1
|
Diener C, Keller A, Meese E. The miRNA-target interactions: An underestimated intricacy. Nucleic Acids Res 2024; 52:1544-1557. [PMID: 38033323 PMCID: PMC10899768 DOI: 10.1093/nar/gkad1142] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/23/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023] Open
Abstract
MicroRNAs (miRNAs) play indispensable roles in posttranscriptional gene regulation. Their cellular regulatory impact is determined not solely by their sheer number, which likely amounts to >2000 individual miRNAs in human, than by the regulatory effectiveness of single miRNAs. Although, one begins to develop an understanding of the complex mechanisms underlying miRNA-target interactions (MTIs), the overall knowledge of MTI functionality is still rather patchy. In this critical review, we summarize key features of mammalian MTIs. We especially highlight latest insights on (i) the dynamic make-up of miRNA binding sites including non-canonical binding sites, (ii) the cooperativity between miRNA binding sites, (iii) the adaptivity of MTIs through sequence modifications, (iv) the bearing of intra-cellular miRNA localization changes and (v) the role of cell type and cell status specific miRNA interaction partners. The MTI biology is discussed against the background of state-of-the-art approaches with particular emphasis on experimental strategies for evaluating miRNA functionality.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, 66123 Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)–Helmholtz Centre for Infection Research (HZI), Saarland University Campus, 66123 Saarbrücken, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, 66421 Homburg, Germany
| |
Collapse
|
2
|
Rani P, George B, V S, Biswas S, V M, Pal A, Rajmani RS, Das S. MicroRNA-22-3p displaces critical host factors from the 5' UTR and inhibits the translation of Coxsackievirus B3 RNA. J Virol 2024; 98:e0150423. [PMID: 38289119 PMCID: PMC10883805 DOI: 10.1128/jvi.01504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.
Collapse
Affiliation(s)
- Priya Rani
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Biju George
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sabarishree V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Somarghya Biswas
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Madhurya V
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Apala Pal
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- National Institute of Biomedical Genomics, Kalyani, India
| |
Collapse
|
3
|
Müller T, Mautner S, Videm P, Eggenhofer F, Raden M, Backofen R. CheRRI-Accurate classification of the biological relevance of putative RNA-RNA interaction sites. Gigascience 2024; 13:giae022. [PMID: 38837942 PMCID: PMC11152173 DOI: 10.1093/gigascience/giae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/04/2024] [Accepted: 04/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND RNA-RNA interactions are key to a wide range of cellular functions. The detection of potential interactions helps to understand the underlying processes. However, potential interactions identified via in silico or experimental high-throughput methods can lack precision because of a high false-positive rate. RESULTS We present CheRRI, the first tool to evaluate the biological relevance of putative RNA-RNA interaction sites. CheRRI filters candidates via a machine learning-based model trained on experimental RNA-RNA interactome data. Its unique setup combines interactome data and an established thermodynamic prediction tool to integrate experimental data with state-of-the-art computational models. Applying these data to an automated machine learning approach provides the opportunity to not only filter data for potential false positives but also tailor the underlying interaction site model to specific needs. CONCLUSIONS CheRRI is a stand-alone postprocessing tool to filter either predicted or experimentally identified potential RNA-RNA interactions on a genomic level to enhance the quality of interaction candidates. It is easy to install (via conda, pip packages), use (via Galaxy), and integrate into existing RNA-RNA interaction pipelines.
Collapse
Affiliation(s)
- Teresa Müller
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Stefan Mautner
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Pavankumar Videm
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
- Signalling Research Centre CIBSS, University of Freiburg, Schaenzlestr. 18, 79104 Freiburg, Germany
| |
Collapse
|
4
|
Toledo-Stuardo K, Ribeiro CH, Campos I, Tello S, Latorre Y, Altamirano C, Dubois-Camacho K, Molina MC. Impact of MICA 3'UTR allelic variability on miRNA binding prediction, a bioinformatic approach. Front Genet 2023; 14:1273296. [PMID: 38146340 PMCID: PMC10749337 DOI: 10.3389/fgene.2023.1273296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/13/2023] [Indexed: 12/27/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that participate as powerful genetic regulators. MiRNAs can interfere with cellular processes by interacting with a broad spectrum of target genes under physiological and pathological states, including cancer development and progression. Major histocompatibility complex major histocompatibility complex class I-related chain A (MICA) belongs to a family of proteins that bind the natural-killer group 2, member D (NKG2D) receptor on Natural Killer cells and other cytotoxic lymphocytes. MICA plays a crucial role in the host's innate immune response to several disease settings, including cancer. MICA harbors various single nucleotide polymorphisms (SNPs) located in its 3'-untranslated region (3'UTR), a characteristic that increases the complexity of MICA regulation, favoring its post-transcriptional modulation by miRNAs under physiological and pathological conditions. Here, we conducted an in-depth analysis of MICA 3'UTR sequences according to each MICA allele described to date using NCBI database. We also systematically evaluated interactions between miRNAs and their putative targets on MICA 3'UTR containing SNPs using in silico analysis. Our in silico results showed that MICA SNPs rs9266829, rs 1880, and rs9266825, located in the target sequence of miRNAs hsa-miR-106a-5p, hsa-miR-17-5p, hsa-miR-20a-5p, hsa-miR-20b-5p, hsa-miR-93, hsa-miR-1207.5p, and hsa-miR-711 could modify the binding free energy between -8.62 and -18.14 kcal/mol, which may affect the regulation of MICA expression. We believe that our results may provide a starting point for further exploration of miRNA regulatory effects depending on MICA allelic variability; they may also be a guide to conduct miRNA in silico analysis for other highly polymorphic genes.
Collapse
Affiliation(s)
- Karen Toledo-Stuardo
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Carolina H. Ribeiro
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Ivo Campos
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Yesenia Latorre
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Claudia Altamirano
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karen Dubois-Camacho
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Faculty of Medicine, Clinical and Molecular Pharmacology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Gastroenterology and Hepatology Department, University Medical Center Groningen, Groningen, Netherlands
| | - Maria Carmen Molina
- Faculty of Medicine, Immunology Program, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| |
Collapse
|
5
|
Kołat D, Kałuzińska-Kołat Ż, Kośla K, Orzechowska M, Płuciennik E, Bednarek AK. LINC01137/miR-186-5p/WWOX: a novel axis identified from WWOX-related RNA interactome in bladder cancer. Front Genet 2023; 14:1214968. [PMID: 37519886 PMCID: PMC10373930 DOI: 10.3389/fgene.2023.1214968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction: The discovery of non-coding RNA (ncRNA) dates back to the pre-genomics era, but the progress in this field is still dynamic and leverages current post-genomics solutions. WWOX is a global gene expression modulator that is scarcely investigated for its role in regulating cancer-related ncRNAs. In bladder cancer (BLCA), the link between WWOX and ncRNA remains unexplored. The description of AP-2α and AP-2γ transcription factors, known as WWOX-interacting proteins, is more commonplace regarding ncRNA but still merits investigation. Therefore, this in vitro and in silico study aimed to construct an ncRNA-containing network with WWOX/AP-2 and to investigate the most relevant observation in the context of BLCA cell lines and patients. Methods: RT-112, HT-1376, and CAL-29 cell lines were subjected to two stable lentiviral transductions. High-throughput sequencing of cellular variants (deposited in the Gene Expression Omnibus database under the GSE193659 record) enabled the investigation of WWOX/AP-2-dependent differences using various bioinformatics tools (e.g., limma-voom, FactoMineR, multiple Support Vector Machine Recursive Feature Elimination (mSVM-RFE), miRDB, Arena-Idb, ncFANs, RNAhybrid, TargetScan, Protein Annotation Through Evolutionary Relationships (PANTHER), Gene Transcription Regulation Database (GTRD), or Evaluate Cutpoints) and repositories such as The Cancer Genome Atlas (TCGA) and Cancer Cell Line Encyclopedia. The most relevant observations from cap analysis gene expression sequencing (CAGE-seq) were confirmed using real-time PCR, whereas TCGA data were validated using the GSE31684 cohort. Results: The first stage of the whole study justified focusing solely on WWOX rather than on WWOX combined with AP-2α/γ. The most relevant observation of the developed ncRNA-containing network was LINC01137, i.e., long non-coding RNAs (lncRNAs) that unraveled the core network containing UPF1, ZC3H12A, LINC01137, WWOX, and miR-186-5p, the last three being a novel lncRNA/miRNA/mRNA axis. Patients' data confirmed the LINC01137/miR-186-5p/WWOX relationship and provided a set of dependent genes (i.e., KRT18, HES1, VCP, FTH1, IFITM3, RAB34, and CLU). Together with the core network, the gene set was subjected to survival analysis for both TCGA-BLCA and GSE31684 patients, which indicated that the increased expression of WWOX or LINC01137 is favorable, similar to their combination with each other (WWOX↑ and LINC01137↑) or with MIR186 (WWOX↑/LINC01137↑ but MIR186↓). Conclusion: WWOX is implicated in the positive feedback loop with LINC01137 that sponges WWOX-targeting miR-186-5p. This novel WWOX-containing lncRNA/miRNA/mRNA axis should be further investigated to depict its relationships in a broader context, which could contribute to BLCA research and treatment.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | | | | | - Andrzej K. Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Rafiq M, Dandare A, Javed A, Liaquat A, Raja AA, Awan HM, Khan MJ, Naeem A. Competing Endogenous RNA Regulatory Networks of hsa_circ_0126672 in Pathophysiology of Coronary Heart Disease. Genes (Basel) 2023; 14:550. [PMID: 36980823 PMCID: PMC10047999 DOI: 10.3390/genes14030550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Coronary heart disease (CHD) is a global health concern, and its molecular origin is not fully elucidated. Dysregulation of ncRNAs has been linked to many metabolic and infectious diseases. This study aimed to explore the role of circRNAs in the pathogenesis of CHD and predicted a candidate circRNA that could be targeted for therapeutic approaches to the disease. circRNAs associated with CHD were identified and CHD gene expression profiles were obtained, and analyzed with GEO2R. In addition, differentially expressed miRNA target genes (miR-DEGs) were identified and subjected to functional enrichment analysis. Networks of circRNA/miRNA/mRNA and the miRNA/affected pathways were constructed. Furthermore, a miRNA/mRNA homology study was performed. We identified that hsa_circ_0126672 was strongly associated with the CHD pathology by competing for endogenous RNA (ceRNA) mechanisms. hsa_circ_0126672 characteristically sponges miR-145-5p, miR-186-5p, miR-548c-3p, miR-7-5p, miR-495-3p, miR-203a-3p, and miR-21. Up-regulation of has_circ_0126672 affected various CHD-related cellular functions, such as atherosclerosis, JAK/STAT, and Apelin signaling pathways. Our results also revealed a perfect and stable interaction for the hybrid of miR-145-5p with NOS1 and RPS6KB1. Finally, miR-145-5p had the highest degree of interaction with the validated small molecules. Henchashsa_circ_0126672 and target miRNAs, notably miR-145-5p, could be good candidates for the diagnosis and therapeutic approaches to CHD.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Abdullahi Dandare
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Usmanu Danfodiyo University Sokoto, Sokoto P.M.B 2346, Nigeria
| | - Arham Javed
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afrose Liaquat
- Department of Biochemistry, Shifa College of Medicine, Shifa Tameer-e-Millat University, Islamabad 45550, Pakistan
| | - Afraz Ahmad Raja
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Hassaan Mehboob Awan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad 45550, Pakistan
| | - Aisha Naeem
- Health Research Governance Department, Ministry of Public Health, Doha P.O. Box 42, Qatar
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
7
|
Machado HC, Bispo S, Dallagiovanna B. miR-6087 Might Regulate Cell Cycle–Related mRNAs During Cardiomyogenesis of hESCs. Bioinform Biol Insights 2023; 17:11779322231161918. [PMID: 37020502 PMCID: PMC10069004 DOI: 10.1177/11779322231161918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/16/2023] [Indexed: 04/03/2023] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that act as negative regulators of gene expression at the post-transcriptional level, promoting mRNA degradation or translation repression. Despite the well-described presence of miRNAs in various human tissues, there is still a lack of information about the relationship between miRNAs and the translation regulation in human embryonic stem cells (hESCs) during cardiomyogenesis. Here, we investigate RNA-seq data from hESCs, focusing on distinct stages of cardiomyogenesis and searching for polysome-bound miRNAs that could be involved in translational regulation. We identify miR-6087 as a differentially expressed miRNA at latest steps of cardiomyocyte differentiation. We analyzed the coexpression pattern between the differentially expressed mRNAs and miR-6087, evaluating whether they are predicted targets of the miRNA. We arranged the genes into an interaction network and identified BLM, RFC4, RFC3, and CCNA2 as key genes of the network. A post hoc analysis of the key genes suggests that miR-6087 could act as a regulator of the cell cycle in hESC during cardiomyogenesis.
Collapse
Affiliation(s)
- Hellen Cristine Machado
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
| | - Saloe Bispo
- Laboratory of Molecular and Systems
Biology of Trypanosomatids, Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba,
Brazil
| | - Bruno Dallagiovanna
- Laboratory of Basic Stem-Cell Biology,
Instituto Carlos Chagas – FIOCRUZ-PR, Curitiba, Brazil
- Bruno Dallagiovanna, Laboratory of Basic
Stem-Cell Biology, Instituto Carlos Chagas – FIOCRUZ-PR, Rua Professor Algacyr
Munhoz Mader, 3775, Curitiba 81350-010, Brazil.
| |
Collapse
|
8
|
Di R, Zhang R, Mwacharo JM, Wang X, He X, Liu Y, Zhang J, Gong Y, Zhang X, Chu M. Characteristics of piRNAs and their comparative profiling in testes of sheep with different fertility. Front Genet 2022; 13:1078049. [PMID: 36568364 PMCID: PMC9768229 DOI: 10.3389/fgene.2022.1078049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
As a novel class of small RNAs, piRNAs are highly expressed in the animal gonads and their main known role is to inhibit transposon activity for ensuring the correctness and integrity of genome. In order to explore the characteristics of piRNAs in sheep testis and their possible regulatory roles on male reproduction, deep sequencing technology was used to sequence small RNAs and identify piRNAs in testes of sheep. The length of piRNAs in sheep testes showed a unimodal distribution between 26 and 31 nt, with a peak at 29 nt. These piRNAs exhibited obvious ping-pong signature and strand specificity. In the genome, they were mainly aligned to CDS, intron, repetitive sequence regions and unannotated regions. Furthermore, in transposon analysis, piRNAs were aligned predominantly to LINE, SINE, and LTR types of retrotransposon in sheep testes, and the piRNAs derived from each type showed obvious ping-pong signature. The piRNA clusters identified in sheep testes were mainly distributed on chromosomes 3, 7, 15, 17, 18 and 20. The results combining semen determination with pathway enrichment analysis implied that differentially expressed piRNAs between the testes of rams with different fertility might participate in spermatogenesis by regulating multiple pathways closely related to stabilization of blood-testis barrier and renewal and differentiation of spermatogonial stem cell. Taken together, the study provided new insights into the characteristics, origin and expression patterns of piRNAs in sheep testes tissue, which would help us better understand the role of piRNAs in sheep reproduction.
Collapse
Affiliation(s)
- Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,School of Advanced Agricultural Sciences, Yiyang Vocational & Technical College, Yiyang, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia,Institute of Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinlong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Yiming Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaosheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Tianjin Academy of Agricultural Sciences, Tianjin, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Xiaosheng Zhang, ; Mingxing Chu,
| |
Collapse
|
9
|
Hu DG, Mackenzie PI, Hulin JA, McKinnon RA, Meech R. Regulation of human UDP-glycosyltransferase ( UGT) genes by miRNAs. Drug Metab Rev 2022; 54:120-140. [PMID: 35275773 DOI: 10.1080/03602532.2022.2048846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The human UGT gene superfamily is divided into four subfamilies (UGT1, UGT2, UGT3 and UGT8) that encodes 22 functional enzymes. UGTs are critical for the metabolism and clearance of numerous endogenous and exogenous compounds, including steroid hormones, bile acids, bilirubin, fatty acids, carcinogens, and therapeutic drugs. Therefore, the expression and activities of UGTs are tightly regulated by multiple processes at the transcriptional, post-transcriptional and post-translational levels. During recent years, nearly twenty studies have investigated the post-transcriptional regulation of UGT genes by miRNAs using human cancer cell lines (predominantly liver cancer). Overall, 14 of the 22 UGT mRNAs (1A1, 1A3, 1A4, 1A6, 1A8, 1A9, 1A10, 2A1, 2B4, 2B7, 2B10, 2B15, 2B17, UGT8) have been shown to be regulated by various miRNAs through binding to their respective 3' untranslated regions (3'UTRs). Three 3'UTRs (UGT1A, UGT2B7 and UGT2B15) contain the largest number of functional miRNA target sites; in particular, the UGT1A 3'UTR contains binding sites for 12 miRNAs (548d-5p, 183-5p, 214-5p, 486-3p, 200a-3p, 491-3p, 141-3p, 298, 103b, 376b-3p, 21-3p, 1286). Although all nine UGT1A family members have the same 3'UTR, these miRNA target sites appear to be functional in an isoform-specific and cellular context-dependent manner. Collectively, these observations demonstrate that miRNAs represent important post-transcriptional regulators of the UGT gene superfamily. In this article, we present a comprehensive review of reported UGT/miRNA regulation studies, describe polymorphisms within functional miRNA target sites that may affect their functionalities, and discuss potential cooperative and competitive regulation of UGT mRNAs by miRNAs through adjacently located miRNA target sites.
Collapse
Affiliation(s)
- Dong Gui Hu
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Peter I Mackenzie
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Julie-Ann Hulin
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Ross A McKinnon
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| | - Robyn Meech
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Bedford Park, Australia
| |
Collapse
|
10
|
Kanoria S, Rennie WA, Carmack CS, Lu J, Ding Y. N 6-methyladenosine enhances post-transcriptional gene regulation by microRNAs. BIOINFORMATICS ADVANCES 2022; 2:vbab046. [PMID: 35098135 PMCID: PMC8792947 DOI: 10.1093/bioadv/vbab046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/09/2021] [Indexed: 01/27/2023]
Abstract
MOTIVATION N 6-methyladenosine (m6A) is the most prevalent modification in eukaryotic messenger RNAs. MicroRNAs (miRNAs) are abundant post-transcriptional regulators of gene expression. Correlation between m6A and miRNA-targeting sites has been reported to suggest possible involvement of m6A in miRNA-mediated gene regulation. However, it is unknown what the regulatory effects might be. In this study, we performed comprehensive analyses of high-throughput data on m6A and miRNA target binding and regulation. RESULTS We found that the level of miRNA-mediated target suppression is significantly enhanced when m6A is present on target mRNAs. The evolutionary conservation for miRNA-binding sites with m6A modification is significantly higher than that for miRNA-binding sites without modification. These findings suggest functional significance of m6A modification in post-transcriptional gene regulation by miRNAs. We also found that methylated targets have more stable structure than non-methylated targets, as indicated by significantly higher GC content. Furthermore, miRNA-binding sites that can be potentially methylated are significantly less accessible without methylation than those that do not possess potential methylation sites. Since either RNA-binding proteins or m6A modification by itself can destabilize RNA structure, we propose a model in which m6A alters local target secondary structure to increase accessibility for efficient binding by Argonaute proteins, leading to enhanced miRNA-mediated regulation. AVAILABILITY AND IMPLEMENTATION N/A.
Collapse
Affiliation(s)
- Shaveta Kanoria
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY 12208, USA
| | - William A Rennie
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY 12208, USA
| | - Charles Steven Carmack
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY 12208, USA
| | - Jun Lu
- Department of Genetics and Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA,To whom correspondence should be addressed. or
| | - Ye Ding
- Wadsworth Center, New York State Department of Health, Center for Medical Science, Albany, NY 12208, USA,To whom correspondence should be addressed. or
| |
Collapse
|
11
|
Singh G, Mallick B. Predicting sequence and structural features of effective piRNA target binding sites. J Mol Recognit 2022; 35:e2949. [PMID: 34979054 DOI: 10.1002/jmr.2949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 11/09/2022]
Abstract
Piwi-interacting RNA (piRNA) targets are usually identified through base pairing between the piRNA seed region and complementary bases on the target mRNAs, which often results in false predictions. Crosslinking immunoprecipitation (CLIP) study emerges as a promising method that enables accurate identification of PIWI-clade-based targets containing RNA-binding sites. In the present study, we have analyzed the piRNA-target CLIP-seq datasets to uncover the additional characteristic features of piRNA targets. We studied important sequence and structural features using IP+ and IP- set targets that might enhance the accuracy of target site predictions. Analysis has revealed substantial enrichment of AU in target sites as well as in and around the 30 nts upstream and downstream of target sites in IP+ set relative to IP- set that might be contributing to lowering the minimal folding energy of target sites of IP+ + set that might be easing the base pairing between piRNA and their targets. We have also found a lower MFE threshold (en) and higher miRanda score for piRNA targets. Interestingly, we have found that majority of the target sites are residing within 3'UTR, suggesting 3'UTR as a preferential target site like that of miRNA targets. Thus, we hypothesize that our findings on additional key features of piRNA target sites might be valuable in identifying the potential targets of piRNA accurately, which will aid in decrypting their functional importance. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Garima Singh
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab., Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, India
| |
Collapse
|
12
|
Vornholt E, Drake J, Mamdani M, McMichael G, Taylor ZN, Bacanu S, Miles MF, Vladimirov VI. Identifying a novel biological mechanism for alcohol addiction associated with circRNA networks acting as potential miRNA sponges. Addict Biol 2021; 26:e13071. [PMID: 34164896 PMCID: PMC8590811 DOI: 10.1111/adb.13071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/21/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022]
Abstract
Our lab and others have shown that chronic alcohol use leads to gene and miRNA expression changes across the mesocorticolimbic (MCL) system. Circular RNAs (circRNAs) are noncoding RNAs that form closed-loop structures and are reported to alter gene expression through miRNA sequestration, thus providing a potentially novel neurobiological mechanism for the development of alcohol dependence (AD). Genome-wide expression of circRNA was assessed in the nucleus accumbens (NAc) from 32 AD-matched cases/controls. Significant circRNAs (unadj. p ≤ 0.05) were identified via regression and clustered in circRNA networks via weighted gene co-expression network analysis (WGCNA). CircRNA interactions with previously generated mRNA and miRNA were detected via correlation and bioinformatic analyses. Significant circRNAs (N = 542) clustered in nine significant AD modules (FWER p ≤ 0.05), within which we identified 137 circRNA hubs. We detected 23 significant circRNA-miRNA-mRNA interactions (FDR ≤ 0.10). Among these, circRNA-406742 and miR-1200 significantly interact with the highest number of mRNA, including genes associated with neuronal functioning and alcohol addiction (HRAS, PRKCB, HOMER1, and PCLO). Finally, we integrate genotypic information that revealed 96 significant circRNA expression quantitative trait loci (eQTLs) (unadj. p ≤ 0.002) that showed significant enrichment within recent alcohol use disorder (AUD) and smoking genome-wide association study (GWAS). To our knowledge, this is the first study to examine the role of circRNA in the neuropathology of AD. We show that circRNAs impact mRNA expression by interacting with miRNA in the NAc of AD subjects. More importantly, we provide indirect evidence for the clinical importance of circRNA in the development of AUD by detecting a significant enrichment of our circRNA eQTLs among GWAS of substance abuse.
Collapse
Affiliation(s)
- Eric Vornholt
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - John Drake
- Department of Psychiatry and Behavioral SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Mohammed Mamdani
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Gowon McMichael
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Zachary N. Taylor
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Silviu‐Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of PsychiatryVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Michael F. Miles
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- VCU‐Alcohol Research CenterVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Pharmacology and ToxicologyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of NeurologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Vladimir I. Vladimirov
- Virginia Institute for Psychiatric and Behavioral GeneticsVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Center for Biomarker Research and Precision MedicineVirginia Commonwealth UniversityRichmondVirginiaUSA
- Department of Physiology & BiophysicsVirginia Commonwealth UniversityRichmondVirginiaUSA
- School of PharmacyVirginia Commonwealth UniversityRichmondVirginiaUSA
- Lieber Institute for Brain DevelopmentJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
13
|
Barreda-Manso MA, Nieto-Díaz M, Soto A, Muñoz-Galdeano T, Reigada D, Maza RM. In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3'-UTR. Int J Mol Sci 2021; 22:6094. [PMID: 34198800 PMCID: PMC8201247 DOI: 10.3390/ijms22116094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 02/06/2023] Open
Abstract
COVID-19 pandemic is caused by betacoronavirus SARS-CoV-2. The genome of this virus is composed of a single strand of RNA with 5' and 3'-UTR flanking a region of protein-coding ORFs closely resembling cells' mRNAs. MicroRNAs are endogenous post-transcriptional regulators that target mRNA to modulate protein expression and mediate cellular functions, including antiviral defense. In the present study, we carried out a bioinformatics screening to search for endogenous human microRNAs targeting the 3'-UTR of SARS-CoV-2. Results from the computational techniques allowed us to identify 10 potential candidates. The capacity of 3 of them, together with hsa-miR-138-5p, to target the SARS-CoV-2 3'-UTR was validated in vitro by gene reporter assays. Available information indicates that two of these microRNAs, namely, hsa-miR-3941 and hsa-miR-138-5p, combine effective targeting of SARS-CoV-2 genome with complementary antiviral or protective effects in the host cells that make them potential candidates for therapeutic treatment of most, if not all, COVID-19 variants known to date. All information obtained while conducting the present analysis is available at Open Science Framework repository.
Collapse
Affiliation(s)
| | - Manuel Nieto-Díaz
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| | | | | | | | - Rodrigo M. Maza
- Molecular Neuroprotection Group, Research Unit, National Hospital for Paraplegics (SESCAM), 45071 Toledo, Spain; (M.A.B.-M.); (A.S.); (T.M.-G.); (D.R.)
| |
Collapse
|
14
|
Ben Or G, Veksler-Lublinsky I. Comprehensive machine-learning-based analysis of microRNA-target interactions reveals variable transferability of interaction rules across species. BMC Bioinformatics 2021; 22:264. [PMID: 34030625 PMCID: PMC8146624 DOI: 10.1186/s12859-021-04164-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression post-transcriptionally via base-pairing with complementary sequences on messenger RNAs (mRNAs). Due to the technical challenges involved in the application of high-throughput experimental methods, datasets of direct bona fide miRNA targets exist only for a few model organisms. Machine learning (ML)-based target prediction models were successfully trained and tested on some of these datasets. There is a need to further apply the trained models to organisms in which experimental training data are unavailable. However, it is largely unknown how the features of miRNA-target interactions evolve and whether some features have remained fixed during evolution, raising questions regarding the general, cross-species applicability of currently available ML methods. RESULTS We examined the evolution of miRNA-target interaction rules and used data science and ML approaches to investigate whether these rules are transferable between species. We analyzed eight datasets of direct miRNA-target interactions in four species (human, mouse, worm, cattle). Using ML classifiers, we achieved high accuracy for intra-dataset classification and found that the most influential features of all datasets overlap significantly. To explore the relationships between datasets, we measured the divergence of their miRNA seed sequences and evaluated the performance of cross-dataset classification. We found that both measures coincide with the evolutionary distance between the compared species. CONCLUSIONS The transferability of miRNA-targeting rules between species depends on several factors, the most associated factors being the composition of seed families and evolutionary distance. Furthermore, our feature-importance results suggest that some miRNA-target features have evolved while others remained fixed during the evolution of the species. Our findings lay the foundation for the future development of target prediction tools that could be applied to "non-model" organisms for which minimal experimental data are available. AVAILABILITY AND IMPLEMENTATION The code is freely available at https://github.com/gbenor/TPVOD .
Collapse
Affiliation(s)
- Gilad Ben Or
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Isana Veksler-Lublinsky
- Department of Software and Information Systems Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
15
|
Souza PVDC, Guimaraes AJ, Araujo VS, Lughofer E. An intelligent Bayesian hybrid approach to help autism diagnosis. Soft comput 2021; 25:9163-9183. [PMID: 34720705 PMCID: PMC8550741 DOI: 10.1007/s00500-021-05877-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2021] [Indexed: 11/27/2022]
Abstract
This paper proposes a Bayesian hybrid approach based on neural networks and fuzzy systems to construct fuzzy rules to assist experts in detecting features and relations regarding the presence of autism in human beings. The model proposed in this paper works with a database generated through mobile devices that deals with diagnoses of autistic characteristics in human beings who answer a series of questions in a mobile application. The Bayesian model works with the construction of Gaussian fuzzy neurons in the first and logical neurons in the second layer of the model to form a fuzzy inference system connected to an artificial neural network that activates a robust output neuron. The new fuzzy neural network model was compared with traditional state-of-the-art machine learning models based on high-dimensional based on real-world data sets comprising the autism occurrence in children, adults, and adolescents. The results (97.73- Children/94.32-Adolescent/97.28-Adult) demonstrate the efficiency of our new method in determining children, adolescents, and adults with autistic traits (being among the top performers among all ML models tested), can generate knowledge about the dataset through fuzzy rules.
Collapse
Affiliation(s)
| | | | | | - Edwin Lughofer
- Department of Knowledge Based Mathematical Systems, Johannes Kepler University, Linz, Austria
| |
Collapse
|
16
|
Zolboot N, Du JX, Zampa F, Lippi G. MicroRNAs Instruct and Maintain Cell Type Diversity in the Nervous System. Front Mol Neurosci 2021; 14:646072. [PMID: 33994943 PMCID: PMC8116551 DOI: 10.3389/fnmol.2021.646072] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Characterizing the diverse cell types that make up the nervous system is essential for understanding how the nervous system is structured and ultimately how it functions. The astonishing range of cellular diversity found in the nervous system emerges from a small pool of neural progenitor cells. These progenitors and their neuronal progeny proceed through sequential gene expression programs to produce different cell lineages and acquire distinct cell fates. These gene expression programs must be tightly regulated in order for the cells to achieve and maintain the proper differentiated state, remain functional throughout life, and avoid cell death. Disruption of developmental programs is associated with a wide range of abnormalities in brain structure and function, further indicating that elucidating their contribution to cellular diversity will be key to understanding brain health. A growing body of evidence suggests that tight regulation of developmental genes requires post-transcriptional regulation of the transcriptome by microRNAs (miRNAs). miRNAs are small non-coding RNAs that function by binding to mRNA targets containing complementary sequences and repressing their translation into protein, thereby providing a layer of precise spatial and temporal control over gene expression. Moreover, the expression profiles and targets of miRNAs show great specificity for distinct cell types, brain regions and developmental stages, suggesting that they are an important parameter of cell type identity. Here, we provide an overview of miRNAs that are critically involved in establishing neural cell identities, focusing on how miRNA-mediated regulation of gene expression modulates neural progenitor expansion, cell fate determination, cell migration, neuronal and glial subtype specification, and finally cell maintenance and survival.
Collapse
Affiliation(s)
- Norjin Zolboot
- The Scripps Research Institute, La Jolla, CA, United States
| | - Jessica X. Du
- The Scripps Research Institute, La Jolla, CA, United States
- Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Federico Zampa
- The Scripps Research Institute, La Jolla, CA, United States
| | - Giordano Lippi
- The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
17
|
In silico analysis of non-coding RNAs and putative target genes implicated in metabolic syndrome. Comput Biol Med 2021; 130:104229. [PMID: 33516961 DOI: 10.1016/j.compbiomed.2021.104229] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Regulation of gene expression is vital to maintain normal cellular functions and its dysregulation leads to molecular pathogenesis of many diseases and disorders. Non-coding RNAs regulate the expression of approximately 60% of protein-coding genes and their malfunction contribute to the development of numerous diseases. The involvement of variant forms of circulating non-coding RNAs in diseases has been established. However, their function as biomarkers or therapeutic targets in metabolic disorders are underexploited. The aim of this study was to predict therapeutic targets and construction of biomarker panel for early detection of metabolic syndrome (MS). Non-coding RNAs including circular RNAs (circRNAs), long chain non-coding RNAs (lncRNA) and micro RNAs (miRNAs) were extracted from intensive literature search and experimentally supported databases. Raw data of gene expression profiles of MS were obtained from the GEO dataset and analyzed to get differentially expressed genes (DEGs). Functional enrichment analysis, network illustration of non-coding RNAs and predicted target DEGs were performed. Furthermore, a few numbers of miRNAs targeted DEGs were subjected to homology study. The strong association of hsa-miR-548c-3p, hsa-miR-579-3p, hsa-miR-17-5p and hsa-miR-320a was observed with the pathogenesis of MS. It includes the regulation of genes in glucose and lipid homeostasis, MAPKK activity, regulation of inflammatory responses and many signaling pathways such as insulin resistance, JAK/STAT and mTOR. Finally, interactions of hsa-miR-17-5p:STAT3, hsa-miR-320:JAK2, hsa-miR-320:S6K and hsa-let-7:DVL hybrids were predicted. Results of this study suggest the designing of a biomarker panel to detect early onset and molecular approach for the management of MS.
Collapse
|
18
|
Bertolazzi G, Benos PV, Tumminello M, Coronnello C. An improvement of ComiR algorithm for microRNA target prediction by exploiting coding region sequences of mRNAs. BMC Bioinformatics 2020; 21:201. [PMID: 32938407 PMCID: PMC7493982 DOI: 10.1186/s12859-020-3519-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/29/2020] [Indexed: 02/04/2023] Open
Abstract
MicroRNA are small non-coding RNAs that post-transcriptionally regulate the expression levels of messenger RNAs. MicroRNA regulation activity depends on the recognition of binding sites located on mRNA molecules. ComiR is a web tool realized to predict the targets of a set of microRNAs, starting from their expression profile. ComiR was trained with the information regarding binding sites in the 3’utr region, by using a reliable dataset containing the targets of endogenously expressed microRNA in D. melanogaster S2 cells. This dataset was obtained by comparing the results from two different experimental approaches, i.e., inhibition, and immunoprecipitation of the AGO1 protein--a component of the microRNA induced silencing complex. In this work, we tested whether including coding region binding sites in ComiR algorithm improves the performance of the tool in predicting microRNA targets. We focused the analysis on the D. melanogaster species and updated the ComiR underlying database with the currently available releases of mRNA and microRNA sequences. As a result, we find that ComiR algorithm trained with the information related to the coding regions is more efficient in predicting the microRNA targets, with respect to the algorithm trained with 3’utr information. On the other hand, we show that 3’utr based predictions can be seen as complementary to the coding region based predictions, which suggests that both predictions, from 3’utr and coding regions, should be considered in comprehensive analysis. Furthermore, we observed that the lists of targets obtained by analyzing data from one experimental approach only, that is, inhibition or immunoprecipitation of AGO1, are not reliable enough to test the performance of our microRNA target prediction algorithm. Further analysis will be conducted to investigate the effectiveness of the tool with data from other species, provided that validated datasets, as obtained from the comparison of RISC proteins inhibition and immunoprecipitation experiments, will be available for the same samples. Finally, we propose to upgrade the existing ComiR web-tool by including the coding region based trained model, available together with the 3’utr based one.
Collapse
Affiliation(s)
- Giorgio Bertolazzi
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy.,Advanced Data Analysis Group, Fondazione Ri.MED, Palermo, Italy
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, USA
| | - Michele Tumminello
- Department of Economics, Business and Statistics, University of Palermo, Palermo, Italy
| | | |
Collapse
|
19
|
Hawkins LJ, Storey KB. MicroRNA expression in the heart of Xenopus laevis facilitates metabolic adaptation to dehydration. Genomics 2020; 112:3525-3536. [DOI: 10.1016/j.ygeno.2020.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
|
20
|
Sellars E, Gabra M, Salmena L. The Complex Landscape of PTEN mRNA Regulation. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036236. [PMID: 31871240 DOI: 10.1101/cshperspect.a036236] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a key tumor suppressor in the development and progression of different tumor types. Emerging data indicate that small reductions in PTEN protein levels can promote cancer. PTEN protein levels are tightly controlled by a plethora of mechanisms beginning with epigenetic and transcriptional regulation and ending with control of protein synthesis and stability. PTEN messenger RNA (mRNA) is also subject to exquisite regulation by microRNAs, coding and long noncoding RNAs, and RNA-binding proteins. Additionally, PTEN mRNA is markedly influenced by alternative splicing and variable polyadenylation. Herein we provide a synoptic description of the current understanding of the complex regulatory landscape of PTEN mRNA regulation including several specific processes that modulate its stability and expression, in the context of PTEN loss-associated cancers.
Collapse
Affiliation(s)
- Erin Sellars
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Martino Gabra
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
21
|
Zhou G, Holzman C, Heng YJ, Kibschull M, Lye SJ. Maternal blood EBF1-based microRNA transcripts as biomarkers for detecting risk of spontaneous preterm birth: a nested case-control study. J Matern Fetal Neonatal Med 2020; 35:1239-1247. [PMID: 32237936 DOI: 10.1080/14767058.2020.1745178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective: Both genetic variants and maternal blood mRNA levels of EBF1 gene have been linked to sPTB. Animal and human studies suggest that specific EBF1-based miRNAs are involved in various physiological and pathophysiological processes. However, to date, we did not find any reports of EBF1-based miRNAs or miRNA transcripts in relation to sPTB. We therefore aimed to examine whether maternal blood early B cell factor 1 (EBF1) gene-based microRNA (miRNA) transcripts can be used for detecting risk of spontaneous preterm birth (sPTB).Methods: We conducted a nested case-control study within a Canadian cohort consisting of 1878 singleton pregnancies enrolled from May 2008 to December 2010 in Calgary, Alberta, Canada. We used a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2-3 that included women with sPTB (n = 51) and term births (n = 106) matched for maternal age, race/ethnicity, pre-pregnancy body mass index, smoking during pregnancy, and parity within the Canadian cohort. Two bioinformatics tools, miRWalk and STarMirDB, with different algorithms were applied to retrieve miRNA transcripts that putatively target the EBF1 gene (i.e. EBF1-based). Limma moderated t-tests were used to examine differentially expressed (DE) miRNA transcripts (sPTB vs term) within trimesters. Logistic regression models with miRNA transcript tertiles were applied to assess threshold associations between candidate miRNA transcripts' levels and sPTB. Receiver operating characteristic (ROC) analyses were used to identify the maximum Youden Index and its corresponding optimal sensitivity/specificity cut-point of EBF1-based miRNA transcripts for classifying sPTB, and to compare the classification performance of a linear combination (score) of miRNA transcripts with that of individual miRNA transcripts. A five-fold cross-validation was applied to examine the possible overfitting problem of the final ROC model.Results: Four maternal blood EBF1-based miRNA transcripts (MIR4266, MIR1251, MIR601, MIR3612) in the 3rd trimester were significantly associated with sPTB. The odds ratios (95%CIs) for highest versus lowest tertile of the four miRNA transcripts were 3.01-5.25(1.21-13.14, p ≤ .018). The combined 4-miRNA transcripts' score significantly improved the classification of sPTB compared to individual miRNA transcripts (AUC increased from 0.65-0.69 to 0.82, p ≤ .0034) and showed a sensitivity for sPTB of 0.81 and a specificity of 0.72. The final ROC model of the EBF1-based 4 miRNA transcripts' score in cases and controls had no significant overfitting issue.Conclusions: Maternal blood EBF1-based miRNA transcripts may, along with other biomarkers, be useful in screening for sPTB risk in 3rd trimester. Our results also provide clues for further study of potential molecular mechanisms underlying the relationship between EBF1 gene and sPTB, e.g. connecting genetic variants, mRNA expression, and miRNA regulation.
Collapse
Affiliation(s)
- Guoli Zhou
- Biomedical Research Informatics Core, Clinical & Translational Sciences Institute, Michigan State University, East Lansing, MI, USA
| | - Claudia Holzman
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Yujing J Heng
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mark Kibschull
- Departments of Obstetrics & Gynaecology and Physiology, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Stephen J Lye
- Departments of Obstetrics & Gynaecology and Physiology, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
22
|
Maji RK, Khatua S, Ghosh Z. A Supervised Ensemble Approach for Sensitive microRNA Target Prediction. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:37-46. [PMID: 30040648 DOI: 10.1109/tcbb.2018.2858252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs, a class of small non-coding RNAs, regulate important biological functions via post-transcriptional regulation of messenger RNAs (mRNAs). Despite rapid development in miRNA research, precise experimental methods to determine miRNA target interactions are still lacking. This motivated us to explore the in silico target interaction features and incorporate them in predictive modeling. We propose a systematic approach towards developing a sensitive miRNA target prediction model to explore the interplay of target recognition features. In the first step, we have employed a supervised ensemble under-sampling approach to address the problem of imbalance in the training dataset due to a larger number of negative instances. Various feature selection techniques were evaluated to obtain the optimal feature subset that best recognizes the true miRNA-mRNA targets. In the second step, we have built our optimal model, miRTPred, a novel blending ensemble-based approach that combines the predictions of the best performing traditional and classical ensemble models, through a weighted voting classifier, achieving a sensitivity of 87 percent and F1-score of 0.88 for 3'UTR region of the mRNA transcript. miRTPred outperforms popular machine learning (ML) and non-ML approaches to target prediction algorithms. miRTPred is freely available at http://bicresources.jcbose.ac.in/zhumur/mirtpred.
Collapse
|
23
|
miR-140-3p exhibits repressive functions on preosteoblast viability and differentiation by downregulating MCF2L in osteoporosis. In Vitro Cell Dev Biol Anim 2019; 56:49-58. [PMID: 31732956 DOI: 10.1007/s11626-019-00405-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/20/2019] [Indexed: 12/18/2022]
Abstract
Previous research manifested that miR-140-3p was a latent biomarker for osteoporosis. Nevertheless, the mechanism of miR-140-3p in osteoporosis is still not clear and needs ulteriorly studying. The purpose of our paper was to ulteriorly probe the underlying mechanism of miR-140-3p on osteoporosis. Firstly, based on the data acquired from GEO database, we found that miR-140-3p was highly expressed; meanwhile, MCF2L was lowly expressed in osteoporosis patients. Upregulation/downregulation of miR-140-3p by miR-140-3p mimic/inhibitor restrained/promoted MC3T3-E1 cell viability and differentiation. However, miR-140-3p over-expression/downregulation accelerated/repressed MC3T3-E1 cell apoptosis. MCF2L was forecasted as a target of miR-140-3p by miRanda, miRWalk, and TargetScan miRNA target gene prediction software. Luciferase reporter assay confirmed that MCF2L could be directly targeted by miR-140-3p. Moreover, we identified that the expression of MCF2L was negatively regulated by miR-140-3p. From rescue assays, we discovered that knockdown of MCF2L weakened the promoting influence of miR-140-3p ablation on MC3T3-E1 cell viability and differentiation, and receded the suppressing impact of miR-140-3p reduction on MC3T3-E1 cell apoptosis. Above all, this research disclosed that miR-140-3p repressed preosteoblast viability and differentiation while promoted preosteoblast apoptosis via targeting MCF2L. Our discoveries might afford a theoretical basis of developing a latent novel target for osteoporosis therapy.
Collapse
|
24
|
Marranci A, D'Aurizio R, Vencken S, Mero S, Guzzolino E, Rizzo M, Pitto L, Pellegrini M, Chiorino G, Greene CM, Poliseno L. Systematic evaluation of the microRNAome through miR-CATCHv2.0 identifies positive and negative regulators of BRAF-X1 mRNA. RNA Biol 2019; 16:865-878. [PMID: 30929607 DOI: 10.1080/15476286.2019.1600934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Here we present miR-CATCHv2.0, an implemented experimental method that allows the identification of the microRNA species directly bound to an RNA of interest. After cross-linking of microRNA::RNA::Ago2 complexes using formaldehyde, the RNA is fragmented using sonication and then subjected to affinity purification using two sets of biotinylated tiling probes (ODD and EVEN). Finally, enriched microRNA species are retrieved by means of small RNA sequencing coupled with an ad hoc analytical workflow. In BRAFV600E mutant A375 melanoma cells, miR-CATCHv2.0 allowed us to identify 20 microRNAs that target X1, the most abundant isoform of BRAF mRNA. These microRNAs fall into different functional classes, according to the effect that they exert (decrease/increase in BRAFV600E mRNA and protein levels) and to the mechanism they use to achieve it (destabilization/stabilization of X1 mRNA or decrease/increase in its translation). microRNA-induced variations in BRAFV600E protein levels are most of the times coupled to consistent variations in pMEK levels, in melanoma cell proliferation in vitro and in sensitivity to the BRAF inhibitor vemurafenib in a xenograft model in zebrafish. However, microRNAs exist that uncouple the degree of activation of the ERK pathway from the levels of BRAFV600E protein. Our study proposes miR-CATCHv2.0 as an effective tool for the identification of direct microRNA-target interactions and, by using such a tool, unveils the complexity of the post-transcriptional regulation to which BRAFV600E and the ERK pathway are subjected in melanoma cells.
Collapse
Affiliation(s)
- Andrea Marranci
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy.,c Signal Transduction Unit, Core Research Laboratory , ISPRO , Siena , Italy
| | | | - Sebastian Vencken
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Serena Mero
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| | | | - Milena Rizzo
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | - Letizia Pitto
- a Institute of Clinical Physiology , CNR , Pisa , Italy
| | | | - Giovanna Chiorino
- f Cancer Genomics Lab , Fondazione Edo ed Elvo Tempia , Biella , Italy
| | - Catherine M Greene
- e Department of Clinical Microbiology , Royal College of Surgeon in Ireland , Dublin , Ireland
| | - Laura Poliseno
- a Institute of Clinical Physiology , CNR , Pisa , Italy.,b Oncogenomics Unit, Core Research Laboratory , ISPRO , Pisa , Italy
| |
Collapse
|
25
|
Jain N, Roy J, Das B, Mallick B. miR-197-5p inhibits sarcomagenesis and induces cellular senescence via repression of KIAA0101. Mol Carcinog 2019; 58:1376-1388. [PMID: 31001891 DOI: 10.1002/mc.23021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/16/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
The abnormal expressions of microRNAs (miRNAs) are known to be associated with various pathophysiological processes that lead to the development of a plethora of diseases including cancer. Among several miRNAs studied so far, miR-197 has been reported to play a vital role either as an oncogene or tumor suppressor in different cancers. However, its role in carcinogenesis of fibrosarcoma has not yet been elucidated. Therefore, the current study investigated the role of miR-197-5p, which is significantly downregulated in HT1080 fibrosarcoma cells compared to IMR90-tert fibroblast cells. The transient overexpression of miR-197-5p causes a significant decrease in viability and proliferation of fibrosarcoma cells in both concentration- and time-dependent manners. Interestingly, we did not observe any significant changes in cell cycle pattern or apoptotic cell populations, but rather noticed cellular senescence of fibrosarcoma cells upon overexpression of miR-197-5p. Further, this miRNA suppresses the metastatic properties, such as migration, invasion, and anchorage-independent growth of fibrosarcoma possibly through targeting KIAA0101, which is a proliferating cell nuclear antigen-associated factor and overexpressed in the malignancy. In nutshell, our result revealed that miR-197-5p acts as an oncosuppressor miRNA in fibrosarcoma through target regulation of KIAA0101, which can be exploited for developing RNA-based therapeutic strategies for the cure of this malignancy.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Jyoti Roy
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Basudeb Das
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
26
|
Sommerova L, Anton M, Bouchalova P, Jasickova H, Rak V, Jandakova E, Selingerova I, Bartosik M, Vojtesek B, Hrstka R. The role of miR-409-3p in regulation of HPV16/18-E6 mRNA in human cervical high-grade squamous intraepithelial lesions. Antiviral Res 2019; 163:185-192. [DOI: 10.1016/j.antiviral.2019.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 11/14/2018] [Accepted: 01/30/2019] [Indexed: 12/20/2022]
|
27
|
Liu W, Wang X. Prediction of functional microRNA targets by integrative modeling of microRNA binding and target expression data. Genome Biol 2019; 20:18. [PMID: 30670076 PMCID: PMC6341724 DOI: 10.1186/s13059-019-1629-z] [Citation(s) in RCA: 496] [Impact Index Per Article: 99.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/13/2019] [Indexed: 02/07/2023] Open
Abstract
We perform a large-scale RNA sequencing study to experimentally identify genes that are downregulated by 25 miRNAs. This RNA-seq dataset is combined with public miRNA target binding data to systematically identify miRNA targeting features that are characteristic of both miRNA binding and target downregulation. By integrating these common features in a machine learning framework, we develop and validate an improved computational model for genome-wide miRNA target prediction. All prediction data can be accessed at miRDB ( http://mirdb.org ).
Collapse
Affiliation(s)
- Weijun Liu
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
- Nawgen LLC, St. Louis, MO, USA
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
28
|
Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. A Practical Guide to miRNA Target Prediction. Methods Mol Biol 2019; 1970:1-13. [PMID: 30963484 DOI: 10.1007/978-1-4939-9207-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are small endogenous noncoding RNA molecules that posttranscriptionally regulate gene expression. Since their discovery, a huge number of miRNAs have been identified in a wide range of species. Through binding to the 3' UTR of mRNA, miRNA can block translation or stimulate degradation of the targeted mRNA, thus affecting nearly all biological processes. Prediction and identification of miRNA target genes is crucial toward understanding the biology of miRNAs. Currently, a number of sophisticated bioinformatics approaches are available to perform effective prediction of miRNA target sites. In this chapter, we present the major features that most algorithms take into account to efficiently predict miRNA target: seed match, free energy, conservation, target site accessibility, and contribution of multiple binding sites. We also give an overview of the frequently used bioinformatics tools for miRNA target prediction. Understanding the basis of these prediction methodologies may help users to better select the appropriate tools and analyze their output.
Collapse
Affiliation(s)
| | - Luigina Micolucci
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Computational Pathology Unit, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Johns Hopkins University, School of Medicine, Baltimore, USA
| | - Fabiola Olivieri
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| | - Antonio Domenico Procopio
- Laboratory of Experimental Pathology, Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapies, Italian National Research Center on Aging (INRCA-IRCCS), Ancona, Italy
| |
Collapse
|
29
|
Rennie W, Kanoria S, Liu C, Carmack CS, Lu J, Ding Y. Sfold Tools for MicroRNA Target Prediction. Methods Mol Biol 2019; 1970:31-42. [PMID: 30963486 DOI: 10.1007/978-1-4939-9207-2_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Computational prediction of miRNA binding sites on target mRNAs facilitates experimental investigation of miRNA functions. In this chapter, we describe STarMir and STarMirDB, two application modules of the Sfold RNA package. STarMir is a Web server for performing miRNA binding site predictions for mRNA and target sequences submitted by users. STarMirDB is a database of precomputed transcriptome-scale predictions. Both STarMir and STarMirDB provide comprehensive sequence, thermodynamic, and target structure features, a logistic probability as a measure of confidence for each predicted site, and a publication-quality diagram of the predicted miRNA-target hybrid. In addition, STarMir now offers a new quantitative score to address combined regulatory effects of multiple seed and seedless sites. This score provides a quantitative measure of the overall regulatory effects of both seed and seedless sites on the target. STarMir and STarMirDB are freely available to all through the Sfold Web application server at http://sfold.wadsworth.org .
Collapse
Affiliation(s)
- William Rennie
- New York State Department of Health, Wadsworth Center, Center for Medical Science, Albany, NY, USA
| | - Shaveta Kanoria
- New York State Department of Health, Wadsworth Center, Center for Medical Science, Albany, NY, USA
| | - Chaochun Liu
- New York State Department of Health, Wadsworth Center, Center for Medical Science, Albany, NY, USA
| | - C Steven Carmack
- New York State Department of Health, Wadsworth Center, Center for Medical Science, Albany, NY, USA
| | - Jun Lu
- Department of Genetics, Yale Stem Cell Center, Yale University, New Haven, CT, USA
| | - Ye Ding
- New York State Department of Health, Wadsworth Center, Center for Medical Science, Albany, NY, USA.
| |
Collapse
|
30
|
Hannigan MM, Zagore LL, Licatalosi DD. Mapping transcriptome-wide protein-RNA interactions to elucidate RNA regulatory programs. QUANTITATIVE BIOLOGY 2018; 6:228-238. [PMID: 31098334 PMCID: PMC6516777 DOI: 10.1007/s40484-018-0145-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our understanding of post-transcriptional gene regulation has increased exponentially with the development of robust methods to define protein-RNA interactions across the transcriptome. In this review, we highlight the evolution and successful applications of crosslinking and immunoprecipitation (CLIP) methods to interrogate protein-RNA interactions in a transcriptome-wide manner. RESULTS Here, we survey the vast array of in vitro and in vivo approaches used to identify protein-RNA interactions, including but not limited to electrophoretic mobility shift assays, systematic evolution of ligands by exponential enrichment (SELEX), and RIP-seq. We particularly emphasize the advancement of CLIP technologies, and detail protocol improvements and computational tools used to analyze the output data. Importantly, we discuss how profiling protein-RNA interactions can delineate biological functions including splicing regulation, alternative polyadenylation, cytoplasmic decay substrates, and miRNA targets. CONCLUSIONS In summary, this review summarizes the benefits of characterizing RNA-protein networks to further understand the regulation of gene expression and disease pathogenesis. Our review comments on how future CLIP technologies can be adapted to address outstanding questions related to many aspects of RNA metabolism and further advance our understanding of RNA biology.
Collapse
Affiliation(s)
- Molly M Hannigan
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Leah L Zagore
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Donny D Licatalosi
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
31
|
Ghoshal A, Zhang J, Roth MA, Xia KM, Grama A, Chaterji S. A Distributed Classifier for MicroRNA Target Prediction with Validation Through TCGA Expression Data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2018; 15:1037-1051. [PMID: 29993641 PMCID: PMC6175706 DOI: 10.1109/tcbb.2018.2828305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) are approximately 22-nucleotide long regulatory RNA that mediate RNA interference by binding to cognate mRNA target regions. Here, we present a distributed kernel SVM-based binary classification scheme to predict miRNA targets. It captures the spatial profile of miRNA-mRNA interactions via smooth B-spline curves. This is accomplished separately for various input features, such as thermodynamic and sequence-based features. Further, we use a principled approach to uniformly model both canonical and non-canonical seed matches, using a novel seed enrichment metric. Finally, we verify our miRNA-mRNA pairings using an Elastic Net-based regression model on TCGA expression data for four cancer types to estimate the miRNAs that together regulate any given mRNA. RESULTS We present a suite of algorithms for miRNA target prediction, under the banner Avishkar, with superior prediction performance over the competition. Specifically, our final kernel SVM model, with an Apache Spark backend, achieves an average true positive rate (TPR) of more than 75 percent, when keeping the false positive rate of 20 percent, for non-canonical human miRNA target sites. This is an improvement of over 150 percent in the TPR for non-canonical sites, over the best-in-class algorithm. We are able to achieve such superior performance by representing the thermodynamic and sequence profiles of miRNA-mRNA interaction as curves, devising a novel seed enrichment metric, and learning an ensemble of miRNA family-specific kernel SVM classifiers. We provide an easy-to-use system for large-scale interactive analysis and prediction of miRNA targets. All operations in our system, namely candidate set generation, feature generation and transformation, training, prediction, and computing performance metrics are fully distributed and are scalable. CONCLUSIONS We have developed an efficient SVM-based model for miRNA target prediction using recent CLIP-seq data, demonstrating superior performance, evaluated using ROC curves for different species (human or mouse), or different target types (canonical or non-canonical). We analyzed the agreement between the target pairings using CLIP-seq data and using expression data from four cancer types. To the best of our knowledge, we provide the first distributed framework for miRNA target prediction based on Apache Hadoop and Spark. AVAILABILITY All source code and sample data are publicly available at https://bitbucket.org/cellsandmachines/avishkar. Our scalable implementation of kernel SVM using Apache Spark, which can be used to solve large-scale non-linear binary classification problems, is available at https://bitbucket.org/cellsandmachines/kernelsvmspark.
Collapse
Affiliation(s)
- Asish Ghoshal
- Department of Computer Science, Purdue University, West Lafayette, IN.
| | - Jinyi Zhang
- Department of Computer Science, Columbia University, New York City, NY.
| | - Michael A. Roth
- Department of Computer Science, Purdue University, West Lafayette, IN.
| | - Kevin Muyuan Xia
- Department of Computer Science, Purdue University, West Lafayette, IN.
| | - Ananth Grama
- Department of Computer Science, Purdue University, West Lafayette, IN.
| | - Somali Chaterji
- Department of Computer Science, Purdue University, West Lafayette, IN.
| |
Collapse
|
32
|
Filippenkov IB, Stavchansky VV, Denisova AE, Ivanova KA, Limborska SA, Dergunova LV. Experimental Cerebral Ischemia Affects the Expression of Circular RNA Genes of Metabotropic Glutamate Receptors mGluR3 and mGluR5 in Rat Brain. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162018030044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Swain AC, Mallick B. miRNA-mediated 'tug-of-war' model reveals ceRNA propensity of genes in cancers. Mol Oncol 2018; 12:855-868. [PMID: 29603582 PMCID: PMC5983123 DOI: 10.1002/1878-0261.12198] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 02/15/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Competing endogenous RNA (ceRNA) are transcripts that cross‐regulate each other at the post‐transcriptional level by competing for shared microRNA response elements (MREs). These have been implicated in various biological processes impacting cell‐fate decisions and diseases including cancer. There are several studies that predict possible ceRNA pairs by adopting various machine‐learning and mathematical approaches; however, there is no method that enables us to gauge as well as compare the propensity of the ceRNA of a gene and precisely envisages which among a pair exerts a stronger pull on the shared miRNA pool. In this study, we developed a method that uses the ‘tug of war of genes’ concept to predict and quantify ceRNA potential of a gene for the shared miRNA pool in cancers based on a score represented by SoCeR (score of competing endogenous RNA). The method was executed on the RNA‐Seq transcriptional profiles of genes and miRNA available at TCGA along with CLIP‐supported miRNA‐target sites to predict ceRNA in 32 cancer types which were validated with already reported cases. The proposed method can be used to determine the sequestering capability of the gene of interest as well as in ranking the probable ceRNA candidates of a gene. Finally, we developed standalone applications (SoCeR tool) to aid researchers in easier implementation of the method in analysing different data sets or diseases.
Collapse
Affiliation(s)
- Arpit Chandan Swain
- Department of Mathematics, National Institute of Technology, Rourkela, Odisha, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| |
Collapse
|
34
|
Dürrbaum M, Kruse C, Nieken KJ, Habermann B, Storchová Z. The deregulated microRNAome contributes to the cellular response to aneuploidy. BMC Genomics 2018; 19:197. [PMID: 29703144 PMCID: PMC6389165 DOI: 10.1186/s12864-018-4556-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 02/19/2018] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Aneuploidy, or abnormal chromosome numbers, severely alters cell physiology and is widespread in cancers and other pathologies. Using model cell lines engineered to carry one or more extra chromosomes, it has been demonstrated that aneuploidy per se impairs proliferation, leads to proteotoxic as well as replication stress and triggers conserved transcriptome and proteome changes. RESULTS In this study, we analysed for the first time miRNAs and demonstrate that their expression is altered in response to chromosome gain. The miRNA deregulation is independent of the identity of the extra chromosome and specific to individual cell lines. By cross-omics analysis we demonstrate that although the deregulated miRNAs differ among individual aneuploid cell lines, their known targets are predominantly associated with cell development, growth and proliferation, pathways known to be inhibited in response to chromosome gain. Indeed, we show that up to 72% of these targets are downregulated and the associated miRNAs are overexpressed in aneuploid cells, suggesting that the miRNA changes contribute to the global transcription changes triggered by aneuploidy. We identified hsa-miR-10a-5p to be overexpressed in majority of aneuploid cells. Hsa-miR-10a-5p enhances translation of a subset of mRNAs that contain so called 5'TOP motif and we show that its upregulation in aneuploids provides resistance to starvation-induced shut down of ribosomal protein translation. CONCLUSIONS Our work suggests that the changes of the microRNAome contribute on one hand to the adverse effects of aneuploidy on cell physiology, and on the other hand to the adaptation to aneuploidy by supporting translation under adverse conditions.
Collapse
Affiliation(s)
- Milena Dürrbaum
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
| | - Christine Kruse
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - K. Julia Nieken
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Bianca Habermann
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Computational Biology Group, Developmental Biology Institute of Marseille (IBDM) UMR 7288, CNRS, Aix Marseille Université, 13288 Marseille, France
| | - Zuzana Storchová
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center for Integrated Protein Sciences Munich, Ludwig-Maximilians-Universität München, Butenandtstr. 5, 81377 Munich, Germany
- Department of Molecular Genetics, TU Kaiserslautern, Paul Ehrlich Strasse 24, 67663 Kaiserslautern, Germany
| |
Collapse
|
35
|
Qu H, Zheng L, Song H, Jiao W, Li D, Fang E, Wang X, Mei H, Pu J, Huang K, Tong Q. microRNA-558 facilitates the expression of hypoxia-inducible factor 2 alpha through binding to 5'-untranslated region in neuroblastoma. Oncotarget 2018; 7:40657-40673. [PMID: 27276678 PMCID: PMC5130034 DOI: 10.18632/oncotarget.9813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/20/2016] [Indexed: 11/25/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Our previous studies have shown that hypoxia-inducible factor 2 alpha (HIF-2α), one member of the bHLH-PAS transcription factor family, facilitates the progression of NB under non-hypoxic conditions. However, the mechanisms underlying HIF-2α expression in NB still remain largely unknown. Herein, through analyzing the computational algorithm programs, we identified microRNA-558 (miR-558) as a crucial regulator of HIF-2α expression in NB. We demonstrated that miR-558 promoted the expression of HIF-2α at translational levels in NB cells through recruiting Argonaute 2 (AGO2). Mechanistically, miR-558 directly bound with its complementary site within 5′-untranslated region (5′-UTR) to facilitate the binding of AGO2 to eukaryotic translation initiation factor 4E (eIF4E) binding protein 1, resulting in increased eIF4E enrichment and HIF-2α translation. In addition, miR-558 promoted the growth, invasion, metastasis, and angiogenesis of NB cells in vitro and in vivo, and these biological features were rescued by knockdown of AGO2, eIF4E, or HIF-2α. In clinical NB specimens, miR-558, AGO2, and eIF4E were highly expressed and positively correlated with HIF-2α expression. Patients with high miR-558, HIF-2α, AGO2, or eIF4E levels had lower survival probability. Taken together, these results demonstrate that miR-558 facilitates the expression of HIF-2α through bindingto its 5′-UTR, thus promoting the tumorigenesis and aggressiveness of NB.
Collapse
Affiliation(s)
- Hongxia Qu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Huajie Song
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Erhu Fang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Xiaojing Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Jiarui Pu
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Kai Huang
- Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China.,Clinical Center of Human Genomic Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, P. R. China
| |
Collapse
|
36
|
Bessière C, Taha M, Petitprez F, Vandel J, Marin JM, Bréhélin L, Lèbre S, Lecellier CH. Probing instructions for expression regulation in gene nucleotide compositions. PLoS Comput Biol 2018; 14:e1005921. [PMID: 29293496 PMCID: PMC5766238 DOI: 10.1371/journal.pcbi.1005921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 12/10/2017] [Indexed: 01/22/2023] Open
Abstract
Gene expression is orchestrated by distinct regulatory regions to ensure a wide variety of cell types and functions. A challenge is to identify which regulatory regions are active, what are their associated features and how they work together in each cell type. Several approaches have tackled this problem by modeling gene expression based on epigenetic marks, with the ultimate goal of identifying driving regions and associated genomic variations that are clinically relevant in particular in precision medicine. However, these models rely on experimental data, which are limited to specific samples (even often to cell lines) and cannot be generated for all regulators and all patients. In addition, we show here that, although these approaches are accurate in predicting gene expression, inference of TF combinations from this type of models is not straightforward. Furthermore these methods are not designed to capture regulation instructions present at the sequence level, before the binding of regulators or the opening of the chromatin. Here, we probe sequence-level instructions for gene expression and develop a method to explain mRNA levels based solely on nucleotide features. Our method positions nucleotide composition as a critical component of gene expression. Moreover, our approach, able to rank regulatory regions according to their contribution, unveils a strong influence of the gene body sequence, in particular introns. We further provide evidence that the contribution of nucleotide content can be linked to co-regulations associated with genome 3D architecture and to associations of genes within topologically associated domains.
Collapse
Affiliation(s)
- Chloé Bessière
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - May Taha
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
| | - Florent Petitprez
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jimmy Vandel
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- LIRMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Jean-Michel Marin
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
| | - Laurent Bréhélin
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- LIRMM, Univ. Montpellier, CNRS, Montpellier, France
| | - Sophie Lèbre
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- IMAG, Univ. Montpellier, CNRS, Montpellier, France
- Univ. Paul-Valéry-Montpellier 3, Montpellier, France
| | - Charles-Henri Lecellier
- IBC, Univ. Montpellier, CNRS, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
37
|
Hong MJ, Lee SY, Choi JE, Jin CC, Kang HJ, Baek SA, Lee SY, Shin KM, Jeong JY, Lee WK, Yoo SS, Lee J, Cha SI, Kim CH, Son JW, Park JY. A genetic variation in microRNA target site of ETS2 is associated with clinical outcomes of paclitaxel-cisplatin chemotherapy in non-small cell lung cancer. Oncotarget 2017; 7:15948-58. [PMID: 26893365 PMCID: PMC4941289 DOI: 10.18632/oncotarget.7433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 02/06/2016] [Indexed: 11/25/2022] Open
Abstract
The present study was performed to investigate the association of single nucleotide polymorphisms (SNPs) located in the miRNA target sites with the clinical outcomes of first line paclitaxel-cisplatin chemotherapy in advanced NSCLC. Eighty SNPs in miRNA binding sites of cancer related genes selected from 18,500 miRNA:target bindings in crosslinking, ligation, and sequencing of hybrids (CLASH) data were investigated in 379 advanced NSCLC patients using a sequenom mass spectrometry-based genotype assay. qRT-PCR and luciferase assay were conducted to examine functional relevance of potentially functional SNPs in miRNA binding sites. Of the 80 SNPs analyzed, 16 SNPs were significantly associated with the clinical outcomes after chemotherapy. Among these, ANAPC1 rs3814026C>T, ETS2 rs461155A>G, SORBS1 rs7081076C>A and POLR2A rs2071504C>T could predict both chemotherapy response and survival. Notably, ETS2 rs461155A>G was significantly associated with decreased ETS2 mRNA expression in both tumor and paired normal lung tissues (Ptrend = 4 × 10−7, and 3 × 10−4, respectively). Consistently, a decreased expression of the reporter gene for the G allele of rs461155 compared with the A allele was observed by luciferase assay. These findings suggest that the four SNPs, especially ETS2 rs461155A>G, could be used as biomarkers predicting the clinical outcomes of NSCLC patients treated with first-line paclitaxel-cisplatin chemotherapy.
Collapse
Affiliation(s)
- Mi Jeong Hong
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Shin Yup Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jin Eun Choi
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Cheng Cheng Jin
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Hyo Jung Kang
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Sun Ah Baek
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - So Yeon Lee
- Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Kyung Min Shin
- Department of Radiology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Ji Yun Jeong
- Department of Pathology, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Won Kee Lee
- Biostatistics Center, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Soo Yoo
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| | - Jaehee Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Seung Ick Cha
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang Ho Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Jae Yong Park
- Departments of Biochemistry and Cell Biology, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Cell and Matrix Research Institute, Kyungpook National University Medical Center, Daegu, Republic of Korea.,Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Lung Cancer Center, Kyungpook National University Medical Center, Daegu, Republic of Korea
| |
Collapse
|
38
|
Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun 2017; 8:1189. [PMID: 29084942 PMCID: PMC5662751 DOI: 10.1038/s41467-017-01126-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 08/18/2017] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence about the presence and the activity of the miRISC in the nucleus of mammalian cells. Here, we show by quantitative proteomic analysis that Ago2 interacts with the nucleoplasmic protein Sfpq in an RNA-dependent fashion. By a combination of HITS-CLIP and transcriptomic analyses, we demonstrate that Sfpq directly controls the miRNA targeting of a subset of binding sites by local binding. Sfpq modulates miRNA targeting in both nucleoplasm and cytoplasm, indicating a nucleoplasmic commitment of Sfpq-target mRNAs that globally influences miRNA modes of action. Mechanistically, Sfpq binds to a sizeable set of long 3′UTRs forming aggregates to optimize miRNA positioning/recruitment at selected binding sites, including let-7a binding to Lin28A 3′UTR. Our results extend the miRNA-mediated post-transcriptional gene silencing into the nucleoplasm and indicate that an Sfpq-dependent strategy for controlling miRNA activity takes place in cells, contributing to the complexity of miRNA-dependent gene expression control. MicroRNAs have been best characterized for their functions in the cytoplasm; however, there is growing evidence of a nuclear localized role. Here, the authors identify Sfpq as an Ago2-interacting protein that modulates miRNA activity in both the nucleus and cytoplasm.
Collapse
|
39
|
Rennie W, Kanoria S, Liu C, Mallick B, Long D, Wolenc A, Carmack CS, Lu J, Ding Y. STarMirDB: A database of microRNA binding sites. RNA Biol 2017; 13:554-60. [PMID: 27144897 PMCID: PMC4962797 DOI: 10.1080/15476286.2016.1182279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
microRNAs (miRNAs) are an abundant class of small endogenous non-coding RNAs (ncRNAs) of ∼22 nucleotides (nts) in length. These small regulatory molecules are involved in diverse developmental, physiological and pathological processes. miRNAs target mRNAs (mRNAs) for translational repression and/or mRNA degradation. Predictions of miRNA binding sites facilitate experimental validation of miRNA targets. Models developed with data from CLIP studies have been used for predictions of miRNA binding sites in the whole transcriptomes of human, mouse and worm. The prediction results have been assembled into STarMirDB, a new database of miRNA binding sites available at http://sfold.wadsworth.org/starmirDB.php. STarMirDB can be searched by miRNAs or mRNAs separately or in combination. The search results are categorized into seed and seedless sites in 3′ UTR, CDS and 5′ UTR. For each predicted site, STarMirDB provides a comprehensive list of sequence, thermodynamic and target structural features that are known to influence miRNA: target interaction. A high resolution PDF diagram of the conformation of the miRNA:target hybrid is also available for visualization and publication. The results of a database search are available through both an interactive viewer and downloadable text files.
Collapse
Affiliation(s)
- William Rennie
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Shaveta Kanoria
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Chaochun Liu
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Bibekanand Mallick
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Dang Long
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Adam Wolenc
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - C Steven Carmack
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Jun Lu
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| | - Ye Ding
- a Wadsworth Center, New York State Department of Health , Center for Medical Science , Albany , NY , USA
| |
Collapse
|
40
|
Bottini S, Hamouda-Tekaya N, Tanasa B, Zaragosi LE, Grandjean V, Repetto E, Trabucchi M. From benchmarking HITS-CLIP peak detection programs to a new method for identification of miRNA-binding sites from Ago2-CLIP data. Nucleic Acids Res 2017; 45:e71. [PMID: 28108660 PMCID: PMC5435922 DOI: 10.1093/nar/gkx007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/03/2017] [Indexed: 12/20/2022] Open
Abstract
Experimental evidence indicates that about 60% of miRNA-binding activity does not follow the canonical rule about the seed matching between miRNA and target mRNAs, but rather a non-canonical miRNA targeting activity outside the seed or with a seed-like motifs. Here, we propose a new unbiased method to identify canonical and non-canonical miRNA-binding sites from peaks identified by Ago2 Cross-Linked ImmunoPrecipitation associated to high-throughput sequencing (CLIP-seq). Since the quality of peaks is of pivotal importance for the final output of the proposed method, we provide a comprehensive benchmarking of four peak detection programs, namely CIMS, PIPE-CLIP, Piranha and Pyicoclip, on four publicly available Ago2-HITS-CLIP datasets and one unpublished in-house Ago2-dataset in stem cells. We measured the sensitivity, the specificity and the position accuracy toward miRNA binding sites identification, and the agreement with TargetScan. Secondly, we developed a new pipeline, called miRBShunter, to identify canonical and non-canonical miRNA-binding sites based on de novo motif identification from Ago2 peaks and prediction of miRNA::RNA heteroduplexes. miRBShunter was tested and experimentally validated on the in-house Ago2-dataset and on an Ago2-PAR-CLIP dataset in human stem cells. Overall, we provide guidelines to choose a suitable peak detection program and a new method for miRNA-target identification.
Collapse
Affiliation(s)
- Silvia Bottini
- Université Côte d'Azur, Inserm, C3M, Nice, 06204, France
| | | | - Bogdan Tanasa
- Stanford University School of Medicine, 265 Campus Drive, LLSCR Building, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
42
|
Samantarrai D, Mallick B. miR-429 inhibits metastasis by targeting KIAA0101 in Soft Tissue Sarcoma. Exp Cell Res 2017; 357:33-39. [PMID: 28432002 DOI: 10.1016/j.yexcr.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/11/2017] [Accepted: 04/17/2017] [Indexed: 12/17/2022]
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of rare tumors with high metastatic potential. There being only a handful of publication on metastasis of STS, we investigated the miRNA mediated target gene regulations in modulating the metastatic processes in this cancer. In this study, we amalgamated gene and miRNA expression profiles of high-grade STS samples with miRNA target predictions and identified miR-429 targeting KIAA0101 as a novel pair, which remain unexplored in STS metastasis. We validated their expression in metastatic fibrosarcoma cell line, HT1080 and performed several functional assays using miRNA mimics and KIAA0101 over-expression vector to confirm their role in metastasis. We observed miR-429 is downregulated in HT1080 cells and acting as an anti-metastatic miRNA that inhibited proliferation, migration, anchorage independent growth and invasion by de-repressing KIAA0101. Moreover, the renilla luciferase reporter assay confirmed that miR-429 targets KIAA0101 by binding to its 3/UTR and influence its expression. Taken together, our work demonstrated miR-429 mediates deregulation of KIAA0101 by acting as an anti-metastatic miRNA that targets KIAA0101 pro-metastatic gene during metastasis of STS.
Collapse
Affiliation(s)
- Devyani Samantarrai
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
43
|
Roy J, Mallick B. Altered gene expression in late-onset Alzheimer's disease due to SNPs within 3'UTR microRNA response elements. Genomics 2017; 109:177-185. [PMID: 28286146 DOI: 10.1016/j.ygeno.2017.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 01/26/2023]
Abstract
Late-onset Alzheimer's disease (LOAD) is a progressive and fatal neurodegenerative disease found in people older than 65years of age. Disease etiology is complex, as susceptibility has been linked to multiple gene variants conferred by single nucleotide polymorphisms (SNPs). However, the molecular mechanisms by which SNPs contribute to LOAD pathogenesis have not been extensively studied, particularly for SNPs within the 3' untranslated regions (3'UTRs), the hubs for microRNA binding. Therefore, we screened for SNPs within the 3'UTRs of LOAD-associated genes that may create or destroy microRNA response elements (MREs) and thus alter gene expression. This investigation adopted an in-silico approach that integrated structural and thermodynamic features of miRNA target binding with screening using CLIP-seq data, followed by network analysis. This strategy identified three 3'UTR SNPs, rs10876135, rs5848, and rs5786996 that may alter the respective binding sites for the miRNAs hsa-miR-197-5p, hsa-miR-185-5p, and hsa-miR-34a-5p, all of which are upregulated in LOAD. The functional significance of these MRE-SNPs was assessed by potential regulation of biological networks known to be associated with LOAD. This is the first study to demonstrate a possible role for above 3'UTR MRE-SNPs in aberrant expression of target genes with functional consequences for LOAD.
Collapse
Affiliation(s)
- Jyoti Roy
- RNAi & Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Bibekanand Mallick
- RNAi & Functional Genomics Lab, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
44
|
Gerresheim GK, Dünnes N, Nieder-Röhrmann A, Shalamova LA, Fricke M, Hofacker I, Höner Zu Siederdissen C, Marz M, Niepmann M. microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3' untranslated region: function in replication and influence of RNA secondary structure. Cell Mol Life Sci 2017; 74:747-760. [PMID: 27677491 PMCID: PMC11107659 DOI: 10.1007/s00018-016-2377-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/29/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
We have analyzed the binding of the liver-specific microRNA-122 (miR-122) to three conserved target sites of hepatitis C virus (HCV) RNA, two in the non-structural protein 5B (NS5B) coding region and one in the 3' untranslated region (3'UTR). miR-122 binding efficiency strongly depends on target site accessibility under conditions when the range of flanking sequences available for the formation of local RNA secondary structures changes. Our results indicate that the particular sequence feature that contributes most to the correlation between target site accessibility and binding strength varies between different target sites. This suggests that the dynamics of miRNA/Ago2 binding not only depends on the target site itself but also on flanking sequence context to a considerable extent, in particular in a small viral genome in which strong selection constraints act on coding sequence and overlapping cis-signals and model the accessibility of cis-signals. In full-length genomes, single and combination mutations in the miR-122 target sites reveal that site 5B.2 is positively involved in regulating overall genome replication efficiency, whereas mutation of site 5B.3 showed a weaker effect. Mutation of the 3'UTR site and double or triple mutants showed no significant overall effect on genome replication, whereas in a translation reporter RNA, the 3'UTR target site inhibits translation directed by the HCV 5'UTR. Thus, the miR-122 target sites in the 3'-region of the HCV genome are involved in a complex interplay in regulating different steps of the HCV replication cycle.
Collapse
Affiliation(s)
- Gesche K Gerresheim
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Nadia Dünnes
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Anika Nieder-Röhrmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Lyudmila A Shalamova
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Markus Fricke
- Faculty of Mathematics and Computer Science, Friedrich-Schiller-University, 07743, Jena, Germany
| | - Ivo Hofacker
- Institute for Theoretical Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Christian Höner Zu Siederdissen
- Institute for Theoretical Chemistry, University of Vienna, 1090, Vienna, Austria
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, Universität Leipzig, 04107, Leipzig, Germany
| | - Manja Marz
- Faculty of Mathematics and Computer Science, Friedrich-Schiller-University, 07743, Jena, Germany
- FLI Leibniz Institute for Age Research, 07743, Jena, Germany
| | - Michael Niepmann
- Institute of Biochemistry, Faculty of Medicine, Justus-Liebig-University, Friedrichstrasse 24, 35392, Giessen, Germany.
| |
Collapse
|
45
|
miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico. Sci Rep 2016; 6:36625. [PMID: 27857164 PMCID: PMC5114684 DOI: 10.1038/srep36625] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/13/2016] [Indexed: 12/13/2022] Open
Abstract
MicroRNA (miRNA) sponges are RNA transcripts containing multiple high-affinity binding sites that associate with and sequester specific miRNAs to prevent them from interacting with their target messenger (m)RNAs. Due to the high specificity of miRNA sponges and strong inhibition of target miRNAs, these molecules have become increasingly applied in miRNA loss-of-function studies. However, improperly designed sponge constructs may sequester off-target miRNAs; thus, it has become increasingly important to develop a tool for miRNA sponge construct design and testing. In this study, we introduce microRNA sponge generator and tester (miRNAsong), a freely available web-based tool for generation and in silico testing of miRNA sponges. This tool generates miRNA sponge constructs for specific miRNAs and miRNA families/clusters and tests them for potential binding to miRNAs in selected organisms. Currently, miRNAsong allows for testing of sponge constructs in 219 species covering 35,828 miRNA sequences. Furthermore, we also provide an example, supplemented with experimental data, of how to use this tool. Using miRNAsong, we designed and tested a sponge for miR-145 inhibition, and cloned the sequence into an inducible lentiviral vector. We found that established cell lines expressing miR-145 sponge strongly inhibited miR-145, thus demonstrating the usability of miRNAsong tool for sponge generation. URL: http://www.med.muni.cz/histology/miRNAsong/.
Collapse
|
46
|
Mato Prado M, Frampton AE, Giovannetti E, Stebbing J, Castellano L, Krell J. Investigating miRNA-mRNA regulatory networks using crosslinking immunoprecipitation methods for biomarker and target discovery in cancer. Expert Rev Mol Diagn 2016; 16:1155-1162. [PMID: 27784183 DOI: 10.1080/14737159.2016.1239532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression at the post-transcriptional level. Recently, different experimental approaches, such as RNA Sequencing, crosslinking immunoprecipitation (CLIP) methods and its variations, together with computational approaches have been developed to elucidate the miRNA-mRNA targetome. Areas covered: This report focuses on comparing the different experimental and computational approaches, describing their advantages and disadvantages and providing several examples of preclinical (in vitro and in vivo) and clinical studies that have identified miRNA target genes in various tumour types, including breast, ovary, colorectal and pancreas. Expert commentary: The combination of CLIP methods with bioinformatic analyses is essential to better predict miRNA-mRNA interactions and associate their specific pathways within the extensive regulatory network. Nevertheless, further studies are needed to overcome the difficulties these methods have, in order to find a gold standard method that identifies, without any bias, the regulatory association between miRNAs and their target mRNAs.
Collapse
Affiliation(s)
- Mireia Mato Prado
- a Division of Cancer, Dept. of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| | - Adam E Frampton
- a Division of Cancer, Dept. of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
- b HPB Surgical Unit, Dept. of Surgery & Cancer , Imperial College , London , UK
| | - Elisa Giovannetti
- c Dept. of Medical Oncology , VU University Medical Center , Amsterdam , The Netherlands
- d Cancer Pharmacology Lab, AIRC Start-Up Unit , University of Pisa , Pisa , Italy
- e CNR-Nano , Institute of Nanoscience and Nanotechnology , Pisa , Italy
| | - Justin Stebbing
- a Division of Cancer, Dept. of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| | - Leandro Castellano
- a Division of Cancer, Dept. of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| | - Jonathan Krell
- a Division of Cancer, Dept. of Surgery & Cancer, Imperial Centre for Translational and Experimental Medicine (ICTEM) , Imperial College , London , UK
| |
Collapse
|
47
|
Li Y, Chen H, Pan T, Jiang C, Zhao Z, Wang Z, Zhang J, Xu J, Li X. LncRNA ontology: inferring lncRNA functions based on chromatin states and expression patterns. Oncotarget 2016; 6:39793-805. [PMID: 26485761 PMCID: PMC4741861 DOI: 10.18632/oncotarget.5794] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/05/2015] [Indexed: 02/01/2023] Open
Abstract
Accumulating evidences suggest that long non-coding RNAs (lncRNAs) perform important functions. Genome-wide chromatin-states area rich source of information about cellular state, yielding insights beyond what is typically obtained by transcriptome profiling. We propose an integrative method for genome-wide functional predictions of lncRNAs by combining chromatin states data with gene expression patterns. We first validated the method using protein-coding genes with known function annotations. Our validation results indicated that our integrative method performs better than co-expression analysis, and is accurate across different conditions. Next, by applying the integrative model genome-wide, we predicted the probable functions for more than 97% of human lncRNAs. The putative functions inferred by our method match with previously annotated by the targets of lncRNAs. Moreover, the linkage from the cellular processes influenced by cancer-associated lncRNAs to the cancer hallmarks provided a “lncRNA point-of-view” on tumor biology. Our approach provides a functional annotation of the lncRNAs, which we developed into a web-based application, LncRNA Ontology, to provide visualization, analysis, and downloading of lncRNA putative functions.
Collapse
Affiliation(s)
- Yongsheng Li
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Hong Chen
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Tao Pan
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Chunjie Jiang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Zheng Zhao
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Zishan Wang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Jinwen Zhang
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Juan Xu
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| | - Xia Li
- College of Bioinformatics Science and Technology and Bio-Pharmaceutical Key Laboratory of Heilongjiang Province, Harbin Medical University, Nangang, Harbin, Heilongjiang, China
| |
Collapse
|
48
|
Lu Y, Leslie CS. Learning to Predict miRNA-mRNA Interactions from AGO CLIP Sequencing and CLASH Data. PLoS Comput Biol 2016; 12:e1005026. [PMID: 27438777 PMCID: PMC4954643 DOI: 10.1371/journal.pcbi.1005026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022] Open
Abstract
Recent technologies like AGO CLIP sequencing and CLASH enable direct transcriptome-wide identification of AGO binding and miRNA target sites, but the most widely used miRNA target prediction algorithms do not exploit these data. Here we use discriminative learning on AGO CLIP and CLASH interactions to train a novel miRNA target prediction model. Our method combines two SVM classifiers, one to predict miRNA-mRNA duplexes and a second to learn a binding model of AGO’s local UTR sequence preferences and positional bias in 3’UTR isoforms. The duplex SVM model enables the prediction of non-canonical target sites and more accurately resolves miRNA interactions from AGO CLIP data than previous methods. The binding model is trained using a multi-task strategy to learn context-specific and common AGO sequence preferences. The duplex and common AGO binding models together outperform existing miRNA target prediction algorithms on held-out binding data. Open source code is available at https://bitbucket.org/leslielab/chimiric. MicroRNAs (or miRNAs) are a family of small RNA molecules that guide Argonaute (AGO) to specific target sites within mRNAs and regulate numerous biological processes in normal cells and in disease. Despite years of research, the principles of miRNA targeting are incompletely understood, and computational miRNA target prediction methods still achieve only modest performance. Most previous target prediction work has been based on indirect measurements of miRNA regulation, such as mRNA expression changes upon miRNA perturbation, without mapping actual binding sites, which limits accuracy and precludes discovery of more subtle miRNA targeting rules. The recent introduction of CLIP (UV crosslinking followed by immunoprecipitation) sequencing technologies enables direct identification of interactions between miRNAs and mRNAs. However, the data generated from these assays has not been fully exploited in target prediction. Here, we present a model to predict miRNA-mRNA interactions solely based on their sequences, using new technologies to map AGO and miRNA binding interactions with machine learning techniques. Our algorithm produces more accurate predictions than state-of-the-art methods based on indirect measurements. Moreover, interpretation of the learned model reveals novel features of miRNA-mRNA interactions, including potential cooperativity with specific RNA-binding proteins.
Collapse
Affiliation(s)
- Yuheng Lu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Christina S. Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
49
|
Filippenkov IB, Sudarkina OY, Limborska SA, Dergunova LV. Circular RNA of the human sphingomyelin synthase 1 gene: Multiple splice variants, evolutionary conservatism and expression in different tissues. RNA Biol 2016; 12:1030-42. [PMID: 26274505 DOI: 10.1080/15476286.2015.1076611] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human sphingomyelin synthase 1 gene (SGMS1) encodes an essential enzyme that is involved in the synthesis of sphingomyelin and diacylglycerol from phosphatidylcholine and ceramide. Among the products of SGMS1, we found new transcripts, circular RNAs (circRNAs), that contain sequences of the gene's 5' untranslated region (5'UTR). Some of them include the gene's coding region and fragments of introns. An analysis of the abundance of circRNAs in human tissues showed that the largest transcripts were predominantly found in different parts of the brain. circRNAs of rat and mouse sphingomyelin synthase 1 orthologous genes were detected and are highly similar to the human SGMS1 gene transcripts. A quantitative analysis of the abundance of such transcripts also revealed their elevated amount in the brain. A computational analysis of sequences of human circRNAs showed their high potential of binding microRNAs (miRNAs), including the miRNAs that form complexes with Ago proteins and the mRNA of SGMS1. We assume that the circRNAs identified here participate in the regulation of the function of the SGMS1 gene in the brain.
Collapse
Affiliation(s)
- Ivan B Filippenkov
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia
| | - Olga Yu Sudarkina
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia
| | - Svetlana A Limborska
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia.,b Institute of Cerebrovascular Pathology and Stroke; Pirogov Russian National Research Medical University ; Moscow , Russia
| | - Lyudmila V Dergunova
- a Human Molecular Genetics Department ; Institute of Molecular Genetics; Russian Academy of Sciences ; Moscow , Russia.,b Institute of Cerebrovascular Pathology and Stroke; Pirogov Russian National Research Medical University ; Moscow , Russia
| |
Collapse
|
50
|
Ghosal S, Saha S, Das S, Sen R, Goswami S, Jana SS, Chakrabarti J. miRepress: modelling gene expression regulation by microRNA with non-conventional binding sites. Sci Rep 2016; 6:22334. [PMID: 26923536 PMCID: PMC4770313 DOI: 10.1038/srep22334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/08/2016] [Indexed: 01/03/2023] Open
Abstract
Some earlier studies have reported an alternative mode of microRNA-target interaction. We detected target regions within mRNA transcripts from AGO PAR-CLIP that did not contain any conventional microRNA seed pairing but only had non-conventional binding sites with microRNA 3' end. Our study from 7 set of data that measured global protein fold change after microRNA transfection pointed towards the association of target protein fold change with 6-mer and 7-mer target sites involving microRNA 3' end. We developed a model to predict the degree of microRNA target regulation in terms of protein fold changes from the number of different conventional and non-conventional target sites present in the target, and found significant correlation of its output with protein expression changes. We validated the effect of non-conventional interactions with target by modulating the abundance of microRNA in a human breast cancer cell line MCF-7. The validation was done using luciferase assay and immunoblot analysis for our predicted non-conventional microRNA-target pair WNT1 (3' UTR) and miR-367-5p and immunoblot analysis for another predicted non-conventional microRNA-target pair MYH10 (coding region) and miR-181a-5p. Both experiments showed inhibition of targets by transfection of microRNA mimics that were predicted to have only non-conventional sites.
Collapse
Affiliation(s)
- Suman Ghosal
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Shekhar Saha
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Shaoli Das
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Rituparno Sen
- Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal, 700064, India
| | - Swagata Goswami
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Siddhartha S. Jana
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
| | - Jayprokas Chakrabarti
- Computational Biology Group, Indian Association for the Cultivation of Science, Kolkata, West Bengal, 700032, India
- Gyanxet, BF 286 Salt Lake, Kolkata, West Bengal, 700064, India
| |
Collapse
|