1
|
Morrison K, Tincher M, Rothchild A, Yehl K. Fingerprinting DNAzyme Cross-Reactivity for Pattern-Based Detection of Heavy Metals. Anal Chem 2024; 96:11780-11789. [PMID: 39001810 DOI: 10.1021/acs.analchem.4c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Heavy metal contamination in food and water is a major public health concern because heavy metals are toxic in minute amounts. DNAzyme sensors are emerging as a promising tool for rapid onsite detection of heavy metals, which can aid in minimizing exposure. However, DNAzyme activity toward its target metal is not absolute and has cross-reactivity with similar metals, which is a major challenge in the wide-scale application of DNAzyme sensors for environmental monitoring. To address this, we constructed a four DNAzyme array (17E, GR-5, EtNA, and NaA43) and used a pattern-based readout to improve sensor accuracy. We measured cross-reactivity between three metal cofactors (Pb2+, Ca2+, and Na+) and common interferents (Mg2+, Zn2+, Mn2+, UO22+, Li+, K+, and Ag+) and then used t-SNE analysis to identify and quantify the metal ion. We further showed that this method can be used for distinguishing mixtures of metals and detecting Pb2+ in environmental soil samples at micromolar concentrations.
Collapse
Affiliation(s)
- Kevin Morrison
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Madeleine Tincher
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Alexis Rothchild
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Kevin Yehl
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
2
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
3
|
Qian SQ, Yuan M, Zuo XW, Cao H, Yu JS, Hao LL, Yang KL, Xu F. A novel strategy for enhancing the stability of aptamer conformations in heavy metal ion detection. Anal Chim Acta 2024; 1306:342577. [PMID: 38692784 DOI: 10.1016/j.aca.2024.342577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Detection methods based on aptamer probes have great potential and progress in the field of rapid detection of heavy metal ions. However, the unstable conformation of aptamers often results in poor sensitivity due to the dissociation of aptamer-target complex in real environments. RESULTS In this study, we developed a locking aptamer probe and combined it with AgInZnS quantum dots for the first time to detect cadmium ions. When cadmium ions are combined with the probe, the cadmium ions are fixed in the core-locking position, forming a stable cavity structure. The limit of detection (LOD) was achieved at a concentration of 6.9 nmol L-1, with a broad detection range from 10 nmol L-1 to 1000 μmol L-1, and good recovery rates (92.93%-102.8 %) were achieved in aquatic product testing. The locking aptamer probe with stable conformation effectively enhances the stability of the aptamer-target complex and remains good stability in four buffer environments as well as a 600 mmol L-1 salt solution; it also exhibits good stability at pH 6.5-7.5 and temperatures ranging from 25 °C to 35 °C. SIGNIFICANCE Overall, our study presented a general, simple, and cost-effective strategy for stabilizing aptamer conformations, and used for highly sensitive detection of cadmium ions.
Collapse
Affiliation(s)
- Shi Quan Qian
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China; Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore
| | - Xian Wei Zuo
- Key Laboratory of Sensor and Sensing Technology of Gansu Province, Gansu Academy of Sciences, Lanzhou, China
| | - Hui Cao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Jin Song Yu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Li-Ling Hao
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China
| | - Kun Lin Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore.
| | - Fei Xu
- Shanghai Engineering Research Centre of Food Rapid Detection, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
4
|
Martinon TLM, Pierre VC. Luminescent Lanthanide Probes for Inorganic and Organic Phosphates. Chem Asian J 2022; 17:e202200495. [PMID: 35750633 PMCID: PMC9388549 DOI: 10.1002/asia.202200495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/19/2022] [Indexed: 11/09/2022]
Abstract
Inorganic and organic phosphates-including orthophosphate, nucleotides, and DNA-are some of the most fundamental anions in cellular biology, regulating numerous processes of both medical and environmental significance. The characteristic long lifetimes of emitting lanthanides, including the brighter europium(III) and terbium(III), make them ideally suited for the development of molecular probes for the detection of phosphates directly in complex aqueous media. Moreover, given their high oxophilicity and the exquisite sensitivity of their quantum yields to their hydration number, those luminescent lanthanides are perfect for the detection of phosphates. Herein we discuss the principles that have guided the recent developments of molecular probes selective for inorganic or organic phosphates and how these lanthanide complexes facilitate the study of numerous biological processes.
Collapse
Affiliation(s)
- Thibaut L. M. Martinon
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| | - Valérie C. Pierre
- Department of ChemistryUniversity of Minnesota207 Pleasant Street SEMinneapolisMN 55455USA
| |
Collapse
|
5
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
6
|
Huang PJJ, Liu J. Sensing Metal Ions with Phosphorothioate-Modified DNAzymes. Methods Mol Biol 2022; 2439:277-289. [PMID: 35226327 DOI: 10.1007/978-1-0716-2047-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorothioate (PS) modification refers to replacing one of the nonbridging oxygen atoms in nucleic acids with sulfur. PS modifications can be easily introduced during solid-phase DNA synthesis. It has been extensively used in ribozyme and DNAzyme research to achieve a bioinorganic understanding of metal binding, bioanalytical applications of metal detection, and chemical biology of DNA modification. It allows for the access of new chemistry, not available to natural DNA. Since each PS modification is accompanied by the production of a chiral phosphorus center, a key technical challenge is to separate the two diastereomers called Rp and Sp. In this chapter, we describe our methods of HPLC-based separation followed by ligation to generate a long and fluorescently modified DNAzyme substrate. Subsequently, the use of the modified substrate for activity assay to understand metal binding and for metal ion detection is also described.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
7
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
8
|
Moon WJ, Huang PJJ, Liu J. Probing Metal-Dependent Phosphate Binding for the Catalysis of the 17E DNAzyme. Biochemistry 2021; 60:1909-1918. [PMID: 34106684 DOI: 10.1021/acs.biochem.1c00091] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The RNA-cleaving 17E DNAzyme exhibits different levels of cleavage activity in the presence of various divalent metal ions, with Pb2+ giving the fastest cleavage. In this study, the metal-phosphate interaction is probed to understand the trend of activity with different metal ions. For the first-row transition metals, the lowest activity shown by Ni2+ correlates with the inhibition by the inorganic phosphate and its water ligand exchange rate, suggesting inner-sphere metal coordination. Cleavage activity with the two stereoisomers of the phosphorothioate-modified substrates, Rp and Sp, indicated that Mg2+, Mn2+, Fe2+, and Co2+ had the highest Sp:Rp activity ratio of >900. Comparatively, the activity was much less affected using the thiophilic metals, including Pb2+, suggesting inner-sphere coordination. The pH-rate profiles showed that Pb2+ was different than the rest of the metal ions in having a smaller slope and a similar fitted apparent pKa and the pKa of metal-bound water. Combining previous reports and our current results, we propose that Pb2+ most likely plays the role of a general acid while the other metal ions are Lewis acid catalysts interacting with the scissile phosphate.
Collapse
Affiliation(s)
- Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Wang G, Wu M, Chu LT, Chen TH. Portable microfluidic device with thermometer-like display for real-time visual quantitation of Cadmium(II) contamination in drinking water. Anal Chim Acta 2021; 1160:338444. [PMID: 33894969 DOI: 10.1016/j.aca.2021.338444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd2+) is a toxic metal ion widely existing in water, soil and food. Conventional water quality control heavily relies on expensive, bulky and sophisticated instrument such as spectrometry, which is time-consuming and incompatible with on-site, real-time detection. Here, a portable microfluidic device with thermometer-like visual readouts is developed for real-time quantitation of cadmium (II) contamination in drinking water. We use Cd2+-dependent DNAzyme (Cd16), which is cleaved when Cd2+ is present, creating a single strand DNA which triggers catalytic hairpin assembly (CHA) with two hairpins H1 and H2 as the building blocks. Plenty of H1H2 complex, the product after the Cd2+-mediated CHA, are generated, which can connect magnetic microparticles (MMPs) and polystyrene microparticles (PMPs), forming "MMPs-H1H2-PMPs" sandwich structure. To provide visual readout to quantitate the particle connection, the particle solution is loaded into a portable microfluidic chip. A magnetic separator first removes MMPs and the connected PMPs, while free PMPs can continue flowing until accumulating into a bar at the particle dam. Shown as a thermometer-like display, the accumulating length is inversely proportional to the concentration of Cd2+, enabling quantitative detection of Cd2+ by the naked eye. The proposed device exhibits a limit of detection of 11.3 nM of Cd2+, selectivity >200-fold against other metal ions, high tolerance to the interferents present in drinking water and high recovery rate in tap water. With high analytical performance without any sample preparation step, this portable device is highly promising in real-time monitoring in urban drinking water at sites.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Minghui Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Lok Ting Chu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
| | - Ting-Hsuan Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
10
|
Huang PJJ, Liu J. In vitro selection and application of lanthanide-dependent DNAzymes. Methods Enzymol 2021; 651:373-396. [PMID: 33888210 DOI: 10.1016/bs.mie.2021.01.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Highly sensitive and selective detection of lanthanide ions is a major analytical challenge. In recent years, the use of DNA for this purpose has been pursued. For such highly charged cations, it is difficult to select their aptamers due to strong nonspecific binding. On the other hand, the use of catalytic DNA or DNAzymes has an advantage to overcome this problem, especially DNAzymes with RNA-cleaving activity. In this chapter, a few such DNAzymes are introduced and methods for in vitro selection of lanthanide-dependent RNA-cleaving DNAzymes are described in detail, including the selection protocols, the DNA sequences used, the characterization of selected DNAzymes and their conversion into biosensors. All of the experiments use only fluorophore-labeled DNA, and radioisotope labeling is completely avoided. The resulting DNAzymes can distinguish lanthanides from non-lanthanide metals, tell the difference between light and heavy lanthanides, and can be used together to discriminate individual lanthanides.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
11
|
Saran R, Huang Z, Liu J. Phosphorothioate nucleic acids for probing metal binding, biosensing and nanotechnology. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Yu W, Wang S, Cao D, Rui H, Liu C, Sheng Y, Sun Y, Zhang J, Xu J, Jiang D. Insight into an Oxidative DNA-Cleaving DNAzyme: Multiple Cofactors, the Catalytic Core Map and a Highly Efficient Variant. iScience 2020; 23:101555. [PMID: 33083724 PMCID: PMC7522124 DOI: 10.1016/j.isci.2020.101555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/24/2020] [Accepted: 09/09/2020] [Indexed: 02/07/2023] Open
Abstract
An oxidative DNA-cleaving DNAzyme (PL) employs a double-cofactor model “X/Cu2+” for catalysis. Herein, we verified that reduced nicotinamide adenine dinucleotide (NADH), flavin mononucleotide, cysteine, dithiothreitol, catechol, resorcinol, hydroquinone, phloroglucinol, o-phenylenediamine, 3,3′,5,5'-tetramethylbenzidine, and hydroxylamine acted as cofactor X. According to their structural similarities or fluorescence property, we further confirmed that reduced nicotinamide adenine dinucleotide phosphate (NADPH), 2-mercaptoethanol, dopamine, chlorogenic acid, resveratrol, and 5-carboxyfluorescein also functioned as cofactor X. Superoxide anions might be the commonality behind these cofactors. We subsequently determined the conservative change of individual nucleotides in the catalytic core under four different cofactor X. The nucleotides A4 and C5 are highly conserved, whereas the conservative levels of other nucleotides are dependent on the types of cofactor X. Moreover, we observed that the minor change in the PL's secondary structure affects electrophoretic mobility. Finally, we characterized a highly efficient variant T3G and converted its double-cofactor NADH/Cu2+ to sole-cofactor NADH. An oxidative cleavage DNAzyme works with various cofactor X Catalytic nucleotide conservation fluctuates with different cofactor X The PL DNAzyme's minor secondary structure change affects electrophoretic mobility Double-cofactor model of the variant T3G can be converted to sole-cofactor model
Collapse
Affiliation(s)
- Wenqian Yu
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Shijin Wang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Dongling Cao
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Hongyue Rui
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Chengcheng Liu
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Yongjie Sheng
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Yanhong Sun
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Jin Zhang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
| | - Jiacui Xu
- College of Animal Sciences, Jilin University, 5333# Xi'an Road, Changchun 130062, China
- Corresponding author
| | - Dazhi Jiang
- Key Lab for Molecular Enzymology & Engineering of the Ministry of Education, School of Life Sciences, Jilin University, 2699# Qianjin Street, Changchun 130012, China
- Corresponding author
| |
Collapse
|
13
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
14
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020; 59:3573-3577. [PMID: 31867832 DOI: 10.1002/anie.201915675] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
15
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915675] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
16
|
Le Vay K, Salibi E, Song EY, Mutschler H. Nucleic Acid Catalysis under Potential Prebiotic Conditions. Chem Asian J 2020; 15:214-230. [PMID: 31714665 PMCID: PMC7003795 DOI: 10.1002/asia.201901205] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/05/2019] [Indexed: 01/25/2023]
Abstract
Catalysis by nucleic acids is indispensable for extant cellular life, and it is widely accepted that nucleic acid enzymes were crucial for the emergence of primitive life 3.5-4 billion years ago. However, geochemical conditions on early Earth must have differed greatly from the constant internal milieus of today's cells. In order to explore plausible scenarios for early molecular evolution, it is therefore essential to understand how different physicochemical parameters, such as temperature, pH, and ionic composition, influence nucleic acid catalysis and to explore to what extent nucleic acid enzymes can adapt to non-physiological conditions. In this article, we give an overview of the research on catalysis of nucleic acids, in particular catalytic RNAs (ribozymes) and DNAs (deoxyribozymes), under extreme and/or unusual conditions that may relate to prebiotic environments.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Elia Salibi
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Emilie Y. Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| | - Hannes Mutschler
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
| |
Collapse
|
17
|
Ma L, Kartik S, Liu B, Liu J. From general base to general acid catalysis in a sodium-specific DNAzyme by a guanine-to-adenine mutation. Nucleic Acids Res 2019; 47:8154-8162. [PMID: 31276580 PMCID: PMC6736077 DOI: 10.1093/nar/gkz578] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes were reported, where nucleobases are likely to play critical roles in catalysis. The NaA43 and NaH1 DNAzymes share the same 16-nt Na+-binding motif, but differ in one or two nucleotides in a small catalytic loop. Nevertheless, they display an opposite pH-dependency, implicating distinct catalytic mechanisms. In this work, rational mutation studies locate a catalytic adenine residue, A22, in NaH1, while previous studies found a guanine (G23) to be important for the catalysis of NaA43. Mutation with pKa-perturbed analogs, such as 2-aminopurine (∼3.8), 2,6-diaminopurine (∼5.6) and hypoxanthine (∼8.7) affected the overall reaction rate. Therefore, we propose that the N1 position of G23 (pKa ∼6.6) in NaA43 functions as a general base, while that of A22 (pKa ∼6.3) in NaH1 as a general acid. Further experiments with base analogs and a phosphorothioate-modified substrate suggest that the exocyclic amine in A22 and both of the non-bridging oxygens at the scissile phosphate are important for catalysis for NaH1. This is an interesting example where single point mutations can change the mechanism of cleavage from general base to general acid, and it can also explain this Na+-dependent DNAzyme scaffold being sensitive to a broad range of metal ions and molecules.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sanjana Kartik
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Biwu Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
18
|
Hwang K, Mou Q, Lake RJ, Xiong M, Holland B, Lu Y. Metal-Dependent DNAzymes for the Quantitative Detection of Metal Ions in Living Cells: Recent Progress, Current Challenges, and Latest Results on FRET Ratiometric Sensors. Inorg Chem 2019; 58:13696-13708. [PMID: 31364355 PMCID: PMC7176321 DOI: 10.1021/acs.inorgchem.9b01280] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Many different metal ions are involved in various biological functions including metallomics and trafficking, and yet there are currently effective sensors for only a few metal ions, despite the first report of metal sensors for calcium more than 40 years ago. To expand upon the number of metal ions that can be probed in biological systems, we and other laboratories employ the in vitro selection method to obtain metal-specific DNAzymes with high specificity for a metal ion and then convert these DNAzymes into fluorescent sensors for these metal ions using a catalytic beacon approach. In this Forum Article, we summarize recent progress made in developing these DNAzyme sensors to probe metal ions in living cells and in vivo, including several challenges that we were able to overcome for this application, such as DNAzyme delivery, spatiotemporal control, and signal amplification. Furthermore, we have identified a key remaining challenge for the quantitative detection of metal ions in living cells and present a new design and the results of a Förster resonance energy transfer (FRET)-based DNAzyme sensor for the ratiometric quantification of Zn2+ in HeLa cells. By converting existing DNAzyme sensors into a ratiometric readout without compromising the fundamental catalytic function of the DNAzymes, this FRET-based ratiometric DNAzyme design can readily be applied to other DNAzyme sensors as a major advance in the field to develop much more quantitative metal-ion probes for biological systems.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quanbing Mou
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Institute of Chemical Biology and Nanomedicine, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Brandalynn Holland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
19
|
|
20
|
He Y, Chen D, Huang PJJ, Zhou Y, Ma L, Xu K, Yang R, Liu J. Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Res 2019; 46:10262-10271. [PMID: 30215808 PMCID: PMC6212836 DOI: 10.1093/nar/gky807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, the excellent Na+ selectivity of a few RNA-cleaving DNAzymes was exploited, where Na+ can be around 3000-fold more effective than K+ for promoting catalysis. By using a double mutant based on the Ce13d DNAzyme, and by lowering the temperature, increased 2-aminopurine (2AP) fluorescence was observed with addition of both Na+ and K+. The fluorescence increase was similar for these two metals at below 10 mM, after which K+ took a different pathway. Since 2AP probes its local base stacking environment, K+ can be considered to induce misfolding. Binding of both Na+ and K+ was specific, since single base mutations could fully inhibit 2AP fluorescence for both metals. The binding thermodynamics was measured by temperature-dependent experiments revealing enthalpy-driven binding for both metals and less coordination sites compared to G-quadruplex DNA. Cleavage activity assays indicated a moderate cleavage activity with 10 mM K+, while further increase of K+ inhibited the activity, also supporting its misfolding of the DNAzyme. For comparison, a G-quadruplex DNA was also studied using the same system, where Na+ and K+ led to the same final state with only around 8-fold difference in Kd. This study provides interesting insights into strategies for discriminating Na+ and K+.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yibo Zhou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kexin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
21
|
He Y, Lopez A, Zhang Z, Chen D, Yang R, Liu J. Nucleotide and DNA coordinated lanthanides: From fundamentals to applications. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Hu S, Huang PJJ, Wang J, Liu J. Phosphorothioate DNA Mediated Sequence-Insensitive Etching and Ripening of Silver Nanoparticles. Front Chem 2019; 7:198. [PMID: 31041302 PMCID: PMC6476897 DOI: 10.3389/fchem.2019.00198] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/14/2019] [Indexed: 01/06/2023] Open
Abstract
Many DNA-functionalized nanomaterials and biosensors have been reported, but most have ignored the influence of DNA on the stability of nanoparticles. We observed that cytosine-rich DNA oligonucleotides can etch silver nanoparticles (AgNPs). In this work, we showed that phosphorothioate (PS)-modified DNA (PS-DNA) can etch AgNPs independently of DNA sequence, suggesting that the thio-modifications are playing the major role in etching. Compared to unmodified DNA (e.g., poly-cytosine DNA), the concentration of required PS DNA decreases sharply, and the reaction rate increases. Furthermore, etching by PS-DNA occurs quite independent of pH, which is also different from unmodified DNA. The PS-DNA mediated etching could also be controlled well by varying DNA length and conformation, and the number and location of PS modifications. With a higher activity of PS-DNA, the process of etching, ripening, and further etching was taken place sequentially. The etching ability is inhibited by forming duplex DNA and thus etching can be used to measure the concentration of complementary DNA.
Collapse
Affiliation(s)
- Shengqiang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
23
|
Sensitive detection of chloramphenicol based on Ag-DNAzyme-mediated signal amplification modulated by DNA/metal ion interaction. Biosens Bioelectron 2019; 127:45-49. [DOI: 10.1016/j.bios.2018.12.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/05/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
|
24
|
Jimmy Huang PJ, Moon WJ, Liu J. Instantaneous Iodine-Assisted DNAzyme Cleavage of Phosphorothioate RNA. Biochemistry 2018; 58:422-429. [PMID: 30272443 DOI: 10.1021/acs.biochem.8b00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metal ions play a critical role in the RNA-cleavage reaction by interacting with the scissile phosphate and stabilizing the highly negatively charged transition state. Many metal-dependent DNAzymes have been selected for RNA cleavage. Herein, we report that the Ce13d DNAzyme can use nonmetallic iodine (I2) to cleave a phosphorothioate (PS)-modified substrate. The cleavage yield exceeded 60% for both the Rp and Sp stereoisomers in 10 s, while the yield without the enzyme strand was only ∼10%. The Ce13d cleavage with I2 also required Na+, consistent with the property of Ce13d and confirming the similar role of I2 as a metal ion. Ce13d had the highest yield among eight tested DNAzymes, with the second highest DNAzyme showing only 20% cleavage. The incomplete cleavage was due to competition from desulfurization and isomerization reactions. This DNAzyme was engineered for fluorescence-based I2 detection. With EDTA for masking metal ions, I2 was selectively detected down to 4.7 nM. Oxidation of I- with Fe3+ produced I2 in situ, allowing detection of Fe3+ down to 78 nM. By harnessing nonelectrostatic interactions, such as the I2/sulfur interaction observed here, more nonmetal species might be discovered to assist DNAzyme-based RNA cleavage.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| |
Collapse
|
25
|
Ma L, Liu J. An in Vitro-Selected DNAzyme Mutant Highly Specific for Na + under Slightly Acidic Conditions. Chembiochem 2018; 20:537-542. [PMID: 29989277 DOI: 10.1002/cbic.201800322] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Indexed: 12/19/2022]
Abstract
Sodium is one of the most common metal ions in biology; however, DNA-based sodium probes have only been reported recently. A Na+ -specific RNA-cleaving DNAzyme named NaA43 is active with Na+ alone. In this work, we were using Co(NH3 )6 3+ as the intended metal cofactor for in vitro selection, but obtained a mutant of the NaA43 DNAzyme. The mutant was named NaH1, and differs from NaA43 by only two nucleotides. NaA43 has an optimal pH of 7.0, whereas the optimal pH for NaH1 is 6.0. This difference might be due to our selection having been performed at pH 6.0. NaH1 also displays an excellent selectivity for sodium relative to other competing monovalent ions, as well as a fast catalytic rate of (0.11±0.01) min-1 with 50 mm Na+ . At low Na+ concentrations, the selected DNAzyme exhibited a higher cleavage rate than NaA43 and thus a tighter apparent Kd of (12.0±1.6) mm Na+ . Furthermore, the NaH1 DNAzyme was engineered into a fluorescent Na+ biosensor by attaching a fluorophore/quencher pair to the DNAzyme with a detection limit of 223 μm Na+ . Preliminary work on detection of Na+ in serum was demonstrated as well. This study provides a useful mutant that works in a slightly acidic environment, which might be useful for sensing Na+ in acidic in vivo environments.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
26
|
Manochehry S, McConnell EM, Tram KQ, Macri J, Li Y. Colorimetric Detection of Uranyl Using a Litmus Test. Front Chem 2018; 6:332. [PMID: 30140672 PMCID: PMC6095041 DOI: 10.3389/fchem.2018.00332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/16/2018] [Indexed: 01/10/2023] Open
Abstract
Ingestion of water containing toxic contaminants above levels deemed safe for human consumption can occur unknowingly since numerous common contaminants in drinking water are colorless and odorless. Uranyl is particularly problematic as it has been found at dangerous levels in sources of drinking water. Detection of this heavy metal-ion species in drinking water currently requires sending a sample to a laboratory where trained personnel use equipment to perform the analysis and turn-around times can be long. A pH-responsive colorimetric biosensor was developed to enable detection of uranyl in water which coupled the uranyl-specific 39E DNAzyme as a recognition element, and an enzyme capable of producing a pH change as the reporter element. The rapid colorimetric assay presented herein can detect uranyl in lake and well water at concentrations relevant for environmental monitoring, as demonstrated by the detection of uranyl at levels below the limits set for drinking water by major regulatory agencies including the World Health Organization (30 μg/L). This simple and inexpensive DNAzyme-based assay enabled equipment-free visual detection of 15 μg/L uranyl, using both solution-based and paper-based pH-dependent visualization strategies.
Collapse
Affiliation(s)
- Sepehr Manochehry
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Erin M. McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
| | - Kha Q. Tram
- Department of Chemistry and Chemical Biology, McMaster UniversityHamilton, ON, Canada
| | - Joseph Macri
- Department of Pathology and Molecular Medicine, McMaster UniversityHamilton, ON, Canada
- Hamilton Regional Laboratory Medicine ProgramHamilton, ON, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster UniversityHamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster UniversityHamilton, ON, Canada
| |
Collapse
|
27
|
Zhang D, Hu J, Yang XY, Wu Y, Su W, Zhang CY. Target-initiated synthesis of fluorescent copper nanoparticles for the sensitive and label-free detection of bleomycin. NANOSCALE 2018; 10:11134-11142. [PMID: 29873380 DOI: 10.1039/c8nr02780c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fluorescent copper nanoparticles (CuNPs) have received great attention due to their distinct characteristics of facile synthesis, tunable fluorescence emission, high photostability, and biological compatibility, and they have been widely used for chemical and biological analyses. Bleomycins (BLMs) are widely used antitumor agents for the clinical treatment of various cancers. Here, we develop a sensitive and label-free fluorescence method for the quantitative detection of BLM on the basis of BLM-initiated enzymatic polymerization-mediated synthesis of fluorescent CuNPs. We design two hairpin DNAs: one (Hp1) for the recognition of BLM and the other (Hp2) for signal amplification. In the presence of BLM, it may recognize and cleave the 5'-GC-3' site of the Hp1 stem, releasing the 8-17 DNAzyme fragment. The resultant 8-17 DNAzyme fragments may bind with the loop of Hp2 to form a partial double-stranded DNA (dsDNA) duplex, initiating the cyclic cleavage of Hp2 in the presence of Zn2+-dependent DNAzymes and generating numerous new DNA fragments with the free 3'-OH terminal, which can induce the formation of a poly(thymine) (poly-T) sequence with the assistance of terminal deoxynucleotidyl transferase (TdTase). Subsequently, the ploy-T sequence may function as the template for the synthesis of CuNPs with strong fluorescence emission. This method shows good selectivity and high sensitivity with a detection limit as low as 8.1 × 10-16 M, and it exhibits good performance in serum samples. Moreover, this method has distinct advantages of simplicity and low cost, holding great potential in clinical diagnosis and biomedical research.
Collapse
Affiliation(s)
- Dandan Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan 250014, China.
| | | | | | | | | | | |
Collapse
|
28
|
Xu L, Zhang Z, Fang X, Liu Y, Liu B, Liu J. Robust Hydrogels from Lanthanide Nucleotide Coordination with Evolving Nanostructures for a Highly Stable Protein Encapsulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14321-14330. [PMID: 29644845 DOI: 10.1021/acsami.7b18005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Metal coordination with organic ligands often produce crystalline metal-organic frameworks and sometimes amorphous nanoparticles. In this work, we explore a different type of material from the same chemistry: hydrogels. Lanthanides are chosen as the metal component because of their important technological applications and continuously tunable properties. Adenosine monophosphate (AMP) and lanthanides form two types of coordination materials: the lighter lanthanides from La3+ to Tb3+ form nanoparticles, whereas the rest heavier ones initially form nanoparticles but later spontaneously transform to hydrogels. This slow sol-to-gel transition is accompanied by heat release, as indicated by isothermal titration calorimetry. The transition is also accompanied by a morphology change from nanoparticles to nanofibers, as indicated by transmission electron microscopy. These gels are insensitive to ionic strength or temperature with excellent stability. Gelation is unique to AMP because other nucleotides or other adenine derivatives only yield nanoparticles or soluble products. Entrapment of guest molecules such as glucose oxidase is also explored, where the hydrogels allow a better enzyme activity and stability compared to nanoparticles. Further applications of lanthanide coordinated hydrogels might include biosensors, imaging agents, and drug delivery.
Collapse
Affiliation(s)
- Li Xu
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Zijie Zhang
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Xiaoqiang Fang
- School of Chemistry and Chemical Engineering , Guangdong Pharmaceutical University , Zhongshan 528458 , P. R. China
| | - Yibo Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Biwu Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology , University of Waterloo , 200 University Avenue West , Waterloo , Ontario , Canada N2L 3G1
| |
Collapse
|
29
|
Affiliation(s)
- Tianmeng Yu
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
- Xiangya School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
30
|
Zhang X, Zeng X, Liu L, Lan X, Huang J, Zeng H, Li R, Luo K, Wu W, Zhou M, Li S. Correlation of nasopharyngeal carcinoma with rare earth elements and the Epstein-Barr virus. Oncol Lett 2018. [PMID: 29541176 PMCID: PMC5835927 DOI: 10.3892/ol.2018.7853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The concentration and distribution of rare earth elements (REE) in nasopharyngeal carcinoma (NPC) were measured to investigate connections with tumor size, lymph node metastasis, clinical stages, and Epstein-Barr virus (EBV) infection. There were 30 patients with NPC who met the criteria for inclusion in the present study. The EBV copy number, as well as the concentration and distribution of REE, was analyzed. EBV was detected using reverse transcription-polymerase chain reaction, with the concentrations of REE in NPC tissues measured using inductively coupled plasma-tandem mass spectrometry. The mean values were used when comparing concentrations of REE in NPC tissues as the standard deviation of this parameter was the lowest. Light REE had the highest concentrations, followed by medium, and then heavy REE. The concentrations of REE decreased with increasing tumor size and with the presence of lymph node metastasis. The concentrations of REE gradually increased between stage II and IVa, but markedly decreased thereafter. The elements that exhibited the greatest decreases were terbium, holmium and ytterbium. Furthermore, the concentrations of REE in NPC were not associated with sex (r=0.301, P=0.106) or age (r=−0.011, P=0.955), and were negatively associated with EBV (r=−0.744, P<0.001). By contrast, the EBV copy number increased alongside advancements in clinical stage. Changes in the concentrations of REE in NPC were more prominent for medium and heavy elements. Additionally, alterations in the concentrations of heavy REE may affect the occurrence and development of NPC.
Collapse
Affiliation(s)
- Xiangmin Zhang
- Department of Head and Neck Surgery, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiangfu Zeng
- Department of General Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lianbin Liu
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Xiaolin Lan
- Department of Head and Neck Surgery, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Jing Huang
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Hongxue Zeng
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Rong Li
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Keqing Luo
- Department of Head and Neck Surgery, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Wei Wu
- Department of Radiation Oncology, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Maohua Zhou
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| | - Shaojin Li
- Ganzhou Institute of Cancer Research, Tumor Hospital of Ganzhou, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
31
|
Zhang Z, Morishita K, Lin WTD, Huang PJJ, Liu J. Nucleotide coordination with 14 lanthanides studied by isothermal titration calorimetry. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
33
|
Yu T, Zhou W, Liu J. Ultrasensitive DNAzyme-Based Ca 2+ Detection Boosted by Ethanol and a Solvent-Compatible Scaffold for Aptazyme Design. Chembiochem 2017; 19:31-36. [PMID: 29076615 DOI: 10.1002/cbic.201700498] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Indexed: 12/29/2022]
Abstract
Functional DNA includes aptamers and DNAzymes, and metal ions are often important for achieving the chemical functions of such DNA. Biosensors based on functional DNA have mainly been tested in aqueous buffers. By introducing organic solvents with much lower dielectric constants, the interaction between metal ions and DNA can be significantly enhanced, and this might affect the performance of DNA-based biosensors. In this work, the effect of ethanol on the activity of the EtNa DNAzyme was studied for Ca2+ detection. With 30 % ethanol, the sensor has a detection limit of 1.4 μm Ca2+ , which is a 16-fold improvement relative to that in water. This EtNa DNAzyme is unique because other tested DNAzymes are all inhibited by 50 % ethanol. Finally, by using the EtNa DNAzyme as a scaffold, the adenosine monophosphate (AMP) aptamer was inserted to construct an aptazyme, which allowed the measurement of AMP in ethanol. In summary, this study has reported the most sensitive DNA-based sensor for Ca2+ , and its sensitivity and selectivity can approach those of proteins or small-molecule ligands. This work also provides a way to measure aptamer binding in organic solvents.
Collapse
Affiliation(s)
- Tianmeng Yu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, P.R. China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
34
|
Zhou W, Saran R, Ding J, Liu J. Two Completely Different Mechanisms for Highly Specific Na + Recognition by DNAzymes. Chembiochem 2017; 18:1828-1835. [PMID: 28658518 DOI: 10.1002/cbic.201700184] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Indexed: 02/06/2023]
Abstract
Our view of the interaction between Na+ and nucleic acids was changed by a few recently discovered Na+ -specific RNA-cleaving DNAzymes. In addition to nonspecific electrostatic interactions, highly specific recognition is also possible. Herein, two such DNAzymes, named EtNa and Ce13d, are compared to elucidate their mechanisms of Na+ binding. Mutation studies indicate that they have different sequence requirements. Phosphorothioate (PS) substitution at the scissile phosphate drops the activity of EtNa 140-fold, and it cannot be rescued by thiophilic Cd2+ or Mn2+ , whereas the activity of PS-modified Ce13d can be rescued. Na+ -dependent activity assays indicate that two Na+ ions bind cooperatively in EtNa, and each Na+ likely interacts with a nonbridging oxygen atom in the scissile phosphate, whereas Ce13d binds only one Na+ ion in a well-defined Na+ aptamer, and this Na+ ion does not directly interact with the scissile phosphate. Both DNAzymes display a normal pH-rate profile, with a single deprotonation reaction required for catalysis. For EtNa, Na+ fails to protect the conserved nucleotides from dimethyl sulfate attack, and no specific Na+ binding is detected by 2-aminopurine fluorescence, both of which are different from those observed for Ce13d. This work suggests that EtNa binds Na+ mainly through its scissile phosphate without significant involvement of the nucleotides in the enzyme strand, whereas Ce13d has a well-defined aptamer for Na+ binding. Therefore, DNA has at least two distinct ways to achieve highly selective Na+ binding.
Collapse
Affiliation(s)
- Wenhu Zhou
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada.,Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Runjhun Saran
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Juewen Liu
- Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
35
|
Folding of the silver aptamer in a DNAzyme probed by 2-aminopurine fluorescence. Biochimie 2017; 145:145-150. [PMID: 28711684 DOI: 10.1016/j.biochi.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/04/2017] [Indexed: 12/28/2022]
Abstract
The RNA-cleaving Ag10c DNAzyme was recently isolated via in vitro selection and it can bind two Ag+ ions for activity. The Ag10c contains a well-defined Ag+ binding aptamer as indicated by DMS footprinting. Since aptamer binding is often accompanied with conformational changes, we herein used 2-aminopurine (2AP) to probe its folding in the presence of Ag+. The Ag10c was respectively labeled with 2AP at three different positions, both in the substrate strand and in the enzyme strand, one at a time. Ag+-induced folding was observed at the substrate cleavage junction and the A9 position of the enzyme strand, consistent with aptamer binding. The measured Kd at the A9 position was 18 μM Ag+ with a Hill coefficient of 2.17, similar to those obtained from the previous cleavage activity based assays. However, labeling a 2AP at the A2 position inhibited the activity and folding. Compared to other metal ions, Ag+ has a unique sigmoidal folding profile indicative of multiple silver binding cooperatively. This suggests that Ag+ can induce a local folding in the enzyme loop and this folding is important for activity. This study provides important biophysical insights into this new DNAzyme, suggesting the possibility of designing folding-based biosensors for Ag+.
Collapse
|
36
|
Affiliation(s)
- Wenhu Zhou
- Xiangya
School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Runjhun Saran
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department
of Chemistry, Water Institute, and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
37
|
McGhee CE, Loh KY, Lu Y. DNAzyme sensors for detection of metal ions in the environment and imaging them in living cells. Curr Opin Biotechnol 2017; 45:191-201. [PMID: 28458112 DOI: 10.1016/j.copbio.2017.03.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
The on-site and real-time detection of metal ions is important for environmental monitoring and for understanding the impact of metal ions on human health. However, developing sensors selective for a wide range of metal ions that can work in the complex matrices of untreated samples and cells presents significant challenges. To meet these challenges, DNAzymes, an emerging class of metal ion-dependent enzymes selective for almost any metal ion, have been functionalized with fluorophores, nanoparticles and other imaging agents and incorporated into sensors for the detection of metal ions in environmental samples and for imaging metal ions in living cells. Herein, we highlight the recent developments of DNAzyme-based fluorescent, colorimetric, SERS, electrochemical and electrochemiluminscent sensors for metal ions for these applications.
Collapse
Affiliation(s)
- Claire E McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Kang Yong Loh
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
38
|
Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens Bioelectron 2017; 90:125-139. [DOI: 10.1016/j.bios.2016.11.039] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 11/03/2016] [Accepted: 11/15/2016] [Indexed: 12/20/2022]
|
39
|
Saran R, Kleinke K, Zhou W, Yu T, Liu J. A Silver-Specific DNAzyme with a New Silver Aptamer and Salt-Promoted Activity. Biochemistry 2017; 56:1955-1962. [PMID: 28345892 DOI: 10.1021/acs.biochem.6b01131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most RNA-cleaving DNAzymes require a metal ion to interact with the scissile phosphate for activity. Therefore, few unmodified DNAzymes work with thiophilic metals because of their low affinity for phosphate. Recently, an Ag+-specific Ag10c DNAzyme was reported via in vitro selection. Herein, Ag10c is characterized to rationalize the role of the strongly thiophilic Ag+. Systematic mutation studies indicate that Ag10c is a highly conserved DNAzyme and its Ag+ binding is unrelated to C-Ag+-C interaction. Its activity is enhanced by increasing Na+ concentrations in buffer. At the same metal concentration, activity decreases in the following order: Li+ > Na+ > K+. Ag10c binds one Na+ ion and two Ag+ ions for catalysis. The pH-rate profile has a slope of ∼1, indicating a single deprotonation step. Phosphorothioate substitution at the scissile phosphate suggests that Na+ interacts with the pro-Rp oxygen of the phosphate, and dimethyl sulfate footprinting indicates that the DNAzyme loop is a silver aptamer binding two Ag+ ions. Therefore, Ag+ exerts its function allosterically, while the scissile phosphate interacts with Na+, Li+, Na+, or Mg2+. This work suggests the possibility of isolating thiophilic metal aptamers based on DNAzyme selection, and it also demonstrates a new Ag+ aptamer.
Collapse
Affiliation(s)
- Runjhun Saran
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kimberly Kleinke
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Wenhu Zhou
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Tianmeng Yu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
40
|
Abstract
DNAzymes are catalytically active DNA molecules that are obtained via in vitro selection. RNA-cleaving DNAzymes have attracted significant attention for both therapeutic and diagnostic applications due to their excellent programmability, stability, and activity. They can be designed to cleave a specific mRNA to down-regulate gene expression. At the same time, DNAzymes can sense a broad range of analytes. By combining these two functions, theranostic DNAzymes are obtained. This review summarizes the progress of DNAzyme for theranostic applications. First, in vitro selection of DNAzymes is briefly introduced, and some representative DNAzymes related to biological applications are summarized. Then, the applications of DNAzyme for RNA cleaving are reviewed. DNAzymes have been used to cleave RNA for treating various diseases, such as viral infection, cancer, inflammation and atherosclerosis. Several formulations have entered clinical trials. Next, the use of DNAzymes for detecting metal ions, small molecules and nucleic acids related to disease diagnosis is summarized. Finally, the theranostic applications of DNAzyme are reviewed. The challenges to be addressed include poor DNAzyme activity under biological conditions, mRNA accessibility, delivery, and quantification of gene expression. Possible solutions to overcome these challenges are discussed, and future directions of the field are speculated.
Collapse
|
41
|
Zhou W, Saran R, Huang PJJ, Ding J, Liu J. An Exceptionally Selective DNA Cooperatively Binding Two Ca2+Ions. Chembiochem 2017; 18:518-522. [PMID: 28087991 DOI: 10.1002/cbic.201600708] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Runjhun Saran
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Po-Jung Jimmy Huang
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
| | - Juewen Liu
- School of Pharmaceutical Sciences; Central South University; 172 Tongzipo Road Changsha Hunan 410013 China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; 200 University Avenue West Waterloo ON N2L 3G1 Canada
| |
Collapse
|
42
|
Kasprowicz A, Stokowa-Sołtys K, Jeżowska-Bojczuk M, Wrzesiński J, Ciesiołka J. Characterization of Highly Efficient RNA-Cleaving DNAzymes that Function at Acidic pH with No Divalent Metal-Ion Cofactors. ChemistryOpen 2016; 6:46-56. [PMID: 28168150 PMCID: PMC5288747 DOI: 10.1002/open.201600141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/29/2016] [Indexed: 12/02/2022] Open
Abstract
Here, we describe the characterization of new RNA‐cleaving DNAzymes that showed the highest catalytic efficiency at pH 4.0 to 4.5, and were completely inactive at pH values higher than 5.0. Importantly, these DNAzymes did not require any divalent metal ion cofactors for catalysis. This clearly suggests that protonated nucleic bases are involved in the folding of the DNAzymes into catalytically active structures and/or in the cleavage mechanism. The trans‐acting DNAzyme variants were also catalytically active. Mutational analysis revealed a conservative character of the DNAzyme catalytic core that underpins the high structural requirements of the cleavage mechanism. A significant advantage of the described DNAzymes is that they are inactive at pH values close to physiological pH and under a wide range of conditions in the presence of monovalent and divalent metal ions. These pH‐dependent DNAzymes could be used as molecular cassettes in biotechnology or nanotechnology, in molecular processes that consist of several steps. The results expand the repertoire of DNAzymes that are active under nonphysiological conditions and shed new light on the possible mechanisms of catalysis.
Collapse
Affiliation(s)
- Aleksandra Kasprowicz
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | | | | | - Jan Wrzesiński
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Jerzy Ciesiołka
- Institute of Bioorganic Chemistry Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| |
Collapse
|
43
|
Kim J, Lee JB. Giant Catalytic DNA Particles for Simple and Intuitive Detection of Pb(2.). NANOSCALE RESEARCH LETTERS 2016; 11:244. [PMID: 27169418 PMCID: PMC4864767 DOI: 10.1186/s11671-016-1462-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/03/2016] [Indexed: 06/05/2023]
Abstract
DNAzymes have been extensively studied as biosensors because of their unique functionality of cleaving substrate in the presence of metal ion cofactors. However, there are only a few reports on visual detection using gold nanoparticles. Here, we synthesized the DNAzyme microparticle (DzMP) (~1 μm) via rolling circle amplification for detection of Pb(2+) without the help of other materials. Then, the substrate strands were labeled with two different fluorophores (6-carboxyfluorescein and Cy5) to visualize the DzMPs and to monitor the separation of substrate strands. Because of their large size, the decline in the number of fluorescent particles in the presence of Pb(2+) could be successfully demonstrated by a fluorescence microscopy, presenting a new platform for heavy metal detection.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul, 130-743, South Korea.
| |
Collapse
|
44
|
Zhou W, Ding J, Liu J. A highly specific sodium aptamer probed by 2-aminopurine for robust Na+ sensing. Nucleic Acids Res 2016; 44:10377-10385. [PMID: 27655630 PMCID: PMC5137442 DOI: 10.1093/nar/gkw845] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 09/10/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Sodium is one of the most abundant metals in the environment and in biology, playing critical ecological and physiological roles. Na+ is also the most common buffer salt for nucleic acids research, while its specific interaction with DNA has yet to be fully studied. Herein, we probe a highly selective and robust Na+ aptamer using 2-aminopurine (2AP), a fluorescent adenine analog. This aptamer has two DNA strands derived from the Ce13d DNAzyme. By introducing a 2AP at the cleavage site of the substrate strand, Na+ induces ∼40% fluorescence increase. The signaling is improved by a series of rational mutations, reaching >600% with the C10A20 double mutant. This fluorescence enhancement suggests relaxed base stacking near the 2AP label upon Na+ binding. By replacing a non-conserved adenine in the enzyme strand by 2AP, Na+-dependent fluorescence quenching is observed, suggesting that the enzyme loop folds into a more compact structure upon Na+ binding. The fluorescence changes allow for Na+ detection. With an optimized sequence, a detection limit of 0.4 mM Na+ is achieved, reaching saturated signal in less than 10 s. The sensor response is insensitive to ionic strength, which is critical for Na+ detection.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China .,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
45
|
Zhou W, Ding J, Liu J. A Selective Na(+) Aptamer Dissected by Sensitized Tb(3+) Luminescence. Chembiochem 2016; 17:1563-70. [PMID: 27238890 DOI: 10.1002/cbic.201600174] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 02/04/2023]
Abstract
A previous study of two RNA-cleaving DNAzymes, NaA43 and Ce13d, revealed the possibility of a common Na(+) aptamer motif. Because Na(+) binding to DNA is a fundamental biochemical problem, the interaction between Ce13d and Na(+) was studied in detail by using sensitized Tb(3+) luminescence spectroscopy. Na(+) displaces Tb(3+) from the DNAzyme, and thus quenches the emission from Tb(3+) . The overall requirement for Na(+) binding includes the hairpin and the highly conserved 16-nucleotide loop in the enzyme strand, along with a few unpaired nucleotides in the substrate. Mutation studies indicate good correlation between Na(+) binding and cleavage activity, thus suggesting a critical role of Na(+) binding for the enzyme activity. Ce13d displayed a Kd of ∼20 mm with Na(+) (other monovalent cations: 40-60 mm). The Kd values for other metal ions are mainly due to non-specific competition. With a single nucleotide mutation, the specific Na(+) binding was lost. Another mutant improved Kd to 8 mm with Na(+) . This study has demonstrated a Na(+) aptamer with important biological implications and analytical applications. It has also defined the structural requirements for Na(+) binding and produced an improved mutant.
Collapse
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China
| | - Juewen Liu
- School of Pharmaceutical Sciences, Central South University, 172 Tongzipo Road, Changsha, Hunan, 410013, China. .,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
46
|
Zhou W, Vazin M, Yu T, Ding J, Liu J. In Vitro Selection of Chromium-Dependent DNAzymes for Sensing Chromium(III) and Chromium(VI). Chemistry 2016; 22:9835-40. [DOI: 10.1002/chem.201601426] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Wenhu Zhou
- School of Pharmaceutical Sciences; Central South University, Changsha; Hunan 410013 P.R. China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Mahsa Vazin
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Tianmeng Yu
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| | - Jinsong Ding
- School of Pharmaceutical Sciences; Central South University, Changsha; Hunan 410013 P.R. China
| | - Juewen Liu
- School of Pharmaceutical Sciences; Central South University, Changsha; Hunan 410013 P.R. China
- Department of Chemistry; Waterloo Institute for Nanotechnology; University of Waterloo; Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
47
|
Huang PJJ, Vazin M, Lin JJ, Pautler R, Liu J. Distinction of Individual Lanthanide Ions with a DNAzyme Beacon Array. ACS Sens 2016. [DOI: 10.1021/acssensors.6b00239] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Po-Jung Jimmy Huang
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Mahsa Vazin
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Jennifer J. Lin
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Rachel Pautler
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department
of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
48
|
Hwang K, Hosseinzadeh P, Lu Y. Biochemical and Biophysical Understanding of Metal Ion Selectivity of DNAzymes. Inorganica Chim Acta 2016; 452:12-24. [PMID: 27695134 DOI: 10.1016/j.ica.2016.04.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review summarizes research into the metal-binding properties of catalytic DNAzymes, towards the goal of understanding the structural properties leading to metal ion specificity. Progress made and insight gained from a range of biochemical and biophysical techniques are covered, and promising directions for future investigations are discussed.
Collapse
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Parisa Hosseinzadeh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| |
Collapse
|
49
|
Huang PJJ, Vazin M, Liu J. In Vitro Selection of a DNAzyme Cooperatively Binding Two Lanthanide Ions for RNA Cleavage. Biochemistry 2016; 55:2518-25. [PMID: 27054549 DOI: 10.1021/acs.biochem.6b00132] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Trivalent lanthanide ions (Ln(3+)) were recently employed to select RNA-cleaving DNAzymes, and three new DNAzymes have been reported so far. In this work, dysprosium (Dy(3+)) was used with a library containing 50 random nucleotides. After six rounds of in vitro selection, a new DNAzyme named Dy10a was obtained and characterized. Dy10a has a bulged hairpin structure cleaving a RNA/DNA chimeric substrate. Dy10a is highly active in the presence of the five Ln(3+) ions in the middle of the lanthanide series (Sm(3+), Eu(3+), Gd(3+), Tb(3+), and Dy(3+)), while its activity descends on the two sides. The cleavage rate reaches 0.6 min(-1) at pH 6 with just 200 nM Sm(3+), which is the fastest among all known Ln(3+)-dependent enzymes. Dy10a binds two Ln(3+) ions cooperatively. When a phosphorothioate (PS) modification is introduced at the cleavage junction, the activity decreases by >2500-fold for both the Rp and Sp diastereomers, and thiophilic Cd(2+) cannot rescue the activity. The pH-rate profile has a slope of 0.37 between pH 4.2 and 5.2, and the slope was even lower at higher pH. On the basis of these data, a model of metal binding is proposed. Finally, a catalytic beacon sensor that can detect Ho(3+) down to 1.7 nM is constructed.
Collapse
Affiliation(s)
- Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Mahsa Vazin
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1
| |
Collapse
|
50
|
Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R. Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd(II). Talanta 2016; 154:498-503. [PMID: 27154706 DOI: 10.1016/j.talanta.2016.04.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/25/2016] [Accepted: 04/03/2016] [Indexed: 11/27/2022]
Abstract
In order to develop a facile, cost-effective and quick-testing light-up biosensor with excellent specificity for cadmium ions (Cd(II)) detection, a modified selection method based on target-induced release of strands was used to isolate aptamers of Cd (II) with high specificity. Circular Dichroism (CD) data confirmed that one of the selected aptamers underwent a distinct conformational change on addition of Cd (II). A biosensor for Cd(II) was developed based on the Cd(II)-induced release of fluorescence-labeled aptamer from complex with a quencher-labeled short complementary sequence. The sensing platform displayed a Cd(II) concentration-dependent increase of fluorescence intensity in the low micromolar range and had an excellent selectivity in the presence of various interfering metal ions. Such biosensor could potentially be used for the detection of Cd(II) in environmental samples.
Collapse
Affiliation(s)
- Hongyan Wang
- School of Life Science, Shanghai University, Shanghai 200444, China; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hui Cheng
- School of Life Science, Shanghai University, Shanghai 200444, China; Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Jine Wang
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lijun Xu
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hongxia Chen
- School of Life Science, Shanghai University, Shanghai 200444, China
| | - Renjun Pei
- Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|