerization properties are enhanced by optimizing hydrophobic interactions between the compound and the C-terminal domain of the third IN subunit. These features not only improve the overall antiviral potencies of these compounds but also significantly shift the ALLINIs selectivity toward the viral maturation stage. Thus, we demonstrate that to fully maximize the potency of ALLINIs, the interactions between the inhibitor and all three IN subunits need to be simultaneously optimized.
Collapse
|
23
|
Bedwell GJ, Engelman AN. Factors that mold the nuclear landscape of HIV-1 integration. Nucleic Acids Res 2021; 49:621-635. [PMID: 33337475 PMCID: PMC7826272 DOI: 10.1093/nar/gkaa1207] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 11/26/2020] [Indexed: 12/17/2022] Open
Abstract
The integration of retroviral reverse transcripts into the chromatin of the cells that they infect is required for virus replication. Retroviral integration has far-reaching consequences, from perpetuating deadly human diseases to molding metazoan evolution. The lentivirus human immunodeficiency virus 1 (HIV-1), which is the causative agent of the AIDS pandemic, efficiently infects interphase cells due to the active nuclear import of its preintegration complex (PIC). To enable integration, the PIC must navigate the densely-packed nuclear environment where the genome is organized into different chromatin states of varying accessibility in accordance with cellular needs. The HIV-1 capsid protein interacts with specific host factors to facilitate PIC nuclear import, while additional interactions of viral integrase, the enzyme responsible for viral DNA integration, with cellular nuclear proteins and nucleobases guide integration to specific chromosomal sites. HIV-1 integration favors transcriptionally active chromatin such as speckle-associated domains and disfavors heterochromatin including lamina-associated domains. In this review, we describe virus-host interactions that facilitate HIV-1 PIC nuclear import and integration site targeting, highlighting commonalities among factors that participate in both of these steps. We moreover discuss how the nuclear landscape influences HIV-1 integration site selection as well as the establishment of active versus latent virus infection.
Collapse
Affiliation(s)
- Gregory J Bedwell
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
24
|
Zhu X, Lan B, Yi X, He C, Dang L, Zhou X, Lu Y, Sun Y, Liu Z, Bai X, Zhang K, Li B, Li MJ, Chen Y, Zhang L. HRP2-DPF3a-BAF complex coordinates histone modification and chromatin remodeling to regulate myogenic gene transcription. Nucleic Acids Res 2020; 48:6563-6582. [PMID: 32459350 PMCID: PMC7337902 DOI: 10.1093/nar/gkaa441] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/17/2022] Open
Abstract
Functional crosstalk between histone modifications and chromatin remodeling has emerged as a key regulatory mode of transcriptional control during cell fate decisions, but the underlying mechanisms are not fully understood. Here we discover an HRP2-DPF3a-BAF epigenetic pathway that coordinates methylated histone H3 lysine 36 (H3K36me) and ATP-dependent chromatin remodeling to regulate chromatin dynamics and gene transcription during myogenic differentiation. Using siRNA screening targeting epigenetic modifiers, we identify hepatoma-derived growth factor-related protein 2 (HRP2) as a key regulator of myogenesis. Knockout of HRP2 in mice leads to impaired muscle regeneration. Mechanistically, through its HIV integrase binding domain (IBD), HRP2 associates with the BRG1/BRM-associated factor (BAF) chromatin remodeling complex by interacting directly with the BAF45c (DPF3a) subunit. Through its Pro-Trp-Trp-Pro (PWWP) domain, HRP2 preferentially binds to H3K36me2. Consistent with the biochemical studies, ChIP-seq analyses show that HRP2 colocalizes with DPF3a across the genome and that the recruitment of HRP2/DPF3a to chromatin is dependent on H3K36me2. Integrative transcriptomic and cistromic analyses, coupled with ATAC-seq, reveal that HRP2 and DPF3a activate myogenic genes by increasing chromatin accessibility through recruitment of BRG1, the ATPase subunit of the BAF complex. Taken together, these results illuminate a key role for the HRP2-DPF3a-BAF complex in the epigenetic coordination of gene transcription during myogenic differentiation.
Collapse
Affiliation(s)
- Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bingxue Lan
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Chaoran He
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xingquan Zhou
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yumei Lu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongzhan Sun
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhiheng Liu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xue Bai
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Kai Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Bing Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mulin Jun Li
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
25
|
Asif‐Laidin A, Conesa C, Bonnet A, Grison C, Adhya I, Menouni R, Fayol H, Palmic N, Acker J, Lesage P. A small targeting domain in Ty1 integrase is sufficient to direct retrotransposon integration upstream of tRNA genes. EMBO J 2020; 39:e104337. [PMID: 32677087 PMCID: PMC7459421 DOI: 10.15252/embj.2019104337] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/25/2022] Open
Abstract
Integration of transposable elements into the genome is mutagenic. Mechanisms targeting integrations into relatively safe locations, hence minimizing deleterious consequences for cell fitness, have emerged during evolution. In budding yeast, integration of the Ty1 LTR retrotransposon upstream of RNA polymerase III (Pol III)-transcribed genes requires interaction between Ty1 integrase (IN1) and AC40, a subunit common to Pol I and Pol III. Here, we identify the Ty1 targeting domain of IN1 that ensures (i) IN1 binding to Pol I and Pol III through AC40, (ii) IN1 genome-wide recruitment to Pol I- and Pol III-transcribed genes, and (iii) Ty1 integration only at Pol III-transcribed genes, while IN1 recruitment by AC40 is insufficient to target Ty1 integration into Pol I-transcribed genes. Swapping the targeting domains between Ty5 and Ty1 integrases causes Ty5 integration at Pol III-transcribed genes, indicating that the targeting domain of IN1 alone confers Ty1 integration site specificity.
Collapse
Affiliation(s)
- Amna Asif‐Laidin
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Christine Conesa
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Amandine Bonnet
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Camille Grison
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Indranil Adhya
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Rachid Menouni
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Hélène Fayol
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Noé Palmic
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| | - Joël Acker
- CEACNRSInstitute for Integrative Biology of the Cell (I2BC)Université Paris‐SaclayGif‐sur‐YvetteFrance
| | - Pascale Lesage
- INSERM U944, CNRS UMR 7212Genomes& Cell Biology of Disease UnitInstitut de Recherche Saint‐LouisHôpital Saint‐LouisUniversité de ParisParisFrance
| |
Collapse
|
26
|
Influence of the amino-terminal sequence on the structure and function of HIV integrase. Retrovirology 2020; 17:28. [PMID: 32867805 PMCID: PMC7457537 DOI: 10.1186/s12977-020-00537-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Background Antiretroviral therapy (ART) can mitigate the morbidity and mortality caused by the human immunodeficiency virus (HIV). Successful development of ART can be accelerated by accurate structural and biochemical data on targets and their responses to inhibitors. One important ART target, HIV integrase (IN), has historically been studied in vitro in a modified form adapted to bacterial overexpression, with a methionine or a longer fusion protein sequence at the N-terminus. In contrast, IN present in viral particles is produced by proteolytic cleavage of the Pol polyprotein, which leaves a phenylalanine at the N-terminus (IN 1F). Inspection of available structures suggested that added residues on the N-terminus might disrupt proper protein folding and formation of multimeric complexes. Results We purified HIV-1 IN 1F1–212 and solved its structure at 2.4 Å resolution, which showed extension of an N-terminal helix compared to the published structure of IN1–212. Full-length IN 1F showed increased in vitro catalytic activity in assays of coupled joining of the two viral DNA ends compared to two IN variants containing additional N-terminal residues. IN 1F was also altered in its sensitivity to inhibitors, showing decreased sensitivity to the strand-transfer inhibitor raltegravir and increased sensitivity to allosteric integrase inhibitors. In solution, IN 1F exists as monomers and dimers, in contrast to other IN preparations which exist as higher-order oligomers. Conclusions The structural, biochemical, and biophysical characterization of IN 1F reveals the conformation of the native HIV-1 IN N-terminus and accompanying unique biochemical and biophysical properties. IN 1F thus represents an improved reagent for use in integration reactions in vitro and the development of antiretroviral agents.
Collapse
|
27
|
Wells DW, Guo S, Shao W, Bale MJ, Coffin JM, Hughes SH, Wu X. An analytical pipeline for identifying and mapping the integration sites of HIV and other retroviruses. BMC Genomics 2020; 21:216. [PMID: 32151239 PMCID: PMC7063773 DOI: 10.1186/s12864-020-6647-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND All retroviruses, including human immunodeficiency virus (HIV), must integrate a DNA copy of their genomes into the genome of the infected host cell to replicate. Although integrated retroviral DNA, known as a provirus, can be found at many sites in the host genome, integration is not random. The adaption of linker-mediated PCR (LM-PCR) protocols for high-throughput integration site mapping, using randomly-sheared genomic DNA and Illumina paired-end sequencing, has dramatically increased the number of mapped integration sites. Analysis of samples from human donors has shown that there is clonal expansion of HIV infected cells and that clonal expansion makes an important contribution to HIV persistence. However, analysis of HIV integration sites in samples taken from patients requires extensive PCR amplification and high-throughput sequencing, which makes the methodology prone to certain specific artifacts. RESULTS To address the problems with artifacts, we use a comprehensive approach involving experimental procedures linked to a bioinformatics analysis pipeline. Using this combined approach, we are able to reduce the number of PCR/sequencing artifacts that arise and identify the ones that remain. Our streamlined workflow combines random cleavage of the DNA in the samples, end repair, and linker ligation in a single step. We provide guidance on primer and linker design that reduces some of the common artifacts. We also discuss how to identify and remove some of the common artifacts, including the products of PCR mispriming and PCR recombination, that have appeared in some published studies. Our improved bioinformatics pipeline rapidly parses the sequencing data and identifies bona fide integration sites in clonally expanded cells, producing an Excel-formatted report that can be used for additional data processing. CONCLUSIONS We provide a detailed protocol that reduces the prevalence of artifacts that arise in the analysis of retroviral integration site data generated from in vivo samples and a bioinformatics pipeline that is able to remove the artifacts that remain.
Collapse
Affiliation(s)
- Daria W Wells
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Shuang Guo
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA
| | - Wei Shao
- Advanced Biomedical Computational Science, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael J Bale
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - John M Coffin
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA, USA
| | - Stephen H Hughes
- HIV Dynamics and Replication Program, National Cancer Institute Frederick, National Institutes of Health, Frederick, MD, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, PO Box B, Frederick, MD, 21702, USA.
| |
Collapse
|
28
|
Li M, Chen X, Wang H, Jurado KA, Engelman AN, Craigie R. A Peptide Derived from Lens Epithelium-Derived Growth Factor Stimulates HIV-1 DNA Integration and Facilitates Intasome Structural Studies. J Mol Biol 2020; 432:2055-2066. [PMID: 32061936 PMCID: PMC7350280 DOI: 10.1016/j.jmb.2020.01.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 01/26/2023]
Abstract
The low solubility and aggregation properties of HIV-1 integrase (IN) are major obstacles for biochemical and structural studies. The lens epithelium-derived growth factor (LEDGF) is a cellular factor that binds IN and tethers preintegration complexes to chromatin before integration. The LEDGF also stimulates HIV-1 IN DNA strand transfer activity and improves its solubility in vitro. We show that these properties are conferred by a short peptide spanning residues 178 to 197 of the LEDGF that encompasses its AT-hook DNA-binding elements. The peptide stimulates HIV-1 IN activity both in trans and in cis. Fusion of the peptide to either the N- or C-terminus of IN results in maximal stimulation of concerted integration activity and greatly improves the solubility of the protein and nucleoprotein complexes of IN with viral DNA ends (intasomes). High-resolution structures of HIV-1 intasomes are required to understand the mechanism of IN strand transfer inhibitors (INSTIs), which are front-line drugs for the treatment of HIV-1, and how the virus can develop resistance to INSTIs. We have previously determined the structure of the HIV-1 strand transfer complex intasome. The improved biophysical properties of intasomes assembled with LEDGF peptide fusion IN have enabled us to determine the structure of the cleaved synaptic complex intasome, which is the direct target of INSTIs.
Collapse
Affiliation(s)
- Min Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA
| | - Xuemin Chen
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA
| | - Huaibin Wang
- NIH Multi-Institute Cryo-EM Facility, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kellie A Jurado
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Robert Craigie
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, USA.
| |
Collapse
|
29
|
Ortiz-Hernandez GL, Sanchez-Hernandez ES, Casiano CA. Twenty years of research on the DFS70/LEDGF autoantibody-autoantigen system: many lessons learned but still many questions. AUTOIMMUNITY HIGHLIGHTS 2020; 11:3. [PMID: 32127038 PMCID: PMC7065333 DOI: 10.1186/s13317-020-0126-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
The discovery and initial characterization 20 years ago of antinuclear autoantibodies (ANAs) presenting a dense fine speckled (DFS) nuclear pattern with strong staining of mitotic chromosomes, detected by indirect immunofluorescence assay in HEp-2 cells (HEp-2 IIFA test), has transformed our view on ANAs. Traditionally, ANAs have been considered as reporters of abnormal immunological events associated with the onset and progression of systemic autoimmune rheumatic diseases (SARD), also called ANA-associated rheumatic diseases (AARD), as well as clinical biomarkers for the differential diagnosis of these diseases. However, based on our current knowledge, it is not apparent that autoantibodies presenting the DFS IIF pattern fall into these categories. These antibodies invariably target a chromatin-associated protein designated as dense fine speckled protein of 70 kD (DFS70), also known as lens epithelium-derived growth factor protein of 75 kD (LEDGF/p75) and PC4 and SFRS1 Interacting protein 1 (PSIP1). This multi-functional protein, hereafter referred to as DFS70/LEDGF, plays important roles in the formation of transcription complexes in active chromatin, transcriptional activation of specific genes, regulation of mRNA splicing, DNA repair, and cellular survival against stress. Due to its multiple functions, it has emerged as a key protein contributing to several human pathologies, including acquired immunodeficiency syndrome (AIDS), leukemia, cancer, ocular diseases, and Rett syndrome. Unlike other ANAs, "monospecific" anti-DFS70/LEDGF autoantibodies (only detectable ANA in serum) are not associated with SARD and have been detected in healthy individuals and some patients with non-SARD inflammatory conditions. These observations have led to the hypotheses that these antibodies could be considered as negative biomarkers of SARD and might even play a protective or beneficial role. In spite of 20 years of research on this autoantibody-autoantigen system, its biological and clinical significance still remains enigmatic. Here we review the current state of knowledge of this system, focusing on the lessons learned and posing emerging questions that await further scrutiny as we continue our quest to unravel its significance and potential clinical and therapeutic utility.
Collapse
Affiliation(s)
- Greisha L Ortiz-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Evelyn S Sanchez-Hernandez
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA.,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Loma Linda University School of Medicine, Loma Linda, CA, 92350, USA. .,Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA. .,Department of Medicine/Division of Rheumatology, Loma Linda University School of Medicine, Loma Linda, USA.
| |
Collapse
|
30
|
LeRoy G, Oksuz O, Descostes N, Aoi Y, Ganai RA, Kara HO, Yu JR, Lee CH, Stafford J, Shilatifard A, Reinberg D. LEDGF and HDGF2 relieve the nucleosome-induced barrier to transcription in differentiated cells. SCIENCE ADVANCES 2019; 5:eaay3068. [PMID: 31616795 PMCID: PMC6774727 DOI: 10.1126/sciadv.aay3068] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 09/05/2019] [Indexed: 05/25/2023]
Abstract
FACT (facilitates chromatin transcription) is a protein complex that allows RNA polymerase II (RNAPII) to overcome the nucleosome-induced barrier to transcription. While abundant in undifferentiated cells and many cancers, FACT is not abundant or is absent in most tissues. Therefore, we screened for additional proteins that might replace FACT upon differentiation. We identified two proteins, lens epithelium-derived growth factor (LEDGF) and hepatoma-derived growth factor 2 (HDGF2), each containing two high mobility group A (HMGA)-like AT-hooks and a methyl-lysine reading Pro-Trp-Trp-Pro (PWWP) domain that binds to H3K36me2 and H3K36me3.LEDGF and HDGF2 colocalize with H3K36me2/3 at genomic regions containing active genes. In myoblasts, LEDGF and HDGF2 are enriched on most active genes. Upon differentiation to myotubes, LEDGF levels decrease, while HDGF2 levels are maintained. Moreover, HDGF2 is required for their proper expression. HDGF2 knockout myoblasts exhibit an accumulation of paused RNAPII within the transcribed region of many HDGF2 target genes, indicating a defect in early elongation.
Collapse
Affiliation(s)
- Gary LeRoy
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ozgur Oksuz
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Nicolas Descostes
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
- EMBL Rome, Adriano Buzzati-Traverso Campus, Via Ramarini 32, 00015 Monterotondo (RM), Italy
| | - Yuki Aoi
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rais A. Ganai
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Havva Ortabozkoyun Kara
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Jia-Ray Yu
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Chul-Hwan Lee
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - James Stafford
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Danny Reinberg
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| |
Collapse
|
31
|
Engelman AN. Multifaceted HIV integrase functionalities and therapeutic strategies for their inhibition. J Biol Chem 2019; 294:15137-15157. [PMID: 31467082 DOI: 10.1074/jbc.rev119.006901] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Antiretroviral inhibitors that are used to manage HIV infection/AIDS predominantly target three enzymes required for virus replication: reverse transcriptase, protease, and integrase. Although integrase inhibitors were the last among this group to be approved for treating people living with HIV, they have since risen to the forefront of treatment options. Integrase strand transfer inhibitors (INSTIs) are now recommended components of frontline and drug-switch antiretroviral therapy formulations. Integrase catalyzes two successive magnesium-dependent polynucleotidyl transferase reactions, 3' processing and strand transfer, and INSTIs tightly bind the divalent metal ions and viral DNA end after 3' processing, displacing from the integrase active site the DNA 3'-hydroxyl group that is required for strand transfer activity. Although second-generation INSTIs present higher barriers to the development of viral drug resistance than first-generation compounds, the mechanisms underlying these superior barrier profiles are incompletely understood. A separate class of HIV-1 integrase inhibitors, the allosteric integrase inhibitors (ALLINIs), engage integrase distal from the enzyme active site, namely at the binding site for the cellular cofactor lens epithelium-derived growth factor (LEDGF)/p75 that helps to guide integration into host genes. ALLINIs inhibit HIV-1 replication by inducing integrase hypermultimerization, which precludes integrase binding to genomic RNA and perturbs the morphogenesis of new viral particles. Although not yet approved for human use, ALLINIs provide important probes that can be used to investigate the link between HIV-1 integrase and viral particle morphogenesis. Herein, I review the mechanisms of retroviral integration as well as the promises and challenges of using integrase inhibitors for HIV/AIDS management.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215 Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
32
|
MacDonald IA, Butler KV, Herring LE, Clinkscales SE, Yelagandula R, Stecher K, Bell O, Graves LM, Jin J, Hathaway NA. Pathway-Based High-Throughput Chemical Screen Identifies Compounds That Decouple Heterochromatin Transformations. SLAS DISCOVERY 2019; 24:802-816. [PMID: 31145866 DOI: 10.1177/2472555219849838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heterochromatin protein 1 (HP1) facilitates the formation of repressive heterochromatin domains by recruiting histone lysine methyltransferase enzymes to chromatin, resulting in increased levels of histone H3K9me3. To identify chemical inhibitors of the HP1-heterochromatin gene repression pathway, we combined a cell-based assay that utilized chemical-mediated recruitment of HP1 to an endogenous active gene with high-throughput flow cytometry. Here we characterized small molecule inhibitors that block HP1-mediated heterochromatin formation. Our lead compounds demonstrated dose-dependent inhibition of HP1-stimulated gene repression and were validated in an orthogonal cell-based system. One lead inhibitor was improved by a change in stereochemistry, resulting in compound 2, which was further used to decouple the inverse relationship between H3K9 and H3K4 methylation states. We identified molecular components that bound compound 2, either directly or indirectly, by chemical affinity purification with a biotin-tagged derivative, followed by quantitative proteomic techniques. In summary, our pathway-based chemical screening approach resulted in the discovery of new inhibitors of HP1-mediated heterochromatin formation while identifying exciting new molecular interactions in the pathway to explore in the future. This modular platform can be expanded to test a wide range of chromatin modification pathways yielding inhibitors that are cell permeable and function in a physiologically relevant setting.
Collapse
Affiliation(s)
- Ian A MacDonald
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle V Butler
- 2 Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laura E Herring
- 3 Department of Pharmacology, UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Sarah E Clinkscales
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ramesh Yelagandula
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Karin Stecher
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Oliver Bell
- 4 Institute of Molecular Biotechnology of the Austrian Academy of Science (IMBA), Vienna Biocenter (VBC), Vienna, Austria.,5 Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Lee M Graves
- 3 Department of Pharmacology, UNC Michael Hooker Proteomics Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Jian Jin
- 2 Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathaniel A Hathaway
- 1 The Eshelman School of Pharmacy, Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
33
|
Nup153 Unlocks the Nuclear Pore Complex for HIV-1 Nuclear Translocation in Nondividing Cells. J Virol 2018; 92:JVI.00648-18. [PMID: 29997211 DOI: 10.1128/jvi.00648-18] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/20/2018] [Indexed: 12/27/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells. Because the interaction of capsid with the nucleoporin protein 153 (Nup153) is important for nuclear import of HIV-1, we solved new crystal structures of hexameric HIV-1 capsid in complex with a Nup153-derived peptide containing a phenylalanine-glycine repeat (FG repeat), which we used to guide structure-based mutagenesis of the capsid-binding interface. HIV-1 viruses with mutations in these capsid residues were tested for their ability to infect dividing and nondividing cells. HIV-1 viruses with capsid N57 substitutions infected dividing but not nondividing cells. Interestingly, HIV-1 viruses with N57 mutations underwent reverse transcription but not nuclear translocation. The mutant capsids also lost the ability to interact with Nup153 and CPSF6. The use of small molecules PF74 and BI-2 prevented the interaction of FG-containing nucleoporins (Nups), such as Nup153, with the HIV-1 core. Analysis of integration sites in HIV-1 viruses with N57 mutations revealed diminished integration into transcriptionally active genes in a manner resembling that of HIV-1 in CPSF6 knockout cells or that of HIV-1-N74D. The integration pattern of the N57 mutant HIV-1 can be explained by loss of capsid interaction with CPSF6, whereas capsid interaction with Nup153 is required for HIV-1 to infect nondividing cells. Additionally, the observed viral integration profiles suggested that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.IMPORTANCE One of the key advantages that distinguish lentiviruses, such as HIV-1, from all other retroviruses is its ability to infect nondividing cells. Interaction of the HIV-1 capsid with Nup153 and CPSF6 is important for nuclear entry and integration; however, the contribution of each of these proteins to nuclear import and integration is not clear. Using genetics, we demonstrated that these proteins contribute to different processes: Nup153 is essential for the HIV-1 nuclear import in nondividing cells, and CPSF6 is important for HIV-1 integration. In addition, nuclear factors such as CPSF6 and the state of the chromatin are known to be important for integration site selection; nevertheless, the preferential determinant influencing integration site selection is not known. This work demonstrates that integration site selection is a multiparameter process that depends upon nuclear factors and the state of the cellular chromatin.
Collapse
|
34
|
Engelman AN, Singh PK. Cellular and molecular mechanisms of HIV-1 integration targeting. Cell Mol Life Sci 2018; 75:2491-2507. [PMID: 29417178 PMCID: PMC6004233 DOI: 10.1007/s00018-018-2772-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/23/2018] [Accepted: 02/01/2018] [Indexed: 12/21/2022]
Abstract
Integration is central to HIV-1 replication and helps mold the reservoir of cells that persists in AIDS patients. HIV-1 interacts with specific cellular factors to target integration to interior regions of transcriptionally active genes within gene-dense regions of chromatin. The viral capsid interacts with several proteins that are additionally implicated in virus nuclear import, including cleavage and polyadenylation specificity factor 6, to suppress integration into heterochromatin. The viral integrase protein interacts with transcriptional co-activator lens epithelium-derived growth factor p75 to principally position integration within gene bodies. The integrase additionally senses target DNA distortion and nucleotide sequence to help fine-tune the specific phosphodiester bonds that are cleaved at integration sites. Research into virus-host interactions that underlie HIV-1 integration targeting has aided the development of a novel class of integrase inhibitors and may help to improve the safety of viral-based gene therapy vectors.
Collapse
Affiliation(s)
- Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA.
| | - Parmit K Singh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, 450 Brookline Avenue, CLS-1010, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, A-111, 25 Shattuck Street, Boston, MA, 02115, USA
| |
Collapse
|
35
|
Ciubotaru M, Musat MG, Surleac M, Ionita E, Petrescu AJ, Abele E, Abele R. The Design of New HIV-IN Tethered Bifunctional Inhibitors Using Multiple Microdomain Targeted Docking. Curr Med Chem 2018; 26:2574-2600. [PMID: 29623824 DOI: 10.2174/0929867325666180406114405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/16/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
Abstract
Currently, used antiretroviral HIV therapy drugs exclusively target critical groups in the enzymes essential for the viral life cycle. Increased mutagenesis of their genes changes these viral enzymes, which once mutated can evade therapeutic targeting, effects which confer drug resistance. To circumvent this, our review addresses a strategy to design and derive HIV-Integrase (HIV-IN) inhibitors which simultaneously target two IN functional domains, rendering it inactive even if the enzyme accumulates many mutations. First we review the enzymatic role of IN to insert the copied viral DNA into a chromosome of the host T lymphocyte, highlighting its main functional and structural features to be subjected to inhibitory action. From a functional and structural perspective we present all classes of HIV-IN inhibitors with their most representative candidates. For each chosen compound we also explain its mechanism of IN inhibition. We use the recently resolved cryo EM IN tetramer intasome DNA complex onto which we dock various reference IN inhibitory chemical scaffolds such as to target adjacent functional IN domains. Pairing compounds with complementary activity, which dock in the vicinity of a IN structural microdomain, we design bifunctional new drugs which may not only be more resilient to IN mutations but also may be more potent inhibitors than their original counterparts. In the end of our review we propose synthesis pathways to link such paired compounds with enhanced synergistic IN inhibitory effects.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Mihaela Georgiana Musat
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Marius Surleac
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Elena Ionita
- Department of Immunology, Colentina Clinical Hospital Research Center, Bucharest, Romania.,Department of Life and Environmental Physics, National Institute for Physics and Nuclear Engineering Horia Hulubei, Bucharest-Magurele, Romania
| | - Andrei Jose Petrescu
- Department of Bio-informatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest, Romania
| | - Edgars Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| | - Ramona Abele
- Modern Catalysis Method Mihai Ciubotaru group, Latvian Institute of Organic Synthesis, Riga, Latvia
| |
Collapse
|
36
|
Abstract
Replication-defective retroviral vectors have been used for more than 25 years as a tool for efficient and stable insertion of therapeutic transgenes in human cells. Patients suffering from severe genetic diseases have been successfully treated by transplantation of autologous hematopoietic stem-progenitor cells (HSPCs) transduced with retroviral vectors, and the first of this class of therapies, Strimvelis, has recently received market authorization in Europe. Some clinical trials, however, resulted in severe adverse events caused by vector-induced proto-oncogene activation, which showed that retroviral vectors may retain a genotoxic potential associated to proviral integration in the human genome. The adverse events sparked a renewed interest in the biology of retroviruses, which led in a few years to a remarkable understanding of the molecular mechanisms underlying retroviral integration site selection within mammalian genomes. This review summarizes the current knowledge on retrovirus-host interactions at the genomic level, and the peculiar mechanisms by which different retroviruses, and their related gene transfer vectors, integrate in, and interact with, the human genome. This knowledge provides the basis for the development of safer and more efficacious retroviral vectors for human gene therapy.
Collapse
Affiliation(s)
| | - Fulvio Mavilio
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| |
Collapse
|
37
|
George A, Gopi Krishna Reddy A, Satyanarayana G, Raghavendra NK. 1,2,3,4-Tetrahydroisoquinolines as inhibitors of HIV-1 integrase and human LEDGF/p75 interaction. Chem Biol Drug Des 2018; 91:1133-1140. [PMID: 29405651 DOI: 10.1111/cbdd.13175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 01/14/2018] [Accepted: 01/20/2018] [Indexed: 01/02/2023]
Abstract
Alkaloids are a class of organic compounds with a wide range of biological properties, including anti-HIV activity. The 1,2,3,4-tetrahydroisoquinoline is a ubiquitous structural motif of many alkaloids. Using a short and an efficient route for synthesis, a series of 1,2,3,4-tetrahydroisoquinolines/isoquinolines was developed. These compounds have been analysed for their ability to inhibit an important interaction between HIV-1 integrase enzyme (IN) and human LEDGF/p75 protein (p75) which assists in the viral integration into the active genes. A lead compound 6d is found to inhibit the LEDGF/p75-IN interaction in vitro with an IC50 of ~10 μm. Molecular docking analysis of the isoquinoline 6d reveals its interactions with the LEDGF/p75-binding residues of IN. Based on an order of addition experiment, the binding of 6d or LEDGF/p75 to IN is shown to be mutually exclusive. Also, the activity of 6d in vitro is found to be unaffected by the presence of a non-specific DNA. As reported earlier for the inhibitors of LEDGF/p75-IN interaction, 6d exhibits a potent inhibition of both the early and late stages of HIV-1 replication. Compound 6d differing from the known inhibitors in the chemical moieties and interactions with CCD could potentially be explored further for developing small molecule inhibitors of LEDGF/p75-IN interaction having a higher potency.
Collapse
Affiliation(s)
- Anu George
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | | | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| | | |
Collapse
|
38
|
Bonnard D, Le Rouzic E, Eiler S, Amadori C, Orlov I, Bruneau JM, Brias J, Barbion J, Chevreuil F, Spehner D, Chasset S, Ledoussal B, Moreau F, Saïb A, Klaholz BP, Emiliani S, Ruff M, Zamborlini A, Benarous R. Structure-function analyses unravel distinct effects of allosteric inhibitors of HIV-1 integrase on viral maturation and integration. J Biol Chem 2018; 293:6172-6186. [PMID: 29507092 DOI: 10.1074/jbc.m117.816793] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/13/2018] [Indexed: 11/06/2022] Open
Abstract
Recently, a new class of HIV-1 integrase (IN) inhibitors with a dual mode of action, called IN-LEDGF/p75 allosteric inhibitors (INLAIs), was described. Designed to interfere with the IN-LEDGF/p75 interaction during viral integration, unexpectedly, their major impact was on virus maturation. This activity has been linked to induction of aberrant IN multimerization, whereas inhibition of the IN-LEDGF/p75 interaction accounts for weaker antiretroviral effect at integration. Because these dual activities result from INLAI binding to IN at a single binding site, we expected that these activities co-evolved together, driven by the affinity for IN. Using an original INLAI, MUT-A, and its activity on an Ala-125 (A125) IN variant, we found that these two activities on A125-IN can be fully dissociated: MUT-A-induced IN multimerization and the formation of eccentric condensates in viral particles, which are responsible for inhibition of virus maturation, were lost, whereas inhibition of the IN-LEDGF/p75 interaction and consequently integration was fully retained. Hence, the mere binding of INLAI to A125 IN is insufficient to promote the conformational changes of IN required for aberrant multimerization. By analyzing the X-ray structures of MUT-A bound to the IN catalytic core domain (CCD) with or without the Ala-125 polymorphism, we discovered that the loss of IN multimerization is due to stabilization of the A125-IN variant CCD dimer, highlighting the importance of the CCD dimerization energy for IN multimerization. Our study reveals that affinity for the LEDGF/p75-binding pocket is not sufficient to induce INLAI-dependent IN multimerization and the associated inhibition of viral maturation.
Collapse
Affiliation(s)
- Damien Bonnard
- From Biodim Mutabilis, 93230 Romainville, .,Inserm U944, CNRS UMR 7212, Université Paris Diderot, Conservatoire National des Arts et Métiers, 75010 Paris
| | | | - Sylvia Eiler
- the Centre for Integrative Biology, IGBMC, Inserm, CNRS, Université de Strasbourg, 67404 Illkirch, and
| | - Céline Amadori
- From Biodim Mutabilis, 93230 Romainville.,the Institut Cochin, Inserm U1016, 75014 Paris, France
| | - Igor Orlov
- the Centre for Integrative Biology, IGBMC, Inserm, CNRS, Université de Strasbourg, 67404 Illkirch, and
| | | | | | | | | | - Danièle Spehner
- the Centre for Integrative Biology, IGBMC, Inserm, CNRS, Université de Strasbourg, 67404 Illkirch, and
| | | | | | | | - Ali Saïb
- Inserm U944, CNRS UMR 7212, Université Paris Diderot, Conservatoire National des Arts et Métiers, 75010 Paris
| | - Bruno P Klaholz
- the Centre for Integrative Biology, IGBMC, Inserm, CNRS, Université de Strasbourg, 67404 Illkirch, and
| | | | - Marc Ruff
- the Centre for Integrative Biology, IGBMC, Inserm, CNRS, Université de Strasbourg, 67404 Illkirch, and
| | - Alessia Zamborlini
- Inserm U944, CNRS UMR 7212, Université Paris Diderot, Conservatoire National des Arts et Métiers, 75010 Paris,
| | | |
Collapse
|
39
|
Llano M, Peña-Hernandez MA. Defining Pharmacological Targets by Analysis of Virus-Host Protein Interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2018; 111:223-242. [PMID: 29459033 PMCID: PMC6322211 DOI: 10.1016/bs.apcsb.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Viruses are obligate parasites that depend on cellular factors for replication. Pharmacological inhibition of essential viral proteins, mostly enzymes, is an effective therapeutic alternative in the absence of effective vaccines. However, this strategy commonly encounters drug resistance mechanisms that allow these pathogens to evade control. Due to the dependency on host factors for viral replication, pharmacological disruption of the host-pathogen protein-protein interactions (PPIs) is an important therapeutic alternative to block viral replication. In this review we discuss salient aspects of PPIs implicated in viral replication and advances in the development of small molecules that inhibit viral replication through antagonism of these interactions.
Collapse
Affiliation(s)
- Manuel Llano
- University of Texas at El Paso, El Paso, TX, United States.
| | - Mario A Peña-Hernandez
- University of Texas at El Paso, El Paso, TX, United States; Laboratorio de Inmunología y Virología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza, Mexico
| |
Collapse
|
40
|
Hoyte AC, Jamin AV, Koneru PC, Kobe MJ, Larue RC, Fuchs JR, Engelman AN, Kvaratskhelia M. Resistance to pyridine-based inhibitor KF116 reveals an unexpected role of integrase in HIV-1 Gag-Pol polyprotein proteolytic processing. J Biol Chem 2017; 292:19814-19825. [PMID: 28972144 PMCID: PMC5712621 DOI: 10.1074/jbc.m117.816645] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/27/2017] [Indexed: 11/06/2022] Open
Abstract
The pyridine-based multimerization selective HIV-1 integrase (IN) inhibitors (MINIs) are a distinct subclass of allosteric IN inhibitors. MINIs potently inhibit HIV-1 replication during virion maturation by inducing hyper- or aberrant IN multimerization but are largely ineffective during the early steps of viral replication. Here, we investigated the mechanism for the evolution of a triple IN substitution (T124N/V165I/T174I) that emerges in cell culture with a representative MINI, KF116. We show that HIV-1 NL4-3(IN T124N/V165I/T174I) confers marked (>2000-fold) resistance to KF116. Two IN substitutions (T124N/T174I) directly weaken inhibitor binding at the dimer interface of the catalytic core domain but at the same time markedly impair HIV-1 replication capacity. Unexpectedly, T124N/T174I IN substitutions inhibited proteolytic processing of HIV-1 polyproteins Gag and Gag-Pol, resulting in immature virions. Strikingly, the addition of the third IN substitution (V165I) restored polyprotein processing, virus particle maturation, and significant levels of replication capacity. These results reveal an unanticipated role of IN for polyprotein proteolytic processing during virion morphogenesis. The complex evolutionary pathway for the emergence of resistant viruses, which includes the need for the compensatory V165I IN substitution, highlights a relatively high genetic barrier exerted by MINI KF116. Additionally, we have solved the X-ray structure of the drug-resistant catalytic core domain protein, which provides means for rational development of second-generation MINIs.
Collapse
Affiliation(s)
- Ashley C Hoyte
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | - Augusta V Jamin
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Pratibha C Koneru
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| | | | | | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Mamuka Kvaratskhelia
- From the Center for Retrovirus Research and
- Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado 80045, and
| |
Collapse
|
41
|
Pham NN, Janke S, Salman GA, Dang TT, Le TS, Spannenberg A, Ehlers P, Langer P. Convenient Synthesis of 11-Substituted 11H
-Indolo[3,2-c
]quinolines by Sequential Chemoselective Suzuki Reaction/Double C-N Coupling. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ngo Nghia Pham
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
- Faculty of Chemistry; VNU University of Science Hanoi (VNU-HUS); 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| | - Sophie Janke
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Ghazwan Ali Salman
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Department of Chemistry; College of Science; University Al-Mustansiriyah; Palestine St, Mustansiriya Baghdad Iraq
| | - Tuan Thanh Dang
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
| | - Thanh Son Le
- Faculty of Chemistry; VNU University of Science Hanoi (VNU-HUS); 19 Le Thanh Tong, Hoan Kiem Hanoi Vietnam
| | - Anke Spannenberg
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Ehlers
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Institut für Chemie; Universität Rostock; Albert-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz Institut für Katalyse an der Universität Rostock e.V.; Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
42
|
Bueno MTD, Reyes D, Llano M. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends. Viruses 2017; 9:v9090259. [PMID: 28914817 PMCID: PMC5618025 DOI: 10.3390/v9090259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 11/17/2022] Open
Abstract
Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3′ processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3′ processed linear HIV-1 cDNA from exonucleolytic degradation.
Collapse
Affiliation(s)
- Murilo T D Bueno
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Daniel Reyes
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso. El Paso, TX 79968, USA.
| |
Collapse
|
43
|
Inhibition of HIV-1 Maturation via Small-Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein. J Virol 2017; 91:JVI.02155-16. [PMID: 28202766 DOI: 10.1128/jvi.02155-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/09/2017] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid protein is an attractive therapeutic target, owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsids to HIV-1 infectivity. To date, small-molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here, we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, Boehringer-Ingelheim compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant cross-links in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle.IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here, we show that one such compound, compound 1, interferes with assembly of the conical viral capsid during virion maturation and results in perturbations at a specific protein-protein interface in the capsid lattice. We also identify and characterize a mutation in the capsid protein that confers resistance to the inhibitor. This study reveals a novel mechanism by which a capsid-targeting small molecule can inhibit HIV-1 replication.
Collapse
|
44
|
Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet 2017; 18:292-308. [PMID: 28286338 DOI: 10.1038/nrg.2017.7] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transposable elements and retroviruses are found in most genomes, can be pathogenic and are widely used as gene-delivery and functional genomics tools. Exploring whether these genetic elements target specific genomic sites for integration and how this preference is achieved is crucial to our understanding of genome evolution, somatic genome plasticity in cancer and ageing, host-parasite interactions and genome engineering applications. High-throughput profiling of integration sites by next-generation sequencing, combined with large-scale genomic data mining and cellular or biochemical approaches, has revealed that the insertions are usually non-random. The DNA sequence, chromatin and nuclear context, and cellular proteins cooperate in guiding integration in eukaryotic genomes, leading to a remarkable diversity of insertion site distribution and evolutionary strategies.
Collapse
|
45
|
Kessl JJ, Kutluay SB, Townsend D, Rebensburg S, Slaughter A, Larue RC, Shkriabai N, Bakouche N, Fuchs JR, Bieniasz PD, Kvaratskhelia M. HIV-1 Integrase Binds the Viral RNA Genome and Is Essential during Virion Morphogenesis. Cell 2016; 166:1257-1268.e12. [PMID: 27565348 DOI: 10.1016/j.cell.2016.07.044] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/16/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
While an essential role of HIV-1 integrase (IN) for integration of viral cDNA into human chromosome is established, studies with IN mutants and allosteric IN inhibitors (ALLINIs) have suggested that IN can also influence viral particle maturation. However, it has remained enigmatic as to how IN contributes to virion morphogenesis. Here, we demonstrate that IN directly binds the viral RNA genome in virions. These interactions have specificity, as IN exhibits distinct preference for select viral RNA structural elements. We show that IN substitutions that selectively impair its binding to viral RNA result in eccentric, non-infectious virions without affecting nucleocapsid-RNA interactions. Likewise, ALLINIs impair IN binding to viral RNA in virions of wild-type, but not escape mutant, virus. These results reveal an unexpected biological role of IN binding to the viral RNA genome during virion morphogenesis and elucidate the mode of action of ALLINIs.
Collapse
Affiliation(s)
- Jacques J Kessl
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Dana Townsend
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stephanie Rebensburg
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Alison Slaughter
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Ross C Larue
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nikoloz Shkriabai
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Nordine Bakouche
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - James R Fuchs
- College of Pharmacy, Ohio State University, Columbus, OH 43210, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA; Howard Hughes Medical Institute, Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY 10016, USA
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA; College of Pharmacy, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
46
|
Patel D, Antwi J, Koneru PC, Serrao E, Forli S, Kessl JJ, Feng L, Deng N, Levy RM, Fuchs JR, Olson AJ, Engelman AN, Bauman JD, Kvaratskhelia M, Arnold E. A New Class of Allosteric HIV-1 Integrase Inhibitors Identified by Crystallographic Fragment Screening of the Catalytic Core Domain. J Biol Chem 2016; 291:23569-23577. [PMID: 27645997 DOI: 10.1074/jbc.m116.753384] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Indexed: 12/29/2022] Open
Abstract
HIV-1 integrase (IN) is essential for virus replication and represents an important multifunctional therapeutic target. Recently discovered quinoline-based allosteric IN inhibitors (ALLINIs) potently impair HIV-1 replication and are currently in clinical trials. ALLINIs exhibit a multimodal mechanism of action by inducing aberrant IN multimerization during virion morphogenesis and by competing with IN for binding to its cognate cellular cofactor LEDGF/p75 during early steps of HIV-1 infection. However, quinoline-based ALLINIs impose a low genetic barrier for the evolution of resistant phenotypes, which highlights a need for discovery of second-generation inhibitors. Using crystallographic screening of a library of 971 fragments against the HIV-1 IN catalytic core domain (CCD) followed by a fragment expansion approach, we have identified thiophenecarboxylic acid derivatives that bind at the CCD-CCD dimer interface at the principal lens epithelium-derived growth factor (LEDGF)/p75 binding pocket. The most active derivative (5) inhibited LEDGF/p75-dependent HIV-1 IN activity in vitro with an IC50 of 72 μm and impaired HIV-1 infection of T cells at an EC50 of 36 μm The identified lead compound, with a relatively small molecular weight (221 Da), provides an optimal building block for developing a new class of inhibitors. Furthermore, although structurally distinct thiophenecarboxylic acid derivatives target a similar pocket at the IN dimer interface as the quinoline-based ALLINIs, the lead compound, 5, inhibited IN mutants that confer resistance to quinoline-based compounds. Collectively, our findings provide a plausible path for structure-based development of second-generation ALLINIs.
Collapse
Affiliation(s)
- Disha Patel
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854
| | - Janet Antwi
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and
| | - Pratibha C Koneru
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Erik Serrao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Stefano Forli
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, MB-112, The Scripps Research Institute, La Jolla, California 92037
| | - Jacques J Kessl
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, and
| | - Lei Feng
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Nanjie Deng
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - Ronald M Levy
- Center for Biophysics and Computational Biology, Temple University, Philadelphia, Pennsylvania 19122
| | - James R Fuchs
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy and
| | - Arthur J Olson
- Molecular Graphics Laboratory, Department of Integrative Structural and Computational Biology, MB-112, The Scripps Research Institute, La Jolla, California 92037
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215
| | - Joseph D Bauman
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College of Pharmacy, Ohio State University, Columbus, Ohio 43210,
| | - Eddy Arnold
- From the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854,
| |
Collapse
|
47
|
Ebina H, Gee P, Koyanagi Y. Perspectives of Genome-Editing Technologies for HIV Therapy. Curr HIV Res 2016; 14:2-8. [PMID: 26255882 PMCID: PMC5384355 DOI: 10.2174/1570162x13666150807105718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/18/2015] [Accepted: 05/08/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Current HIV antiretroviral therapies potently suppress virus replication and prevent patients from progressing to AIDS but are unable to completely eliminate HIV due to the existence of dormant viral reservoirs which threaten to reemerge at anytime. Recently, genome-editing technologies that can recognize specific DNA sequences, including viral DNA, are being touted as promising tools for curing HIV, owing to their specificity, ease of use, and ability to be custom designed. CONCLUSION Here, we introduce several novel strategies aimed at eradicating HIV proviruses with state-of-the-art genome-editing technologies and discuss perspectives of these approaches for curing HIV.
Collapse
Affiliation(s)
- Hirotaka Ebina
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, 53 Shogoinkawara- cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | | | | |
Collapse
|
48
|
Shao W, Shan J, Kearney MF, Wu X, Maldarelli F, Mellors JW, Luke B, Coffin JM, Hughes SH. Retrovirus Integration Database (RID): a public database for retroviral insertion sites into host genomes. Retrovirology 2016; 13:47. [PMID: 27377064 PMCID: PMC4932684 DOI: 10.1186/s12977-016-0277-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED The NCI Retrovirus Integration Database is a MySql-based relational database created for storing and retrieving comprehensive information about retroviral integration sites, primarily, but not exclusively, HIV-1. The database is accessible to the public for submission or extraction of data originating from experiments aimed at collecting information related to retroviral integration sites including: the site of integration into the host genome, the virus family and subtype, the origin of the sample, gene exons/introns associated with integration, and proviral orientation. Information about the references from which the data were collected is also stored in the database. Tools are built into the website that can be used to map the integration sites to UCSC genome browser, to plot the integration site patterns on a chromosome, and to display provirus LTRs in their inserted genome sequence. The website is robust, user friendly, and allows users to query the database and analyze the data dynamically. AVAILABILITY https://rid.ncifcrf.gov ; or http://home.ncifcrf.gov/hivdrp/resources.htm .
Collapse
Affiliation(s)
- Wei Shao
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - Jigui Shan
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - Mary F. Kearney
- />HIV Dynamics and Replication Program, NCI, Frederick, MD USA
| | - Xiaolin Wu
- />Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | | | - John W. Mellors
- />Division of Infectious Disease, University of Pittsburgh, Pittsburgh, PA USA
| | - Brian Luke
- />Advanced Biomedical Computing Center, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD USA
| | - John M. Coffin
- />Department of Molecular Biology and Microbiology, Tufts University, Boston, MA USA
| | | |
Collapse
|
49
|
Feng L, Dharmarajan V, Serrao E, Hoyte A, Larue RC, Slaughter A, Sharma A, Plumb MR, Kessl JJ, Fuchs JR, Bushman FD, Engelman AN, Griffin PR, Kvaratskhelia M. The Competitive Interplay between Allosteric HIV-1 Integrase Inhibitor BI/D and LEDGF/p75 during the Early Stage of HIV-1 Replication Adversely Affects Inhibitor Potency. ACS Chem Biol 2016; 11:1313-21. [PMID: 26910179 DOI: 10.1021/acschembio.6b00167] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Allosteric HIV-1 integrase inhibitors (ALLINIs) have recently emerged as a promising class of antiretroviral agents and are currently in clinical trials. In infected cells, ALLINIs potently inhibit viral replication by impairing virus particle maturation but surprisingly exhibit a reduced EC50 for inhibiting HIV-1 integration in target cells. To better understand the reduced antiviral activity of ALLINIs during the early stage of HIV-1 replication, we investigated the competitive interplay between a potent representative ALLINI, BI/D, and LEDGF/p75 with HIV-1 integrase. While the principal binding sites of BI/D and LEDGF/p75 overlap at the integrase catalytic core domain dimer interface, we show that the inhibitor and the cellular cofactor induce markedly different multimerization patterns of full-length integrase. LEDGF/p75 stabilizes an integrase tetramer through the additional interactions with the integrase N-terminal domain, whereas BI/D induces protein-protein interactions in C-terminal segments that lead to aberrant, higher-order integrase multimerization. We demonstrate that LEDGF/p75 binds HIV-1 integrase with significantly higher affinity than BI/D and that the cellular protein is able to reverse the inhibitor induced aberrant, higher-order integrase multimerization in a dose-dependent manner in vitro. Consistent with these observations, alterations of the cellular levels of LEDGF/p75 markedly affected BI/D EC50 values during the early steps of HIV-1 replication. Furthermore, genome-wide sequencing of HIV-1 integration sites in infected cells demonstrate that LEDGF/p75-dependent integration site selection is adversely affected by BI/D treatment. Taken together, our studies elucidate structural and mechanistic details of the interplay between LEDGF/p75 and BI/D during the early stage of HIV-1 replication.
Collapse
Affiliation(s)
- Lei Feng
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Venkatasubramanian Dharmarajan
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Erik Serrao
- Department
of Cancer Immunology and Virology, Dana-Farber Cancer Institute and
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Ashley Hoyte
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ross C. Larue
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Alison Slaughter
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Amit Sharma
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Matthew R. Plumb
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jacques J. Kessl
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - James R. Fuchs
- Division of Medicinal Chemistry and Pharmacognosy,
College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Frederic D. Bushman
- Perelman School of Medicine, Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alan N. Engelman
- Department
of Cancer Immunology and Virology, Dana-Farber Cancer Institute and
Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Patrick R. Griffin
- Department of Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458, United States
| | - Mamuka Kvaratskhelia
- Center for Retrovirus Research and College
of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
50
|
Abstract
The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3'-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications.
Collapse
Affiliation(s)
- Paul Lesbats
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K
| | - Alan N Engelman
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute and Department of Medicine, Harvard Medical School , 450 Brookline Avenue, Boston, Massachusetts 02215 United States
| | - Peter Cherepanov
- Clare Hall Laboratories, The Francis Crick Institute , Blanche Lane, South Mimms, EN6 3LD, U.K.,Imperial College London , St-Mary's Campus, Norfolk Place, London, W2 1PG, U.K
| |
Collapse
|