1
|
Lessel I, Baresic A, Chinn IK, May J, Goenka A, Chandler KE, Posey JE, Afenjar A, Averdunk L, Bedeschi MF, Besnard T, Brager R, Brick L, Brugger M, Brunet T, Byrne S, Calle-Martín ODL, Capra V, Cardenas P, Chappé C, Chong HJ, Cogne B, Conboy E, Cope H, Courtin T, Deb W, Dilena R, Dubourg C, Elgizouli M, Fernandes E, Fitzgerald KK, Gangi S, George-Abraham JK, Gucsavas-Calikoglu M, Haack TB, Hadonou M, Hanker B, Hüning I, Iascone M, Isidor B, Järvelä I, Jin JJ, Jorge AAL, Josifova D, Kalinauskiene R, Kamsteeg EJ, Keren B, Kessler E, Kölbel H, Kozenko M, Kubisch C, Kuechler A, Leal SM, Leppälä J, Luu SM, Lyon GJ, Madan-Khetarpal S, Mancardi M, Marchi E, Mehta L, Menendez B, Morel CF, Harasink SM, Nevay DL, Nigro V, Odent S, Oegema R, Pappas J, Pastore MT, Perilla-Young Y, Platzer K, Powell-Hamilton N, Rabin R, Rekab A, Rezende RC, Robert L, Romano F, Scala M, Poths K, Schrauwen I, Sebastian J, Short J, Sidlow R, Sullivan J, Szakszon K, Tan QKG, Wagner M, Wieczorek D, Yuan B, Maeding N, Strunk D, Begtrup A, Banka S, Lupski JR, Tolosa E, Lessel D. DNA-binding affinity and specificity determine the phenotypic diversity in BCL11B-related disorders. Am J Hum Genet 2025:S0002-9297(24)00454-3. [PMID: 39798569 DOI: 10.1016/j.ajhg.2024.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 01/15/2025] Open
Abstract
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive. To dissect these, we performed genotype-phenotype correlations of 92 affected individuals harboring a pathogenic or likely pathogenic BCL11B variant, followed by immune phenotyping, analysis of chromatin immunoprecipitation DNA-sequencing data, dual-luciferase reporter assays, and molecular modeling. These integrative analyses enabled us to define three clinical subtypes of BCL11B-related disorders. It is likely that gene-disruptive BCL11B variants and missense variants affecting zinc-binding cysteine and histidine residues cause mild to moderate neurodevelopmental delay with increased propensity for behavioral and dental anomalies, allergies and asthma, and reduced type 2 innate lymphoid cells. Missense variants within C2H2-ZnF DNA-contacting α helices cause highly variable clinical presentations ranging from multisystem anomalies with demise in the first years of life to late-onset, hyperkinetic movement disorder with poor fine motor skills. Those not in direct DNA contact cause a milder phenotype through reduced, target-specific transcriptional activity. However, missense variants affecting C2H2-ZnFs, DNA binding, and "specificity residues" impair BCL11B transcriptional activity in a target-specific, dominant-negative manner along with aberrant regulation of alternative DNA targets, resulting in more severe and unpredictable clinical outcomes. Taken together, we suggest that the phenotypic severity and variability is largely dependent on the DNA-binding affinity and specificity of altered BCL11B proteins.
Collapse
Affiliation(s)
- Ivana Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Anja Baresic
- Division of Computing and Data Science, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Ivan K Chinn
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Immunology, Allergy, and Retrovirology, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan May
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anu Goenka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexandra Afenjar
- Département de Génétique Paris, Centre de Référence Malformations et maladies congénitales du cervelet et déficiences intellectuelles de causes rares, APHP, Sorbonne Université, Paris, France
| | - Luisa Averdunk
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | | | - Thomas Besnard
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Rae Brager
- Division of Rheumatology, Immunology and Allergy, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Lauren Brick
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Melanie Brugger
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Department of Obstetrics and Gynecology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Theresa Brunet
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Susan Byrne
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK
| | | | - Valeria Capra
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | | | - Céline Chappé
- Service d'oncohematologie pédiatrique, CHU Rennes, 35000 Rennes, France
| | - Hey J Chong
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital, Pittsburgh, PA 15224, USA
| | - Benjamin Cogne
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Erin Conboy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Thomas Courtin
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Wallid Deb
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Robertino Dilena
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neuropathophysiology Unit, Milan, Italy
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU, 35033 Rennes, France; University Rennes, CNRS, IGDR, UMR 6290, 35000 Rennes, France
| | - Magdeldin Elgizouli
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Erica Fernandes
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | | | - Silvana Gangi
- Neonatal Intensive Care Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza, 28, 20122 Milan, Italy
| | - Jaya K George-Abraham
- Dell Children's Medical Group, Austin, TX, USA; Department of Pediatrics, The University of Texas at Austin Dell Medical School, Austin, TX, USA
| | - Muge Gucsavas-Calikoglu
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Medard Hadonou
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Britta Hanker
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Irina Hüning
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Maria Iascone
- Medical Genetics Laboratory, ASST Papa Giovanni XXIII, 24128 Bergamo, Italy
| | - Bertrand Isidor
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France; Service de Génétique Médicale, CHU Nantes, 9 quai Moncousu, 44093 Nantes, France
| | - Irma Järvelä
- Department of Medical Genetics, University of Helsinki, P.O. Box 720, 00251 Helsinki, Finland
| | - Jay J Jin
- Division of Pediatric Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexander A L Jorge
- Unidade de Endocrinologia do Desenvolvimento, Laboratorio de Hormonios e Genetica Molecular (LIM42), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil; Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Dragana Josifova
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ruta Kalinauskiene
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Boris Keren
- Département de Génétique, Hôpital La Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Elena Kessler
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heike Kölbel
- Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany
| | - Mariya Kozenko
- Division of Genetics and Metabolics, McMaster Children's Hospital, Hamilton, ON L8S 4K1, Canada
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Suzanne M Leal
- Department of Neurology, Center for Statistical Genetics, Gertrude H. Sergievsky Center, Columbia University Medical Center, Columbia University, New York, NY 10032, USA; Taub Institute for Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Juha Leppälä
- The Wellbeing Services County of South Ostrobothnia, 60280 Seinäjoki, Finland
| | - Sharon M Luu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gholson J Lyon
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA; George A. Jervis Clinic, NYS Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA; Biology PhD Program, The Graduate Center, The City University of New York, New York, NY, USA
| | - Suneeta Madan-Khetarpal
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Margherita Mancardi
- Unit of Child Neuropsychiatry, IRCCS Istituto Giannina Gaslini, Epicare Network for Rare Disease, Genoa, Italy
| | - Elaine Marchi
- Department of Human Genetics, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, USA
| | - Lakshmi Mehta
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Beatriz Menendez
- Division of Genetics, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Chantal F Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Sue Moyer Harasink
- Division of Genetics, Department of Pediatrics, Nemours Children's Health, Wilmington, DE, USA
| | - Dayna-Lynn Nevay
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Vincenzo Nigro
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Sylvie Odent
- Clinical Genetics, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; University Rennes, CNRS, INSERM, Institut de génétique et développement de Rennes, UMR 6290, ERL U1305, Rennes, France
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, the Netherlands
| | - John Pappas
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Matthew T Pastore
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Yezmin Perilla-Young
- Division of Genetics and Metabolism, Department of Pediatrics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | | | - Rachel Rabin
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Aisha Rekab
- Department of Pediatrics, Division of Clinical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Raissa C Rezende
- Unidade de Endocrinologia Genetica (LIM25), Hospital das Clinicas da Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, Brazil
| | - Leema Robert
- Department of Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Ferruccio Romano
- Genomics and Clinical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16145 Genoa, Italy; U.O.C. Genetica Medica, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Poths
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Isabelle Schrauwen
- Department of Translational Neurosciences, University of Arizona College of Medicine - Phoenix, Phoenix, AZ 85004, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - John Short
- South West Thames Centre for Genomics, St George's University Hospitals NHS Foundation Trust, London SW17 0QT, UK
| | - Richard Sidlow
- Department of Medical Genetics and Metabolism, Valley Children's Hospital, Madera, CA, USA
| | - Jennifer Sullivan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Katalin Szakszon
- Institute of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Queenie K G Tan
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, NC, USA
| | - Matias Wagner
- Institute of Human Genetics, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg, Germany; Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich, Munich, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Bo Yuan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University (PMU), 5020 Salzburg, Austria
| | | | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK; Division of Evolution, Infection & Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - James R Lupski
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA
| | - Eva Tolosa
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany
| | - Davor Lessel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany.
| |
Collapse
|
2
|
Zhang F, Lee A, Freitas AV, Herb JT, Wang ZH, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024; 13:RP96536. [PMID: 39727307 DOI: 10.7554/elife.96536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mitochondrial DNA (mtDNA) deficiency. Among 638 transcription factors annotated in the Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenesis. Additional genetic analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Anna V Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jake T Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
3
|
Mukhametzyanova L, Schmitt LT, Torres-Rivera J, Rojo-Romanos T, Lansing F, Paszkowski-Rogacz M, Hollak H, Brux M, Augsburg M, Schneider PM, Buchholz F. Activation of recombinases at specific DNA loci by zinc-finger domain insertions. Nat Biotechnol 2024; 42:1844-1854. [PMID: 38297187 PMCID: PMC11631766 DOI: 10.1038/s41587-023-02121-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 12/22/2023] [Indexed: 02/02/2024]
Abstract
Recombinases have several potential advantages as genome editing tools compared to nucleases and other editing enzymes, but the process of engineering them to efficiently recombine predetermined DNA targets demands considerable investment of time and labor. Here we sought to harness zinc-finger DNA-binding domains (ZFDs) to program recombinase binding by developing fusions, in which ZFDs are inserted into recombinase coding sequences. By screening libraries of hybrid proteins, we optimized the insertion site, linker length, spacing and ZFD orientation and generated Cre-type recombinases that remain dormant unless the insertionally fused ZFD binds its target site placed in the vicinity of the recombinase binding site. The developed fusion improved targeted editing efficiencies of recombinases by four-fold and abolished measurable off-target activity in mammalian cells. The ZFD-dependent activity is transferable to a recombinase with relaxed specificity, providing the means for developing fully programmable recombinases. Our engineered recombinases provide improved genome editing tools with increased precision and efficiency.
Collapse
Affiliation(s)
- Liliya Mukhametzyanova
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Lukas Theo Schmitt
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Julia Torres-Rivera
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Teresa Rojo-Romanos
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Felix Lansing
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | | | - Heike Hollak
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Melanie Brux
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Martina Augsburg
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
| | - Paul Martin Schneider
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany
- Seamless Therapeutics GmbH, Dresden, Germany
| | - Frank Buchholz
- Medical Systems Biology, Medical Faculty, Technical University Dresden, Dresden, Germany.
| |
Collapse
|
4
|
Zhang F, Lee A, Freitas A, Herb J, Wang Z, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577217. [PMID: 38410491 PMCID: PMC10896348 DOI: 10.1101/2024.01.25.577217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcriptional factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mtDNA deficiency. Among 638 transcription factors annotated in Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenies. Additional genetics analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zongheng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Zeng W, Dou Y, Pan L, Xu L, Peng S. Improving prediction performance of general protein language model by domain-adaptive pretraining on DNA-binding protein. Nat Commun 2024; 15:7838. [PMID: 39244557 PMCID: PMC11380688 DOI: 10.1038/s41467-024-52293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
DNA-protein interactions exert the fundamental structure of many pivotal biological processes, such as DNA replication, transcription, and gene regulation. However, accurate and efficient computational methods for identifying these interactions are still lacking. In this study, we propose a method ESM-DBP through refining the DNA-binding protein sequence repertory and domain-adaptive pretraining based the general protein language model. Our method considers the lacking exploration of general language model for DNA-binding protein domain-specific knowledge, so we screen out 170,264 DNA-binding protein sequences to construct the domain-adaptive language model. Experimental results on four downstream tasks show that ESM-DBP provides a better feature representation of DNA-binding protein compared to the original language model, resulting in improved prediction performance and outperforming the state-of-the-art methods. Moreover, ESM-DBP can still perform well even for those sequences with only a few homologous sequences. ChIP-seq on two predicted cases further support the validity of the proposed method.
Collapse
Affiliation(s)
- Wenwu Zeng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Yutao Dou
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liangrui Pan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China
| | - Liwen Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| | - Shaoliang Peng
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
6
|
Mikhailov N, Hämäläinen RH. Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Ann Biomed Eng 2024; 52:2627-2640. [PMID: 36001180 PMCID: PMC11329604 DOI: 10.1007/s10439-022-03051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/09/2022] [Indexed: 11/01/2022]
Abstract
Mitochondria, mainly known as energy factories of eukaryotic cells, also exert several additional signaling and metabolic functions and are today recognized as major cellular biosynthetic and signaling hubs. Mitochondria possess their own genome (mitochondrial DNA-mtDNA), that encodes proteins essential for oxidative phosphorylation, and mutations in it are an important contributor to human disease. The mtDNA mutations often exist in heteroplasmic conditions, with both healthy and mutant versions of the mtDNA residing in patients' cells and the level of mutant mtDNA may vary between different tissues and organs and affect the clinical outcome of the disease. Thus, shifting the ratio between healthy and mutant mtDNA in patients' cells provides an intriguing therapeutic option for mtDNA diseases. In this review we describe current strategies for modulating mitochondrial heteroplasmy levels with engineered endonucleases including mitochondrially targeted TALENs and Zinc finger nucleases (ZFNs) and discuss their therapeutic potential. These gene therapy tools could in the future provide therapeutic help both for patients with mitochondrial disease as well as in preventing the transfer of pathogenic mtDNA mutations from a mother to her offspring.
Collapse
Affiliation(s)
- Nikita Mikhailov
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland
| | - Riikka H Hämäläinen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211, Kuopio, Finland.
| |
Collapse
|
7
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Cohen AS, Chiu TP, Glasscock CJ, Rohs R. Geometric deep learning of protein-DNA binding specificity. Nat Methods 2024; 21:1674-1683. [PMID: 39103447 PMCID: PMC11399107 DOI: 10.1038/s41592-024-02372-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 06/14/2024] [Indexed: 08/07/2024]
Abstract
Predicting protein-DNA binding specificity is a challenging yet essential task for understanding gene regulation. Protein-DNA complexes usually exhibit binding to a selected DNA target site, whereas a protein binds, with varying degrees of binding specificity, to a wide range of DNA sequences. This information is not directly accessible in a single structure. Here, to access this information, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity from protein-DNA structure. DeepPBS can be applied to experimental or predicted structures. Interpretable protein heavy atom importance scores for interface residues can be extracted. When aggregated at the protein residue level, these scores are validated through mutagenesis experiments. Applied to designed proteins targeting specific DNA sequences, DeepPBS was demonstrated to predict experimentally measured binding specificity. DeepPBS offers a foundation for machine-aided studies that advance our understanding of molecular interactions and guide experimental designs and synthetic biology.
Collapse
Affiliation(s)
- Raktim Mitra
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jinsen Li
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Jared M Sagendorf
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Yibei Jiang
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Ari S Cohen
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Tsu-Pei Chiu
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Cameron J Glasscock
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Remo Rohs
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA.
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA.
- Thomas Lord Department of Computer Science, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
8
|
Zhang X, Blumenthal RM, Cheng X. Updated understanding of the protein-DNA recognition code used by C2H2 zinc finger proteins. Curr Opin Struct Biol 2024; 87:102836. [PMID: 38754172 DOI: 10.1016/j.sbi.2024.102836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
C2H2 zinc-finger (ZF) proteins form the largest family of DNA-binding transcription factors coded by mammalian genomes. In a typical DNA-binding ZF module, there are twelve residues (numbered from -1 to -12) between the last zinc-coordinating cysteine and the first zinc-coordinating histidine. The established C2H2-ZF "recognition code" suggests that residues at positions -1, -4, and -7 recognize the 5', central, and 3' bases of a DNA base-pair triplet, respectively. Structural studies have highlighted that additional residues at positions -5 and -8 also play roles in specific DNA recognition. The presence of bulky and either charged or polar residues at these five positions determines specificity for given DNA bases: guanine is recognized by arginine, lysine, or histidine; adenine by asparagine or glutamine; thymine or 5-methylcytosine by glutamate; and unmodified cytosine by aspartate. This review discusses recent structural characterizations of C2H2-ZFs that add to our understanding of the principles underlying the C2H2-ZF recognition code.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Sokolov V, Kyrchanova O, Klimenko N, Fedotova A, Ibragimov A, Maksimenko O, Georgiev P. New Drosophila promoter-associated architectural protein Mzfp1 interacts with CP190 and is required for housekeeping gene expression and insulator activity. Nucleic Acids Res 2024; 52:6886-6905. [PMID: 38769058 PMCID: PMC11229372 DOI: 10.1093/nar/gkae393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/20/2024] [Accepted: 05/10/2024] [Indexed: 05/22/2024] Open
Abstract
In Drosophila, a group of zinc finger architectural proteins recruits the CP190 protein to the chromatin, an interaction that is essential for the functional activity of promoters and insulators. In this study, we describe a new architectural C2H2 protein called Madf and Zinc-Finger Protein 1 (Mzfp1) that interacts with CP190. Mzfp1 has an unusual structure that includes six C2H2 domains organized in a C-terminal cluster and two tandem MADF domains. Mzfp1 predominantly binds to housekeeping gene promoters located in both euchromatin and heterochromatin genome regions. In vivo mutagenesis studies showed that Mzfp1 is an essential protein, and both MADF domains and the CP190 interaction region are required for its functional activity. The C2H2 cluster is sufficient for the specific binding of Mzfp1 to regulatory elements, while the second MADF domain is required for Mzfp1 recruitment to heterochromatin. Mzfp1 binds to the proximal part of the Fub boundary that separates regulatory domains of the Ubx and abd-A genes in the Bithorax complex. Mzfp1 participates in Fub functions in cooperation with the architectural proteins Pita and Su(Hw). Thus, Mzfp1 is a new architectural C2H2 protein involved in the organization of active promoters and insulators in Drosophila.
Collapse
Affiliation(s)
- Vladimir Sokolov
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Natalia Klimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Airat Ibragimov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Oksana Maksimenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
11
|
Zhou H, Liu L, Pang Y, Xu Y, Wu J, Ma F, Jin P, Zhou X. Relish-mediated C2H2 zinc finger protein IMZF restores Drosophila immune homeostasis via inhibiting the transcription of Imd/Tak1. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 170:104138. [PMID: 38762126 DOI: 10.1016/j.ibmb.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
The dysregulation of intensity and duration in innate immunity can result in detrimental effects on the body, emphasizing the crucial need for precise regulation. However, the intricate and accurate nature of innate immunity implies the existence of numerous undiscovered innate immunomodulators, particularly transcription factors. In this study, we have identified a Drosophila C2H2 zinc finger protein CG18262, named Immune-mediated Zinc Finger protein (IMZF), capable of suppressing immune responses of Imd pathway. Mechanistically, IMZF serves as a transcription factor that represses the expression of Imd and Tak1. Intriguingly, our findings also reveal that Relish, an NF-κB transcription factor, positively regulates the expression of IMZF, consequently inhibiting the activation of Imd and Tak1 to prevent an exaggerated immune response. Additionally, we have elucidated the pivotal role played by the Relish-IMZF-Imd/Tak1 axis in restoring immune homeostasis of Drosophila Imd pathway. In summary, our findings not only unveil a novel C2H2 zinc finger immunoregulatory transcription factor, IMZF, along with its specific mechanism of immune regulation, but also shed light on the dual functionality of Relish in different stages of the immune response by modulating distinct effectors. This discovery provides new insights and enlightenment into the complex regulation of Drosophila innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Li Liu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yujia Pang
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Yina Xu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Jing Wu
- Department of Psychology, College of Victoria College, University of Toronto, Toronto, ON, M5R 0A3, Canada
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, 210046, China
| | - Xue Zhou
- School of Chemistry and Biological Engineering, Nanjing Normal University Taizhou College, Taizhou, 225300, China.
| |
Collapse
|
12
|
Kang YK, Eom J, Min B, Park JS. SETDB1 deletion causes DNA demethylation and upregulation of multiple zinc-finger genes. Mol Biol Rep 2024; 51:778. [PMID: 38904842 PMCID: PMC11192681 DOI: 10.1007/s11033-024-09703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/04/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND SETDB1 (SET domain bifurcated-1) is a histone H3-lysine 9 (H3K9)-specific methyltransferase that mediates heterochromatin formation and repression of target genes. Despite the assumed functional link between DNA methylation and SETDB1-mediated H3K9 trimethylations, several studies have shown that SETDB1 operates autonomously of DNA methylation in a region- and cell-specific manner. This study analyzes SETDB1-null HAP1 cells through a linked methylome and transcriptome analysis, intending to explore genes controlled by SETDB1-involved DNA methylation. METHODS AND RESULTS We investigated SETDB1-mediated regulation of DNA methylation and gene transcription in human HAP1 cells using reduced-representation bisulfite sequencing (RRBS) and RNA sequencing. While two-thirds of differentially methylated CpGs (DMCs) in genic regions were hypomethylated in SETDB1-null cells, we detected a plethora of C2H2-type zinc-finger protein genes (C2H2-ZFP, 223 of 749) among the DMC-associated genes. Most C2H2-ZFPs with DMCs in their promoters were found hypomethylated in SETDB1-KO cells, while other non-ZFP genes with promoter DMCs were not. These C2H2-ZFPs with DMCs in their promoters were significantly upregulated in SETDB1-KO cells. Similarly, C2H2-ZFP genes were upregulated in SETDB1-null 293T cells, suggesting that SETDB1's function in ZFP gene repression is widespread. There are several C2H2-ZFP gene clusters on chromosome 19, which were selectively hypomethylated in SETDB1-KO cells. CONCLUSIONS SETDB1 collectively and specifically represses a substantial fraction of the C2H2-ZFP gene family. Through the en-bloc silencing of a set of ZFP genes, SETDB1 may help establish a panel of ZFP proteins that are expressed cell-type specifically and thereby can serve as signature proteins for cellular identity.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea.
| | - Jaemin Eom
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
- Department of Functional Genomics, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Aging Convergence Research Center (ACRC), Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| |
Collapse
|
13
|
Zhang X, Blumenthal RM, Cheng X. Keep Fingers on the CpG Islands. EPIGENOMES 2024; 8:23. [PMID: 38920624 PMCID: PMC11202855 DOI: 10.3390/epigenomes8020023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
The post-genomic era has ushered in the extensive application of epigenetic editing tools, allowing for precise alterations of gene expression. The use of reprogrammable editors that carry transcriptional corepressors has significant potential for long-term epigenetic silencing for the treatment of human diseases. The ideal scenario involves precise targeting of a specific genomic location by a DNA-binding domain, ensuring there are no off-target effects and that the process yields no genetic remnants aside from specific epigenetic modifications (i.e., DNA methylation). A notable example is a recent study on the mouse Pcsk9 gene, crucial for cholesterol regulation and expressed in hepatocytes, which identified synthetic zinc-finger (ZF) proteins as the most effective DNA-binding editors for silencing Pcsk9 efficiently, specifically, and persistently. This discussion focuses on enhancing the specificity of ZF-array DNA binding by optimizing interactions between specific amino acids and DNA bases across three promoters containing CpG islands.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Robert M. Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA;
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| |
Collapse
|
14
|
Mitra R, Li J, Sagendorf JM, Jiang Y, Chiu TP, Rohs R. DeepPBS: Geometric deep learning for interpretable prediction of protein-DNA binding specificity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571942. [PMID: 38293168 PMCID: PMC10827229 DOI: 10.1101/2023.12.15.571942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Predicting specificity in protein-DNA interactions is a challenging yet essential task for understanding gene regulation. Here, we present Deep Predictor of Binding Specificity (DeepPBS), a geometric deep-learning model designed to predict binding specificity across protein families based on protein-DNA structures. The DeepPBS architecture allows investigation of different family-specific recognition patterns. DeepPBS can be applied to predicted structures, and can aid in the modeling of protein-DNA complexes. DeepPBS is interpretable and can be used to calculate protein heavy atom-level importance scores, demonstrated as a case-study on p53-DNA interface. When aggregated at the protein residue level, these scores conform well with alanine scanning mutagenesis experimental data. The inference time for DeepPBS is sufficiently fast for analyzing simulation trajectories, as demonstrated on a molecular-dynamics simulation of a Drosophila Hox-DNA tertiary complex with its cofactor. DeepPBS and its corresponding data resources offer a foundation for machine-aided protein-DNA interaction studies, guiding experimental choices and complex design, as well as advancing our understanding of molecular interactions.
Collapse
|
15
|
Zhang Z, Lamson AR, Shelley M, Troyanskaya O. Interpretable neural architecture search and transfer learning for understanding CRISPR-Cas9 off-target enzymatic reactions. NATURE COMPUTATIONAL SCIENCE 2023; 3:1056-1066. [PMID: 38177723 DOI: 10.1038/s43588-023-00569-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024]
Abstract
Finely tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Developing predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce Elektrum, a deep learning framework that addresses these challenges with data-driven and biophysically interpretable models for determining the kinetics of biochemical systems. First, it uses in vitro kinetic assays to rapidly hypothesize an ensemble of high-quality kinetically interpretable neural networks (KINNs) that predict reaction rates. It then employs a transfer learning step, where the KINNs are inserted as intermediary layers into deeper convolutional neural networks, fine-tuning the predictions for reaction-dependent in vivo outcomes. We apply Elektrum to predict CRISPR-Cas9 off-target editing probabilities and demonstrate that Elektrum achieves improved performance, regularizes neural network architectures and maintains physical interpretability.
Collapse
Affiliation(s)
- Zijun Zhang
- Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Adam R Lamson
- Center for Computational Biology, Flatiron Institute, New York City, NY, USA
| | - Michael Shelley
- Center for Computational Biology, Flatiron Institute, New York City, NY, USA.
- Courant Institute of Mathematical Sciences, New York University, New York City, NY, USA.
| | - Olga Troyanskaya
- Center for Computational Biology, Flatiron Institute, New York City, NY, USA.
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
16
|
Zhang Z, Lamson AR, Shelley M, Troyanskaya O. Interpretable neural architecture search and transfer learning for understanding CRISPR/Cas9 off-target enzymatic reactions. ARXIV 2023:arXiv:2305.11917v2. [PMID: 37808087 PMCID: PMC10557798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Finely-tuned enzymatic pathways control cellular processes, and their dysregulation can lead to disease. Creating predictive and interpretable models for these pathways is challenging because of the complexity of the pathways and of the cellular and genomic contexts. Here we introduce Elektrum, a deep learning framework which addresses these challenges with data-driven and biophysically interpretable models for determining the kinetics of biochemical systems. First, it uses in vitro kinetic assays to rapidly hypothesize an ensemble of high-quality Kinetically Interpretable Neural Networks (KINNs) that predict reaction rates. It then employs a novel transfer learning step, where the KINNs are inserted as intermediary layers into deeper convolutional neural networks, fine-tuning the predictions for reaction-dependent in vivo outcomes. Elektrum makes effective use of the limited, but clean in vitro data and the complex, yet plentiful in vivo data that captures cellular context. We apply Elektrum to predict CRISPR-Cas9 off-target editing probabilities and demonstrate that Elektrum achieves state-of-the-art performance, regularizes neural network architectures, and maintains physical interpretability.
Collapse
Affiliation(s)
- Zijun Zhang
- Division of Artificial Intelligence in Medicine, Cedars-Sinai Medical Center, 116 N. Robertson Blvd, Los Angeles, 90048, CA, USA
| | - Adam R. Lamson
- Center for Computational Biology, Flatiron Institute, 162 5th Ave, New York City, 10010, NY, USA
| | - Michael Shelley
- Center for Computational Biology, Flatiron Institute, 162 5th Ave, New York City, 10010, NY, USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York City, 10012, NY, USA
| | - Olga Troyanskaya
- Center for Computational Biology, Flatiron Institute, 162 5th Ave, New York City, 10010, NY, USA
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Carl Icahn Laboratory South Drive, Princeton, 08544, NJ, USA
| |
Collapse
|
17
|
Yang J, Horton JR, Liu B, Corces VG, Blumenthal RM, Zhang X, Cheng X. Structures of CTCF-DNA complexes including all 11 zinc fingers. Nucleic Acids Res 2023; 51:8447-8462. [PMID: 37439339 PMCID: PMC10484683 DOI: 10.1093/nar/gkad594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/14/2023] Open
Abstract
The CCCTC-binding factor (CTCF) binds tens of thousands of enhancers and promoters on mammalian chromosomes by means of its 11 tandem zinc finger (ZF) DNA-binding domain. In addition to the 12-15-bp CORE sequence, some of the CTCF binding sites contain 5' upstream and/or 3' downstream motifs. Here, we describe two structures for overlapping portions of human CTCF, respectively, including ZF1-ZF7 and ZF3-ZF11 in complex with DNA that incorporates the CORE sequence together with either 3' downstream or 5' upstream motifs. Like conventional tandem ZF array proteins, ZF1-ZF7 follow the right-handed twist of the DNA, with each finger occupying and recognizing one triplet of three base pairs in the DNA major groove. ZF8 plays a unique role, acting as a spacer across the DNA minor groove and positioning ZF9-ZF11 to make cross-strand contacts with DNA. We ascribe the difference between the two subgroups of ZF1-ZF7 and ZF8-ZF11 to residues at the two positions -6 and -5 within each finger, with small residues for ZF1-ZF7 and bulkier and polar/charged residues for ZF8-ZF11. ZF8 is also uniquely rich in basic amino acids, which allows salt bridges to DNA phosphates in the minor groove. Highly specific arginine-guanine and glutamine-adenine interactions, used to recognize G:C or A:T base pairs at conventional base-interacting positions of ZFs, also apply to the cross-strand interactions adopted by ZF9-ZF11. The differences between ZF1-ZF7 and ZF8-ZF11 can be rationalized structurally and may contribute to recognition of high-affinity CTCF binding sites.
Collapse
Affiliation(s)
- Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
18
|
Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, Giganti DO, Goldberg GW, Adams S, Spencer JM, Razavi R, Nim S, Zheng H, Gionco C, Clark FT, Strokach A, Hughes TR, Lionnet T, Taipale M, Kim PM, Noyes MB. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol 2023; 41:1117-1129. [PMID: 36702896 PMCID: PMC10421740 DOI: 10.1038/s41587-022-01624-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/17/2022] [Indexed: 01/27/2023]
Abstract
Cys2His2 zinc finger (ZF) domains engineered to bind specific target sequences in the genome provide an effective strategy for programmable regulation of gene expression, with many potential therapeutic applications. However, the structurally intricate engagement of ZF domains with DNA has made their design challenging. Here we describe the screening of 49 billion protein-DNA interactions and the development of a deep-learning model, ZFDesign, that solves ZF design for any genomic target. ZFDesign is a modern machine learning method that models global and target-specific differences induced by a range of library environments and specifically takes into account compatibility of neighboring fingers using a novel hierarchical transformer architecture. We demonstrate the versatility of designed ZFs as nucleases as well as activators and repressors by seamless reprogramming of human transcription factors. These factors could be used to upregulate an allele of haploinsufficiency, downregulate a gain-of-function mutation or test the consequence of regulation of a single gene as opposed to the many genes that a transcription factor would normally influence.
Collapse
Affiliation(s)
- David M Ichikawa
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Osama Abdin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Manjunatha Kogenaru
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - April L Mueller
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Han Wen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David O Giganti
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory W Goldberg
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey M Spencer
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Rozita Razavi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hong Zheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Courtney Gionco
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Finnegan T Clark
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Alexey Strokach
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Timothee Lionnet
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Philip M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
19
|
Zuo Z. THE1B may have no role in human pregnancy due to ZNF430-mediated silencing. Mob DNA 2023; 14:6. [PMID: 37217947 DOI: 10.1186/s13100-023-00294-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023] Open
Abstract
THE1-family retrovirus invaded the primate genome more than 40 million years ago. Dunn-Fletcher et al. reported one THE1B element upstream of CRH gene alters gestation length by upregulating corticotropin-releasing hormone expression in transgenic mice and concluded it has the same role in human as well. However, no promoter or enhancer mark has been detected around this CRH-proximal element in any human tissue or cell, so probably some anti-viral factor exists in primates to prevents it from wreaking havoc. Here I report two paralogous zinc finger genes, ZNF430 and ZNF100, that emerged during the simian lineage to specifically silence THE1B and THE1A, respectively. Contact residue changes in one finger confers each ZNF the unique ability to preferentially repress one THE1 sub-family over the other. The reported THE1B element contains an intact ZNF430 binding site, thus under the repression of ZNF430 in most tissues including placenta, it is questionable whether or not this retrovirus has any role in human pregnancy. Overall, this analysis highlights the need to study human retroviruses' functions in suitable model system.
Collapse
Affiliation(s)
- Zheng Zuo
- Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
20
|
Zhang Y, He F, Zhang Y, Dai Q, Li Q, Nan J, Miao R, Cheng B. Exploration of the regulatory relationship between KRAB-Zfp clusters and their target transposable elements via a gene editing strategy at the cluster specific linker-associated sequences by CRISPR-Cas9. Mob DNA 2022; 13:25. [PMID: 36357895 PMCID: PMC9647903 DOI: 10.1186/s13100-022-00279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Krüppel Associated Box-containing Zinc Finger Proteins (KRAB-ZFPs), representing the largest superfamily of transcription factors in mammals, are predicted to primarily target and repress transposable elements (TEs). It is challenging to dissect the distinct functions of these transcription regulators due to their sequence similarity and diversity, and also the complicated repetitiveness of their targeting TE sequences. RESULTS Mouse KRAB-Zfps are mainly organized into clusters genomewide. In this study, we revealed that the intra-cluster members had a close evolutionary relationship, and a similar preference for zinc finger (ZnF) usage. KRAB-Zfps were expressed in a cell type- or tissue type specific manner and they tended to be actively transcribed together with other cluster members. Further sequence analyses pointed out the linker sequences in between ZnFs were conserved, and meanwhile had distinct cluster specificity. Based on these unique characteristics of KRAB-Zfp clusters, sgRNAs were designed to edit cluster-specific linkers to abolish the functions of the targeted cluster(s). Using mouse embryonic stem cells (mESC) as a model, we screened and obtained a series of sgRNAs targeting various highly expressed KRAB-Zfp clusters. The effectiveness of sgRNAs were verified in a reporter assay exclusively developed for multi-target sgRNAs and further confirmed by PCR-based analyses. Using mESC cell lines inducibly expressing Cas9 and these sgRNAs, we found that editing different KRAB-Zfp clusters resulted in the transcriptional changes of distinct categories of TEs. CONCLUSIONS Collectively, the intrinsic sequence correlations of intra-cluster KRAB-Zfp members discovered in this study suggest that the conserved cluster specific linkers played crucial roles in diversifying the tandem ZnF array and the related target specificity of KRAB-Zfps during clusters' evolution. On this basis, an effective CRISPR-Cas9 based approach against the linker sequences is developed and verified for rapidly editing KRAB-Zfp clusters to identify the regulatory correlation between the cluster members and their potential TE targets.
Collapse
Affiliation(s)
- Yang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000
| | - Fei He
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000
| | - Yanning Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000
| | - Qian Dai
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, People's Republic of China, 610041
| | - Qintong Li
- Departments of Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, People's Republic of China, 610041
| | - Jing Nan
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou, Gansu, People's Republic of China, 730000.
| |
Collapse
|
21
|
Gupta S, Kumar A, Tamuli R. CRZ1 transcription factor is involved in cell survival, stress tolerance, and virulence in fungi. J Biosci 2022. [DOI: 10.1007/s12038-022-00294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Li P, Yu A, Sun R, Liu A. Function and Evolution of C1-2i Subclass of C2H2-Type Zinc Finger Transcription Factors in POPLAR. Genes (Basel) 2022; 13:genes13101843. [PMID: 36292728 PMCID: PMC9602059 DOI: 10.3390/genes13101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
C2H2 zinc finger (C2H2-ZF) transcription factors participate in various aspects of normal plant growth regulation and stress responses. C1-2i C2H2-ZFs are a special subclass of conserved proteins that contain two ZnF-C2H2 domains. Some C1-2i C2H2-ZFs in Arabidopsis (ZAT) are involved in stress resistance and other functions. However, there is limited information on C1-2i C2H2-ZFs in Populus trichocarpa (PtriZATs). To analyze the function and evolution of C1-2i C2H2-ZFs, eleven PtriZATs were identified in P. trichocarpa, which can be classified into two subgroups. The protein structure, conserved ZnF-C2H2 domains and QALGGH motifs, showed high conservation during the evolution of PtriZATs in P. trichocarpa. The spacing between two ZnF-C2H2 domains, chromosomal locations and cis-elements implied the original proteins and function of PtriZATs. Furthermore, the gene expression of different tissues and stress treatment showed the functional differentiation of PtriZATs subgroups and their stress response function. The analysis of C1-2i C2H2-ZFs in different Populus species and plants implied their evolution and differentiation, especially in terms of stress resistance. Cis-elements and expression pattern analysis of interaction proteins implied the function of PtriZATs through binding with stress-related genes, which are involved in gene regulation by via epigenetic modification through histone regulation, DNA methylation, ubiquitination, etc. Our results for the origin and evolution of PtriZATs will contribute to understanding the functional differentiation of C1-2i C2H2-ZFs in P. trichocarpa. The interaction and expression results will lay a foundation for the further functional investigation of their roles and biological processes in Populus.
Collapse
|
23
|
Wetzel JL, Zhang K, Singh M. Learning probabilistic protein-DNA recognition codes from DNA-binding specificities using structural mappings. Genome Res 2022; 32:1776-1786. [PMID: 36123148 PMCID: PMC9528988 DOI: 10.1101/gr.276606.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 07/30/2022] [Indexed: 11/25/2022]
Abstract
Knowledge of how proteins interact with DNA is essential for understanding gene regulation. Although DNA-binding specificities for thousands of transcription factors (TFs) have been determined, the specific amino acid-base interactions comprising their structural interfaces are largely unknown. This lack of resolution hampers attempts to leverage these data in order to predict specificities for uncharacterized TFs or TFs mutated in disease. Here we introduce recognition code learning via automated mapping of protein-DNA structural interfaces (rCLAMPS), a probabilistic approach that uses DNA-binding specificities for TFs from the same structural family to simultaneously infer both which nucleotide positions are contacted by particular amino acids within the TF as well as a recognition code that relates each base-contacting amino acid to nucleotide preferences at the DNA positions it contacts. We apply rCLAMPS to homeodomains, the second largest family of TFs in metazoans and show that it learns a highly effective recognition code that can predict de novo DNA-binding specificities for TFs. Furthermore, we show that the inferred amino acid-nucleotide contacts reveal whether and how nucleotide preferences at individual binding site positions are altered by mutations within TFs. Our approach is an important step toward automatically uncovering the determinants of protein-DNA specificity from large compendia of DNA-binding specificities and inferring the altered functionalities of TFs mutated in disease.
Collapse
Affiliation(s)
- Joshua L Wetzel
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Kaiqian Zhang
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| | - Mona Singh
- Department of Computer Science and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
24
|
Aizenshtein-Gazit S, Orenstein Y. DeepZF: improved DNA-binding prediction of C2H2-zinc-finger proteins by deep transfer learning. Bioinformatics 2022; 38:ii62-ii67. [PMID: 36124796 DOI: 10.1093/bioinformatics/btac469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
MOTIVATION Cys2His2 zinc-finger (C2H2-ZF) proteins are the largest class of human transcription factors and hence play central roles in gene regulation and cell function. C2H2-ZF proteins are characterized by a DNA-binding domain containing multiple ZFs. A subset of the ZFs bind diverse DNA triplets. Despite their central roles, little is known about which of their ZFs are binding and how the DNA-binding preferences are encoded in the amino acid sequence of each ZF. RESULTS We present DeepZF, a deep-learning-based pipeline for predicting binding ZFs and their DNA-binding preferences given only the amino acid sequence of a C2H2-ZF protein. To the best of our knowledge, we compiled the first in vivo dataset of binding and non-binding ZFs for training the first ZF-binding classifier. Our classifier, which is based on a novel protein transformer, achieved an average AUROC of 0.71. Moreover, we took advantage of both in vivo and in vitro datasets to learn the recognition code of ZF-DNA binding through transfer learning. Our newly developed model, which is the first to utilize deep learning for the task, achieved an average Pearson correlation greater than 0.94 over each of the three DNA binding positions. Together, DeepZF outperformed extant methods in the task of C2H2-ZF protein DNA-binding preferences prediction: it achieved an average Pearson correlation of 0.42 in motif similarity compared with an average correlation smaller than 0.1 achieved by extant methods. By applying established interpretability techniques, we show that DeepZF inferred biologically relevant binding principles, such as the effect of amino acid residue positions on ZF DNA-binding potential. AVAILABILITY AND IMPLEMENTATION DeepZF code, model, and results are available via github.com/OrensteinLab/DeepZF. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Sofia Aizenshtein-Gazit
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
25
|
Moreira JDR, Rosa BL, Lira BS, Lima JE, Correia LNF, Otoni WC, Figueira A, Freschi L, Sakamoto T, Peres LEP, Rossi M, Zsögön A. Auxin-driven ecophysiological diversification of leaves in domesticated tomato. PLANT PHYSIOLOGY 2022; 190:113-126. [PMID: 35639975 PMCID: PMC9434155 DOI: 10.1093/plphys/kiac251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 05/29/2023]
Abstract
Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.
Collapse
Affiliation(s)
- Juliene d R Moreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno L Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno S Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Joni E Lima
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila N F Correia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Wagner C Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Tetsu Sakamoto
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal Do Rio Grande Do Norte, 59078-400 Natal, Rio Grande do Norte, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura “Luiz de Queiroz,” Universidade de São Paulo, CP 09, 13418-900 Piracicaba, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | | |
Collapse
|
26
|
Lebeau B, Zhao K, Jangal M, Zhao T, Guerra M, Greenwood CMT, Witcher M. Single base-pair resolution analysis of DNA binding motif with MoMotif reveals an oncogenic function of CTCF zinc-finger 1 mutation. Nucleic Acids Res 2022; 50:8441-8458. [PMID: 35947648 PMCID: PMC9410893 DOI: 10.1093/nar/gkac658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Defining the impact of missense mutations on the recognition of DNA motifs is highly dependent on bioinformatic tools that define DNA binding elements. However, classical motif analysis tools remain limited in their capacity to identify subtle changes in complex binding motifs between distinct conditions. To overcome this limitation, we developed a new tool, MoMotif, that facilitates a sensitive identification, at the single base-pair resolution, of complex, or subtle, alterations to core binding motifs, discerned from ChIP-seq data. We employed MoMotif to define the previously uncharacterized recognition motif of CTCF zinc-finger 1 (ZF1), and to further define the impact of CTCF ZF1 mutation on its association with chromatin. Mutations of CTCF ZF1 are exclusive to breast cancer and are associated with metastasis and therapeutic resistance, but the underlying mechanisms are unclear. Using MoMotif, we identified an extension of the CTCF core binding motif, necessitating a functional ZF1 to bind appropriately. Using a combination of ChIP-Seq and RNA-Seq, we discover that the inability to bind this extended motif drives an altered transcriptional program associated with the oncogenic phenotypes observed clinically. Our study demonstrates that MoMotif is a powerful new tool for comparative ChIP-seq analysis and characterising DNA-protein contacts.
Collapse
Affiliation(s)
| | | | - Maika Jangal
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Tiejun Zhao
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Maria Guerra
- Lady Davis Institute, Jewish General Hospital, Montréal, Québec H3T 1E2, Canada
| | - Celia M T Greenwood
- Correspondence may also be addressed to Celia Greenwood. Tel: +1 514 340 8222 (Ext 28397);
| | - Michael Witcher
- To whom correspondence should be addressed. Tel: +1 514 340 8222 (Ext 23363);
| |
Collapse
|
27
|
A complex epigenome-splicing crosstalk governs epithelial-to-mesenchymal transition in metastasis and brain development. Nat Cell Biol 2022; 24:1265-1277. [PMID: 35941369 DOI: 10.1038/s41556-022-00971-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.
Collapse
|
28
|
Ichikawa D, Noyes M. Oncogenic inspiration for programmable activators. CELL GENOMICS 2022; 2:100122. [PMID: 36776529 PMCID: PMC9903755 DOI: 10.1016/j.xgen.2022.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The discovery of regulatory domains has been limited to the investigation of transcription factors and homologous protein sequences. In this issue of Cell Genomics, motivated by an oncogenic protein fusion, Tak et al.1 direct the regulatory potential of a nontraditional effector domain to novel genomic loci with fusions to programmable DNA-binding domains.
Collapse
Affiliation(s)
- David Ichikawa
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| | - Marcus Noyes
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
- Institute for Systems Genetics, NYU Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, USA
| |
Collapse
|
29
|
Kaplow IM, Banerjee A, Foo CS. Neural network modeling of differential binding between wild-type and mutant CTCF reveals putative binding preferences for zinc fingers 1-2. BMC Genomics 2022; 23:295. [PMID: 35410161 PMCID: PMC9004084 DOI: 10.1186/s12864-022-08486-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many transcription factors (TFs), such as multi zinc-finger (ZF) TFs, have multiple DNA binding domains (DBDs), and deciphering the DNA binding motifs of individual DBDs is a major challenge. One example of such a TF is CCCTC-binding factor (CTCF), a TF with eleven ZFs that plays a variety of roles in transcriptional regulation, most notably anchoring DNA loops. Previous studies found that CTCF ZFs 3-7 bind CTCF's core motif and ZFs 9-11 bind a specific upstream motif, but the motifs of ZFs 1-2 have yet to be identified. RESULTS We developed a new approach to identifying the binding motifs of individual DBDs of a TF through analyzing chromatin immunoprecipitation sequencing (ChIP-seq) experiments in which a single DBD is mutated: we train a deep convolutional neural network to predict whether wild-type TF binding sites are preserved in the mutant TF dataset and interpret the model. We applied this approach to mouse CTCF ChIP-seq data and identified the known binding preferences of CTCF ZFs 3-11 as well as a putative GAG binding motif for ZF 1. We analyzed other CTCF datasets to provide additional evidence that ZF 1 is associated with binding at the motif we identified, and we found that the presence of the motif for ZF 1 is associated with CTCF ChIP-seq peak strength. CONCLUSIONS Our approach can be applied to any TF for which in vivo binding data from both the wild-type and mutated versions of the TF are available, and our findings provide new potential insights binding preferences of CTCF's DBDs.
Collapse
Affiliation(s)
- Irene M Kaplow
- Departments of Computer Science, Stanford University, 240 Pasteur Drive, Stanford, California, 94305, USA. .,Present address: Department of Computational Biology, Carnegie Mellon University, 5000 Forbes Avenue, Gates-Hillman Building Room 7703, Pittsburgh, PA, 15213, USA.
| | - Abhimanyu Banerjee
- Departments of Physics, Stanford University, 240 Pasteur Drive, Stanford, California, 94305, USA
| | - Chuan Sheng Foo
- Departments of Computer Science, Stanford University, 240 Pasteur Drive, Stanford, California, 94305, USA. .,Present address: Machine Intellection Department, Institute for Infocomm Research, 1 Fusionopolis Way, #21-01 Connexis South Tower, Singapore, 138632, Singapore.
| |
Collapse
|
30
|
Li X, Han M, Zhang H, Liu F, Pan Y, Zhu J, Liao Z, Chen X, Zhang B. Structures and biological functions of zinc finger proteins and their roles in hepatocellular carcinoma. Biomark Res 2022; 10:2. [PMID: 35000617 PMCID: PMC8744215 DOI: 10.1186/s40364-021-00345-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Zinc finger proteins are transcription factors with the finger domain, which plays a significant role in gene regulation. As the largest family of transcription factors in the human genome, zinc finger (ZNF) proteins are characterized by their different DNA binding motifs, such as C2H2 and Gag knuckle. Different kinds of zinc finger motifs exhibit a wide variety of biological functions. Zinc finger proteins have been reported in various diseases, especially in several cancers. Hepatocellular carcinoma (HCC) is the third leading cause of cancer-associated death worldwide, especially in China. Most of HCC patients have suffered from hepatitis B virus (HBV) and hepatitis C virus (HCV) injection for a long time. Although the surgical operation of HCC has been extremely developed, the prognosis of HCC is still very poor, and the underlying mechanisms in HCC tumorigenesis are still not completely understood. Here, we summarize multiple functions and recent research of zinc finger proteins in HCC tumorigenesis and progression. We also discuss the significance of zinc finger proteins in HCC diagnosis and prognostic evaluation.
Collapse
Affiliation(s)
- Xinxin Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Mengzhen Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Hongwei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Furong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Jinghan Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China
| | - Zhibin Liao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China. .,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, 430030, China.
| |
Collapse
|
31
|
Aberle T, Piefke S, Hillgärtner S, Tamm ER, Wegner M, Küspert M. OUP accepted manuscript. Nucleic Acids Res 2022; 50:1951-1968. [PMID: 35137157 PMCID: PMC8887482 DOI: 10.1093/nar/gkac042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/21/2021] [Accepted: 01/14/2022] [Indexed: 11/14/2022] Open
Abstract
In oligodendrocytes of the vertebrate central nervous system a complex network of transcriptional regulators is required to ensure correct and timely myelination of neuronal axons. Here we identify Zfp276, the only mammalian ZAD-domain containing zinc finger protein, as a transcriptional regulator of oligodendrocyte differentiation and central myelination downstream of Sox10. In the central nervous system, Zfp276 is exclusively expressed in mature oligodendrocytes. Oligodendroglial deletion of Zfp276 led to strongly reduced expression of myelin genes in the early postnatal mouse spinal cord. Retroviral overexpression of Zfp276 in cultured oligodendrocyte precursor cells induced precocious expression of maturation markers and myelin genes, further supporting its role in oligodendroglial differentiation. On the molecular level, Zfp276 directly binds to and represses Sox10-dependent gene regulatory regions of immaturity factors and functionally interacts with the transcriptional repressor Zeb2 to enable fast transition of oligodendrocytes to the myelinating stage.
Collapse
Affiliation(s)
- Tim Aberle
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, D-93053, Regensburg, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Melanie Küspert
- To whom correspondence should be addressed. Tel: +49 9131 85 24638; Fax: +49 9131 85 22484;
| |
Collapse
|
32
|
Boisvert O, Létourneau D, Delattre P, Tremblay C, Jolibois É, Montagne M, Lavigne P. Zinc Fingers 10 and 11 of Miz-1 undergo conformational exchange to achieve specific DNA binding. Structure 2021; 30:623-636.e5. [PMID: 34963061 DOI: 10.1016/j.str.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Miz-1 (ZBTB17) is a poly-zinc finger BTB/POZ transcription factor with 12 consecutive C2H2 zinc fingers (ZFs) that binds transcriptional start sites (TSSs) to regulate the expression of genes involved in cell development and proliferation. As of now, it is not known which of the 12 consecutive ZFs are responsible for the recognition of the 24 base pair consensus sequence found at these TSSs. Evidence suggests ZFs 7-12 plays this role. We provide validation for this and describe the structural and dynamical characterization of unprecedented conformational exchange in the linker between ZFs 10 and 11. This conformational exchange uncouples ZFs 7-10 from 11 and 12 and promotes a scanning-recognition mechanism through which the two segments cooperate to bind two sub-sites at both ends of the consensus. We further show that this can result in the coiling of TSSs as part of Miz-1's mechanism of transcriptional transactivation.
Collapse
Affiliation(s)
- Olivier Boisvert
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Danny Létourneau
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Patrick Delattre
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cynthia Tremblay
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Émilie Jolibois
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Martin Montagne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Lavigne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
33
|
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Prasad R, Verma JP, Singh M. Overexpression of AtDREB1 and BcZAT12 genes confers drought tolerance by reducing oxidative stress in double transgenic tomato (Solanum lycopersicum L.). PLANT CELL REPORTS 2021. [PMID: 34091725 DOI: 10.1016/j.envexpbot.2021.104396] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Collapse
Affiliation(s)
- Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Waquar Akhter Ansari
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Achuit Kumar Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, India.
| |
Collapse
|
34
|
Krishna R, Ansari WA, Jaiswal DK, Singh AK, Prasad R, Verma JP, Singh M. Overexpression of AtDREB1 and BcZAT12 genes confers drought tolerance by reducing oxidative stress in double transgenic tomato (Solanum lycopersicum L.). PLANT CELL REPORTS 2021; 40:2173-2190. [PMID: 34091725 DOI: 10.1007/s00299-021-02725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/27/2021] [Indexed: 05/14/2023]
Abstract
Double transgenic tomato developed by AtDREB1A and BcZAT12 genes pyramiding showed significant drought tolerance by reducing oxidative stress with enhanced yield. Although a large number of efforts have been made by different researchers to develop abiotic stress tolerance tomato for improving yield using single gene, however, no reports are available which targets AtDREB1 and BcZAT12 genes together. Hence, in the present study, double transgenic plants were developed using AtDREB1 and BcZAT12 genes to improve yield potential with better drought tolerance. Double transgenic (DZ1-DZ5) tomato lines showed enhanced drought tolerance than their counterpart non-transgenic and single transgenic plants at 0, 07, 14, and 21 days of water deficit, respectively. Double transgenic plants showed increased activity of antioxidant enzymes, like catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GR), ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), monodehydroascorbate reductase (MDHAR) and guaiacol peroxidase (POD), and accumulation of non-enzymatic antioxidants like ascorbic acid, glutathione as compared to non-transgenic and single transgenic. Additionally, the transcript analysis of antioxidant enzymes revealed the increased level of gene expression in double transgenic tomato lines. Developed double-transgenic tomato plants co-over-expressing both genes exhibited more enzymatic and non-enzymatic anti-oxidative activities as compared to the non-transgenic and single transgenic control, respectively. This is the preliminary report in tomato, which forms the basis for a multigene transgenic approach to cope with drought stress.
Collapse
Affiliation(s)
- Ram Krishna
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Waquar Akhter Ansari
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Durgesh Kumar Jaiswal
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Achuit Kumar Singh
- Division of Vegetable Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, 221305, India
| | - Ram Prasad
- Department of Botany, School of Life Sciences, Mahatma Gandhi Central University, Motihari, East Champaran, Bihar, 845401, India
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, 410505, India.
| |
Collapse
|
35
|
Chuang CK, Lin WM. Points of View on the Tools for Genome/Gene Editing. Int J Mol Sci 2021; 22:9872. [PMID: 34576035 PMCID: PMC8470269 DOI: 10.3390/ijms22189872] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.
Collapse
Affiliation(s)
- Chin-Kai Chuang
- Animal Technology Research Center, Division of Animal Technology, Agricultural Technology Research Institute, No. 52, Kedong 2nd Rd., Zhunan Township, Miaoli County 35053, Taiwan;
| | | |
Collapse
|
36
|
Meseguer A, Årman F, Fornes O, Molina-Fernández R, Bonet J, Fernandez-Fuentes N, Oliva B. On the prediction of DNA-binding preferences of C2H2-ZF domains using structural models: application on human CTCF. NAR Genom Bioinform 2021; 2:lqaa046. [PMID: 33575598 PMCID: PMC7671317 DOI: 10.1093/nargab/lqaa046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/25/2022] Open
Abstract
Cis2-His2 zinc finger (C2H2-ZF) proteins are the largest family of transcription factors in human and higher metazoans. To date, the DNA-binding preferences of many members of this family remain unknown. We have developed a computational method to predict their DNA-binding preferences. We have computed theoretical position weight matrices (PWMs) of proteins composed by C2H2-ZF domains, with the only requirement of an input structure. We have predicted more than two-third of a single zinc-finger domain binding site for about 70% variants of Zif268, a classical member of this family. We have successfully matched between 60 and 90% of the binding-site motif of examples of proteins composed by three C2H2-ZF domains in JASPAR, a standard database of PWMs. The tests are used as a proof of the capacity to scan a DNA fragment and find the potential binding sites of transcription-factors formed by C2H2-ZF domains. As an example, we have tested the approach to predict the DNA-binding preferences of the human chromatin binding factor CTCF. We offer a server to model the structure of a zinc-finger protein and predict its PWM.
Collapse
Affiliation(s)
- Alberto Meseguer
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia 08005, Spain
| | - Filip Årman
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia 08005, Spain
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Ruben Molina-Fernández
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia 08005, Spain
| | - Jaume Bonet
- Laboratory of Protein Design & Immunoengineering, School of Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne 1015, Vaud, Switzerland
| | - Narcis Fernandez-Fuentes
- Department of Biosciences, U Science Tech, Universitat de Vic-Universitat Central de Catalunya, Vic, Catalonia 08500, Spain
| | - Baldo Oliva
- Structural Bioinformatics Lab (GRIB-IMIM), Department of Experimental and Health Science, University Pompeu Fabra, Barcelona, Catalonia 08005, Spain
| |
Collapse
|
37
|
Salava H, Thula S, Mohan V, Kumar R, Maghuly F. Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects. Int J Mol Sci 2021; 22:E682. [PMID: 33445555 PMCID: PMC7827871 DOI: 10.3390/ijms22020682] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 12/19/2022] Open
Abstract
Plants regularly face the changing climatic conditions that cause biotic and abiotic stress responses. The abiotic stresses are the primary constraints affecting crop yield and nutritional quality in many crop plants. The advances in genome sequencing and high-throughput approaches have enabled the researchers to use genome editing tools for the functional characterization of many genes useful for crop improvement. The present review focuses on the genome editing tools for improving many traits such as disease resistance, abiotic stress tolerance, yield, quality, and nutritional aspects of tomato. Many candidate genes conferring tolerance to abiotic stresses such as heat, cold, drought, and salinity stress have been successfully manipulated by gene modification and editing techniques such as RNA interference, insertional mutagenesis, and clustered regularly interspaced short palindromic repeat (CRISPR/Cas9). In this regard, the genome editing tools such as CRISPR/Cas9, which is a fast and efficient technology that can be exploited to explore the genetic resources for the improvement of tomato and other crop plants in terms of stress tolerance and nutritional quality. The review presents examples of gene editing responsible for conferring both biotic and abiotic stresses in tomato simultaneously. The literature on using this powerful technology to improve fruit quality, yield, and nutritional aspects in tomato is highlighted. Finally, the prospects and challenges of genome editing, public and political acceptance in tomato are discussed.
Collapse
Affiliation(s)
- Hymavathi Salava
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Sravankumar Thula
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic;
| | - Vijee Mohan
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500064, India;
| | - Fatemeh Maghuly
- Plant Functional Genomics, Institute of Molecular Biotechnology, Department of Biotechnology, BOKU-VIBT, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| |
Collapse
|
38
|
Maksimenko OG, Fursenko DV, Belova EV, Georgiev PG. CTCF As an Example of DNA-Binding Transcription Factors Containing Clusters of C2H2-Type Zinc Fingers. Acta Naturae 2021; 13:31-46. [PMID: 33959385 PMCID: PMC8084297 DOI: 10.32607/actanaturae.11206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
In mammals, most of the boundaries of topologically associating domains and all well-studied insulators are rich in binding sites for the CTCF protein. According to existing experimental data, CTCF is a key factor in the organization of the architecture of mammalian chromosomes. A characteristic feature of the CTCF is that the central part of the protein contains a cluster consisting of eleven domains of C2H2-type zinc fingers, five of which specifically bind to a long DNA sequence conserved in most animals. The class of transcription factors that carry a cluster of C2H2-type zinc fingers consisting of five or more domains (C2H2 proteins) is widely represented in all groups of animals. The functions of most C2H2 proteins still remain unknown. This review presents data on the structure and possible functions of these proteins, using the example of the vertebrate CTCF protein and several well- characterized C2H2 proteins in Drosophila and mammals.
Collapse
Affiliation(s)
- O. G. Maksimenko
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | | - E. V. Belova
- Institute of Gene Biology RAS, Moscow, 119334 Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, Moscow, 119334 Russia
| | | |
Collapse
|
39
|
Aditham AK, Markin CJ, Mokhtari DA, DelRosso N, Fordyce PM. High-Throughput Affinity Measurements of Transcription Factor and DNA Mutations Reveal Affinity and Specificity Determinants. Cell Syst 2020; 12:112-127.e11. [PMID: 33340452 DOI: 10.1016/j.cels.2020.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/08/2020] [Accepted: 11/24/2020] [Indexed: 01/28/2023]
Abstract
Transcription factors (TFs) bind regulatory DNA to control gene expression, and mutations to either TFs or DNA can alter binding affinities to rewire regulatory networks and drive phenotypic variation. While studies have profiled energetic effects of DNA mutations extensively, we lack similar information for TF variants. Here, we present STAMMP (simultaneous transcription factor affinity measurements via microfluidic protein arrays), a high-throughput microfluidic platform enabling quantitative characterization of hundreds of TF variants simultaneously. Measured affinities for ∼210 mutants of a model yeast TF (Pho4) interacting with 9 oligonucleotides (>1,800 Kds) reveal that many combinations of mutations to poorly conserved TF residues and nucleotides flanking the core binding site alter but preserve physiological binding, providing a mechanism by which combinations of mutations in cis and trans could modulate TF binding to tune occupancies during evolution. Moreover, biochemical double-mutant cycles across the TF-DNA interface reveal molecular mechanisms driving recognition, linking sequence to function. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA
| | - Craig J Markin
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Daniel A Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Nicole DelRosso
- Graduate Program in Biophysics, Stanford University, Stanford, CA 94305, USA
| | - Polly M Fordyce
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Stanford ChEM-H, Stanford University, Stanford, CA 94305, USA; Department of Genetics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| |
Collapse
|
40
|
Nagarajan H, Vetrivel U. Microsecond scale sampling of Egr-1 conformational landscape to decipher the impact of its disorder regions on structure–function relationship. MOLECULAR SIMULATION 2020. [DOI: 10.1080/08927022.2020.1815731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Hemavathy Nagarajan
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Umashankar Vetrivel
- Centre for Bioinformatics, Kamalnayan Bajaj Institute for Research in Vision and Ophthalmology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- Department of Health Research (Govt. of India), National Institute of Traditional Medicine, Indian Council of Medical Research, Belagavi, India
| |
Collapse
|
41
|
Mueller AL, Corbi-Verge C, Giganti DO, Ichikawa DM, Spencer JM, MacRae M, Garton M, Kim PM, Noyes MB. The geometric influence on the Cys2His2 zinc finger domain and functional plasticity. Nucleic Acids Res 2020; 48:6382-6402. [PMID: 32383734 PMCID: PMC7293014 DOI: 10.1093/nar/gkaa291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/07/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
The Cys2His2 zinc finger is the most common DNA-binding domain expanding in metazoans since the fungi human split. A proposed catalyst for this expansion is an arms race to silence transposable elements yet it remains poorly understood how this domain is able to evolve the required specificities. Likewise, models of its DNA binding specificity remain error prone due to a lack of understanding of how adjacent fingers influence each other's binding specificity. Here, we use a synthetic approach to exhaustively investigate binding geometry, one of the dominant influences on adjacent finger function. By screening over 28 billion protein–DNA interactions in various geometric contexts we find the plasticity of the most common natural geometry enables more functional amino acid combinations across all targets. Further, residues that define this geometry are enriched in genomes where zinc fingers are prevalent and specificity transitions would be limited in alternative geometries. Finally, these results demonstrate an exhaustive synthetic screen can produce an accurate model of domain function while providing mechanistic insight that may have assisted in the domains expansion.
Collapse
Affiliation(s)
- April L Mueller
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Carles Corbi-Verge
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - David O Giganti
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - David M Ichikawa
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Jeffrey M Spencer
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Mark MacRae
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| | - Michael Garton
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S3E1, Canada
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU Langone Health, New York, NY 10016, USA.,Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA
| |
Collapse
|
42
|
Pal A, Levy Y. Balance between asymmetry and abundance in multi-domain DNA-binding proteins may regulate the kinetics of their binding to DNA. PLoS Comput Biol 2020; 16:e1007867. [PMID: 32453726 PMCID: PMC7274453 DOI: 10.1371/journal.pcbi.1007867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/05/2020] [Accepted: 04/11/2020] [Indexed: 11/19/2022] Open
Abstract
DNA sequences are often recognized by multi-domain proteins that may have higher affinity and specificity than single-domain proteins. However, the higher affinity to DNA might be coupled with slower recognition kinetics. In this study, we address this balance between stability and kinetics for multi-domain Cys2His2- (C2H2-) type zinc-finger (ZF) proteins. These proteins are the most prevalent DNA-binding domain in eukaryotes and C2H2 type zinc-finger proteins (C2H2-ZFPs) constitute nearly one-half of all known and predicted transcription factors in human. Extensive contact with DNA via tandem ZF domains confers high stability on the sequence-specific complexes. However, this can limit target search efficiency, especially for low abundance ZFPs. Earlier, we found that asymmetrical distribution of electrostatic charge among the three ZF domains of the low abundance transcription factor Egr-1 facilitates its DNA search process. Here, on a diverse set of 273 human C2H2-ZFP comprised of 3–15 tandem ZF domains, we find that, in many cases, electrostatic charge and binding specificity are asymmetrically distributed among the ZF domains so that neighbouring domains have different DNA-binding properties. For proteins containing 3–6 ZF domains, we show that the low abundance proteins possess a higher degree of non-specific asymmetry and vice versa. Our findings suggest that where the electrostatics of tandem ZF domains are similar (i.e., symmetrical), the ZFPs are more abundant to optimize their DNA search efficiency. This study reveals new insights into the fundamental determinants of recognition by C2H2-ZFPs of their DNA binding sites in the cellular landscape. The importance of electrostatic asymmetry with respect to binding site recognition by C2H2-ZFPs suggests the possibility that it may also be important in other ZFP systems and reveals a new design feature for zinc finger engineering. Optimal recognition of proteins to DNA is governed by various factors among them the thermodynamics, kinetics and specificity of the protein-DNA complex. Multi-domain DNA-binding proteins are expected to have higher affinity and specificity due to the extensive interface they form with DNA. However, larger interface may result with higher friction when these proteins scan the DNA for the target site via the sliding mechanism. A way to overcome this drawback is to have asymmetry in the protein so that the interface with DNA is smaller. Alternatively, higher abundance can also increase the search speed. Here, using computational analysis of large data set of multi-domain zinc finger DNA-binding proteins, we report a trade-off between asymmetry and abundance.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science Rehovot, Israel
- * E-mail:
| |
Collapse
|
43
|
Tian Z, Li X, Li M, Wu W, Zhang M, Tang C, Li Z, Liu Y, Chen Z, Yang M, Ma L, Caba C, Tong Y, Lam HM, Dai S, Chen Z. Crystal structures of REF6 and its complex with DNA reveal diverse recognition mechanisms. Cell Discov 2020; 6:17. [PMID: 32257379 PMCID: PMC7105484 DOI: 10.1038/s41421-020-0150-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Relative of Early Flowing 6 (REF6) is a DNA-sequence-specific H3K27me3/2 demethylase that contains four zinc finger (ZnF) domains and targets several thousand genes in Arabidopsis thaliana. The ZnF domains are essential for binding target genes, but the structural basis remains unclear. Here, we determined crystal structures of the ZnF domains and REF6-DNA complex, revealing a unique REF6-family-specific half-cross-braced ZnF (RCZ) domain and two C2H2-type ZnFs. DNA-binding induces a profound conformational change in the hinge region of REF6. Each REF6 recognizes six bases and DNA methylation reduces the binding affinity. Both the acidic region and basic region are important for the self-association of REF6. The REF6 DNA-binding affinity is determined by the sequence-dependent conformations of DNA and also the cooperativity in different target motifs. The conformational plasticity enables REF6 to function as a global transcriptional regulator that directly binds to many diverse genes, revealing the structural basis for the epigenetic modification recognition.
Collapse
Affiliation(s)
- Zizi Tian
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Xiaorong Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Min Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Wei Wu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Manfeng Zhang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Chenjun Tang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhihui Li
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Yunlong Liu
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Zhenhang Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Meiting Yang
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Lulu Ma
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| | - Cody Caba
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Yufeng Tong
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4 Canada
| | - Hon-Ming Lam
- School of Life Sciences and Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Shaodong Dai
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| | - Zhongzhou Chen
- State Key Laboratory of Agrobiotechnology and Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Biological Sciences, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
44
|
Han G, Lu C, Guo J, Qiao Z, Sui N, Qiu N, Wang B. C2H2 Zinc Finger Proteins: Master Regulators of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:115. [PMID: 32153617 PMCID: PMC7044346 DOI: 10.3389/fpls.2020.00115] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/24/2020] [Indexed: 05/04/2023]
Abstract
Abiotic stresses such as drought and salinity are major environmental factors that limit crop yields. Unraveling the molecular mechanisms underlying abiotic stress resistance is crucial for improving crop performance and increasing productivity under adverse environmental conditions. Zinc finger proteins, comprising one of the largest transcription factor families, are known for their finger-like structure and their ability to bind Zn2+. Zinc finger proteins are categorized into nine subfamilies based on their conserved Cys and His motifs, including the Cys2/His2-type (C2H2), C3H, C3HC4, C2HC5, C4HC3, C2HC, C4, C6, and C8 subfamilies. Over the past two decades, much progress has been made in understanding the roles of C2H2 zinc finger proteins in plant growth, development, and stress signal transduction. In this review, we focus on recent progress in elucidating the structures, functions, and classifications of plant C2H2 zinc finger proteins and their roles in abiotic stress responses.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Chaoxia Lu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jianrong Guo
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Nianwei Qiu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
45
|
Wetzel JL, Singh M. Sharing DNA-binding information across structurally similar proteins enables accurate specificity determination. Nucleic Acids Res 2020; 48:e9. [PMID: 31777934 PMCID: PMC7028011 DOI: 10.1093/nar/gkz1087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/03/2019] [Accepted: 11/01/2019] [Indexed: 01/31/2023] Open
Abstract
We are now in an era where protein-DNA interactions have been experimentally assayed for thousands of DNA-binding proteins. In order to infer DNA-binding specificities from these data, numerous sophisticated computational methods have been developed. These approaches typically infer DNA-binding specificities by considering interactions for each protein independently, ignoring related and potentially valuable interaction information across other proteins that bind DNA via the same structural domain. Here we introduce a framework for inferring DNA-binding specificities by considering protein-DNA interactions for entire groups of structurally similar proteins simultaneously. We devise both constrained optimization and label propagation algorithms for this task, each balancing observations at the individual protein level against dataset-wide consistency of interaction preferences. We test our approaches on two large, independent Cys2His2 zinc finger protein-DNA interaction datasets. We demonstrate that jointly inferring specificities within each dataset individually dramatically improves accuracy, leading to increased agreement both between these two datasets and with a fixed external standard. Overall, our results suggest that sharing protein-DNA interaction information across structurally similar proteins is a powerful means to enable accurate inference of DNA-binding specificities.
Collapse
Affiliation(s)
- Joshua L Wetzel
- The Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Mona Singh
- The Lewis-Sigler Institute for Integrative Genomics, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
46
|
Abstract
Recent advances in genome engineering are revolutionizing crop research and plant breeding. The ability to make specific modifications to a plant's genetic material creates opportunities for rapid development of elite cultivars with desired traits. The plant genome can be altered in several ways, including targeted introduction of nucleotide changes, deleting DNA segments, introducing exogenous DNA fragments and epigenetic modifications. Targeted changes are mediated by sequence specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR (clustered regularly interspersed short palindromic repeats)-Cas (CRISPR associated protein) systems. Recent advances in engineering chimeric Cas nucleases fused to base editing enzymes permit for even greater precision in base editing and control over gene expression. In addition to gene editing technologies, improvement in delivery systems of exogenous DNA into plant cells have increased the rate of successful gene editing events. Regeneration of fertile plants containing the desired edits remains challenging; however, manipulation of embryogenesis-related genes such as BABY BOOM (BBM) has been shown to facilitate regeneration through tissue culture, often a major hurdle in recalcitrant cultivars. Epigenome reprogramming for improved crop performance is another possibility for future breeders, with recent studies on MutS HOMOLOG 1 (MSH1) demonstrating epigenetic-dependent hybrid vigor in several crops. While these technologies offer plant breeders new tools in creating high yielding, better adapted crop varieties, constantly evolving government policy regarding the cultivation of plants containing transgenes may impede the widespread adoption of some of these techniques. This chapter summarizes advances in genome editing tools and discusses the future of these techniques for crop improvement.
Collapse
Affiliation(s)
- Andriy Bilichak
- Morden Research and Development Center, Agriculture and Agri-Food Canada, Morden, MB, Canada.
| | - Daniel Gaudet
- The University of Lethbridge, Lethbridge, AB, Canada
| | - John Laurie
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
47
|
Lyu T, Liu W, Hu Z, Xiang X, Liu T, Xiong X, Cao J. Molecular characterization and expression analysis reveal the roles of Cys 2/His 2 zinc-finger transcription factors during flower development of Brassica rapa subsp. chinensis. PLANT MOLECULAR BIOLOGY 2020; 102:123-141. [PMID: 31776846 DOI: 10.1007/s11103-019-00935-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.
Collapse
Affiliation(s)
- Tianqi Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Weimiao Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Ziwei Hu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xun Xiang
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Tingting Liu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Xingpeng Xiong
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Jiashu Cao
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou, 310058, China.
| |
Collapse
|
48
|
Small Drosophila zinc finger C2H2 protein with an N-terminal zinc finger-associated domain demonstrates the architecture functions. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194446. [PMID: 31706027 DOI: 10.1016/j.bbagrm.2019.194446] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/26/2019] [Accepted: 10/29/2019] [Indexed: 02/08/2023]
Abstract
Recently, the concept has arisen that a special class of architectural proteins exists, which are responsible not only for global chromosome architecture but also for the local regulation of enhancer-promoter interactions. Here, we describe a new architectural protein, with a total size of only 375 aa, which contains an N-terminal zinc finger-associated domain (ZAD) and a cluster of five zinc finger C2H2 domains at the C-terminus. This new protein, named ZAD and Architectural Function 1 protein (ZAF1 protein), is weakly and ubiquitously expressed, with the highest expression levels observed in oocytes and embryos. The cluster of C2H2 domains recognizes a specific 15-bp consensus site, located predominantly in promoters, near transcription start sites. The expression of ZAF1 by a tissue-specific promoter led to the complete blocking of the eye enhancer when clusters of ZAF1 binding sites flanked the eye enhancer in transgenic lines, suggesting that the loop formed by the ZAF1 protein leads to insulation. The ZAF1 protein also supported long-range interactions between the yeast GAL4 activator and the white promoter in transgenic Drosophila lines. A mutant protein lacking the ZAD failed to block the eye enhancer or to support distance interactions in transgenic lines. Taken together, these results suggest that ZAF1 is a minimal architectural protein that can be used to create a convenient model for studying the mechanisms of distance interactions.
Collapse
|
49
|
Liao SY, Kuo IY, Chen YT, Liao PC, Liu YF, Wu HY, Lai WW, Wang YC. AKT-mediated phosphorylation enhances protein stability and transcription activity of ZNF322A to promote lung cancer progression. Oncogene 2019; 38:6723-6736. [PMID: 31399647 DOI: 10.1038/s41388-019-0928-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/01/2019] [Accepted: 05/29/2019] [Indexed: 02/08/2023]
Abstract
ZNF322A is an oncogenic zinc-finger transcription factor. Our published results show that ZNF322A positively regulates transcription of alpha-adducin (ADD1) and cyclin D1 (CCND1) to promote tumorgenicity of lung cancer. However, the upstream regulatory mechanisms of ZNF322A protein function remain elusive. Here, we demonstrate that AKT could phosphorylate ZNF322A by in vitro kinase assay and cell-based mass spectrometry analysis. Overexpression of AKT promoted ZNF322A protein stability and transcriptional activity, whereas these effects were inhibited by knockdown of AKT or treating with AKT inhibitor. We studied AKT-mediated phosphorylation sites, viz. Thr-150, Ser-224, Thr-234, and Thr-262. ZNF322A phosphorylation at Thr-262 by AKT promoted ZNF322A protein stability thus increased ADD1 promoter activity. Interestingly, phosphorylation at Thr-150, Ser-224, and Thr-234 enhanced transcription activity without affecting protein stability of ZNF322A. Chromatin immunoprecipitation and DNA affinity precipitation assays showed that ZNF322A phosphorylation defective mutants Thr-150A, Ser-224A, and Thr-234A attenuated chromatin binding and DNA binding affinity to ADD1 and CCND1 promoters compared with wild-type ZNF322A. Furthermore, AKT-mediated Thr-150, Ser-224, Thr-234, and Thr-262 phosphorylation promoted lung cancer cell growth and metastasis in vitro and in vivo. Clinically, expression of phosphorylated ZNF322A (p-ZNF) correlated with actively phosphorylated AKT (p-AKT) in tumor specimens from 150 lung cancer patients. Multivariate Cox regression analysis indicated that combined p-AKT and p-ZNF expression profile was an independent factor to predict the clinical outcome in lung cancer patients. Our results reveal a new mechanism of AKT signaling in promoting ZNF322A protein stability and transcriptional activity in lung cancer cell, xenograft, and clinical models.
Collapse
Affiliation(s)
- Sheng-You Liao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - I-Ying Kuo
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yu-Ting Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pao-Chi Liao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan, 704, Taiwan
| | - Ya-Fen Liu
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Tainan, 10617, Taiwan
| | - Wu-Wei Lai
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Ching Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan. .,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
50
|
Wang D, Horton JR, Zheng Y, Blumenthal RM, Zhang X, Cheng X. Role for first zinc finger of WT1 in DNA sequence specificity: Denys-Drash syndrome-associated WT1 mutant in ZF1 enhances affinity for a subset of WT1 binding sites. Nucleic Acids Res 2019; 46:3864-3877. [PMID: 29294058 PMCID: PMC5934627 DOI: 10.1093/nar/gkx1274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/14/2022] Open
Abstract
Wilms tumor protein (WT1) is a Cys2-His2 zinc-finger transcription factor vital for embryonic development of the genitourinary system. The protein contains a C-terminal DNA binding domain with four tandem zinc-fingers (ZF1-4). An alternative splicing of Wt1 can add three additional amino acids-lysine (K), threonine (T) and serine (S)-between ZF3 and ZF4. In the -KTS isoform, ZF2-4 determine the sequence-specificity of DNA binding, whereas the function of ZF1 remains elusive. Three X-ray structures are described here for wild-type -KTS isoform ZF1-4 in complex with its cognate DNA sequence. We observed four unique ZF1 conformations. First, like ZF2-4, ZF1 can be positioned continuously in the DNA major groove forming a 'near-cognate' complex. Second, while ZF2-4 make base-specific interactions with one DNA molecule, ZF1 can interact with a second DNA molecule (or, presumably, two regions of the same DNA molecule). Third, ZF1 can intercalate at the joint of two tail-to-head DNA molecules. If such intercalation occurs on a continuous DNA molecule, it would kink the DNA at the ZF1 binding site. Fourth, two ZF1 units can dimerize. Furthermore, we examined a Denys-Drash syndrome-associated ZF1 mutation (methionine at position 342 is replaced by arginine). This mutation enhances WT1 affinity for a guanine base. X-ray crystallography of the mutant in complex with its preferred sequence revealed the interactions responsible for this affinity change. These results provide insight into the mechanisms of action of WT1, and clarify the fact that ZF1 plays a role in determining sequence specificity of this critical transcription factor.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John R Horton
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yu Zheng
- RGENE, Inc., 953 Indiana Street, San Francisco, CA 94107, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|