1
|
Soliman HK, Coughlan JM. United by conflict: Convergent signatures of parental conflict in angiosperms and placental mammals. J Hered 2024; 115:625-642. [PMID: 38366852 PMCID: PMC11498613 DOI: 10.1093/jhered/esae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Endosperm in angiosperms and placenta in eutherians are convergent innovations for efficient embryonic nutrient transfer. Despite advantages, this reproductive strategy incurs metabolic costs that maternal parents disproportionately shoulder, leading to potential inter-parental conflict over optimal offspring investment. Genomic imprinting-parent-of-origin-biased gene expression-is fundamental for endosperm and placenta development and has convergently evolved in angiosperms and mammals, in part, to resolve parental conflict. Here, we review the mechanisms of genomic imprinting in these taxa. Despite differences in the timing and spatial extent of imprinting, these taxa exhibit remarkable convergence in the molecular machinery and genes governing imprinting. We then assess the role of parental conflict in shaping evolution within angiosperms and eutherians using four criteria: 1) Do differences in the extent of sibling relatedness cause differences in the inferred strength of parental conflict? 2) Do reciprocal crosses between taxa with different inferred histories of parental conflict exhibit parent-of-origin growth effects? 3) Are these parent-of-origin growth effects caused by dosage-sensitive mechanisms and do these loci exhibit signals of positive selection? 4) Can normal development be restored by genomic perturbations that restore stoichiometric balance in the endosperm/placenta? Although we find evidence for all criteria in angiosperms and eutherians, suggesting that parental conflict may help shape their evolution, many questions remain. Additionally, myriad differences between the two taxa suggest that their respective biologies may shape how/when/where/to what extent parental conflict manifests. Lastly, we discuss outstanding questions, highlighting the power of comparative work in quantifying the role of parental conflict in evolution.
Collapse
Affiliation(s)
- Hagar K Soliman
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
- Department of Biotechnology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Jenn M Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT 06511, United States
| |
Collapse
|
2
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
3
|
Boman J, Qvarnström A, Mugal CF. Regulatory and evolutionary impact of DNA methylation in two songbird species and their naturally occurring F 1 hybrids. BMC Biol 2024; 22:124. [PMID: 38807214 PMCID: PMC11134931 DOI: 10.1186/s12915-024-01920-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND Regulation of transcription by DNA methylation in 5'-CpG-3' context is a widespread mechanism allowing differential expression of genetically identical cells to persist throughout development. Consequently, differences in DNA methylation can reinforce variation in gene expression among cells, tissues, populations, and species. Despite a surge in studies on DNA methylation, we know little about the importance of DNA methylation in population differentiation and speciation. Here we investigate the regulatory and evolutionary impact of DNA methylation in five tissues of two Ficedula flycatcher species and their naturally occurring F1 hybrids. RESULTS We show that the density of CpG in the promoters of genes determines the strength of the association between DNA methylation and gene expression. The impact of DNA methylation on gene expression varies among tissues with the brain showing unique patterns. Differentially expressed genes between parental species are predicted by genetic and methylation differentiation in CpG-rich promoters. However, both these factors fail to predict hybrid misexpression suggesting that promoter mismethylation is not a main determinant of hybrid misexpression in Ficedula flycatchers. Using allele-specific methylation estimates in hybrids, we also determine the genome-wide contribution of cis- and trans effects in DNA methylation differentiation. These distinct mechanisms are roughly balanced in all tissues except the brain, where trans differences predominate. CONCLUSIONS Overall, this study provides insight on the regulatory and evolutionary impact of DNA methylation in songbirds.
Collapse
Affiliation(s)
- Jesper Boman
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
| | - Anna Qvarnström
- Department of Ecology and Genetics (IEG), Division of Animal Ecology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden
| | - Carina F Mugal
- Department of Ecology and Genetics (IEG), Division of Evolutionary Biology, Uppsala University, Norbyvägen 18D, Uppsala, SE-752 36, Sweden.
- CNRS, Laboratory of Biometry and Evolutionary Biology (LBBE), UMR 5558, University of Lyon 1, Villeurbanne, France.
| |
Collapse
|
4
|
Kress C, Jouneau L, Pain B. Reinforcement of repressive marks in the chicken primordial germ cell epigenetic signature: divergence from basal state resetting in mammals. Epigenetics Chromatin 2024; 17:11. [PMID: 38671530 PMCID: PMC11046797 DOI: 10.1186/s13072-024-00537-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND In mammals, primordial germ cells (PGCs), the embryonic precursors of the germline, arise from embryonic or extra-embryonic cells upon induction by the surrounding tissues during gastrulation, according to mechanisms which are elucidated in mice but remain controversial in primates. They undergo genome-wide epigenetic reprogramming, consisting of extensive DNA demethylation and histone post-translational modification (PTM) changes, toward a basal, euchromatinized state. In contrast, chicken PGCs are specified by preformation before gastrulation based on maternally-inherited factors. They can be isolated from the bloodstream during their migration to the genital ridges. Our prior research highlighted differences in the global epigenetic profile of cultured chicken PGCs compared with chicken somatic cells and mammalian PGCs. This study investigates the acquisition and evolution of this profile during development. RESULTS Quantitative analysis of global DNA methylation and histone PTMs, including their distribution, during key stages of chicken early development revealed divergent PGC epigenetic changes compared with mammals. Unlike mammalian PGCs, chicken PGCs do not undergo genome-wide DNA demethylation or exhibit a decrease in histone H3 lysine 9 dimethylation. However, chicken PGCs show 5‑hydroxymethylcytosine loss, macroH2A redistribution, and chromatin decompaction, mirroring mammalian processes. Chicken PGCs initiate their epigenetic signature during migration, progressively accumulating high global levels of H3K9me3, with preferential enrichment in inactive genome regions. Despite apparent global chromatin decompaction, abundant heterochromatin marks, including repressive histone PTMs, HP1 variants, and DNA methylation, persists in chicken PGCs, contrasting with mammalian PGCs. CONCLUSIONS Chicken PGCs' epigenetic signature does not align with the basal chromatin state observed in mammals, suggesting a departure from extensive epigenetic reprogramming. Despite disparities in early PGC development, the persistence of several epigenetic features shared with mammals implies their involvement in chromatin-regulated germ cell properties, with the distinctive elevation of chicken-specific H3K9me3 potentially participating in these processes.
Collapse
Affiliation(s)
- Clémence Kress
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France.
| | - Luc Jouneau
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, 78350, France
- Ecole Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, 94700, France
| | - Bertrand Pain
- Univ Lyon, Université Lyon 1, INSERM, INRAE, U1208, USC1361, Stem Cell and Brain Research Institute, Bron, France
| |
Collapse
|
5
|
Hubert JN, Perret M, Riquet J, Demars J. Livestock species as emerging models for genomic imprinting. Front Cell Dev Biol 2024; 12:1348036. [PMID: 38500688 PMCID: PMC10945557 DOI: 10.3389/fcell.2024.1348036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/19/2024] [Indexed: 03/20/2024] Open
Abstract
Genomic imprinting is an epigenetically-regulated process of central importance in mammalian development and evolution. It involves multiple levels of regulation, with spatio-temporal heterogeneity, leading to the context-dependent and parent-of-origin specific expression of a small fraction of the genome. Genomic imprinting studies have therefore been essential to increase basic knowledge in functional genomics, evolution biology and developmental biology, as well as with regard to potential clinical and agrigenomic perspectives. Here we offer an overview on the contribution of livestock research, which features attractive resources in several respects, for better understanding genomic imprinting and its functional impacts. Given the related broad implications and complexity, we promote the use of such resources for studying genomic imprinting in a holistic and integrative view. We hope this mini-review will draw attention to the relevance of livestock genomic imprinting studies and stimulate research in this area.
Collapse
Affiliation(s)
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
6
|
Douet C, Grasseau I, Vitorino Carvalho A. Avian sperm-borne RNAs: optimisation of a new isolation protocol. Br Poult Sci 2023; 64:641-649. [PMID: 37266980 DOI: 10.1080/00071668.2023.2220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
1. Sperm-borne RNAs are involved in sperm and embryonic protein translation, the regulation of early development and the epigenetic inheritance of the paternal phenotype. Sperm-borne RNA purification protocols generally include a cell purification stage to discard contamination by somatic cells. In avian species, no protocol is currently available to isolate all the populations composing sperm-borne RNAs.2. This study evaluated the presence of somatic cells in semen samples of chickens and quails using visual examination after fluorescent nuclei staining. The efficiency of somatic cell lysis buffer (SCLB) on chicken liver cells and its impacts on chicken sperm cell integrity was explored. Three different approaches were tested to isolate RNA: two developed for mammalian sperm cells and a commercial kit for somatic cells. The efficiency and reliability of each approach was determined based on RNA quality and purity. Eventually, the presence of miRNA and mRNA in purified avian sperm-borne RNAs was investigated by RT-(q)PCR.3. No somatic cells were found in chicken and quail semen. The SCLB totally lysed chicken liver cells but also induced sperm cell necrosis. Consequently, this treatment wasn't performed on samples prior to RNA isolation. Among the tested RNA purification protocols, the commercial one was the least variable and isolated RNA with the highest purity levels. No DNA contamination was observed. Furthermore, the samples contained miRNA and mRNA already known as present in mammalian sperm cells (gga-miR-100-5p, gga-miR-191-5p, GAPDH and PLCZ1), but mRNAs associated with leucocytes (CD4) and Sertoli cells (SOX4, CLDN11) were not detected. This protocol was successfully applied to quail sperm cells.4. Altogether, the study reveals that it is unnecessary to pre-treat samples to remove somatic cell contamination before RNA purification and successfully describes an isolation protocol for sperm-borne RNAs, including small non-coding and long coding RNAs, in two distinct avian species highly valuable as biological models.
Collapse
Affiliation(s)
- C Douet
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - I Grasseau
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
7
|
Ishihara T, Griffith OW, Suzuki S, Renfree MB. Placental imprinting of SLC22A3 in the IGF2R imprinted domain is conserved in therian mammals. Epigenetics Chromatin 2022; 15:32. [PMID: 36030241 PMCID: PMC9419357 DOI: 10.1186/s13072-022-00465-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background The eutherian IGF2R imprinted domain is regulated by an antisense long non-coding RNA, Airn, which is expressed from a differentially methylated region (DMR) in mice. Airn silences two neighbouring genes, Solute carrier family 22 member 2 (Slc22a2) and Slc22a3, to establish the Igf2r imprinted domain in the mouse placenta. Marsupials also have an antisense non-coding RNA, ALID, expressed from a DMR, although the exact function of ALID is currently unknown. The eutherian IGF2R DMR is located in intron 2, while the marsupial IGF2R DMR is located in intron 12, but it is not yet known whether the adjacent genes SLC22A2 and/or SLC22A3 are also imprinted in the marsupial lineage. In this study, the imprinting status of marsupial SLC22A2 and SLC22A3 in the IGF2R imprinted domain in the chorio-vitelline placenta was examined in a marsupial, the tammar wallaby. Results In the tammar placenta, SLC22A3 but not SLC22A2 was imprinted. Tammar SLC22A3 imprinting was evident in placental tissues but not in the other tissues examined in this study. A putative promoter of SLC22A3 lacked DNA methylation, suggesting that this gene is not directly silenced by a DMR on its promoter as seen in the mouse. Based on immunofluorescence, we confirmed that the tammar SLC22A3 is localised in the endodermal cell layer of the tammar placenta where nutrient trafficking occurs. Conclusions Since SLC22A3 is imprinted in the tammar placenta, we conclude that this placental imprinting of SLC22A3 has been positively selected after the marsupial and eutherian split because of the differences in the DMR location. Since SLC22A3 is known to act as a transporter molecule for nutrient transfer in the eutherian placenta, we suggest it was strongly selected to control the balance between supply and demand of nutrients in marsupial as it does in eutherian placentas. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-022-00465-4.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Oliver W Griffith
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, 399-4598, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| |
Collapse
|
8
|
Ishihara T, Hickford D, Fenelon JC, Griffith OW, Suzuki S, Renfree MB. Evolution of the short form of DNMT3A, DNMT3A2, occurred in the common ancestor of mammals. Genome Biol Evol 2022; 14:6615359. [PMID: 35749276 PMCID: PMC9254654 DOI: 10.1093/gbe/evac094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is found in marsupial and eutherian mammals, but not in monotremes. While the primary regulator of genomic imprinting in eutherians is differential DNA methylation between parental alleles, conserved imprinted genes in marsupials tend to lack DNA methylation at their promoters. DNA methylation at eutherian imprinted genes is mainly catalysed by a DNA methyltransferase (DNMT) enzyme, DNMT3A. There are two isoforms of eutherian DNMT3A: DNMT3A and DNMT3A2. DNMT3A2 is the primary isoform for establishing DNA methylation at eutherian imprinted genes and is essential for eutherian genomic imprinting. In this study, we investigated whether DNMT3A2 is also present in the two other mammalian lineages, marsupials and monotremes. We identified DNMT3A2 in both marsupials and monotremes, although imprinting has not been identified in monotremes. By analysing genomic sequences and transcriptome data across vertebrates, we concluded that the evolution of DNMT3A2 occurred in the common ancestor of mammals. In addition, DNMT3A/3A2 gene and protein expression during gametogenesis showed distinct sexual dimorphisms in a marsupial, the tammar wallaby, and this pattern coincided with the sex-specific DNA methylation reprogramming in this species as it does in mice. Our results show that DNMT3A2 is present in all mammalian groups and suggests that the basic DNMT3A/3A2-based DNA methylation mechanism is conserved at least in therian mammals.
Collapse
Affiliation(s)
- Teruhito Ishihara
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Danielle Hickford
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jane C Fenelon
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Oliver W Griffith
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shunsuke Suzuki
- Department of Agricultural and Life Sciences, Shinshu University, Nagano, Japan
| | - Marilyn B Renfree
- School of BioSciences, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
9
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
10
|
Jehl F, Degalez F, Bernard M, Lecerf F, Lagoutte L, Désert C, Coulée M, Bouchez O, Leroux S, Abasht B, Tixier-Boichard M, Bed'hom B, Burlot T, Gourichon D, Bardou P, Acloque H, Foissac S, Djebali S, Giuffra E, Zerjal T, Pitel F, Klopp C, Lagarrigue S. RNA-Seq Data for Reliable SNP Detection and Genotype Calling: Interest for Coding Variant Characterization and Cis-Regulation Analysis by Allele-Specific Expression in Livestock Species. Front Genet 2021; 12:655707. [PMID: 34262593 PMCID: PMC8273700 DOI: 10.3389/fgene.2021.655707] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022] Open
Abstract
In addition to their common usages to study gene expression, RNA-seq data accumulated over the last 10 years are a yet-unexploited resource of SNPs in numerous individuals from different populations. SNP detection by RNA-seq is particularly interesting for livestock species since whole genome sequencing is expensive and exome sequencing tools are unavailable. These SNPs detected in expressed regions can be used to characterize variants affecting protein functions, and to study cis-regulated genes by analyzing allele-specific expression (ASE) in the tissue of interest. However, gene expression can be highly variable, and filters for SNP detection using the popular GATK toolkit are not yet standardized, making SNP detection and genotype calling by RNA-seq a challenging endeavor. We compared SNP calling results using GATK suggested filters, on two chicken populations for which both RNA-seq and DNA-seq data were available for the same samples of the same tissue. We showed, in expressed regions, a RNA-seq precision of 91% (SNPs detected by RNA-seq and shared by DNA-seq) and we characterized the remaining 9% of SNPs. We then studied the genotype (GT) obtained by RNA-seq and the impact of two factors (GT call-rate and read number per GT) on the concordance of GT with DNA-seq; we proposed thresholds for them leading to a 95% concordance. Applying these thresholds to 767 multi-tissue RNA-seq of 382 birds of 11 chicken populations, we found 9.5 M SNPs in total, of which ∼550,000 SNPs per tissue and population with a reliable GT (call rate ≥ 50%) and among them, ∼340,000 with a MAF ≥ 10%. We showed that such RNA-seq data from one tissue can be used to (i) detect SNPs with a strong predicted impact on proteins, despite their scarcity in each population (16,307 SIFT deleterious missenses and 590 stop-gained), (ii) study, on a large scale, cis-regulations of gene expression, with ∼81% of protein-coding and 68% of long non-coding genes (TPM ≥ 1) that can be analyzed for ASE, and with ∼29% of them that were cis-regulated, and (iii) analyze population genetic using such SNPs located in expressed regions. This work shows that RNA-seq data can be used with good confidence to detect SNPs and associated GT within various populations and used them for different analyses as GTEx studies.
Collapse
Affiliation(s)
- Frédéric Jehl
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Fabien Degalez
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Maria Bernard
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France.,INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Colette Désert
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Manon Coulée
- INRAE, INSTITUT AGRO, PEGASE UMR 1348, Saint-Gilles, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Sophie Leroux
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, United States
| | | | - Bertrand Bed'hom
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | | | | | - Philippe Bardou
- INRAE, SIGENAE, Genotoul Bioinfo MIAT, Castanet-Tolosan, France
| | - Hervé Acloque
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Sylvain Foissac
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Sarah Djebali
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | - Elisabetta Giuffra
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Tatiana Zerjal
- INRAE, AgroParisTech, Université Paris-Saclay, GABI UMR 1313, Jouy-en-Josas, France
| | - Frédérique Pitel
- INRAE, INPT, ENVT, Université de Toulouse, GenPhySE UMR 1388, Castanet-Tolosan, France
| | | | | |
Collapse
|
11
|
Ren P, Deng F, Chen S, Ran J, Li J, Yin L, Wang Y, Yin H, Zhu Q, Liu Y. Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F 1 chicken population. Mol Genet Genomics 2021; 296:331-339. [PMID: 33404883 DOI: 10.1007/s00438-020-01744-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
Allelic transmission ratio distortion (TRD) is the significant deviation from the expected ratio under Mendelian inheritance theory, which may be resulted from multiple disrupted biological processes, including germline selection, meiotic drive, gametic competition, imprint error, and embryo lethality. However, it is less known that whether or what extent the allelic TRD is present in farm animals. In this study, whole-genome resequencing technology was applied to reveal TRD loci in chicken by constructing a full-sib F1 hybrid population. Through the whole-genome resequencing data of two parents (30 ×) and 38 offspring (5 ×), we detected a total of 2850 TRD SNPs (p-adj < 0.05) located within 400 genes showing TRD, and all of them were unevenly distributed on macrochromosomes and microchromosomes. Our findings suggested that TRD in the chicken chromosome 16 might play an important role in chicken immunity and disease resistance and the MYH1F with significant TRD and allele-specific expression could play a key role in the fast muscle development. In addition, functional enrichment analyses revealed that many genes (e.g., TGFBR2, TGFBR3, NOTCH1, and NCOA1) with TRD were found in the significantly enriched biological process and InterPro terms in relation to embryonic lethality and germline selection. Our results suggested that TRD is considerably prevalent in the chicken genome and has functional implications.
Collapse
Affiliation(s)
- Peng Ren
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Feilong Deng
- Special Key Laboratory of Microbial Resources and Drug Development, Zunyi Medical University, Zunyi, 563000, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Jinshan Ran
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Jingjing Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Lingqian Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Huadong Yin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China
| | - Yiping Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu Campus, Chengdu, 611130, China. .,Laboratory of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, 211 Huiming Road, Wenjiang, Sichuan, 611130, China.
| |
Collapse
|
12
|
van Oers K, Sepers B, Sies W, Gawehns F, Verhoeven KJF, Laine VN. Epigenetics of Animal Personality: DNA Methylation Cannot Explain the Heritability of Exploratory Behavior in a Songbird. Integr Comp Biol 2020; 60:1517-1530. [PMID: 33031487 PMCID: PMC7742756 DOI: 10.1093/icb/icaa138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The search for the hereditary mechanisms underlying quantitative traits traditionally focused on the identification of underlying genomic polymorphisms such as single-nucleotide polymorphisms. It has now become clear that epigenetic mechanisms, such as DNA methylation, can consistently alter gene expression over multiple generations. It is unclear, however, if and how DNA methylation can stably be transferred from one generation to the next and can thereby be a component of the heritable variation of a trait. In this study, we explore whether DNA methylation responds to phenotypic selection using whole-genome and genome-wide bisulfite approaches. We assessed differential erythrocyte DNA methylation patterns between extreme personality types in the Great Tit (Parus major). For this, we used individuals from a four-generation artificial bi-directional selection experiment and siblings from eight F2 inter-cross families. We find no differentially methylated sites when comparing the selected personality lines, providing no evidence for the so-called epialleles associated with exploratory behavior. Using a pair-wise sibling design in the F2 intercrosses, we show that the genome-wide DNA methylation profiles of individuals are mainly explained by family structure, indicating that the majority of variation in DNA methylation in CpG sites between individuals can be explained by genetic differences. Although we found some candidates explaining behavioral differences between F2 siblings, we could not confirm this with a whole-genome approach, thereby confirming the absence of epialleles in these F2 intercrosses. We conclude that while epigenetic variation may underlie phenotypic variation in behavioral traits, we were not able to find evidence that DNA methylation can explain heritable variation in personality traits in Great Tits.
Collapse
Affiliation(s)
- Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, P.O. Box 338, 6700 AH, the Netherlands
| | - Bernice Sepers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
- Behavioural Ecology Group, Wageningen University & Research, Wageningen, P.O. Box 338, 6700 AH, the Netherlands
| | - William Sies
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Fleur Gawehns
- Bioinformatics Unit, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Koen J F Verhoeven
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| | - Veronika N Laine
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, Wageningen, 6708 PB, The Netherlands
| |
Collapse
|
13
|
Mugal CF, Wang M, Backström N, Wheatcroft D, Ålund M, Sémon M, McFarlane SE, Dutoit L, Qvarnström A, Ellegren H. Tissue-specific patterns of regulatory changes underlying gene expression differences among Ficedula flycatchers and their naturally occurring F 1 hybrids. Genome Res 2020; 30:1727-1739. [PMID: 33144405 PMCID: PMC7706733 DOI: 10.1101/gr.254508.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
Changes in interacting cis- and trans-regulatory elements are important candidates for Dobzhansky-Muller hybrid incompatibilities and may contribute to hybrid dysfunction by giving rise to misexpression in hybrids. To gain insight into the molecular mechanisms and determinants of gene expression evolution in natural populations, we analyzed the transcriptome from multiple tissues of two recently diverged Ficedula flycatcher species and their naturally occurring F1 hybrids. Differential gene expression analysis revealed that the extent of differentiation between species and the set of differentially expressed genes varied across tissues. Common to all tissues, a higher proportion of Z-linked genes than autosomal genes showed differential expression, providing evidence for a fast-Z effect. We further found clear signatures of hybrid misexpression in brain, heart, kidney, and liver. However, while testis showed the highest divergence of gene expression among tissues, it showed no clear signature of misexpression in F1 hybrids, even though these hybrids were found to be sterile. It is therefore unlikely that incompatibilities between cis-trans regulatory changes explain the observed sterility. Instead, we found evidence that cis-regulatory changes play a significant role in the evolution of gene expression in testis, which illustrates the tissue-specific nature of cis-regulatory evolution bypassing constraints associated with pleiotropic effects of genes.
Collapse
Affiliation(s)
- Carina F Mugal
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Mi Wang
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Niclas Backström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - David Wheatcroft
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, Stockholm University, 106 91 Stockholm, Sweden
| | - Murielle Ålund
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Integrative Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Marie Sémon
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,ENS de Lyon, Laboratory of Biology and Modelling of the Cell, Lyon University, 69364 Lyon Cedex 07, France
| | - S Eryn McFarlane
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Ludovic Dutoit
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden.,Department of Zoology, University of Otago, Dunedin 9016, New Zealand
| | - Anna Qvarnström
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| | - Hans Ellegren
- Department of Ecology and Genetics, Uppsala University, 752 36 Uppsala, Sweden
| |
Collapse
|
14
|
The Landscape of Genomic Imprinting at the Porcine SGCE/ PEG10 Locus from Methylome and Transcriptome of Parthenogenetic Embryos. G3-GENES GENOMES GENETICS 2020; 10:4037-4047. [PMID: 32878957 PMCID: PMC7642923 DOI: 10.1534/g3.120.401425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In mammals, imprinted genes often exist in the form of clusters in specific chromosome regions. However, in pigs, genomic imprinting of a relatively few genes and clusters has been identified, and genes within or adjacent to putative imprinted clusters need to be investigated including those at the SGCE/PEG10 locus. The objective of this study was to, using porcine parthenogenetic embryos, investigate imprinting status of genes within the genomic region spans between the COL1A2 and ASB4 genes in chromosome 9. Whole-genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) were conducted with normal and parthenogenetic embryos, and methylome and transcriptome were analyzed. As a result, differentially methylated regions (DMRs) between the embryos were identified, and parental allele-specific expressions of the SGCE and PEG10 genes were verified. The pig imprinted interval was limited between SGCE and PEG10, since both the COL1A2 and CASD1 genes at the centromere-proximal region and the genes between PPP1R9A and ASB4 toward the telomere were non-imprinted and biallelically expressed. Consequently, our combining analyses of methylome, transcriptome, and informative polymorphisms revealed the boundary of imprinting cluster at the SGCE/PEG10 locus in pig chromosome 9 and consolidated the landscape of genomic imprinting in pigs.
Collapse
|
15
|
Ishishita S, Tatsumoto S, Kinoshita K, Nunome M, Suzuki T, Go Y, Matsuda Y. Transcriptome analysis revealed misregulated gene expression in blastoderms of interspecific chicken and Japanese quail F1 hybrids. PLoS One 2020; 15:e0240183. [PMID: 33044996 PMCID: PMC7549780 DOI: 10.1371/journal.pone.0240183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022] Open
Abstract
Hybrid incompatibility, such as sterility and inviability, prevents gene flow between closely-related populations as a reproductive isolation barrier. F1 hybrids between chickens and Japanese quail (hereafter, referred to as quail), exhibit a high frequency of developmental arrest at the preprimitive streak stage. To investigate the molecular basis of the developmental arrest at the preprimitive streak stage in chicken–quail F1 hybrid embryos, we investigated chromosomal abnormalities in the hybrid embryos using molecular cytogenetic analysis. In addition, we quantified gene expression in parental species and chicken- and quail-derived allele-specific expression in the hybrids at the early blastoderm and preprimitive streak stages by mRNA sequencing. Subsequently, we compared the directions of change in gene expression, including upregulation, downregulation, or no change, from the early blastoderm stage to the preprimitive streak stage between parental species and their hybrids. Chromosome analysis revealed that the cells of the hybrid embryos contained a fifty-fifty mixture of parental chromosomes, and numerical chromosomal abnormalities were hardly observed in the hybrid cells. Gene expression analysis revealed that a part of the genes that were upregulated from the early blastoderm stage to the preprimitive streak stage in both parental species exhibited no upregulation of both chicken- and quail-derived alleles in the hybrids. GO term enrichment analysis revealed that these misregulated genes are involved in various biological processes, including ribosome-mediated protein synthesis and cell proliferation. Furthermore, the misregulated genes included genes involved in early embryonic development, such as primitive streak formation and gastrulation. These results suggest that numerical chromosomal abnormalities due to a segregation failure does not cause the lethality of chicken–quail hybrid embryos, and that the downregulated expression of the genes that are involved in various biological processes, including translation and primitive streak formation, mainly causes the developmental arrest at the preprimitive streak stage in the hybrids.
Collapse
Affiliation(s)
- Satoshi Ishishita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Shoji Tatsumoto
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Keiji Kinoshita
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Mitsuo Nunome
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLs), National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Yoichi Matsuda
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Laboratory of Avian Bioscience, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
16
|
Mitake M, Hirano S, Kishino T. Imprinting analysis by droplet digital PCR coupled with locked nucleic acid TaqMan probes. Epigenetics 2020; 16:729-740. [PMID: 32970510 DOI: 10.1080/15592294.2020.1823160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Imprinted genes are differentially expressed in a parent-of-origin-specific manner. Parental origin of the alleles is discriminated by intragenic DNA polymorphisms. Comparisons of parental allelic expression have been analysed by semiquantitative RT-PCR. Here, we developed a novel quantitative method for allelic expression of the imprinted gene Ube3a, which inactivation and mutations cause Angelman syndrome and predominantly expressed by the maternal allele in neuronal tissues. In this method, cDNA was amplified by droplet digital PCR (ddPCR) coupled with allele-specific locked nucleic acid (LNA) TaqMan probes, which labelled by FAM and HEX were designed to detect the SNPs in the target regions. ddPCR assay demonstrated that the sense transcript of Ube3a was equally expressed from both parental alleles in adult tissues except neuronal tissues, where Ube3a expression from the paternal allele was about 10 to 14% of total Ube3a expression in adult brain, and 20% in spinal cord. The antisense transcript of Ube3a was expressed at 60% to 70% of the sense transcript of Ube3a in adult brain. Changes in the Ube3a transcripts during postnatal brain development were also evaluated by ddPCR. The ddPCR method is far more reliable and simpler to use than semiquantitative PCR to analyse skewed or faint allelic expression of imprinted genes.
Collapse
Affiliation(s)
- Maiko Mitake
- Division of Functional Genomics, Centre for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | - Shiori Hirano
- Division of Functional Genomics, Centre for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| | - Tatsuya Kishino
- Division of Functional Genomics, Centre for Frontier Life Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
17
|
Rengaraj D, Hwang YS, Lee HC, Han JY. Zygotic genome activation in the chicken: a comparative review. Cell Mol Life Sci 2020; 77:1879-1891. [PMID: 31728579 PMCID: PMC11104987 DOI: 10.1007/s00018-019-03360-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
18
|
Genome-wide analysis of spatiotemporal allele-specific expression in F1 hybrids of meat- and egg-type chickens. Gene 2020; 747:144671. [PMID: 32304782 DOI: 10.1016/j.gene.2020.144671] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/04/2020] [Accepted: 04/12/2020] [Indexed: 12/20/2022]
Abstract
In diploid organisms, each gene locus is composed of two parental alleles, which would interact with each other for determining the phenotypic variation. Better understanding of the allele-specific expression (ASE) in farm animals is much important to explore the genetic basis underlying economically important traits, which have been poorly understood yet. In this study, genome-wide analysis was applied to explore the spatiotemporal pattern of ASE in the F1 hybrids of chicken. First, meat- and egg-type chickens were selected for producing a full-sib F1 hybrid population (n = 57). Then, genome resequencing of two parents and 38 offspring were performed and liver and breast muscle samples (n = 38) were subjected to strand-specific RNA sequencing (ssRNA-seq) for ASE detection at 1, 28, and 56 days of age, respectively. The results accurately identified a total of 465 informative genes that could be distinguished with respect to their parental origins. There were 0.4% - 4.1% of informative genes showing ASE, and 57 of them were found across different tissues and time points. Besides, most ASE genes in chickens were tissue-specific, and no matter what the time-point pattern of one ASE gene, the same parental allele of this gene almost showed consistently higher or lower expression across all time points in the same type tissue. In conclusion, this study indicated that most of ASE genes were tissue-specific and time-dependent.
Collapse
|
19
|
Wang Q, Jia Y, Wang Y, Jiang Z, Zhou X, Zhang Z, Nie C, Li J, Yang N, Qu L. Evolution of cis- and trans-regulatory divergence in the chicken genome between two contrasting breeds analyzed using three tissue types at one-day-old. BMC Genomics 2019; 20:933. [PMID: 31805870 PMCID: PMC6896592 DOI: 10.1186/s12864-019-6342-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/27/2019] [Indexed: 11/10/2022] Open
Abstract
Background Gene expression variation is a key underlying factor influencing phenotypic variation, and can occur via cis- or trans-regulation. To understand the role of cis- and trans-regulatory variation on population divergence in chicken, we developed reciprocal crosses of two chicken breeds, White Leghorn and Cornish Game, which exhibit major differences in body size and reproductive traits, and used them to determine the degree of cis versus trans variation in the brain, liver, and muscle tissue of male and female 1-day-old specimens. Results We provided an overview of how transcriptomes are regulated in hybrid progenies of two contrasting breeds based on allele specific expression analysis. Compared with cis-regulatory divergence, trans-acting genes were more extensive in the chicken genome. In addition, considerable compensatory cis- and trans-regulatory changes exist in the chicken genome. Most importantly, stronger purifying selection was observed on genes regulated by trans-variations than in genes regulated by the cis elements. Conclusions We present a pipeline to explore allele-specific expression in hybrid progenies of inbred lines without a specific reference genome. Our research is the first study to describe the regulatory divergence between two contrasting breeds. The results suggest that artificial selection associated with domestication in chicken could have acted more on trans-regulatory divergence than on cis-regulatory divergence.
Collapse
Affiliation(s)
- Qiong Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture and Rural, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yaxiong Jia
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuan Wang
- Department of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Zhihua Jiang
- Department of Animal Sciences, Center for Reproductive Biology, Veterinary and Biomedical Research Building, Washington State University, Pullman, USA
| | - Xiang Zhou
- College of Animal Sciences and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zebin Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Changsheng Nie
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- State Key Laboratory of Animal Nutrition, Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China.
| |
Collapse
|
20
|
Wang H, Sawai A, Toji N, Sugioka R, Shibata Y, Suzuki Y, Ji Y, Hayase S, Akama S, Sese J, Wada K. Transcriptional regulatory divergence underpinning species-specific learned vocalization in songbirds. PLoS Biol 2019; 17:e3000476. [PMID: 31721761 PMCID: PMC6853299 DOI: 10.1371/journal.pbio.3000476] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/18/2019] [Indexed: 11/19/2022] Open
Abstract
Learning of most motor skills is constrained in a species-specific manner. However, the proximate mechanisms underlying species-specific learned behaviors remain poorly understood. Songbirds acquire species-specific songs through learning, which is hypothesized to depend on species-specific patterns of gene expression in functionally specialized brain regions for vocal learning and production, called song nuclei. Here, we leveraged two closely related songbird species, zebra finch, owl finch, and their interspecific first-generation (F1) hybrids, to relate transcriptional regulatory divergence between species with the production of species-specific songs. We quantified genome-wide gene expression in both species and compared this with allele-specific expression in F1 hybrids to identify genes whose expression in song nuclei is regulated by species divergence in either cis- or trans-regulation. We found that divergence in transcriptional regulation altered the expression of approximately 10% of total transcribed genes and was linked to differential gene expression between the two species. Furthermore, trans-regulatory changes were more prevalent than cis-regulatory and were associated with synaptic formation and transmission in song nucleus RA, the avian analog of the mammalian laryngeal motor cortex. We identified brain-derived neurotrophic factor (BDNF) as an upstream mediator of trans-regulated genes in RA, with a significant correlation between individual variation in BDNF expression level and species-specific song phenotypes in F1 hybrids. This was supported by the fact that the pharmacological overactivation of BDNF receptors altered the expression of its trans-regulated genes in the RA, thus disrupting the learned song structures of adult zebra finch songs at the acoustic and sequence levels. These results demonstrate functional neurogenetic associations between divergence in region-specific transcriptional regulation and species-specific learned behaviors.
Collapse
Affiliation(s)
- Hongdi Wang
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Azusa Sawai
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Noriyuki Toji
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Rintaro Sugioka
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yukino Shibata
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yuika Suzuki
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Yu Ji
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Shin Hayase
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
| | - Satoru Akama
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Jun Sese
- National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Humanome Lab Inc., Tokyo, Japan
| | - Kazuhiro Wada
- Graduate School of Life Science, Hokkaido University, Sapporo, Japan
- Faculty of Science, Hokkaido University, Sapporo, Japan
- Department of Biological Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Lim KS, Chang SS, Choi BH, Lee SH, Lee KT, Chai HH, Park JE, Park W, Lim D. Genome-Wide Analysis of Allele-Specific Expression Patterns in Seventeen Tissues of Korean Cattle (Hanwoo). Animals (Basel) 2019; 9:ani9100727. [PMID: 31561539 PMCID: PMC6826869 DOI: 10.3390/ani9100727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
The functional hemizygosity could be caused by the MAE of a given gene and it can be one of the sources to affect the phenotypic variation in cattle. We aimed to identify MAE genes across the transcriptome in Korean cattle (Hanwoo). For three Hanwoo family trios, the transcriptome data of 17 tissues were generated in three offspring. Sixty-two MAE genes had a monoallelic expression in at least one tissue. Comparing genotypes among each family trio, the preferred alleles of 18 genes were identified (maternal expression, n = 9; paternal expression, n = 9). The MAE genes are involved in gene regulation, metabolic processes, and immune responses, and in particular, six genes encode transcription factors (FOXD2, FOXM1, HTATSF1, SCRT1, NKX6-2, and UBN1) with tissue-specific expression. In this study, we report genome-wide MAE genes in seventeen tissues of adult cattle. These results could help to elucidate epigenetic effects on phenotypic variation in Hanwoo.
Collapse
Affiliation(s)
- Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.
| | - Sun-Sik Chang
- Hanwoo Research Institute, National Institute of Animal Science, Rural Development Administration, Pyeongchang 25340, Korea.
| | - Bong-Hwan Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Seung-Hwan Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea.
| | - Kyung-Tai Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Han-Ha Chai
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Jong-Eun Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Woncheoul Park
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| | - Dajeong Lim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea.
| |
Collapse
|
22
|
Apicella C, Ruano CSM, Méhats C, Miralles F, Vaiman D. The Role of Epigenetics in Placental Development and the Etiology of Preeclampsia. Int J Mol Sci 2019; 20:ijms20112837. [PMID: 31212604 PMCID: PMC6600551 DOI: 10.3390/ijms20112837] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
In this review, we comprehensively present the function of epigenetic regulations in normal placental development as well as in a prominent disease of placental origin, preeclampsia (PE). We describe current progress concerning the impact of DNA methylation, non-coding RNA (with a special emphasis on long non-coding RNA (lncRNA) and microRNA (miRNA)) and more marginally histone post-translational modifications, in the processes leading to normal and abnormal placental function. We also explore the potential use of epigenetic marks circulating in the maternal blood flow as putative biomarkers able to prognosticate the onset of PE, as well as classifying it according to its severity. The correlation between epigenetic marks and impacts on gene expression is systematically evaluated for the different epigenetic marks analyzed.
Collapse
Affiliation(s)
- Clara Apicella
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Camino S M Ruano
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Céline Méhats
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Francisco Miralles
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| | - Daniel Vaiman
- Institut Cochin, U1016 INSERM, UMR8104 CNRS, Université Paris Descartes, 24 rue du faubourg St Jacques, 75014 Paris, France.
| |
Collapse
|
23
|
Karami K, Zerehdaran S, Javadmanesh A, Shariati MM. Assessment of maternal and parent of origin effects in genetic variation of economic traits in Iranian native fowl. Br Poult Sci 2019; 60:486-492. [PMID: 31132866 DOI: 10.1080/00071668.2019.1621987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. The objective of the study was to investigate the influence of maternal and parent of origin effects (POE) on genetic variation of Iranian native fowl on economic traits. 2. Studied traits were body weights at birth (BW0), at eight (BW8) and 12 weeks of age (BW12), age (ASM) and weight at sexual maturity (WSM), egg number (EN) and average egg weight (AEW). 3. Several models, including additive, maternal additive genetics, permanent environmental effects and POE were compared using Wombat software. Bayesian Information Criterion (BIC) was used to identify the best model for each trait. The chance of reranking of birds between models was investigated using Spearman correlation and Wilcoxon rank test. 4. Based on the best model, direct heritability estimates for BW0, BW8, BW12, ASM, WSM, EN and AEW traits were 0.05, 0.21, 0.23, 0.30, 0.39, 0.22 and 0.38, respectively. Proportion of variance due to paternal POE for BW8 was 4% and proportion of variance due to maternal POE for BW12 was 5%. 5. Estimated maternal heritability for BW0 was 0.30 and for BW8 and BW12 were 0.00 and 0.01, respectively, which shows that maternal heritability was reduced by age. 6. Based on the results, considering POE for BW8 and BW12 and maternal genetic effects for BW0 improved the accuracy of estimations and avoid reranking of birds for these traits.
Collapse
Affiliation(s)
- K Karami
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - S Zerehdaran
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - A Javadmanesh
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| | - M M Shariati
- Department of Animal Science, Ferdowsi University of Mashhad , Mashhad , Iran
| |
Collapse
|
24
|
Groothuis TGG, Hsu BY, Kumar N, Tschirren B. Revisiting mechanisms and functions of prenatal hormone-mediated maternal effects using avian species as a model. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180115. [PMID: 30966885 PMCID: PMC6460091 DOI: 10.1098/rstb.2018.0115] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2018] [Indexed: 12/16/2022] Open
Abstract
Maternal effects can adaptively modulate offspring developmental trajectories in variable but predictable environments. Hormone synthesis is sensitive to environmental factors, and maternal hormones are thus a powerful mechanism to transfer environmental cues to the next generation. Birds have become a key model for the study of hormone-mediated maternal effects because the embryo develops outside the mother's body, facilitating the measurement and manipulation of prenatal hormone exposure. At the same time, birds are excellent models for the integration of both proximate and ultimate approaches, which is key to a better understanding of the evolution of hormone-mediated maternal effects. Over the past two decades, a surge of studies on hormone-mediated maternal effects has revealed an increasing number of discrepancies. In this review, we discuss the role of the environment, genetic factors and social interactions in causing these discrepancies and provide a framework to resolve them. We also explore the largely neglected role of the embryo in modulating the maternal signal, as well as costs and benefits of hormone transfer and expression for the different family members. We conclude by highlighting fruitful avenues for future research that have opened up thanks to new theoretical insights and technical advances in the field. This article is part of the theme issue 'Developing differences: early-life effects and evolutionary medicine'.
Collapse
Affiliation(s)
- Ton G. G. Groothuis
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Bin-Yan Hsu
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
- Department of Biology, University of Turku, Turku, Finland
| | - Neeraj Kumar
- Behavioural Biology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, UK
| |
Collapse
|
25
|
Blunk I, Mayer M, Hamann H, Reinsch N. Scanning the genomes of parents for imprinted loci acting in their un-genotyped progeny. Sci Rep 2019; 9:654. [PMID: 30679576 PMCID: PMC6345920 DOI: 10.1038/s41598-018-36939-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022] Open
Abstract
Depending on their parental origin, alleles at imprinted loci are fully or partially inactivated through epigenetic mechanisms. Their effects contribute to the broader class of parent-of-origin effects. Standard methodology for mapping imprinted quantitative trait loci in association studies requires phenotypes and parental origin of marker alleles (ordered genotypes) to be simultaneously known for each individual. As such, many phenotypes are known from un-genotyped offspring in ongoing breeding programmes (e.g. meat animals), while their parents have known genotypes but no phenotypes. By theoretical considerations and simulations, we showed that the limitations of standard methodology can be overcome in such situations. This is achieved by first estimating parent-of-origin effects, which then serve as dependent variables in association analyses, in which only imprinted loci give a signal. As a theoretical foundation, the regression of parent-of-origin effects on the number of B-alleles at a biallelic locus — representing the un-ordered genotype — equals the imprinting effect. The applicability to real data was demonstrated for about 1800 genotyped Brown Swiss bulls and their un-genotyped fattening progeny. Thus, this approach unlocks vast data resources in various species for imprinting analyses and offers valuable clues as to what extent imprinted loci contribute to genetic variability.
Collapse
Affiliation(s)
- Inga Blunk
- Faculty of Agricultural and Environmental Sciences, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.,Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henning Hamann
- State-Office for Geo-Information and Rural Development, Geodata-Center, Stuttgarter Straße 161, 70806, Kornwestheim, Germany
| | - Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
26
|
Stachowiak M, Szczerbal I, Flisikowski K. Investigation of allele-specific expression of genes involved in adipogenesis and lipid metabolism suggests complex regulatory mechanisms of PPARGC1A expression in porcine fat tissues. BMC Genet 2018; 19:107. [PMID: 30497374 PMCID: PMC6267897 DOI: 10.1186/s12863-018-0696-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023] Open
Abstract
Background The expression of genes involved in regulating adipogenesis and lipid metabolism may affect economically important fatness traits in pigs. Allele-specific expression (ASE) reflects imbalance between allelic transcript levels and can be used to identify underlying cis-regulatory elements. ASE has not yet been intensively studied in pigs. The aim of this investigation was to analyze the differential allelic expression of four genes, PPARA, PPARG, SREBF1, and PPARGC1A, which are involved in the regulation of fat deposition in porcine subcutaneous and visceral fat and longissimus dorsi muscle. Results Quantification of allelic proportions by pyrosequencing revealed that both alleles of PPARG and SREBF1 are expressed at similar levels. PPARGC1A showed the greatest ASE imbalance in fat deposits in Polish Large White (PLW), Polish Landrace and Pietrain pigs; and PPARA in PLW pigs. Significant deviations of mean PPARGC1A allelic transcript ratio between cDNA and genomic DNA were detected in all tissues, with the most pronounced difference (p < 0.001) in visceral fat of PLW pigs. To search for potential cis-regulatory elements affecting ASE in the PPARGC1A gene we analyzed the effects of four SNPs (rs337351686, rs340650517, rs336405906 and rs345224049) in the promoter region, but none were associated with ASE in the breeds studied. DNA methylation analysis revealed significant CpG methylation differences between samples showing balanced (allelic transcript ratio ≈1) and imbalanced allelic expression for CpG site at the genomic position in chromosome 8 (SSC8): 18527678 in visceral fat (p = 0.017) and two CpG sites (SSC8:18525215, p = 0.030; SSC8:18525237, p = 0.031) in subcutaneous fat. Conclusions Our analysis of differential allelic expression suggests that PPARGC1A is subjected to cis-regulation in porcine fat tissues. Further studies are necessary to identify other regulatory elements localized outside the PPARGC1A proximal promoter region. Electronic supplementary material The online version of this article (10.1186/s12863-018-0696-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Stachowiak
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland.
| | - Izabela Szczerbal
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Wolynska 33, 60-637, Poznan, Poland
| | - Krzysztof Flisikowski
- Chair of Livestock Biotechnology, Technical University of Munich, Liesel-Beckmannstr. 1, 85354, Freising, Germany
| |
Collapse
|
27
|
Hwang YS, Seo M, Kim SK, Bang S, Kim H, Han JY. Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes. eLife 2018; 7:39381. [PMID: 30375976 PMCID: PMC6242549 DOI: 10.7554/elife.39381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
The first wave of transcriptional activation occurs after fertilisation in a species-specific pattern. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Here, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred, one shortly after fertilisation and another at Eyal-Giladi and Kochav Stage V. We found 1544 single nucleotide polymorphisms across 424 transcripts derived from parents that were expressed in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage that were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds. The early stages of animal development involve a handover of genetic control. Initially, the egg cell is maintained by genetic information inherited from the mother, but soon after fertilization it starts to depend on its own genes instead. Activating genes inside the fertilized egg cell (zygote) so that they can take control of development is known as zygotic genome activation. Despite the fact that birds are often used to study how embryos develop, zygotic genome activation in birds is not well understood. Fertilization in birds, including chickens, is different to mammals in that it requires multiple sperm to fertilize an egg cell. As such, zygotic genome activation in birds is likely to differ from that in mammals. By examining gene expression in embryos from mixed-breed chickens, Hwang, Seo et al. showed that there are two stages of zygotic genome activation in chickens. The genes derived from the mother become active in the first stage, while genes from the father become active in the second stage. Genome activation in birds is therefore very different to the same process in mammals, which involves genome activation of both parents from the first stage. This extra level of control may help to prevent genetic complications resulting from the presence of multiple sperm, each of which carries a different set of genes from the father.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- C&K Genomics, Seoul, Republic of Korea.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,C&K Genomics, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
28
|
Nolan CM, Shiel RE, Buchan JG, O'Sullivan FM, Callanan JJ. Canine MAS1: monoallelic expression is suggestive of an imprinted gene. Anim Genet 2018; 49:438-446. [PMID: 30062832 DOI: 10.1111/age.12705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2018] [Indexed: 12/15/2022]
Abstract
Imprinted genes are epigenetically modified in a parent-of-origin dependent manner and as a consequence are differentially expressed, with one allele typically expressed while the other is repressed. In canine, the insulin like growth factor 2 receptor gene (IGF2R) is imprinted with predominant expression of the maternally inherited allele. Because imprinted genes usually occur in clusters, we examined the allelic expression pattern of the gene encoding the canine Mas receptor (MAS1), which is located upstream of IGF2R on canine chromosome 1 and is highly conserved in mammals. In this report we describe monoallelic expression of canine MAS1 in the neonatal umbilical cord of several individuals and we identify the expressed allele as maternally inherited. These data suggest that canine MAS1 is an imprinted gene.
Collapse
Affiliation(s)
- C M Nolan
- UCD School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland
| | - R E Shiel
- UCD School of Veterinary Medicine, Belfield, Dublin 4, Ireland
| | - J G Buchan
- UCD School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland
| | - F M O'Sullivan
- UCD School of Biology and Environmental Science, Science Centre West, Belfield, Dublin 4, Ireland
| | - J J Callanan
- UCD School of Veterinary Medicine, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Rancourt RC, Schellong K, Tzschentke B, Henrich W, Plagemann A. DNA methylation and expression of proopiomelanocortin ( POMC) gene in the hypothalamus of three-week-old chickens show sex-specific differences. FEBS Open Bio 2018; 8:932-939. [PMID: 29928573 PMCID: PMC5985994 DOI: 10.1002/2211-5463.12427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/19/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023] Open
Abstract
Increased availability and improved sequence annotation of the chicken (Gallus gallus f. domestica) genome have sparked interest in the bird as a model system to investigate translational embryonic development and health/disease outcomes. However, the epigenetics of this bird genome remain unclear. The aim of this study was to determine the levels of gene expression and DNA methylation at the proopiomelanocortin (POMC) gene in the hypothalamus of 3-week-old chickens. POMC is a key player in the control of the stress response, food intake, and metabolism. DNA methylation of the promoter, CpG island, and gene body regions of POMC were measured. Our data illustrate the pattern, variability, and functionality of DNA methylation for POMC expression in the chicken. Our findings show correlation of methylation pattern and gene expression along with sex-specific differences in POMC. Overall, these novel data highlight the promising potential of the chicken as a model and also the need for breeders and researchers to consider sex ratios in their studies.
Collapse
Affiliation(s)
- Rebecca C Rancourt
- Division of 'Experimental Obstetrics' Clinic of Obstetrics Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Germany
| | - Karen Schellong
- Division of 'Experimental Obstetrics' Clinic of Obstetrics Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Germany
| | | | - Wolfgang Henrich
- Clinic of Obstetrics Charité - Universitätsmedizin Berlin Germany
| | - Andreas Plagemann
- Division of 'Experimental Obstetrics' Clinic of Obstetrics Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin Humboldt-Universität zu Berlin, and Berlin Institute of Health Germany
| |
Collapse
|
30
|
Guerrero-Bosagna C, Morisson M, Liaubet L, Rodenburg TB, de Haas EN, Košťál Ľ, Pitel F. Transgenerational epigenetic inheritance in birds. ENVIRONMENTAL EPIGENETICS 2018; 4:dvy008. [PMID: 29732172 PMCID: PMC5920295 DOI: 10.1093/eep/dvy008] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/02/2018] [Accepted: 03/12/2018] [Indexed: 05/04/2023]
Abstract
While it has been shown that epigenetics accounts for a portion of the variability of complex traits linked to interactions with the environment, the real contribution of epigenetics to phenotypic variation remains to be assessed. In recent years, a growing number of studies have revealed that epigenetic modifications can be transmitted across generations in several animal species. Numerous studies have demonstrated inter- or multi-generational effects of changing environment in birds, but very few studies have been published showing epigenetic transgenerational inheritance in these species. In this review, we mention work conducted in parent-to-offspring transmission analyses in bird species, with a focus on the impact of early stressors on behaviour. We then present recent advances in transgenerational epigenetics in birds, which involve germline linked non-Mendelian inheritance, underline the advantages and drawbacks of working on birds in this field and comment on future directions of transgenerational studies in bird species.
Collapse
Affiliation(s)
- Carlos Guerrero-Bosagna
- Avian Behavioural Genomics and Physiology Group, IFM Biology, Linköping University, Linköping 58 183, Sweden
| | - Mireille Morisson
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - Laurence Liaubet
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
| | - T Bas Rodenburg
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Elske N de Haas
- Behavioural Ecology Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Ľubor Košťál
- Centre of Biosciences, Slovak Academy of Sciences, 840 05 Bratislava, Slovakia
| | - Frédérique Pitel
- GenPhySE, Université de Toulouse, INRA, ENVT, F-31326 Castanet-Tolosan, France
- Correspondence address. GenPhySE, INRA, 31326 Castanet-Tolosan, France. Tel:+33 561 28 54 35. E-mail:
| |
Collapse
|
31
|
Variant calling from RNA-seq data of the brain transcriptome of pigs and its application for allele-specific expression and imprinting analysis. Gene 2018; 641:367-375. [DOI: 10.1016/j.gene.2017.10.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/19/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022]
|
32
|
Barr KL. Vertical transmission of positive-sense single-stranded RNA viruses in plants as a model for arboviral induced teratogenesis. Curr Opin Virol 2017; 27:42-47. [PMID: 29172070 DOI: 10.1016/j.coviro.2017.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 11/25/2022]
Abstract
Teratogenic viruses have increased public health importance with the emergence of Zika virus and a recent decline in rubella virus vaccination. Of the seven viruses known to cause birth defects in humans, three are mosquito-borne pathogens. Ethical oversight, compliance, rising costs, and the need for specialized training slow the pace of study of these human pathogens compared to study of similar teratogenic viruses in plants. Plant viruses have served as models for human viruses which can be applied to animal systems. This review describes the similar features of plant and animal teratogenic arboviruses and the common systems and barriers that are encountered during vertical transmission in the host.
Collapse
Affiliation(s)
- Kelli L Barr
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, United States.
| |
Collapse
|
33
|
Wang Q, Mank JE, Li J, Yang N, Qu L. Allele-Specific Expression Analysis Does Not Support Sex Chromosome Inactivation on the Chicken Z Chromosome. Genome Biol Evol 2017; 9:619-626. [PMID: 28391319 PMCID: PMC5381566 DOI: 10.1093/gbe/evx031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2017] [Indexed: 12/27/2022] Open
Abstract
Heterogametic sex chromosomes have evolved many times independently, and in many cases, the loss of functional genes from the sex-limited Y or W chromosome leaves only one functional gene copy on the corresponding X or Z chromosome in the heterogametic sex. Because gene dose often correlates with gene expression level, this difference in gene dose between males and females for X- or Z-linked genes in some cases has selected for chromosome-wide transcriptional dosage compensation mechanisms to counteract any reduction in expression in the heterogametic sex. These mechanisms are thought to restore the balance between sex-linked loci and the autosomal genes they interact with, and this also typically results in equal expression between the sexes. However, dosage compensation in many other species is incomplete, and in the case of birds average expression from males (ZZ) remains higher than in females (ZW). Interestingly, recent reports in chickens and related species have shown that the Z chromosome is expressed less in males than would be expected from two copies of the chromosome, and recent data from cell-based approaches on 11 loci in chicken have suggested that one Z chromosome is partially inactivated in males, in a mechanism thought to be homologous to X inactivation in therian mammals. In the present study, we use controlled crosses in three tissues to test for the presence of Z inactivation in males, which would be expected to bias transcription to the active gene copy (allele-specific expression). We show that for the vast majority of genes on the chicken Z chromosome, males express both parental alleles at statistically similar levels, indicating no Z chromosome inactivation. For those Z chromosome loci with detectable ASE in males, we show that the most likely cause is cis-regulatory variation, rather than Z chromosome inactivation. Taken together, our results indicate that unlike the X chromosome in mammals, Z inactivation does not affect an appreciable number of loci in chicken.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Judith E Mank
- Department of Genetics Evolution and Environment, University College London, United Kingdom
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
RNA-Seq Analyses Identify Frequent Allele Specific Expression and No Evidence of Genomic Imprinting in Specific Embryonic Tissues of Chicken. Sci Rep 2017; 7:11944. [PMID: 28931927 PMCID: PMC5607270 DOI: 10.1038/s41598-017-12179-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/05/2017] [Indexed: 12/30/2022] Open
Abstract
Epigenetic and genetic cis-regulatory elements in diploid organisms may cause allele specific expression (ASE) – unequal expression of the two chromosomal gene copies. Genomic imprinting is an intriguing type of ASE in which some genes are expressed monoallelically from either the paternal allele or maternal allele as a result of epigenetic modifications. Imprinted genes have been identified in several animal species and are frequently associated with embryonic development and growth. Whether genomic imprinting exists in chickens remains debatable, as previous studies have reported conflicting evidence. Albeit no genomic imprinting has been reported in the chicken embryo as a whole, we interrogated the existence or absence of genomic imprinting in the 12-day-old chicken embryonic brain and liver by examining ASE in F1 reciprocal crosses of two highly inbred chicken lines (Fayoumi and Leghorn). We identified 5197 and 4638 ASE SNPs, corresponding to 18.3% and 17.3% of the genes with a detectable expression in the embryonic brain and liver, respectively. There was no evidence detected of genomic imprinting in 12-day-old embryonic brain and liver. While ruling out the possibility of imprinted Z-chromosome inactivation, our results indicated that Z-linked gene expression is partially compensated between sexes in chickens.
Collapse
|
35
|
Bassano I, Ong SH, Lawless N, Whitehead T, Fife M, Kellam P. Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes. BMC Genomics 2017; 18:419. [PMID: 28558694 PMCID: PMC5450142 DOI: 10.1186/s12864-017-3801-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 05/16/2017] [Indexed: 01/16/2023] Open
Abstract
Background Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases. Methods We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey. Results We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a single amino acid substitution of A63V in the CIL domain of IFITM2 compared to Red Jungle fowl and 13, 13 and 11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively. RNA-seq shows chIFITM2 and chIFITM3 expression in numerous tissue types of different chicken breeds and avian cell lines, while the expression of the putative chIFITM1 is limited to the testis, caecum and ileum tissues. Conclusions Locus resequencing using these capture probes and RNA-seq based expression analysis will allow the further characterization of genetic diversity within Galliformes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3801-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Irene Bassano
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College Faculty of Medicine, Wright Fleming Wing, St Mary's Campus, Norfolk Place, London, W2 1PG, UK
| | - Swee Hoe Ong
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nathan Lawless
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Thomas Whitehead
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Mark Fife
- The Pirbright Institute, Pirbright Laboratory, Ash Road, Woking, GU24 0NF, UK
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Division of Infectious Diseases, Department of Medicine, Imperial College Faculty of Medicine, Wright Fleming Wing, St Mary's Campus, Norfolk Place, London, W2 1PG, UK.
| |
Collapse
|
36
|
Lien CY, Tixier-Boichard M, Wu SW, Wang WF, Ng CS, Chen CF. Detection of QTL for traits related to adaptation to sub-optimal climatic conditions in chickens. Genet Sel Evol 2017; 49:39. [PMID: 28427323 PMCID: PMC5399330 DOI: 10.1186/s12711-017-0314-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/31/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Growth traits can be used as indicators of adaptation to sub-optimal conditions. The current study aimed at identifying quantitative trait loci (QTL) that control performance under variable temperature conditions in chickens. METHODS An F2 population was produced by crossing the Taiwan Country chicken L2 line (selected for body weight, comb area, and egg production) with an experimental line of Rhode Island Red layer R- (selected for low residual feed consumption). A total of 844 animals were genotyped with the 60 K Illumina single nucleotide polymorphism (SNP) chip. Whole-genome interval linkage mapping and a genome-wide association study (GWAS) were performed for body weight at 0, 4, 8, 12, and 16 weeks of age, shank length at 8 weeks of age, size of comb area at 16 weeks of age, and antibody response to sheep red blood cells at 11 weeks of age (7 and 14 days after primary immunization). Relevant genes were identified based on functional annotation of candidate genes and potentially relevant SNPs were detected by comparing whole-genome sequences of several birds between the parental lines. RESULTS Whole-genome QTL analysis revealed 47 QTL and 714 effects associated with 178 SNPs were identified by GWAS with 5% Bonferroni genome-wide significance. Little overlap was observed between the QTL and GWAS results, with only two chromosomal regions detected by both approaches, i.e. one on GGA24 (GGA for Gallus gallus chromosome) for BW04 and one on GGAZ for six growth-related traits. Based on whole-genome sequence, differences between the parental lines based on several birds were screened in the genome-wide QTL regions and in a region detected by both methods, resulting in the identification of 106 putative candidate genes with a total of 15,443 SNPs, of which 41 were missense and 1698 were not described in the dbSNP archive. CONCLUSIONS The QTL detected in this study for growth and morphological traits likely influence adaptation of chickens to sub-tropical climate. Using whole-genome sequence data, we identified candidate SNPs for further confirmation of QTL in the F2 design. A strong QTL effect found on GGAZ underlines the importance of sex-linked inheritance for growth traits in chickens.
Collapse
Affiliation(s)
- Ching-Yi Lien
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Department of Animal Science, National Chung Hsing University, 145 Xingda Rd., South District, Taichung, 40227, Taiwan.,Livestock Research Institute, Council of Agriculture, Executive Yuan, 112 Muchang, Xinhua District, Tainan, 71246, Taiwan
| | | | - Shih-Wen Wu
- Fonghuanggu Bird and Ecology Park, National Museum of Natural Science, 1-9 Renyi Rd., Lugu Township, Nantou County, 55841, Taiwan
| | - Woei-Fuh Wang
- Biodiversity Research Center, Academia Sinica, 128 Academia Rd., Section 2, Nankang, Taipei, 11529, Taiwan
| | - Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Rd., Hsinchu, 30013, Taiwan
| | - Chih-Feng Chen
- Department of Animal Science, National Chung Hsing University, 145 Xingda Rd., South District, Taichung, 40227, Taiwan. .,Center for the Integrative and Evolutionary Galliformes Genomics, National Chung Hsing University, No. 250, Guoguang Rd., South District, Taichung, 40227, Taiwan.
| |
Collapse
|
37
|
Acloque H, Ocaña OH, Abad D, Stern CD, Nieto MA. Snail2 and Zeb2 repress P-cadherin to define embryonic territories in the chick embryo. Development 2017; 144:649-656. [PMID: 28087626 DOI: 10.1242/dev.142562] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/23/2016] [Indexed: 12/12/2022]
Abstract
Snail and Zeb transcription factors induce epithelial-to-mesenchymal transition (EMT) in embryonic and adult tissues by direct repression of E-cadherin transcription. The repression of E-cadherin transcription by the EMT inducers Snail1 and Zeb2 plays a fundamental role in defining embryonic territories in the mouse, as E-cadherin needs to be downregulated in the primitive streak and in the epiblast, concomitant with the formation of mesendodermal precursors and the neural plate, respectively. Here, we show that in the chick embryo, E-cadherin is weakly expressed in the epiblast at pre-primitive streak stages where it is substituted for by P-cadherin We also show that Snail2 and Zeb2 repress P-cadherin transcription in the primitive streak and the neural plate, respectively. This indicates that E- and P-cadherin expression patterns evolved differently between chick and mouse. As such, the Snail1/E-cadherin axis described in the early mouse embryo corresponds to Snail2/P-cadherin in the chick, but both Snail factors and Zeb2 fulfil a similar role in chick and mouse in directly repressing ectodermal cadherin genes to contribute to the delamination of mesendodermal precursors at gastrulation and the proper specification of the neural ectoderm during neural induction.
Collapse
Affiliation(s)
- Hervé Acloque
- Instituto de Neurociencias de Alicante, CSIC-UMH, Avenida Ramón y Cajal s/n, San Juan de Alicante 03550, Spain .,GenPhySE, Université de Toulouse, INRA, INPT, ENVT, Castanet Tolosan 31326, France
| | - Oscar H Ocaña
- Instituto de Neurociencias de Alicante, CSIC-UMH, Avenida Ramón y Cajal s/n, San Juan de Alicante 03550, Spain
| | - Diana Abad
- Instituto de Neurociencias de Alicante, CSIC-UMH, Avenida Ramón y Cajal s/n, San Juan de Alicante 03550, Spain
| | - Claudio D Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - M Angela Nieto
- Instituto de Neurociencias de Alicante, CSIC-UMH, Avenida Ramón y Cajal s/n, San Juan de Alicante 03550, Spain
| |
Collapse
|
38
|
Pick JL, Ebneter C, Hutter P, Tschirren B. Disentangling Genetic and Prenatal Maternal Effects on Offspring Size and Survival. Am Nat 2016; 188:628-639. [PMID: 27860503 DOI: 10.1086/688918] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Organizational processes during prenatal development can have long-term effects on an individual's phenotype. Because these early developmental stages are sensitive to environmental influences, mothers are in a unique position to alter their offspring's phenotype by differentially allocating resources to their developing young. However, such prenatal maternal effects are difficult to disentangle from other forms of parental care, additive genetic effects, and/or other forms of maternal inheritance, hampering our understanding of their evolutionary consequences. Here we used divergent selection lines for high and low prenatal maternal investment and their reciprocal line crosses in a precocial bird-the Japanese quail (Coturnix japonica)-to quantify the relative importance of genes and prenatal maternal effects in shaping offspring phenotype. Maternal but not paternal origin strongly affected offspring body size and survival throughout development. Although the effects of maternal egg investment faded over time, they were large at key life stages. Additionally, there was evidence for other forms of maternal inheritance affecting offspring phenotype at later stages of development. Our study is among the first to successfully disentangle prenatal maternal effects from all other sources of confounding variation and highlights the important role of prenatal maternal provisioning in shaping offspring traits closely linked to fitness.
Collapse
|
39
|
Tschirren B, Ziegler AK, Pick JL, Okuliarová M, Zeman M, Giraudeau M. Matrilineal inheritance of a key mediator of prenatal maternal effects. Proc Biol Sci 2016; 283:20161676. [PMID: 27629040 PMCID: PMC5031669 DOI: 10.1098/rspb.2016.1676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 08/24/2016] [Indexed: 11/12/2022] Open
Abstract
Sex-linkage is predicted to evolve in response to sex-specific or sexually antagonistic selection. In line with this prediction, most sex-linked genes are associated with reproduction in the respective sex. In addition to traits directly involved in fertility and fecundity, mediators of maternal effects may be predisposed to evolve sex-linkage, because they indirectly affect female fitness through their effect on offspring phenotype. Here, we test for sex-linked inheritance of a key mediator of prenatal maternal effects in oviparous species, the transfer of maternally derived testosterone to the eggs. Consistent with maternal inheritance, we found that in Japanese quail (Coturnix japonica) granddaughters resemble their maternal (but not their paternal) grandmother in yolk testosterone deposition. This pattern of resemblance was not due to non-genetic priming effects of testosterone exposure during prenatal development, as an experimental manipulation of yolk testosterone levels did not affect the females' testosterone transfer to their own eggs later in life. Instead, W chromosome and/or mitochondrial variation may underlie the observed matrilineal inheritance pattern. Ultimately, the inheritance of mediators of maternal effects along the maternal line will allow for a fast and direct response to female-specific selection, thereby affecting the dynamics of evolutionary processes mediated by maternal effects.
Collapse
Affiliation(s)
- Barbara Tschirren
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Ann-Kathrin Ziegler
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Joel L Pick
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Monika Okuliarová
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Michal Zeman
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovak Republic
| | - Mathieu Giraudeau
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn, UK
| |
Collapse
|
40
|
Wang X, Werren JH, Clark AG. Allele-Specific Transcriptome and Methylome Analysis Reveals Stable Inheritance and Cis-Regulation of DNA Methylation in Nasonia. PLoS Biol 2016; 14:e1002500. [PMID: 27380029 PMCID: PMC4933354 DOI: 10.1371/journal.pbio.1002500] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 06/03/2016] [Indexed: 11/18/2022] Open
Abstract
Gene expression divergence between closely related species could be attributed to both cis- and trans- DNA sequence changes during evolution, but it is unclear how the evolutionary dynamics of epigenetic marks are regulated. In eutherian mammals, biparental DNA methylation marks are erased and reset during gametogenesis, resulting in paternal or maternal imprints, which lead to genomic imprinting. Whether DNA methylation reprogramming exists in insects is not known. Wasps of the genus Nasonia are non-social parasitoids that are emerging as a model for studies of epigenetic processes in insects. In this study, we quantified allele-specific expression and methylation genome-wide in Nasonia vitripennis and Nasonia giraulti and their reciprocal F1 hybrids. No parent-of-origin effect in allelic expression was found for >8,000 covered genes, suggesting a lack of genomic imprinting in adult Nasonia. As we expected, both significant cis- and trans- effects are responsible for the expression divergence between N. vitripennis and N. giraulti. Surprisingly, all 178 differentially methylated genes are also differentially methylated between the two alleles in F1 hybrid offspring, recapitulating the parental methylation status with nearly 100% fidelity, indicating the presence of strong cis-elements driving the target of gene body methylation. In addition, we discovered that total and allele-specific expression are positively correlated with allele-specific methylation in a subset of the differentially methylated genes. The 100% cis-regulation in F1 hybrids suggests the methylation machinery is conserved and DNA methylation is targeted by cis features in Nasonia. The lack of genomic imprinting and parent-of-origin differentially methylated regions in Nasonia, together with the stable inheritance of methylation status between generations, suggests either a cis-regulatory motif for methylation at the DNA level or highly stable inheritance of an epigenetic signal in Nasonia. RNA-sequencing and whole-genome bisulfite sequencing in the hybrid offspring of two Nasonia parasitoid wasp species revealed strong cis-regulation of methylation and allele-specific expression. No gene was found to display genomic imprinting. The relationship between methylation of genomic DNA and expression of the genes that it encodes—and how this relationship changes during evolution—has been widely studied in mammals, but remains less well understood for insects. Here we analyze the expressed mRNA transcripts and genomic DNA methylation of the hybrid offspring of a pair of Nasonia parasitoid wasp species, producing a wealth of information about the regulation of gene expression. We find that variation in DNA sequence impacts expression on the same strand (called “cis-regulation”), and that cytosine methylation state is also associated in cis with the regulatory consequences of this base alteration. We show that these wasp species lack differential expression dependent on parent-of-origin (called “genomic imprinting”), and that in the hybrids the alleles retain the methylation status of the parental species in a strong cis-regulated fashion. Transcript abundances were also largely driven in a cis-regulated manner, consistent with a correlation between methylation status and expression levels. Despite the many differences between Nasonia and mammals in the impact of genomic DNA methylation, in both groups the use of methylated cytosine has been co-opted in ways that help tune gene expression.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - John H. Werren
- Department of Biology, University of Rochester, Rochester, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| | - Andrew G. Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, New York, United States of America
- * E-mail: (XW); (JHW); (AGC)
| |
Collapse
|
41
|
Embryonic development and inviability phenotype of chicken-Japanese quail F1 hybrids. Sci Rep 2016; 6:26369. [PMID: 27199007 PMCID: PMC4873824 DOI: 10.1038/srep26369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/08/2016] [Indexed: 01/22/2023] Open
Abstract
Interspecific hybrid incompatibility, including inviability and sterility, is important in speciation; however, its genetic basis remains largely unknown in vertebrates. Crosses between male chickens and female Japanese quails using artificial insemination can generate intergeneric hybrids; however, the hatching rate is low, and hatched hybrids are only sterile males. Hybrid development is arrested frequently during the early embryonic stages, and the sex ratio of living embryos is male-biased. However, the development and sex ratio of hybrid embryos have not been comprehensively analyzed. In the present study, we observed delayed embryonic development of chicken-quail hybrids during the early stage, compared with that of chickens and quails. The survival rate of hybrids decreased markedly during the blastoderm-to-pre-circulation stage and then decreased gradually through the subsequent stages. Hybrid females were observed at more than 10 d of incubation; however, the sex ratio of hybrids became male-biased from 10 d of incubation. Severely malformed embryos were observed frequently in hybrids. These results suggest that developmental arrest occurs at various stages in hybrid embryos, including a sexually non-biased arrest during the early stage and a female-biased arrest during the late stage. We discuss the genetic basis for hybrid inviability and its sex bias.
Collapse
|
42
|
Allelic expression of mammalian imprinted genes in a matrotrophic lizard, Pseudemoia entrecasteauxii. Dev Genes Evol 2016; 226:79-85. [DOI: 10.1007/s00427-016-0531-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/11/2016] [Indexed: 12/20/2022]
|
43
|
The Extent of mRNA Editing Is Limited in Chicken Liver and Adipose, but Impacted by Tissular Context, Genotype, Age, and Feeding as Exemplified with a Conserved Edited Site in COG3. G3-GENES GENOMES GENETICS 2015; 6:321-35. [PMID: 26637431 PMCID: PMC4751552 DOI: 10.1534/g3.115.022251] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
RNA editing is a posttranscriptional process leading to differences between genomic DNA and transcript sequences, potentially enhancing transcriptome diversity. With recent advances in high-throughput sequencing, many efforts have been made to describe mRNA editing at the transcriptome scale, especially in mammals, yielding contradictory conclusions regarding the extent of this phenomenon. We show, by detailed description of the 25 studies focusing so far on mRNA editing at the whole-transcriptome scale, that systematic sequencing artifacts are considered in most studies whereas biological replication is often neglected and multi-alignment not properly evaluated, which ultimately impairs the legitimacy of results. We recently developed a rigorous strategy to identify mRNA editing using mRNA and genomic DNA sequencing, taking into account sequencing and mapping artifacts, and biological replicates. We applied this method to screen for mRNA editing in liver and white adipose tissue from eight chickens and confirm the small extent of mRNA recoding in this species. Among the 25 unique edited sites identified, three events were previously described in mammals, attesting that this phenomenon is conserved throughout evolution. Deeper investigations on five sites revealed the impact of tissular context, genotype, age, feeding conditions, and sex on mRNA editing levels. More specifically, this analysis highlighted that the editing level at the site located on COG3 was strongly regulated by four of these factors. By comprehensively characterizing the mRNA editing landscape in chickens, our results highlight how this phenomenon is limited and suggest regulation of editing levels by various genetic and environmental factors.
Collapse
|
44
|
Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W. A prezygotic transmission distorter acting equally in female and male zebra finchesTaeniopygia guttata. Mol Ecol 2015; 24:3846-59. [DOI: 10.1111/mec.13281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/13/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Ulrich Knief
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; Eberhard-Gwinner-Str. 82319 Seewiesen Germany
| | - Holger Schielzeth
- Department of Evolutionary Biology; Bielefeld University; Morgenbreede 45 33615 Bielefeld Germany
| | - Hans Ellegren
- Department of Evolutionary Biology; Uppsala University; Norbyvägen 18D 752 36 Uppsala Sweden
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; Eberhard-Gwinner-Str. 82319 Seewiesen Germany
| | - Wolfgang Forstmeier
- Department of Behavioural Ecology and Evolutionary Genetics; Max Planck Institute for Ornithology; Eberhard-Gwinner-Str. 82319 Seewiesen Germany
| |
Collapse
|
45
|
Schmid M, Smith J, Burt DW, Aken BL, Antin PB, Archibald AL, Ashwell C, Blackshear PJ, Boschiero C, Brown CT, Burgess SC, Cheng HH, Chow W, Coble DJ, Cooksey A, Crooijmans RPMA, Damas J, Davis RVN, de Koning DJ, Delany ME, Derrien T, Desta TT, Dunn IC, Dunn M, Ellegren H, Eöry L, Erb I, Farré M, Fasold M, Fleming D, Flicek P, Fowler KE, Frésard L, Froman DP, Garceau V, Gardner PP, Gheyas AA, Griffin DK, Groenen MAM, Haaf T, Hanotte O, Hart A, Häsler J, Hedges SB, Hertel J, Howe K, Hubbard A, Hume DA, Kaiser P, Kedra D, Kemp SJ, Klopp C, Kniel KE, Kuo R, Lagarrigue S, Lamont SJ, Larkin DM, Lawal RA, Markland SM, McCarthy F, McCormack HA, McPherson MC, Motegi A, Muljo SA, Münsterberg A, Nag R, Nanda I, Neuberger M, Nitsche A, Notredame C, Noyes H, O'Connor R, O'Hare EA, Oler AJ, Ommeh SC, Pais H, Persia M, Pitel F, Preeyanon L, Prieto Barja P, Pritchett EM, Rhoads DD, Robinson CM, Romanov MN, Rothschild M, Roux PF, Schmidt CJ, Schneider AS, Schwartz MG, Searle SM, Skinner MA, Smith CA, Stadler PF, Steeves TE, Steinlein C, Sun L, Takata M, Ulitsky I, Wang Q, Wang Y, Warren WC, Wood JMD, Wragg D, Zhou H. Third Report on Chicken Genes and Chromosomes 2015. Cytogenet Genome Res 2015; 145:78-179. [PMID: 26282327 PMCID: PMC5120589 DOI: 10.1159/000430927] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Q, Li K, Zhang D, Li J, Xu G, Zheng J, Yang N, Qu L. Next-Generation Sequencing Techniques Reveal that Genomic Imprinting Is Absent in Day-Old Gallus gallus domesticus Brains. PLoS One 2015; 10:e0132345. [PMID: 26161857 PMCID: PMC4498732 DOI: 10.1371/journal.pone.0132345] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/14/2015] [Indexed: 01/05/2023] Open
Abstract
Genomic imprinting is a phenomenon characterized by parent-of-origin-specific gene expression. While widely documented in viviparous mammals and plants, imprinting in oviparous birds remains controversial. Because genomic imprinting is temporal- and tissue-specific, we investigated this phenomenon only in the brain tissues of 1-day-old chickens (Gallus gallus). We used next-generation sequencing technology to compare four transcriptomes pooled from 11 chickens, generated from reciprocally crossed families, to the DNA sequences of their parents. Candidate imprinted genes were then selected from these sequence alignments and subjected to verification experiments that excluded all but one SNP. Subsequent experiments performed with two new sets of reciprocally crossed families resulted in the exclusion of that candidate SNP as well. Attempts to find evidence of genomic imprinting from long non-coding RNAs yielded negative results. We therefore conclude that genomic imprinting is absent in the brains of 1-day-old chickens. However, due to the temporal and tissue specificity of imprinting, our results cannot be extended to all growth stages and tissue types.
Collapse
Affiliation(s)
- Qiong Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Kaiyang Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Daixi Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Junying Li
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ning Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
47
|
Frésard L, Leroux S, Roux PF, Klopp C, Fabre S, Esquerré D, Dehais P, Djari A, Gourichon D, Lagarrigue S, Pitel F. Genome-Wide Characterization of RNA Editing in Chicken Embryos Reveals Common Features among Vertebrates. PLoS One 2015; 10:e0126776. [PMID: 26024316 PMCID: PMC4449034 DOI: 10.1371/journal.pone.0126776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
RNA editing results in a post-transcriptional nucleotide change in the RNA sequence that creates an alternative nucleotide not present in the DNA sequence. This leads to a diversification of transcription products with potential functional consequences. Two nucleotide substitutions are mainly described in animals, from adenosine to inosine (A-to-I) and from cytidine to uridine (C-to-U). This phenomenon is described in more details in mammals, notably since the availability of next generation sequencing technologies allowing whole genome screening of RNA-DNA differences. The number of studies recording RNA editing in other vertebrates like chicken is still limited. We chose to use high throughput sequencing technologies to search for RNA editing in chicken, and to extend the knowledge of its conservation among vertebrates. We performed sequencing of RNA and DNA from 8 embryos. Being aware of common pitfalls inherent to sequence analyses that lead to false positive discovery, we stringently filtered our datasets and found fewer than 40 reliable candidates. Conservation of particular sites of RNA editing was attested by the presence of 3 edited sites previously detected in mammals. We then characterized editing levels for selected candidates in several tissues and at different time points, from 4.5 days of embryonic development to adults, and observed a clear tissue-specificity and a gradual increase of editing level with time. By characterizing the RNA editing landscape in chicken, our results highlight the extent of evolutionary conservation of this phenomenon within vertebrates, attest to its tissue and stage specificity and provide support of the absence of non A-to-I events from the chicken transcriptome.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Sophie Leroux
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Pierre-François Roux
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Christophe Klopp
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Stéphane Fabre
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| | - Diane Esquerré
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, GeT-PlaGe Genotoul, Castanet-Tolosan, France
| | - Patrice Dehais
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - Anis Djari
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
- INRA, Sigenae Biométrie et Intelligence Artificielle, Castanet-Tolosan, France
| | - David Gourichon
- INRA, Pôle d'Expérimentation Avicole de Tours, Nouzilly, France
| | - Sandrine Lagarrigue
- Agrocampus Ouest, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
- INRA, Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Rennes, France
| | - Frédérique Pitel
- INRA, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENSAT, Génétique, Physiologie et Systèmes d’Elevage, Castanet-Tolosan, France
- Université de Toulouse, INP, ENVT, Génétique, Physiologie et Systèmes d’Elevage, Toulouse, France
| |
Collapse
|
48
|
Meslin C, Desert C, Callebaut I, Djari A, Klopp C, Pitel F, Leroux S, Martin P, Froment P, Guilbert E, Gondret F, Lagarrigue S, Monget P. Expanding Duplication of Free Fatty Acid Receptor-2 (GPR43) Genes in the Chicken Genome. Genome Biol Evol 2015; 7:1332-48. [PMID: 25912043 PMCID: PMC4453067 DOI: 10.1093/gbe/evv072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Free fatty acid receptors (FFAR) belong to a family of five G-protein coupled receptors that are involved in the regulation of lipid metabolism, so that their loss of function increases the risk of obesity. The aim of this study was to determine the expansion of genes encoding paralogs of FFAR2 in the chicken, considered as a model organism for developmental biology and biomedical research. By estimating the gene copy number using quantitative polymerase chain reaction, genomic DNA resequencing, and RNA sequencing data, we showed the existence of 23 ± 1.5 genes encoding FFAR2 paralogs in the chicken genome. The FFAR2 paralogs shared an identity from 87.2% up to 99%. Extensive gene conversion was responsible for this high degree of sequence similarities between these genes, and this concerned especially the four amino acids known to be critical for ligand binding. Moreover, elevated nonsynonymous/synonymous substitution ratios on some amino acids within or in close-vicinity of the ligand-binding groove suggest that positive selection may have reduced the effective rate of gene conversion in this region, thus contributing to diversify the function of some FFAR2 paralogs. All the FFAR2 paralogs were located on a microchromosome in a same linkage group. FFAR2 genes were expressed in different tissues and cells such as spleen, peripheral blood mononuclear cells, abdominal adipose tissue, intestine, and lung, with the highest rate of expression in testis. Further investigations are needed to determine whether these chicken-specific events along evolution are the consequence of domestication and may play a role in regulating lipid metabolism in this species.
Collapse
Affiliation(s)
- Camille Meslin
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Colette Desert
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Isabelle Callebaut
- IMPMC, UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, Sorbonne Universités-UPMC Université Paris 06, France
| | - Anis Djari
- INRA, BIA, CS 52627, Castanet-Tolosan, France
| | | | - Frédérique Pitel
- UMR INRA/INPT ENSAT/INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'élevage, INRA, Castanet Tolosan, France
| | - Sophie Leroux
- UMR INRA/INPT ENSAT/INPT ENVT, UMR1388 Génétique, Physiologie et Systèmes d'élevage, INRA, Castanet Tolosan, France
| | - Pascal Martin
- INRA, UR 0066 Pharmacologie-Toxicologie, Toulouse, France
| | - Pascal Froment
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Edith Guilbert
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Florence Gondret
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Sandrine Lagarrigue
- INRA, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'élevage, Saint-Gilles, France Agrocampus-Ouest, UMR1348, Rennes, France
| | - Philippe Monget
- UMR85 Physiologie de la Reproduction et des Comportements, INRA, Nouzilly, France UMR7247, CNRS, Nouzilly, France Université François Rabelais de Tours, France Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
49
|
Acquired alterations of hypothalamic gene expression of insulin and leptin receptors and glucose transporters in prenatally high-glucose exposed three-week old chickens do not coincide with aberrant promoter DNA methylation. PLoS One 2015; 10:e0119213. [PMID: 25811618 PMCID: PMC4374847 DOI: 10.1371/journal.pone.0119213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/20/2015] [Indexed: 12/03/2022] Open
Abstract
Background Prenatal exposures may have a distinct impact for long-term health, one example being exposure to maternal ‘diabesity’ during pregnancy increasing offspring ‘diabesity’ risk. Malprogramming of the central nervous regulation of body weight, food intake and metabolism has been identified as a critical mechanism. While concrete disrupting factors still remain unclear, growing focus on acquired epigenomic alterations have been proposed. Due to the independent development from the mother, the chicken embryo provides a valuable model to distinctively establish causal factors and mechanisms. Aim The aim of this study was to determine the effects of prenatal hyperglycemia on postnatal hypothalamic gene expression and promoter DNA methylation in the chicken. Methods and Findings To temporarily induce high-glucose exposure in chicken embryos, 0.5 ml glucose solution (30 mmol/l) were administered daily via catheter into a vessel of the chorioallantoic egg membrane from days 14 to 17 of incubation. At three weeks of postnatal age, body weight, total body fat, blood glucose, mRNA expression (INSR, LEPR, GLUT1, GLUT3) as well as corresponding promoter DNA methylation were determined in mediobasal hypothalamic brain slices (Nucleus infundibuli hypothalami). Although no significant changes in morphometric and metabolic parameters were detected, strongly decreased mRNA expression occurred in all candidate genes. Surprisingly, however, no relevant alterations were observed in respective promoter methylation. Conclusion Prenatal hyperglycemia induces strong changes in later hypothalamic expression of INSR, LEPR, GLUT1, and GLUT3 mRNA. While the chicken provides an interesting approach for developmental malprogramming, the classical expression regulation via promoter methylation was not observed here. This may be due to alternative/interacting brain mechanisms or the thus far under-explored bird epigenome.
Collapse
|
50
|
Genome-wide identification of allele-specific expression in response to Streptococcus suis 2 infection in two differentially susceptible pig breeds. J Appl Genet 2015; 56:481-491. [PMID: 25737137 DOI: 10.1007/s13353-015-0275-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 01/15/2015] [Accepted: 02/10/2015] [Indexed: 12/18/2022]
Abstract
Although allele expression imbalance has been recognized in many species, and strongly linked to diseases, no whole transcriptome allele imbalance has been detected in pigs during pathogen infections. The pathogen Streptococcus suis 2 (SS2) causes serious zoonotic disease. Different pig breeds show differential susceptibility/resistance to pathogen infection, but the biological insight is little known. Here we analyzed allele-specific expression (ASE) using the spleen transcriptome of four pigs belonging to two phenotypically different breeds after SS2 infection. The comparative analysis of allele specific SNPs between control and infected animals revealed 882 and 1096 statistically significant differentially expressed allele SNPs (criteria: ratio ≧ 2 or ≦ 0.5) in Landrace and Enshi black pig, respectively. Twenty nine allelically imbalanced SNPs were further verified by Sanger sequencing, and later six SNPs were quantified by pyrosequencing assay. The pyrosequencing results are in agreement with the RNA-seq results, except two SNPs. Looking at the role of ASE in predisposition to diseases, the discovery of causative variants by ASE analysis might help the pig industry in long term to design breeding programs for improving SS2 resistance.
Collapse
|