1
|
Bapteste É. The ageing virus hypothesis: Epigenetic ageing beyond the Tree of Life. Bioessays 2025; 47:e2400099. [PMID: 39400402 DOI: 10.1002/bies.202400099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/15/2024]
Abstract
A recent thought-provoking theory argues that complex organisms using epigenetic information for their normal development and functioning must irreversibly age as a result of epigenetic signal loss. Importantly, the scope of this theory could be considerably expanded, with scientific benefits, by analyzing epigenetic ageing beyond the borders of the Tree of Life. Viruses that use epigenetic signals for their normal functioning may also age, that is, present an increasing risk of failing to complete their individual life cycle and to disappear with time. As viruses are ancient, abundant, and infect a considerable diversity of hosts, the ageing virus hypothesis, if verified, would have important consequences for many fields of the Life sciences. Uncovering ageing viruses would integrate the most abundant and biologically central entities on Earth into theories of ageing, enhance virology, gerontology, evolutionary biology, molecular ecology, genomics, and possibly medicine through the development of new therapies manipulating viral ageing.
Collapse
Affiliation(s)
- Éric Bapteste
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, CNRS, Museum National d'Histoire Naturelle, EPHE, Université Des Antilles, Paris, France
| |
Collapse
|
2
|
Inagaki T, Kumar A, Komaki S, Nakajima KI, Izumiya Y. An atlas of chromatin landscape in KSHV-infected cells during de novo infection and reactivation. Virology 2024; 597:110146. [PMID: 38909515 DOI: 10.1016/j.virol.2024.110146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus with a double-stranded DNA capable of establishing latent infection in the host cell. During latency, only a limited number of viral genes are expressed in infected host cells, and that helps the virus to evade host immune cell response. During primary infection, the KSHV genome is chromatinized and maintained as an episome, which is tethered to the host chromosome via Latency Associated Nuclear Antigen (LANA). The KSHV episome undergoes the same chromatin modification with the host cell chromosome and, therefore, is regulated by various epigenetic modifications, such as DNA methylation, histone methylation, and histone acetylation. The KSHV genome is also organized in a spatiotemporal manner by forming genomic loops, which enable simultaneous and coordinated control of dynamic gene transcription, particularly during the lytic replication phase. The genome-wide approaches and advancing bioinformatic tools have increased the resolution of studies on the dynamic transcriptional control and our understanding of KSHV latency-lytic switch regulation. We will summarize our current understanding of the epigenetic gene regulation on the KSHV chromatin.
Collapse
Affiliation(s)
- Tomoki Inagaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA.
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Somayeh Komaki
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Ken-Ichi Nakajima
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA
| | - Yoshihiro Izumiya
- Department of Dermatology, School of Medicine, The University of California Davis, Sacramento, CA, USA; Department of Biochemistry and Molecular Medicine, School of Medicine, UC Davis, Sacramento, CA, USA
| |
Collapse
|
3
|
Li S, Wang M, Van Sciver N, Szymula A, Tumuluri VS, George A, Ramachandran A, Raina K, Costa CN, Zhao B, Kazemian M, Simas JP, Kaye KM. Kaposi's sarcoma herpesvirus latency-associated nuclear antigen broadly regulates viral gene expression and is essential for lytic infection. PLoS Pathog 2024; 20:e1011907. [PMID: 38232124 PMCID: PMC10793894 DOI: 10.1371/journal.ppat.1011907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Kaposi's sarcoma herpesvirus (KSHV) is a leading cause of malignancy in AIDS and current therapies are limited. Like all herpesviruses, KSHV infection can be latent or lytic. KSHV latency-associated nuclear antigen (LANA) is essential for viral genome persistence during latent infection. LANA also maintains latency by antagonizing expression and function of the KSHV lytic switch protein, RTA. Here, we find LANA null KSHV is not capable of lytic replication, indicating a requirement for LANA. While LANA promoted both lytic and latent gene expression in cells partially permissive for lytic infection, it repressed expression in non-permissive cells. Importantly, forced RTA expression in non-permissive cells led to induction of lytic infection and LANA switched to promote, rather than repress, most lytic viral gene expression. When basal viral gene expression levels were high, LANA promoted expression, but repressed expression at low basal levels unless RTA expression was forcibly induced. LANA's effects were broad, but virus gene specific, extending to an engineered, recombinant viral GFP under control of host EF1α promoter, but not to host EF1α. Together, these results demonstrate that, in addition to its essential role in genome maintenance, LANA broadly regulates viral gene expression, and is required for high levels of lytic gene expression during lytic infection. Strategies that target LANA are expected to abolish KSHV infection.
Collapse
Affiliation(s)
- Shijun Li
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mengbo Wang
- Department of Computer Science, Purdue University, West Lafayette, Indiana
| | - Nicholas Van Sciver
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Agnieszka Szymula
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vinayak Sadasivam Tumuluri
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Athira George
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Akshaya Ramachandran
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Raina
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Catarina N. Costa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Bo Zhao
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Majid Kazemian
- Department of Computer Science, Purdue University, West Lafayette, Indiana
- Department of Biochemistry, Purdue University, West Lafayette, Indiana
| | - J. Pedro Simas
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research, Palma de Cima, Portugal
| | - Kenneth M. Kaye
- Departments of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Program in Virology, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
4
|
Srivastava A, Srivastava A, Singh RK. Insight into the Epigenetics of Kaposi's Sarcoma-Associated Herpesvirus. Int J Mol Sci 2023; 24:14955. [PMID: 37834404 PMCID: PMC10573522 DOI: 10.3390/ijms241914955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetic reprogramming represents a series of essential events during many cellular processes including oncogenesis. The genome of Kaposi's sarcoma-associated herpesvirus (KSHV), an oncogenic herpesvirus, is predetermined for a well-orchestrated epigenetic reprogramming once it enters into the host cell. The initial epigenetic reprogramming of the KSHV genome allows restricted expression of encoded genes and helps to hide from host immune recognition. Infection with KSHV is associated with Kaposi's sarcoma, multicentric Castleman's disease, KSHV inflammatory cytokine syndrome, and primary effusion lymphoma. The major epigenetic modifications associated with KSHV can be labeled under three broad categories: DNA methylation, histone modifications, and the role of noncoding RNAs. These epigenetic modifications significantly contribute toward the latent-lytic switch of the KSHV lifecycle. This review gives a brief account of the major epigenetic modifications affiliated with the KSHV genome in infected cells and their impact on pathogenesis.
Collapse
Affiliation(s)
- Anusha Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Ankit Srivastava
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Rajnish Kumar Singh
- Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
- Faculty of Medical Sciences, Charotar University of Science and Technology, Changa 388421, Gujarat, India
| |
Collapse
|
5
|
Grand'Maison A, Kohrn R, Omole E, Shah M, Fiorica P, Sims J, Ohm JE. Genetic and environmental reprogramming of the sarcoma epigenome. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 96:283-317. [PMID: 36858777 DOI: 10.1016/bs.apha.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Sarcomas are rare and heterogenous mesenchymal tumors occurring in soft tissue and bone. The World Health Organization Classification of sarcomas comprises more than hundred different entities which are very diverse in their molecular, genetic and epigenetic signatures as they are in their clinical presentations and behaviors. While sarcomas can be associated with an underlying hereditary cancer predisposition, most sarcomas developed sporadically without identifiable cause. Sarcoma oncogenesis involves complex interactions between genetic, epigenetic and environmental factors which are intimately related and intensively studied. Several molecular discoveries have been made over the last decades leading to the development of new therapeutic avenues. Sarcoma research continues its effort toward a more specific and personalized approach to all sarcoma sub-types to improve patient outcomes and this through world-wide collaboration. This chapter on "Genetic and Environmental Reprogramming of the Sarcoma Epigenome" provides a comprehensive review of general concepts and epidemiology of sarcoma as well as a detailed description of the genetic, molecular and epigenetic alterations seen in sarcomas, their therapeutic implications and ongoing research. This review also presents evidenced-based data on the environmental and occupational factors possibly involved in the etiology of sarcomas and a brief discussion on the role of the microbiome in sarcoma.
Collapse
Affiliation(s)
- Anne Grand'Maison
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Rachael Kohrn
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Emmanuel Omole
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Mahek Shah
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Peter Fiorica
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Jennie Sims
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joyce E Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States.
| |
Collapse
|
6
|
Wen KW, Wang L, Menke JR, Damania B. Cancers associated with human gammaherpesviruses. FEBS J 2022; 289:7631-7669. [PMID: 34536980 PMCID: PMC9019786 DOI: 10.1111/febs.16206] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 01/14/2023]
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4; HHV-4) and Kaposi sarcoma-associated herpesvirus (KSHV; human herpesvirus 8; HHV-8) are human gammaherpesviruses that have oncogenic properties. EBV is a lymphocryptovirus, whereas HHV-8/KSHV is a rhadinovirus. As lymphotropic viruses, EBV and KSHV are associated with several lymphoproliferative diseases or plasmacytic/plasmablastic neoplasms. Interestingly, these viruses can also infect epithelial cells causing carcinomas and, in the case of KSHV, endothelial cells, causing sarcoma. EBV is associated with Burkitt lymphoma, classic Hodgkin lymphoma, nasopharyngeal carcinoma, plasmablastic lymphoma, lymphomatoid granulomatosis, leiomyosarcoma, and subsets of diffuse large B-cell lymphoma, post-transplant lymphoproliferative disorder, and gastric carcinoma. KSHV is implicated in Kaposi sarcoma, primary effusion lymphoma, multicentric Castleman disease, and KSHV-positive diffuse large B-cell lymphoma. Pathogenesis by these two herpesviruses is intrinsically linked to viral proteins expressed during the lytic and latent lifecycles. This comprehensive review intends to provide an overview of the EBV and KSHV viral cycles, viral proteins that contribute to oncogenesis, and the current understanding of the pathogenesis and clinicopathology of their related neoplastic entities.
Collapse
Affiliation(s)
- Kwun Wah Wen
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158
| | - Linlin Wang
- Department of Laboratory Medicine, University of California, San Francisco, CA 94158
| | - Joshua R. Menke
- Department of Pathology, Stanford University, Palo Alto, CA 94304
| | - Blossom Damania
- Department of Microbiology & Immunology & Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
7
|
Singh RK, Bose D, Robertson ES. Epigenetic Reprogramming of Kaposi's Sarcoma-Associated Herpesvirus during Hypoxic Reactivation. Cancers (Basel) 2022; 14:5396. [PMID: 36358814 PMCID: PMC9654037 DOI: 10.3390/cancers14215396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/05/2023] Open
Abstract
The biphasic life cycle (latent and lytic) of Kaposi's sarcoma-associated Herpesvirus (KSHV) is regulated by epigenetic modification of its genome and its associated histone proteins. The temporal events driving epigenetic reprogramming of the KSHV genome on initial infection to establish latency has been well studied, but the reversal of these epigenetic changes during lytic replication, especially under physiological conditions such as hypoxia, has not been explored. In this study, we investigated epigenetic reprogramming of the KSHV genome during hypoxic reactivation. Hypoxia induced extensive enrichment of both transcriptional activators and repressors on the KSHV genome through H3K4Me3, H3K9Me3, and H3K27Me3, as well as histone acetylation (H3Ac) modifications. In contrast to uniform quantitative enrichment with modified histones, a distinct pattern of RTA and LANA enrichment was observed on the KSHV genome. The enrichment of modified histone proteins was due to their overall higher expression levels, which was exclusively seen in KSHV-positive cells. Multiple KSHV-encoded factors such as LANA, RTA, and vGPCR are involved in the upregulation of these modified histones. Analysis of ChIP-sequencing for the initiator DNA polymerase (DNAPol1α) combined with single molecule analysis of replicated DNA (SMARD) demonstrated the involvement of specific KSHV genomic regions that initiate replication in hypoxia.
Collapse
Affiliation(s)
| | | | - Erle S. Robertson
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-associated primary effusion lymphomas (PEL) are traditionally viewed as homogenous regarding viral transcription and lineage of origin, but so far this contention has not been explored at the single-cell level. Single-cell RNA sequencing of latently infected PEL supports the existence of multiple subpopulations even within a single cell line. At most 1% of the cells showed evidence of near-complete lytic transcription. The majority of cells only expressed the canonical viral latent transcripts: those originating from the latency locus, the viral interferon regulatory factor locus, and the viral lncRNA nut-1/Pan/T1.1; however, a significant fraction of cells showed various degrees of more permissive transcription, and some showed no evidence of KSHV transcripts whatsoever. Levels of viral interleukin-6 (IL-6)/K2 mRNA emerged as the most distinguishing feature to subset KSHV-infected PEL. One newly uncovered phenotype is the existence of BCBL-1 cells that readily adhered to fibronectin and that displayed mesenchymal lineage-like characteristics. IMPORTANCE Latency is the defining characteristic of the Herpesviridae and central to the tumorigenesis phenotype of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-driven primary effusion lymphomas (PEL) rapidly develop resistance to therapy, suggesting tumor instability and plasticity. At any given time, a fraction of PEL cells spontaneously reactivate KSHV, suggesting transcriptional heterogeneity even within a clonal cell line under optimal growth conditions. This study employed single-cell mRNA sequencing to explore the within-population variability of KSHV transcription and how it relates to host cell transcription. Individual clonal PEL cells exhibited differing patterns of viral transcription. Most cells showed the canonical pattern of KSHV latency (LANA, vCyc, vFLIP, Kaposin, and vIRFs), but a significant fraction evidenced extended viral gene transcription, including of the viral IL-6 homolog, open reading frame K2. This study suggests new targets of intervention for PEL. It establishes a conceptual framework to design KSHV cure studies analogous to those for HIV.
Collapse
|
9
|
Kaposi's Sarcoma-associated Herpesvirus microRNA mutants modulate cancer hallmark phenotypic differences in human endothelial cells. J Virol 2021; 95:JVI.02022-20. [PMID: 33568509 PMCID: PMC8092706 DOI: 10.1128/jvi.02022-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Kaposi's sarcoma (KS) results from the transformation of Kaposi's sarcoma-associated herpesvirus (KSHV)-infected endothelial cells. The contribution of the KSHV microRNAs (miRNAs) to the process of oncogenesis in endothelial cells has not been fully elucidated. To better understand the contributions of individual miRNAs to oncogenesis-related cellular phenotypes, we used KSHV miRNA knockout mutants, each one lacking one of the twelve miRNA genes. An additional mutant lacked all miRNAs. Since KSHV infection causes a variety of phenotypic changes in endothelial cells, we tested the mutants for their ability to effect such changes in Telomerase-Immortalized Vein Endothelial (TIVE) cells infected with each of the mutant viruses. Wild type- and mutant-infected as well as uninfected cells were evaluated for perturbations to proliferation, migration, tubule formation, and glycolysis. We found broad variation between the different viruses in these aspects. With respect to proliferation rate, ΔmiR-K12-3, ΔmiR-K12-8, and ΔmiR-K12-11 showed significant impairment. Cells infected with ΔmiR-K12-11 had reduced migration. In tubule formation, the ΔmiR-K12-5, -6, and -7 viruses were deficient. At the same time, cells infected with the ΔmiR-K12-10 virus showed dysregulated glycolysis. By combining these observations with previously published KSHV miRNA targetome lists from ribonomics data, we were able to functionally validate a number of new miRNA targets in specific pathways. As proof of concept, miR-K12-3 was shown to target Cathepsin D, a strong promoter of apoptosis. Taken together, the results demonstrate that KSHV miRNAs play different roles in inducing the phenotypic changes which are characteristic of transformed cells.Importance: Kaposi's sarcoma-associated herpesvirus (KSHV) causes Kaposi's sarcoma (KS). The contribution of KSHV microRNAs (miRNAs) to oncogenesis is not fully understood. This is particularly true for human endothelial cells, the cell type from which KS tumors are derived. Here we used a panel of KSHV miRNA knockout viruses in order to shed light on the roles of individual miRNAs in the process of transformation. Latently infected endothelial cells were studied for phenotypic changes related to cancer, including proliferation, migration, angiogenesis, glycolysis, and apoptosis. The mutant-infected cell lines displayed a wide range of phenotypes in these selected measures of oncogenesis which differed from wild type-infected cells and from each other. These results indicate that KSHV miRNAs contribute to different aspects of oncogenesis, and that each one has a unique role to play.
Collapse
|
10
|
Campbell M, Yang WS, Yeh WW, Kao CH, Chang PC. Epigenetic Regulation of Kaposi's Sarcoma-Associated Herpesvirus Latency. Front Microbiol 2020; 11:850. [PMID: 32508765 PMCID: PMC7248258 DOI: 10.3389/fmicb.2020.00850] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 04/08/2020] [Indexed: 12/17/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is an oncogenic γ-herpesvirus that infects humans and exhibits a biphasic life cycle consisting of latent and lytic phases. Following entry into host cells, the KSHV genome undergoes circularization and chromatinization into an extrachromosomal episome ultimately leading to the establishment of latency. The KSHV episome is organized into distinct chromatin domains marked by variations in repressive or activating epigenetic modifications, including DNA methylation, histone methylation, and histone acetylation. Thus, the development of KSHV latency is believed to be governed by epigenetic regulation. In the past decade, interrogation of the KSHV epitome by genome-wide approaches has revealed a complex epigenetic mark landscape across KSHV genome and has uncovered the important regulatory roles of epigenetic modifications in governing the development of KSHV latency. Here, we highlight many of the findings regarding the role of DNA methylation, histone modification, post-translational modification (PTM) of chromatin remodeling proteins, the contribution of long non-coding RNAs (lncRNAs) in regulating KSHV latency development, and the role of higher-order episomal chromatin architecture in the maintenance of latency and the latent-to-lytic switch.
Collapse
Affiliation(s)
- Mel Campbell
- UC Davis Cancer Center, University of California, Davis, Davis, CA, United States
| | - Wan-Shan Yang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Wayne W Yeh
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Chen-Hsuan Kao
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Ching Chang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
11
|
McNamara RP, Chugh PE, Bailey A, Costantini LM, Ma Z, Bigi R, Cheves A, Eason AB, Landis JT, Host KM, Xiong J, Griffith JD, Damania B, Dittmer DP. Extracellular vesicles from Kaposi Sarcoma-associated herpesvirus lymphoma induce long-term endothelial cell reprogramming. PLoS Pathog 2019; 15:e1007536. [PMID: 30716130 PMCID: PMC6361468 DOI: 10.1371/journal.ppat.1007536] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/17/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular signaling is a mechanism that higher eukaryotes have evolved to facilitate organismal homeostasis. Recent years have seen an emerging interest in the role of secreted microvesicles, termed extracellular vesicles (EV) or exosomes in this signaling network. EV contents can be modified by the cell in response to stimuli, allowing them to relay information to neighboring cells, influencing their physiology. Here we show that the tumor virus Kaposi's Sarcoma-associated herpesvirus (KSHV) hijacks this signaling pathway to induce cell proliferation, migration, and transcriptome reprogramming in cells not infected with the virus. KSHV-EV activates the canonical MEK/ERK pathway, while not alerting innate immune regulators, allowing the virus to exert these changes without cellular pathogen recognition. Collectively, we propose that KSHV establishes a niche favorable for viral spread and cell transformation through cell-derived vesicles, all while avoiding detection.
Collapse
Affiliation(s)
- Ryan P McNamara
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Pauline E Chugh
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Q2 Solutions-EA Genomics, Morrisville, North Carolina
| | - Aubrey Bailey
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lindsey M Costantini
- Department of Biological and Biomedical Sciences, North Carolina Central University, Durham, North Carolina
| | - Zhe Ma
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Rachele Bigi
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Avery Cheves
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Anthony B Eason
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Justin T Landis
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kurtis M Host
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jie Xiong
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jack D Griffith
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Blossom Damania
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Dirk P Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
12
|
Chen CP, Chuang F, Izumiya Y. Functional Imaging of Viral Transcription Factories Using 3D Fluorescence Microscopy. J Vis Exp 2018. [PMID: 29443057 DOI: 10.3791/56832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
It is well known that spatial and temporal regulation of genes is an integral part of governing proper gene expression. Consequently, it is invaluable to understand where and when transcription is taking place within nuclear space and to visualize the relationship between episomes infected within the same cell's nucleus. Here, both immunofluorescence (IFA) and RNA-FISH have been combinedto identify actively transcribing Kaposi's sarcoma-associated herpesvirus (KSHV) episomes. By staining KSHV latency-associated nuclear antigen (LANA), it is possible to locate where viral episomes exist within the nucleus. In addition, by designing RNA-FISH probes to target the intron region of a viral gene, which is expressed only during productive infection, nascent RNA transcripts can be located. Using this combination of molecular probes, it is possible to visualize the assembly of large viral transcription factories and analyze the spatial regulation of viral gene expression during KSHV reactivation. By including anti-RNA polymerase II antibody staining, one can also visualize the association between RNA polymerase II (RNAPII) aggregation and KSHV transcription during reactivation.
Collapse
Affiliation(s)
- Christopher P Chen
- Department of Dermatology, University of California Davis School of Medicine, University of California, Davis
| | - Frank Chuang
- Center for Biophotonics, Department of Biochemistry and Molecular Medicine, University of California, Davis
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis School of Medicine, University of California, Davis;
| |
Collapse
|
13
|
Weber S, Hakobyan A, Zakaryan H, Doerfler W. Intracellular African swine fever virus DNA remains unmethylated in infected Vero cells. Epigenomics 2018; 10:289-299. [PMID: 29327614 DOI: 10.2217/epi-2017-0131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM Sequence-specific CpG methylation of eukaryotic promoters is an important epigenetic signal for long-term gene silencing. We have now studied the methylation status of African swine fever virus (ASFV) DNA at various times after infection of Vero cells in culture. METHODS & RESULTS ASFV DNA was detectable throughout the infection cycle and was found unmethylated in productively infected Vero cells as documented by bisulfite sequencing of 13 viral DNA segments. CONCLUSION ASFV DNA does not become de novo methylated in the course of infection in selected segments spread across the entire genome. Thus DNA methylation does not interfere with ASFV genome transcription. Lack of de novo methylation has previously been observed for free intracellular viral DNA in cells permissively infected with human adenoviruses, with human papillomaviruses and others.
Collapse
Affiliation(s)
- Stefanie Weber
- Institute for Clinical & Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Astghik Hakobyan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of the National Academy of Sciences, 0014, Yerevan, Armenia
| | - Hovakim Zakaryan
- Group of Antiviral Defense Mechanisms, Institute of Molecular Biology of the National Academy of Sciences, 0014, Yerevan, Armenia
| | - Walter Doerfler
- Institute for Clinical & Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany.,Institute of Genetics, University of Cologne, 50674 Cologne, Germany
| |
Collapse
|
14
|
Kaposi's Sarcoma-Associated Herpesvirus Hijacks RNA Polymerase II To Create a Viral Transcriptional Factory. J Virol 2017; 91:JVI.02491-16. [PMID: 28331082 PMCID: PMC5432858 DOI: 10.1128/jvi.02491-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/17/2017] [Indexed: 02/08/2023] Open
Abstract
Locally concentrated nuclear factors ensure efficient binding to DNA templates, facilitating RNA polymerase II recruitment and frequent reutilization of stable preinitiation complexes. We have uncovered a mechanism for effective viral transcription by focal assembly of RNA polymerase II around Kaposi's sarcoma-associated herpesvirus (KSHV) genomes in the host cell nucleus. Using immunofluorescence labeling of latent nuclear antigen (LANA) protein, together with fluorescence in situ RNA hybridization (RNA-FISH) of the intron region of immediate early transcripts, we visualized active transcription of viral genomes in naturally infected cells. At the single-cell level, we found that not all episomes were uniformly transcribed following reactivation stimuli. However, those episomes that were being transcribed would spontaneously aggregate to form transcriptional “factories,” which recruited a significant fraction of cellular RNA polymerase II. Focal assembly of “viral transcriptional factories” decreased the pool of cellular RNA polymerase II available for cellular gene transcription, which consequently impaired cellular gene expression globally, with the exception of selected ones. The viral transcriptional factories localized with replicating viral genomic DNAs. The observed colocalization of viral transcriptional factories with replicating viral genomic DNA suggests that KSHV assembles an “all-in-one” factory for both gene transcription and DNA replication. We propose that the assembly of RNA polymerase II around viral episomes in the nucleus may be a previously unexplored aspect of KSHV gene regulation by confiscation of a limited supply of RNA polymerase II in infected cells. IMPORTANCE B cells infected with Kaposi's sarcoma-associated herpesvirus (KSHV) harbor multiple copies of the KSHV genome in the form of episomes. Three-dimensional imaging of viral gene expression in the nucleus allows us to study interactions and changes in the physical distribution of these episomes following stimulation. The results showed heterogeneity in the responses of individual KSHV episomes to stimuli within a single reactivating cell; those episomes that did respond to stimulation, aggregated within large domains that appear to function as viral transcription factories. A significant portion of cellular RNA polymerase II was trapped in these factories and served to transcribe viral genomes, which coincided with an overall decrease in cellular gene expression. Our findings uncover a strategy of KSHV gene regulation through focal assembly of KSHV episomes and a molecular mechanism of late gene expression.
Collapse
|
15
|
Dittmer DP, Damania B. Kaposi sarcoma-associated herpesvirus: immunobiology, oncogenesis, and therapy. J Clin Invest 2016; 126:3165-75. [PMID: 27584730 DOI: 10.1172/jci84418] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Kaposi sarcoma-associated herpesvirus (KSHV), also known as human herpesvirus 8, is the etiologic agent underlying Kaposi sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. This human gammaherpesvirus was discovered in 1994 by Drs. Yuan Chang and Patrick Moore. Today, there are over five thousand publications on KSHV and its associated malignancies. In this article, we review recent and ongoing developments in the KSHV field, including molecular mechanisms of KSHV pathogenesis, clinical aspects of KSHV-associated diseases, and current treatments for cancers associated with this virus.
Collapse
|
16
|
Minarovits J, Demcsák A, Banati F, Niller HH. Epigenetic Dysregulation in Virus-Associated Neoplasms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 879:71-90. [DOI: 10.1007/978-3-319-24738-0_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Cannistraro VJ, Pondugula S, Song Q, Taylor JS. Rapid deamination of cyclobutane pyrimidine dimer photoproducts at TCG sites in a translationally and rotationally positioned nucleosome in vivo. J Biol Chem 2015; 290:26597-609. [PMID: 26354431 DOI: 10.1074/jbc.m115.673301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Indexed: 11/06/2022] Open
Abstract
Sunlight-induced C to T mutation hot spots in skin cancers occur primarily at methylated CpG sites that coincide with sites of UV-induced cyclobutane pyrimidine dimer (CPD) formation. The C and 5-methyl-C in CPDs are not stable and deaminate to U and T, respectively, which leads to the insertion of A by the DNA damage bypass polymerase η, thereby defining a probable mechanism for the origin of UV-induced C to T mutations. Deamination rates for T(m)CG CPDs have been found to vary 12-fold with rotational position in a nucleosome in vitro. To determine the influence of nucleosome structure on deamination rates in vivo, we determined the deamination rates of CPDs at TCG sites in a stably positioned nucleosome within the FOS promoter in HeLa cells. A procedure for in vivo hydroxyl radical footprinting with Fe-EDTA was developed, and, together with results from a cytosine methylation protection assay, we determined the translational and rotational positions of the TCG sites. Consistent with the in vitro observations, deamination was slower for one CPD located at an intermediate rotational position compared with two other sites located at outside positions, and all were much faster than for CPDs at non-TCG sites. Photoproduct formation was also highly suppressed at one site, possibly due to its interaction with a histone tail. Thus, it was shown that CPDs of TCG sites deaminate the fastest in vivo and that nucleosomes can modulate both their formation and deamination, which could contribute to the UV mutation hot spots and cold spots.
Collapse
Affiliation(s)
| | - Santhi Pondugula
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - Qian Song
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| | - John-Stephen Taylor
- From the Department of Chemistry, Washington University, St. Louis, Missouri 63130
| |
Collapse
|
18
|
ORF45-Mediated Prolonged c-Fos Accumulation Accelerates Viral Transcription during the Late Stage of Lytic Replication of Kaposi's Sarcoma-Associated Herpesvirus. J Virol 2015; 89:6895-906. [PMID: 25903346 DOI: 10.1128/jvi.00274-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 02/04/2023] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) encodes multiple viral proteins that activate extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) cascades. One of these viral proteins, ORF45, mediates sustained ERK-p90 ribosomal S6 kinase (RSK) activation during KSHV lytic replication and facilitates viral translation through the phosphorylation of a eukaryotic translation initiation factor, eIF4B. The importance of ERK-RSK activation for KSHV viral transcription has been shown; however, which transcription factor senses the sustained MAPK signaling and leads to viral transcription remains poorly understood. Here we show that the presence of ORF45 leads to the prolonged accumulation of c-Fos during the late stage of KSHV lytic replication through ERK-RSK-dependent phosphorylation and stabilization and that the depletion of c-Fos disrupts viral lytic transcription. Genome-wide screening revealed that c-Fos directly binds to multiple viral gene promoters and enhances viral transcription. Mutation of the ERK-RSK phosphorylation sites of c-Fos restrains KSHV lytic gene expression and virion production. These results indicate that the prolonged accumulation of c-Fos promotes the progression of viral transcription from early to late stages and accelerates viral lytic replication upon sustained ORF45-ERK-RSK activation during the KSHV lytic life cycle. IMPORTANCE During KSHV lytic replication, transient activation and sustained activation of ERK-RSK induce viral immediate early (IE) transcription and late transcription, respectively. Studies have revealed that ERK-RSK activates several transcription factors involved in IE gene expression, including Ets, AP-1, CREB, and C/EBP, which lead to the transient ERK-RSK activation-dependent IE transcription. Whereas c-Fos acts as a sensor of sustained ERK-RSK activation, ORF45-ERK-RSK signaling mediates c-Fos phosphorylation and accumulation during late KSHV lytic replication, consequently promoting viral transcription through the direct binding of c-Fos to multiple KSHV promoters. This finding indicates that c-Fos mediates distinct viral transcriptional progression following sustained ERK-RSK signaling during the KSHV lytic life cycle.
Collapse
|
19
|
Avey D, Brewers B, Zhu F. Recent advances in the study of Kaposi's sarcoma-associated herpesvirus replication and pathogenesis. Virol Sin 2015; 30:130-45. [PMID: 25924994 PMCID: PMC8200917 DOI: 10.1007/s12250-015-3595-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/16/2015] [Indexed: 02/07/2023] Open
Abstract
It has now been over twenty years since a novel herpesviral genome was identified in Kaposi's sarcoma biopsies. Since then, the cumulative research effort by molecular biologists, virologists, clinicians, and epidemiologists alike has led to the extensive characterization of this tumor virus, Kaposi's sarcoma-associated herpesvirus (KSHV; also known as human herpesvirus 8 (HHV-8)), and its associated diseases. Here we review the current knowledge of KSHV biology and pathogenesis, with a particular emphasis on new and exciting advances in the field of epigenetics. We also discuss the development and practicality of various cell culture and animal model systems to study KSHV replication and pathogenesis.
Collapse
Affiliation(s)
- Denis Avey
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Brittany Brewers
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| | - Fanxiu Zhu
- Department of Biological Science, Florida State University, Tallahassee, 32306 USA
| |
Collapse
|
20
|
Uppal T, Jha HC, Verma SC, Robertson ES. Chromatinization of the KSHV Genome During the KSHV Life Cycle. Cancers (Basel) 2015; 7:112-42. [PMID: 25594667 PMCID: PMC4381254 DOI: 10.3390/cancers7010112] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) belongs to the gamma herpesvirus family and is the causative agent of various lymphoproliferative diseases in humans. KSHV, like other herpesviruses, establishes life-long latent infection with the expression of a limited number of viral genes. Expression of these genes is tightly regulated by both the viral and cellular factors. Recent advancements in identifying the expression profiles of viral transcripts, using tilling arrays and next generation sequencing have identified additional coding and non-coding transcripts in the KSHV genome. Determining the functions of these transcripts will provide a better understanding of the mechanisms utilized by KSHV in altering cellular pathways involved in promoting cell growth and tumorigenesis. Replication of the viral genome is critical in maintaining the existing copies of the viral episomes during both latent and lytic phases of the viral life cycle. The replication of the viral episome is facilitated by viral components responsible for recruiting chromatin modifying enzymes and replication factors for altering the chromatin complexity and replication initiation functions, respectively. Importantly, chromatin modification of the viral genome plays a crucial role in determining whether the viral genome will persist as latent episome or undergo lytic reactivation. Additionally, chromatinization of the incoming virion DNA, which lacks chromatin structure, in the target cells during primary infection, helps in establishing latent infection. Here, we discuss the recent advancements on our understating of KSHV genome chromatinization and the consequences of chromatin modifications on viral life cycle.
Collapse
Affiliation(s)
- Timsy Uppal
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Hem C Jha
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, School of Medicine, University of Nevada, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Erle S Robertson
- Department of Microbiology and the Tumor Virology Program of the Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA.
| |
Collapse
|
21
|
Integrated DNA methylation and chromatin structural analysis at single-molecule resolution. Methods Mol Biol 2015; 1288:123-41. [PMID: 25827879 DOI: 10.1007/978-1-4939-2474-5_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Chromatin limits the accessibility of DNA to trans-acting factors in transcription, replication, and repair. Although transcriptional variation between cells in a population may contribute to survival and disease, most assays of chromatin structure recover only population averages. We have developed DNA methyltransferases (MTases) as probing agents of DNA accessibility in chromatin, either expressed in vivo in budding yeast or as recombinant enzymatic probes of nuclei isolated from mammalian cells. In this chapter, we focus on the use of recombinant MTase (M) M.CviPI to probe chromatin accessibility in nuclei isolated from mammalian cell lines and animal tissue. This technique, named methylation accessibility protocol for individual templates (MAPit), reports protein-DNA interactions at single-molecule resolution. The single-molecule readout allows identification of chromatin subpopulations and rare epigenetic variants within a cell population. Furthermore, the use of M.CviPI in mammalian systems gives a comprehensive view of both chromatin structure and endogenous DNA methylation in a single assay.
Collapse
|
22
|
High-throughput RNA sequencing-based virome analysis of 50 lymphoma cell lines from the Cancer Cell Line Encyclopedia project. J Virol 2014; 89:713-29. [PMID: 25355872 DOI: 10.1128/jvi.02570-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Using high-throughput RNA sequencing data from 50 common lymphoma cell culture models from the Cancer Cell Line Encyclopedia project, we performed an unbiased global interrogation for the presence of a panel of 740 viruses and strains known to infect human and other mammalian cells. This led to the findings of previously identified infections by Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV), and human T-lymphotropic virus type 1 (HTLV-1). In addition, we also found a previously unreported infection of one cell line (DEL) with a murine leukemia virus. High expression of murine leukemia virus (MuLV) transcripts was observed in DEL cells, and we identified four transcriptionally active integration sites, one being in the TNFRSF6B gene. We also found low levels of MuLV reads in a number of other cell lines and provided evidence suggesting cross-contamination during sequencing. Analysis of HTLV-1 integrations in two cell lines, HuT 102 and MJ, identified 14 and 66 transcriptionally active integration sites with potentially activating integrations in immune regulatory genes, including interleukin-15 (IL-15), IL-6ST, STAT5B, HIVEP1, and IL-9R. Although KSHV and EBV do not typically integrate into the genome, we investigated a previously identified integration of EBV into the BACH2 locus in Raji cells. This analysis identified a BACH2 disruption mechanism involving splice donor sequestration. Through viral gene expression analysis, we detected expression of stable intronic RNAs from the EBV BamHI W repeats that may be part of long transcripts spanning the repeat region. We also observed transcripts at the EBV vIL-10 locus exclusively in the Hodgkin's lymphoma cell line, Hs 611.T, the expression of which were uncoupled from other lytic genes. Assessment of the KSHV viral transcriptome in BCP-1 cells showed expression of the viral immune regulators, K2/vIL-6, K4/vIL-8-like vCCL1, and K5/E2-ubiquitin ligase 1 that was significantly higher than expression of the latency-associated nuclear antigen. Together, this investigation sheds light into the virus composition across these lymphoma model systems and provides insights into common viral mechanistic principles. IMPORTANCE Viruses cause cancer in humans. In lymphomas the Epstein-Barr virus (EBV), Kaposi's sarcoma herpesvirus (KSHV) and human T-lymphotropic virus type 1 are major contributors to oncogenesis. We assessed virus-host interactions using a high throughput sequencing method that facilitates the discovery of new virus-host associations and the investigation into how the viruses alter their host environment. We found a previously unknown murine leukemia virus infection in one cell line. We identified cellular genes, including cytokine regulators, that are disrupted by virus integration, and we determined mechanisms through which virus integration causes deregulation of cellular gene expression. Investigation into the KSHV transcriptome in the BCP-1 cell line revealed high-level expression of immune signaling genes. EBV transcriptome analysis showed expression of vIL-10 transcripts in a Hodgkin's lymphoma that was uncoupled from lytic genes. These findings illustrate unique mechanisms of viral gene regulation and to the importance of virus-mediated host immune signaling in lymphomas.
Collapse
|
23
|
Hu J, Yang Y, Turner PC, Jain V, McIntyre LM, Renne R. LANA binds to multiple active viral and cellular promoters and associates with the H3K4methyltransferase hSET1 complex. PLoS Pathog 2014; 10:e1004240. [PMID: 25033463 PMCID: PMC4102568 DOI: 10.1371/journal.ppat.1004240] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 05/27/2014] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a γ-herpesvirus associated with KS and two lymphoproliferative diseases. Recent studies characterized epigenetic modification of KSHV episomes during latency and determined that latency-associated genes are associated with H3K4me3 while most lytic genes are associated with the silencing mark H3K27me3. Since the latency-associated nuclear antigen (LANA) (i) is expressed very early after de novo infection, (ii) interacts with transcriptional regulators and chromatin remodelers, and (iii) regulates the LANA and RTA promoters, we hypothesized that LANA may contribute to the establishment of latency through epigenetic control. We performed a detailed ChIP-seq analysis in cells of lymphoid and endothelial origin and compared H3K4me3, H3K27me3, polII, and LANA occupancy. On viral episomes LANA binding was detected at numerous lytic and latent promoters, which were transactivated by LANA using reporter assays. LANA binding was highly enriched at H3K4me3 peaks and this co-occupancy was also detected on many host gene promoters. Bioinformatic analysis of enriched LANA binding sites in combination with biochemical binding studies revealed three distinct binding patterns. A small subset of LANA binding sites showed sequence homology to the characterized LBS1/2 sequence in the viral terminal repeat. A large number of sites contained a novel LANA binding motif (TCCAT)3 which was confirmed by gel shift analysis. Third, some viral and cellular promoters did not contain LANA binding sites and are likely enriched through protein/protein interaction. LANA was associated with H3K4me3 marks and in PEL cells 86% of all LANA bound promoters were transcriptionally active, leading to the hypothesis that LANA interacts with the machinery that methylates H3K4. Co-immunoprecipitation demonstrated LANA association with endogenous hSET1 complexes in both lymphoid and endothelial cells suggesting that LANA may contribute to the epigenetic profile of KSHV episomes. KSHV is a DNA tumor virus which is associated with Kaposi's sarcoma and some lymphoproliferative diseases. During latent infection, the viral genome persists as circular extrachromosomal DNA in the nucleus and expresses a very limited number of viral proteins, including LANA, a multi-functional protein. KSHV viral episomes, like host genomic DNA, are subject to chromatin formation and histone modifications which contribute to tightly controlled gene expression during latency. We determined where LANA binds on the KSHV and human genomes, and mapped activating and repressing histone marks and RNA polymerase II binding. We found that LANA bound near transcription start sites, and binding correlated with the transcription active mark H3K4me3, but not silencing mark H3K27me3. Binding sites for transcription factors including znf143, CTCF, and Stat1 are enriched at regions where LANA is bound. We identified some LANA binding sites near human gene promoters that resembled KSHV sequences known to bind LANA. We also found a novel motif that occurs frequently in the human genome and that binds LANA directly despite being different from known LANA-binding sequences. Furthermore, we demonstrate that LANA associates with the H3K4 methyltransferase hSET1 which creates activating histone marks.
Collapse
Affiliation(s)
- Jianhong Hu
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Yajie Yang
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Peter C. Turner
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Vaibhav Jain
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Lauren M. McIntyre
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
Günther T, Schreiner S, Dobner T, Tessmer U, Grundhoff A. Influence of ND10 components on epigenetic determinants of early KSHV latency establishment. PLoS Pathog 2014; 10:e1004274. [PMID: 25033267 PMCID: PMC4102598 DOI: 10.1371/journal.ppat.1004274] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/05/2014] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that acquisition of intricate patterns of activating (H3K4me3, H3K9/K14ac) and repressive (H3K27me3) histone modifications is a hallmark of KSHV latency establishment. The precise molecular mechanisms that shape the latent histone modification landscape, however, remain unknown. Promyelocytic leukemia nuclear bodies (PML-NB), also called nuclear domain 10 (ND10), have emerged as mediators of innate immune responses that can limit viral gene expression via chromatin based mechanisms. Consequently, although ND10 functions thus far have been almost exclusively investigated in models of productive herpesvirus infection, it has been proposed that they also may contribute to the establishment of viral latency. Here, we report the first systematic study of the role of ND10 during KSHV latency establishment, and link alterations in the subcellular distribution of ND10 components to a temporal analysis of histone modification acquisition and host cell gene expression during the early infection phase. Our study demonstrates that KSHV infection results in a transient interferon response that leads to induction of the ND10 components PML and Sp100, but that repression by ND10 bodies is unlikely to contribute to KSHV latency establishment. Instead, we uncover an unexpected role for soluble Sp100 protein, which is efficiently and permanently relocalized from nucleoplasmic and chromatin-associated fractions into the insoluble matrix. We show that LANA expression is sufficient to induce Sp100 relocalization, likely via mediating SUMOylation of Sp100. Furthermore, we demonstrate that depletion of soluble Sp100 occurs precisely when repressive H3K27me3 marks first accumulate on viral genomes, and that knock-down of Sp100 (but not PML or Daxx) facilitates H3K27me3 acquisition. Collectively, our data support a model in which non-ND10 resident Sp100 acts as a negative regulator of polycomb repressive complex-2 (PRC2) recruitment, and suggest that KSHV may actively escape ND10 silencing mechanisms to promote establishment of latent chromatin.
Collapse
Affiliation(s)
- Thomas Günther
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sabrina Schreiner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Research Unit Viral Transformation, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Uwe Tessmer
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Adam Grundhoff
- Research Group Virus Genomics, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
25
|
Short-chain fatty acids from periodontal pathogens suppress histone deacetylases, EZH2, and SUV39H1 to promote Kaposi's sarcoma-associated herpesvirus replication. J Virol 2014; 88:4466-79. [PMID: 24501407 DOI: 10.1128/jvi.03326-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Periodontal pathogens such as Porphyromonas gingivalis and Fusobacterium nucleatum produce five different short-chain fatty acids (SCFAs) as metabolic by-products. We detect significantly higher levels of SCFAs in the saliva of patients with severe periodontal disease. The different SCFAs stimulate lytic gene expression of Kaposi's sarcoma-associated herpesvirus (KSHV) dose dependently and synergistically. SCFAs inhibit class-1/2 histone deacetylases (HDACs) and downregulate expression of silent information regulator-1 (SIRT1). SCFAs also downregulate expression of enhancer of zeste homolog2 (EZH2) and suppressor of variegation 3-9 homolog1 (SUV39H1), which are two histone N-lysine methyltransferases (HLMTs). By suppressing the different components of host epigenetic regulatory machinery, SCFAs increase histone acetylation and decrease repressive histone trimethylations to transactivate the viral chromatin. These new findings provide mechanistic support that SCFAs from periodontal pathogens stimulate KSHV replication and infection in the oral cavity and are potential risk factors for development of oral Kaposi's sarcoma (KS). IMPORTANCE About 20% of KS patients develop KS lesions first in the oral cavity, while other patients never develop oral KS. It is not known if the oral microenvironment plays a role in oral KS tumor development. In this work, we demonstrate that a group of metabolic by-products, namely, short-chain fatty acids, from bacteria that cause periodontal disease promote lytic replication of KSHV, the etiological agent associated with KS. These new findings provide mechanistic support that periodontal pathogens create a unique microenvironment in the oral cavity that contributes to KSHV replication and development of oral KS.
Collapse
|
26
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) establish long-term latent infections associated with diverse human cancers. Viral oncogenesis depends on the ability of the latent viral genome to persist in host nuclei as episomes that express a restricted yet dynamic pattern of viral genes. Multiple epigenetic events control viral episome generation and maintenance. This Review highlights some of the recent findings on the role of chromatin assembly, histone and DNA modifications, and higher-order chromosome structures that enable gammaherpesviruses to establish stable latent infections that mediate viral pathogenesis.
Collapse
|
27
|
Nabilsi NH, Deleyrolle LP, Darst RP, Riva A, Reynolds BA, Kladde MP. Multiplex mapping of chromatin accessibility and DNA methylation within targeted single molecules identifies epigenetic heterogeneity in neural stem cells and glioblastoma. Genome Res 2013; 24:329-39. [PMID: 24105770 PMCID: PMC3912423 DOI: 10.1101/gr.161737.113] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human tumors are comprised of heterogeneous cell populations that display diverse molecular and phenotypic features. To examine the extent to which epigenetic differences contribute to intratumoral cellular heterogeneity, we have developed a high-throughput method, termed MAPit-patch. The method uses multiplexed amplification of targeted sequences from submicrogram quantities of genomic DNA followed by next generation bisulfite sequencing. This provides highly scalable and simultaneous mapping of chromatin accessibility and DNA methylation on single molecules at high resolution. Long sequencing reads from targeted regions maintain the structural integrity of epigenetic information and provide substantial depth of coverage, detecting for the first time minority subpopulations of epigenetic configurations formerly obscured by existing genome-wide and population-ensemble methodologies. Analyzing a cohort of 71 promoters of genes with exons commonly mutated in cancer, MAPit-patch uncovered several differentially accessible and methylated promoters that are associated with altered gene expression between neural stem cell (NSC) and glioblastoma (GBM) cell populations. In addition, considering each promoter individually, substantial epigenetic heterogeneity was observed across the sequenced molecules, indicating the presence of epigenetically distinct cellular subpopulations. At the divergent MLH1/EPM2AIP1 promoter, a locus with three well-defined, nucleosome-depleted regions (NDRs), a fraction of promoter copies with inaccessible chromatin was detected and enriched upon selection of temozolomide-tolerant GBM cells. These results illustrate the biological relevance of epigenetically distinct subpopulations that in part underlie the phenotypic heterogeneity of tumor cell populations. Furthermore, these findings show that alterations in chromatin accessibility without accompanying changes in DNA methylation may constitute a novel class of epigenetic biomarker.
Collapse
Affiliation(s)
- Nancy H Nabilsi
- Department of Biochemistry and Molecular Biology, University of Florida Health Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic gammaherpesvirus which establishes latent infection in endothelial and B cells, as well as in primary effusion lymphoma (PEL). During latency, the viral genome exists as a circular DNA minichromosome (episome) and is packaged into chromatin analogous to human chromosomes. Only a small subset of promoters, those which drive latent RNAs, are active in latent episomes. In general, nucleosome depletion ("open chromatin") is a hallmark of eukaryotic regulatory elements such as promoters and transcriptional enhancers or insulators. We applied formaldehyde-assisted isolation of regulatory elements (FAIRE) followed by next-generation sequencing to identify regulatory elements in the KSHV genome and integrated these data with previously identified locations of histone modifications, RNA polymerase II occupancy, and CTCF binding sites. We found that (i) regions of open chromatin were not restricted to the transcriptionally defined latent loci; (ii) open chromatin was adjacent to regions harboring activating histone modifications, even at transcriptionally inactive loci; and (iii) CTCF binding sites fell within regions of open chromatin with few exceptions, including the constitutive LANA promoter and the vIL6 promoter. FAIRE-identified nucleosome depletion was similar among B and endothelial cell lineages, suggesting a common viral genome architecture in all forms of latency.
Collapse
|
29
|
Toth Z, Brulois K, Jung JU. The chromatin landscape of Kaposi's sarcoma-associated herpesvirus. Viruses 2013; 5:1346-73. [PMID: 23698402 PMCID: PMC3712311 DOI: 10.3390/v5051346] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 05/17/2013] [Accepted: 05/17/2013] [Indexed: 12/15/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus is an oncogenic γ-herpesvirus that causes latent infection in humans. In cells, the viral genome adopts a highly organized chromatin structure, which is controlled by a wide variety of cellular and viral chromatin regulatory factors. In the past few years, interrogation of the chromatinized KSHV genome by whole genome-analyzing tools revealed that the complex chromatin landscape spanning the viral genome in infected cells has important regulatory roles during the viral life cycle. This review summarizes the most recent findings regarding the role of histone modifications, histone modifying enzymes, DNA methylation, microRNAs, non-coding RNAs and the nuclear organization of the KSHV epigenome in the regulation of latent and lytic viral gene expression programs as well as their connection to KSHV-associated pathogenesis.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Harlyne J. Norris Cancer Research Tower, 1450 Biggy Street, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|