1
|
Zhao J, Sun Z, Li Z, Xu M, Tian A, An Z, Guo W, He C, Dong Y, Wen J, Yang J, Wang Q, Chen P. MicroRNA-mediated Ets1 repression in retinal endothelial cells: A novel anti-angiogenic mechanism in nonproliferative diabetic retinopathy. Diabetes Obes Metab 2025. [PMID: 39777974 DOI: 10.1111/dom.16182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
AIMS This study aimed to discover the regulatory mechanisms contributing to angiogenesis in nonproliferative diabetic retinopathy (NPDR). MATERIALS AND METHODS This study employed a case-control design involving type 2 diabetes patients with and without NPDR. We utilised microRNA sequencing to analyse plasma and retina samples from T2D patients, to identify both existing and novel microRNAs relevant to retinal health. An integrative approach combining single-cell sequencing data from mouse and rat models was used to explore the molecular mechanism in retinal cells under diabetes condition. RESULTS We identified a specific set of circulating microRNAs with strong predictive potential for distinguishing NPDR patients. In addition, a novel microRNA targeting the ETS proto-oncogene 1 (Ets1), a key regulator of microvascular angiogenesis, was found to be upregulated in the plasma of NPDR patients. Analysis of single-cell sequencing data suggested that Ets1 expression was downregulated in diabetic endothelial cells and was associated with the repression of Angiopoietin-1 and phosphoinositide 3-kinase-Akt (PI3K-Akt) signalling pathways, indicating an anti-angiogenic mechanism in NPDR. CONCLUSIONS The identification of a novel microRNA involved in the anti-angiogenic mechanism in NPDR provides new insights into the molecular underpinnings of endothelial dysfunction in diabetic retinopathy. Our retina-specific circulating microRNA panel has potential utility in risk assessment and early detection of NPDR.
Collapse
Affiliation(s)
- Jianyu Zhao
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Zewen Sun
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Zimeng Li
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Mengyu Xu
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Aowen Tian
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhengwen An
- Department of Oral Biology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Wenbo Guo
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Chang He
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Ying Dong
- Department of Radiotherapy, The Tumor Hospital of Jilin Province, Changchun, China
| | - Jianping Wen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Jianli Yang
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Qing Wang
- Department of Endocrinology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Peng Chen
- Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- Department of Pathology, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
2
|
Xia Y, Chen J, Dong P, Zhang L, Ding Y, Ding W, Han X, Wang X, Li D. Embryonic 6:2 Fluorotelomer Alcohol Exposure Disrupts the Blood‒Brain Barrier by Causing Endothelial‒to‒Mesenchymal Transition in the Male Mice. Mol Neurobiol 2024:10.1007/s12035-024-04540-7. [PMID: 39417922 DOI: 10.1007/s12035-024-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
6:2 Fluorotelomer alcohol (6:2 FTOH) is a raw material used in the manufacture of short-chain poly- and perfluoroalkyl substances. Our previous study revealed that gestational exposure to 6:2 FTOH can impair blood‒brain barrier (BBB) function in offspring, accompanied by anxiety-like behavior and learning memory deficits. The aim of this study was to further investigate the specific mechanism by which maternal exposure to 6:2 FTOH resulted in impaired BBB function in offspring mice. Pregnant mice were orally administered different doses of 6:2 FTOH (0, 5, 25, and 125 mg/kg/day) from gestation day 8.5 until delivery. These results confirmed that maternal 6:2 FTOH exposure impaired BBB function and disrupted the brain immune microenvironment. Subsequent investigations revealed that endothelial-to-mesenchymal transition (EndMT) in the cerebral microvascular endothelium of offspring may be the mechanism mediating functional disruption of the BBB. Mechanistic studies revealed that exposure to 6:2 FTOH upregulated ETS proto-oncogene 1 (ETS1) expression via the tumor necrosis factor-α/extracellular signal-regulated kinase 1/2 signaling pathway, which mediated disturbances in energy metabolism, leading to impaired actin dynamics and subsequently triggering the EndMT phenotype. This is the first finding indicating that gestational 6:2 FTOH exposure caused functional impairment of the BBB through ETS1-mediated EndMT in cerebral microvascular endothelial cells, potentially providing novel insight into the environmental origins of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Yunhui Xia
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Junhan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ping Dong
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Luqing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yibing Ding
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
- Translational Medicine Core Facilities, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Ding
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, Jiangsu, China.
| | - Dongmei Li
- State Key Laboratory of Analytical Chemistry for Life Science, Division of Anatomy and Histo-Embryology, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
3
|
Liu Y, Fang L, Wang Y, Fan T, Wang L, Xiao C, Deng Z, Cai W, Zheng B, Qiu J, Li C, He J. The pathogenic germline ETV4 P433L mutation identified in multiple primary lung cancer affect tumor stem-like property by Wnt/β-catenin pathway. Cell Death Dis 2024; 15:738. [PMID: 39389944 PMCID: PMC11467305 DOI: 10.1038/s41419-024-07129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/29/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
The occurrence of multiple primary lung cancer (MPLC) has witnessed a significant surge in recent years within the Chinese population. MPLC is distinguished by its potential genetic susceptibility and notable genetic heterogeneity. Investigating the etiology of MPLC holds substantial clinical importance.The whole genome sequencing (WGS) and genome-wide linkage analysis were performed in a family affected by a dominant form of lung abnormalities. Specifically, five family members were diagnosed with MPLC, while nine members had pulmonary nodules and one normal member. To confirm the potential pathogenic germline mutations sites, Sanger sequencing was performed in an additional 162 MPLC family patients. Furthermore, molecular biology experiments were conducted to investigate the function and the mechanism of the identified pathogenic mutation site in lung cancer A549 and H322, both in vitro and in vivo. Linkage analysis revealed the presence of shared genomic regions among affected family members. Subsequent exome sequencing identified a deleterious variant within these linkage intervals, specifically a heterozygous mutation in ETS-oncogene transcription factors 4 (ETV4). This particular variant was found in affected family members at a rate of 13 out of 15 individuals. Furthermore, ETV4 P433L mutation could be detected in an additional MPLC family patients and mutation frequency was 3.7% (6 out of 162). The ETV4 P433L mutations site was introduced into lung cancer cell lines, resulting in altered migration and stem-like properties of the cancer cells. Further investigation revealed that the activation of the Wnt/β-catenin signaling pathway, which is associated with stemness, could be attributed to the presence of the ETV4 P433L mutation, suggesting its involvement in tumor promotion. A novel pathogenic germline mutation, ETV4 P433L, was identified in a dominant MPLC family, with a mutation rate of 3.7% among MPLC family patients. The ETV4 P433L mutation was found to impact the stem-like properties and migration of tumors through Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yu Liu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lingling Fang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yalong Wang
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfeng Qiu
- China Economics and Management Academy, Central University of Finance and Economics, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
4
|
Duan L, Tadi MJ, O'Hara KM, Maki CG. Novel markers of MCL1 inhibitor sensitivity in triple-negative breast cancer cells. J Biol Chem 2024; 300:107375. [PMID: 38762181 PMCID: PMC11208921 DOI: 10.1016/j.jbc.2024.107375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/15/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive breast cancer sub-type with limited treatment options and poor prognosis. Currently, standard treatments for TNBC include surgery, chemotherapy, and anti-PDL1 therapy. These therapies have limited efficacy in advanced stages. Myeloid-cell leukemia 1 (MCL1) is an anti-apoptotic BCL2 family protein. High expression of MCL1 contributes to chemotherapy resistance and is associated with a worse prognosis in TNBC. MCL1 inhibitors are in clinical trials for TNBC, but response rates to these inhibitors can vary and predictive markers are lacking. Currently, we identified a 4-member (AXL, ETS1, IL6, EFEMP1) gene signature (GS) that predicts MCL1 inhibitor sensitivity in TNBC cells. Factors encoded by these genes regulate signaling pathways to promote MCL1 inhibitor resistance. Small molecule inhibitors of the GS factors can overcome resistance and sensitize otherwise resistant TNBC cells to MCL1 inhibitor treatment. These findings offer insights into potential therapeutic strategies and tumor stratification for MCL1 inhibitor use in TNBC.
Collapse
Affiliation(s)
- Lei Duan
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA.
| | - Mehrdad Jafari Tadi
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Kelsey M O'Hara
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA
| | - Carl G Maki
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois, USA.
| |
Collapse
|
5
|
Cheng T, Gu ML, Xu WQ, Ye DW, Zha ZY, Fang WG, Mao LK, Ning J, Hu XB, Ding YH. Mechanism of lncRNA SNHG16 on kidney clear cell carcinoma cells by targeting miR-506-3p/ETS1/RAS/ERK molecular axis. Heliyon 2024; 10:e30388. [PMID: 38756581 PMCID: PMC11096951 DOI: 10.1016/j.heliyon.2024.e30388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Objective This study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. Methods Thirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. Results SNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. Conclusion SNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.
Collapse
Affiliation(s)
- Tao Cheng
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ming-Li Gu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wei-Qiang Xu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Da-Wen Ye
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Ze-Yu Zha
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Wen-Ge Fang
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Li-Kai Mao
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Jing Ning
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Xing-Bang Hu
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| | - Yong-Hui Ding
- Department of Urology, The Second Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233000, China
| |
Collapse
|
6
|
Zurawska G, Jończy A, Niklewicz M, Sas Z, Rumieńczyk I, Kulecka M, Piwocka K, Rygiel TP, Mikula M, Mleczko-Sanecka K. Iron-triggered signaling via ETS1 and the p38/JNK MAPK pathway regulates Bmp6 expression. Am J Hematol 2024; 99:543-554. [PMID: 38293789 DOI: 10.1002/ajh.27223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/13/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024]
Abstract
BMP6 is an iron-sensing cytokine whose transcription in liver sinusoidal endothelial cells (LSECs) is enhanced by high iron levels, a step that precedes the induction of the iron-regulatory hormone hepcidin. While several reports suggested a cell-autonomous induction of Bmp6 by iron-triggered signals, likely via sensing of oxidative stress by the transcription factor NRF2, other studies proposed the dominant role of a paracrine yet unidentified signal released by iron-loaded hepatocytes. To further explore the mechanisms of Bmp6 transcriptional regulation, we used female mice aged 10-11 months, which are characterized by hepatocytic but not LSEC iron accumulation, and no evidence of systemic iron overload. We found that LSECs of aged mice exhibit increased Bmp6 mRNA levels as compared to young controls, but do not show a transcriptional signature characteristic of activated NFR2-mediated signaling in FACS-sorted LSECs. We further observed that primary murine LSECs derived from both wild-type and NRF2 knock-out mice induce Bmp6 expression in response to iron exposure. By analyzing transcriptomic data of FACS-sorted LSECs from aged versus young mice, as well as early after iron citrate injections, we identified ETS1 as a candidate transcription factor involved in Bmp6 transcriptional regulation. By performing siRNA-mediated knockdown, small-molecule treatments, and chromatin immunoprecipitation in primary LSECs, we show that Bmp6 transcription is regulated by iron via ETS1 and p38/JNK MAP kinase-mediated signaling, at least in part independently of NRF2. Thereby, these findings identify the new components of LSEC iron sensing machinery broadly associated with cellular stress responses.
Collapse
Affiliation(s)
- Gabriela Zurawska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Aneta Jończy
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Niklewicz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zuzanna Sas
- Medical University of Warsaw, Warsaw, Poland
| | - Izabela Rumieńczyk
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Kulecka
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Tomasz P Rygiel
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Mikula
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | |
Collapse
|
7
|
Stuckel AJ, Zeng S, Lyu Z, Zhang W, Zhang X, Dougherty U, Mustafi R, Khare T, Zhang Q, Joshi T, Bissonnette M, Khare S. Sprouty4 is epigenetically upregulated in human colorectal cancer. Epigenetics 2023; 18:2145068. [PMID: 36384366 PMCID: PMC9980603 DOI: 10.1080/15592294.2022.2145068] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sprouty4 (SPRY4) has been frequently reported as a tumor suppressor and is therefore downregulated in various cancers. For the first time, we report that SPRY4 is epigenetically upregulated in colorectal cancer (CRC). In this study, we explored DNA methylation and hydroxymethylation levels of SPRY4 in CRC cells and patient samples and correlated these findings with mRNA and protein expression levels. Three loci within the promoter region of SPRY4 were evaluated for 5mC levels in CRC using the combined bisulfite restriction analysis. In addition, hydroxymethylation levels within SPRY4 were measured in CRC patients. Lastly, DNA methylation and mRNA expression data were extracted from CRC patients in multiple high-throughput data repositories like Gene Expression Omnibus and The Cancer Genome Atlas. Combined in vitro and in silico analysis of promoter methylation levels of SPRY4 clearly demonstrates that the distal promoter region undergoes hypomethylation in CRC patients and is associated with increased expression. Moreover, a decrease in gene body hydroxymethylation and an increase in gene body methylation within the coding region of SPRY4 were found in CRC patients and correlated with increased expression. SPRY4 is epigenetically upregulated in CRC by promoter hypomethylation and hypermethylation within the gene body that warrants future investigation of atypical roles of this established tumor suppressor.
Collapse
Affiliation(s)
- Alexei J. Stuckel
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Shuai Zeng
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Zhen Lyu
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, Missouri, 65201, USA
| | - Wei Zhang
- Department of Preventive Medicine and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois, Chicago, Illinois, 60607, USA
| | - Urszula Dougherty
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Reba Mustafi
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Tripti Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Qiong Zhang
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| | - Trupti Joshi
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65201, USA,Institute for Data Science and Informatics, University of Missouri, Columbia, Missouri, 65211, USA,Department of Health Management and Informatics; School of Medicine, University of Missouri, Columbia, Missouri, 65212, USA
| | - Marc Bissonnette
- Department of Medicine, Section of Gastroenterology, Hepatology and Nutrition; the University of Chicago, Chicago, Illinois, 60637, USA
| | - Sharad Khare
- Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA,Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri, 65201, USA,CONTACT Sharad Khare Department of Medicine, Division of Gastroenterology and Hepatology, University of Missouri, Columbia, Missouri, 65212, USA
| |
Collapse
|
8
|
Greulich BM, Rajendran S, Downing NF, Nicholas TR, Hollenhorst PC. A complex with poly(A)-binding protein and EWS facilitates the transcriptional function of oncogenic ETS transcription factors in prostate cells. J Biol Chem 2023; 299:105453. [PMID: 37956771 PMCID: PMC10704431 DOI: 10.1016/j.jbc.2023.105453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.
Collapse
Affiliation(s)
| | - Saranya Rajendran
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Nicholas F Downing
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Taylor R Nicholas
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana, USA.
| |
Collapse
|
9
|
Chung EYL, Sartori G, Ponzoni M, Cascione L, Priebe V, Xu-Monette ZY, Fang X, Zhang M, Visco C, Tzankov A, Rinaldi A, Sgrignani J, Zucca E, Rossi D, Cavalli A, Inghirami G, Scott DW, Young KH, Bertoni F. ETS1 phosphorylation at threonine 38 is associated with the cell of origin of diffuse large B cell lymphoma and sustains the growth of tumour cells. Br J Haematol 2023; 203:244-254. [PMID: 37584198 DOI: 10.1111/bjh.19018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023]
Abstract
The transcriptional factor ETS1 is upregulated in 25% of diffuse large B cell lymphoma (DLBCL). Here, we studied the role of ETS1 phosphorylation at threonine 38, a marker for ETS1 activation, in DLBCL cellular models and clinical specimens. p-ETS1 was detected in activated B cell-like DLBCL (ABC), not in germinal centre B-cell-like DLBCL (GCB) cell lines and, accordingly, it was more common in ABC than GCB DLBCL diagnostic biopsies. MEK inhibition decreased both baseline and IgM stimulation-induced p-ETS1 levels. Genetic inhibition of phosphorylation of ETS1 at threonine 38 affected the growth and the BCR-mediated transcriptome program in DLBCL cell lines. Our data demonstrate that ETS1 phosphorylation at threonine 38 is important for the growth of DLBCL cells and its pharmacological inhibition could benefit lymphoma patients.
Collapse
Affiliation(s)
- Elaine Y L Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Maurilio Ponzoni
- IRCCS San Raffaele Hospital Scientific Institute, Vita Salute San Raffaele University, Milan, Italy
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | | | - Xiaosheng Fang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Mingzhi Zhang
- Duke University Medical Center, Durham, North Carolina, USA
| | - Carlo Visco
- Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alexandar Tzankov
- Pathology, Institute of Medical Genetics and Pathology, University Hospital, Basel, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Emanuele Zucca
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Andrea Cavalli
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, USI, Bellinzona, Switzerland
| | - Giorgio Inghirami
- Pathology and Laboratory Medicine Department, Weill Cornell Medicine, New York, New York, USA
| | - David W Scott
- Centre for Lymphoid Cancer, BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ken H Young
- Duke University Medical Center, Durham, North Carolina, USA
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| |
Collapse
|
10
|
Ghosh D, Pakhira S, Ghosh DD, Roychoudhury S, Roy SS. Ets1 facilitates EMT/invasion through Drp1-mediated mitochondrial fragmentation in ovarian cancer. iScience 2023; 26:107537. [PMID: 37664613 PMCID: PMC10469980 DOI: 10.1016/j.isci.2023.107537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/03/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
Ovarian cancer has sustained as a major cause of cancer-related female mortality owing to its aggressive nature and a dearth of early detection markers. Ets1 oncoprotein, a transcription factor belonging to the Ets family, is a well-established promoter of epithelial to mesenchymal transition (EMT) and a prospective malignancy marker in ovarian cancer. Our study establishes Ets1 as a regulator of mitochondrial fission-fusion dynamics through Drp1 augmentation via direct binding at DNM1L (DRP1) promoter. Ets1 overexpression-mediated Drp1 increment resulted in mitochondrial load reduction and compromised OXPHOS Complex 5 (ATP synthase) expression, facilitating a greater reliance on glycolysis over OXPHOS. Furthermore, our work demonstrates that inhibition of mitochondrial fission through molecular or pharmacological inhibition of Drp1 successfully mitigates Ets1-associated EMT in both in vitro and in vivo syngeneic mice model. Collectively, our data highlight the role of Drp1-mediated mitochondrial fragmentation in driving Ets1-mediated bioenergetic alterations and EMT/invasion in ovarian cancer.
Collapse
Affiliation(s)
- Deepshikha Ghosh
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Suman Pakhira
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Damayanti Das Ghosh
- Molecular and Diagnostics Laboratory, Basic and Translational Research, Saroj Gupta Cancer Centre & Research Institute, Thakurpukur, Kolkata 700063, India
| | - Susanta Roychoudhury
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR Indian Institute of Chemical Biology (CSIR IICB), 4, Raja S.C. Mullick Road, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Ding D, Blee AM, Zhang J, Pan Y, Becker NA, Maher LJ, Jimenez R, Wang L, Huang H. Gain-of-function mutant p53 together with ERG proto-oncogene drive prostate cancer by beta-catenin activation and pyrimidine synthesis. Nat Commun 2023; 14:4671. [PMID: 37537199 PMCID: PMC10400651 DOI: 10.1038/s41467-023-40352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 07/20/2023] [Indexed: 08/05/2023] Open
Abstract
Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and β-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. β-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals β-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.
Collapse
Affiliation(s)
- Donglin Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Alexandra M Blee
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
- Department of Biochemistry, Vanderbilt University, Nashville, TN, 73240, USA
| | - Jianong Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Yunqian Pan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Nicole A Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - L James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Rafael Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA
| | - Liguo Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Department of Urology, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
- Mayo Clinic Cancer Center, Mayo Clinic College of Medicine and Science, Rochester, MN, 55905, USA.
| |
Collapse
|
12
|
Qian F, He S, Yang X, Chen X, Zhao S, Wang J. Circular RNA DHTKD1 targets miR‑338‑3p/ETS1 axis to regulate the inflammatory response in human bronchial epithelial cells. Exp Ther Med 2023; 26:316. [PMID: 37273760 PMCID: PMC10236136 DOI: 10.3892/etm.2023.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/27/2023] [Indexed: 06/06/2023] Open
Abstract
Asthma is a chronic inflammatory airway disease and the airway epithelium is involved in airway inflammation and innate immunity. However, whether circular RNA (circRNA) is involved in the pathogenesis of asthma remains unclear. The present study aimed to determine the functions and molecular mechanisms of circRNA targeting dehydrogenase E1 (circDHTKD1) in the inflammation response of human bronchial epithelial cells. BEAS-2B cells were stimulated with lipopolysaccharide (LPS) to establish a model of in vitro airway inflammation. Cell viability was assessed using Cell Counting Kit-8 assay. CircDHTKD1 was characterised by nucleocytoplasmic isolation and Sanger sequencing. The RNA expression levels of circDHTKD1, microRNA (miR)-338-3p and potential ERK pathway downstream genes were evaluated by reverse transcription-quantitative polymerase chain reaction. Western blot analysis was performed to measure associated protein levels. The levels of inflammatory cytokines were detected by ELISA. The interaction between circDHTKD1 and miR-338-3p was confirmed by dual-luciferase reporter assay. circDHTKD1 expression was significantly upregulated by LPS treatment, whereas miR-338-3p expression was decreased. Furthermore, circDHTKD1 directly targeted miR-338-3p, which negatively regulated expression of E26 transformation specific-1 (ETS1). Inflammatory cytokine and ETS1 expression levels decreased following transfection with small interfering RNA targeting circDHTKD1 or miR-338-3p mimics. In addition, co-transfection with miR-338-3p inhibitor reversed the effects caused by circDHTKD1 knockdown. The knockdown of ETS1 in LPS-induced BEAS-2B cells resulted in decreased cytokine production and inhibition of the ERK signalling pathway. Overall, these results suggested that the knockdown of circDHTKD1 alleviated the LPS-induced production of inflammatory cytokines and activation of the ERK pathway in BEAS-2B cells through the miR-338-3p/ETS1 axis. In summary, circDHTKD1 exacerbated LPS-triggered inflammation responses in BEAS-2B cells by regulating ETS1 expression by interacting with miR-338-3p, suggesting that circDHTKD1 may serve as a potential therapeutic target against asthma.
Collapse
Affiliation(s)
- Fenhong Qian
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shanchuan He
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xianmiao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Xingxing Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Siting Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jingzhi Wang
- Department of Radiotherapy Oncology, The Affiliated Yancheng First Hospital of Nanjing University Medical School, The First People's Hospital of Yancheng, Yancheng, Jiangsu 224000, P.R. China
| |
Collapse
|
13
|
D'Artista L, Moschopoulou AA, Barozzi I, Craig AJ, Seehawer M, Herrmann L, Minnich M, Kang TW, Rist E, Henning M, Klotz S, Heinzmann F, Harbig J, Sipos B, Longerich T, Eilers M, Dauch D, Zuber J, Wang XW, Zender L. MYC determines lineage commitment in KRAS-driven primary liver cancer development. J Hepatol 2023; 79:141-149. [PMID: 36906109 PMCID: PMC10330789 DOI: 10.1016/j.jhep.2023.02.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND & AIMS Primary liver cancer (PLC) comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their tumour biology and responses to cancer therapies. Liver cells harbour a high degree of cellular plasticity and can give rise to either HCC or iCCA. However, little is known about the cell-intrinsic mechanisms directing an oncogenically transformed liver cell to either HCC or iCCA. The scope of this study was to identify cell-intrinsic factors determining lineage commitment in PLC. METHODS Cross-species transcriptomic and epigenetic profiling was applied to murine HCCs and iCCAs and to two human PLC cohorts. Integrative data analysis comprised epigenetic Landscape In Silico deletion Analysis (LISA) of transcriptomic data and Hypergeometric Optimization of Motif EnRichment (HOMER) analysis of chromatin accessibility data. Identified candidate genes were subjected to functional genetic testing in non-germline genetically engineered PLC mouse models (shRNAmir knockdown or overexpression of full-length cDNAs). RESULTS Integrative bioinformatic analyses of transcriptomic and epigenetic data pinpointed the Forkhead-family transcription factors FOXA1 and FOXA2 as MYC-dependent determination factors of the HCC lineage. Conversely, the ETS family transcription factor ETS1 was identified as a determinant of the iCCA lineage, which was found to be suppressed by MYC during HCC development. Strikingly, shRNA-mediated suppression of FOXA1 and FOXA2 with concomitant ETS1 expression fully switched HCC to iCCA development in PLC mouse models. CONCLUSIONS The herein reported data establish MYC as a key determinant of lineage commitment in PLC and provide a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. IMPACT AND IMPLICATIONS Liver cancer is a major health problem and comprises hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA), two frequent and lethal tumour types that differ regarding their morphology, tumour biology, and responses to cancer therapies. We identified the transcription factor and oncogenic master regulator MYC as a switch between HCC and iCCA development. When MYC levels are high at the time point when a hepatocyte becomes a tumour cell, an HCC is growing out. Conversely, if MYC levels are low at this time point, the result is the outgrowth of an iCCA. Our study provides a molecular explanation why common liver-damaging risk factors such as alcoholic or non-alcoholic steatohepatitis can lead to either HCC or iCCA. Furthermore, our data harbour potential for the development of better PLC therapies.
Collapse
Affiliation(s)
- Luana D'Artista
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Athina Anastasia Moschopoulou
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Iros Barozzi
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Department of Surgery and Cancer, Imperial College London, London, UK
| | - Amanda J Craig
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marco Seehawer
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Lea Herrmann
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Martina Minnich
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tae-Won Kang
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Elke Rist
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Melanie Henning
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Sabrina Klotz
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Florian Heinzmann
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Jule Harbig
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Bence Sipos
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Thomas Longerich
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Martin Eilers
- Theodor Boveri Institute, Department of Biochemistry and Molecular Biology, Biocenter, University of Wuerzburg, Wuerzburg, Germany
| | - Daniel Dauch
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA; Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Lars Zender
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany; iFIT Cluster of Excellence EXC 2180 'Image Guided and Functionally Instructed Tumor Therapies', University of Tuebingen, Tuebingen, Germany; German Cancer Research Consortium (DKTK), Partner Site Tübingen, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Zhao B, Sun J, DU K, Liang N, Sun J. Sprouty 4 suppresses glioblastoma invasion by inhibiting ERK phosphorylation and ETS-1-induced matrix metalloproteinase-9. J Neurosurg Sci 2023; 67:121-128. [PMID: 32618153 DOI: 10.23736/s0390-5616.20.04969-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most malignant glioma with highly aggressive behavior and the worst prognosis. Many efforts have been made to develop new drugs and improve the patient's survival, but the effects are not satisfactory. Here we aimed to evaluate the clinical significance and tumor-repressive function of Sprouty4 (SPRY4) in GBM. METHODS In our study, we detected the expression of SPRY4 in 109 GBM patients and 12 pairs of GBM tissues and the corresponding adjacent tissues. χ2 test was applied to analyze the association between SPRY4 expression and the clinicopathological factors. The prognostic significances were evaluated with univariate and multivariate analyses, which were carried out by the Kaplan-Meier method and the Cox-regression proportional hazards model, respectively. With in-vitro experiments, we investigated the tumor-suppressing function of SPRY4 in GBM invasion and investigated the underlying mechanism. RESULTS SPRY4 mRNAs in GBMs were significantly lower than those in adjacent brain tissues. We demonstrated that SPRY4 expression could predict the favorable prognosis of GBM, and SPRY4 was an independent favorable prognostic factor of GBM. SPRY4 repressed GBM invasion via inhibiting ERK phosphorylation; therefore, suppressing ETS-1-induced MMP9 expression. CONCLUSIONS SPRY4 was an independent favorable prognostic factor of GBM, and it could suppress GBM invasion by ERK-ETS-MMP9 axis. Our results indicated that SPRY4 may be a promising drug target of GBM and SPRY4 detection could stratify patients with low SPRY4 expression who may benefit from anti-FGFR therapy.
Collapse
Affiliation(s)
- Baomin Zhao
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Jing Sun
- Department of Neurology, Yidu Central Hospital of Weifang, Weifang, China
| | - Kai DU
- Department of Neurosurgery, Yidu Central Hospital of Weifang, Weifang, China
| | - Nan Liang
- Department of Neurosurgery, Second Hospital of Shandong First Medical University, Taian, China
| | - Jian Sun
- Department of Health Management Center, Second Affiliated Hospital of Dalian Medical University, Dalian, China -
| |
Collapse
|
15
|
Transcriptional Regulation of Siglec-15 by ETS-1 and ETS-2 in Hepatocellular Carcinoma Cells. Int J Mol Sci 2023; 24:ijms24010792. [PMID: 36614238 PMCID: PMC9821606 DOI: 10.3390/ijms24010792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 01/04/2023] Open
Abstract
Sialic acid-binding immunoglobulin-like lectin 15 (Siglec-15) has been identified as a crucial immune suppressor in human cancers, comparable to programmed cell death 1 ligand (PD-L1). However, the regulatory mechanisms underlying its transcriptional upregulation in human cancers remain largely unknown. Here, we show that the transcription factors ETS-1 and ETS-2 bound to the Siglec-15 promoter to enhance transcription and expression of Siglec-15 in hepatocellular carcinoma (HCC) cells and that transforming growth factor β-1 (TGF-β1) upregulated the expression of ETS-1 and ETS-2 and facilitated the binding of ETS-1 and ETS-2 to the Siglec-15 promoter. We further demonstrate that TGF-β1 activated the Ras/C-Raf/MEK/ERK1/2 signaling pathway, leading to phosphorylation of ETS-1 and ETS-2, which consequently upregulates the transcription and expression of Siglec-15. Our study defines a detailed molecular profile of how Siglec-15 is transcriptionally regulated which may offer significant opportunity for therapeutic intervention on HCC immunotherapy.
Collapse
|
16
|
Galasso M, Dalla Pozza E, Chignola R, Gambino S, Cavallini C, Quaglia FM, Lovato O, Dando I, Malpeli G, Krampera M, Donadelli M, Romanelli MG, Scupoli MT. The rs1001179 SNP and CpG methylation regulate catalase expression in chronic lymphocytic leukemia. Cell Mol Life Sci 2022; 79:521. [PMID: 36112236 PMCID: PMC9481481 DOI: 10.1007/s00018-022-04540-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/23/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by an extremely variable clinical course. We have recently shown that high catalase (CAT) expression identifies patients with an aggressive clinical course. Elucidating mechanisms regulating CAT expression in CLL is preeminent to understand disease mechanisms and develop strategies for improving its clinical management. In this study, we investigated the role of the CAT promoter rs1001179 single nucleotide polymorphism (SNP) and of the CpG Island II methylation encompassing this SNP in the regulation of CAT expression in CLL. Leukemic cells harboring the rs1001179 SNP T allele exhibited a significantly higher CAT expression compared with cells bearing the CC genotype. CAT promoter harboring the T -but not C- allele was accessible to ETS-1 and GR-β transcription factors. Moreover, CLL cells exhibited lower methylation levels than normal B cells, in line with the higher CAT mRNA and protein expressed by CLL in comparison with normal B cells. Methylation levels at specific CpG sites negatively correlated with CAT levels in CLL cells. Inhibition of methyltransferase activity induced a significant increase in CAT levels, thus functionally validating the role of CpG methylation in regulating CAT expression in CLL. Finally, the CT/TT genotypes were associated with lower methylation and higher CAT levels, suggesting that the rs1001179 T allele and CpG methylation may interact in regulating CAT expression in CLL. This study identifies genetic and epigenetic mechanisms underlying differential expression of CAT, which could be of crucial relevance for the development of therapies targeting redox regulatory pathways in CLL.
Collapse
Affiliation(s)
- Marilisa Galasso
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Elisa Dalla Pozza
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Roberto Chignola
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Simona Gambino
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Chiara Cavallini
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Francesca Maria Quaglia
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ornella Lovato
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Ilaria Dando
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Giorgio Malpeli
- Department of Surgery, Dentistry, Pediatrics, and Gynecology, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Mauro Krampera
- Section of Hematology, Department of Medicine, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy
| | - Massimo Donadelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy
| | - Maria G Romanelli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
| | - Maria T Scupoli
- Biology and Genetics Section, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134, Verona, Italy.
- Research Center LURM, University of Verona, Policlinico G.B. Rossi, P. L.A. Scuro 10, 37134, Verona, Italy.
| |
Collapse
|
17
|
Zhang C, Jin Y, Marchetti M, Lewis MR, Hammouda OT, Edgar BA. EGFR signaling activates intestinal stem cells by promoting mitochondrial biogenesis and β-oxidation. Curr Biol 2022; 32:3704-3719.e7. [PMID: 35896119 PMCID: PMC10117080 DOI: 10.1016/j.cub.2022.07.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/11/2022] [Accepted: 07/04/2022] [Indexed: 10/16/2022]
Abstract
EGFR-RAS-ERK signaling promotes growth and proliferation in many cell types, and genetic hyperactivation of RAS-ERK signaling drives many cancers. Yet, despite intensive study of upstream components in EGFR signal transduction, the identities and functions of downstream effectors in the pathway are poorly understood. In Drosophila intestinal stem cells (ISCs), the transcriptional repressor Capicua (Cic) and its targets, the ETS-type transcriptional activators Pointed (pnt) and Ets21C, are essential downstream effectors of mitogenic EGFR signaling. Here, we show that these factors promote EGFR-dependent metabolic changes that increase ISC mass, mitochondrial growth, and mitochondrial activity. Gene target analysis using RNA and DamID sequencing revealed that Pnt and Ets21C directly upregulate not only DNA replication and cell cycle genes but also genes for oxidative phosphorylation, the TCA cycle, and fatty acid beta-oxidation. Metabolite analysis substantiated these metabolic functions. The mitochondrial transcription factor B2 (mtTFB2), a direct target of Pnt, was required and partially sufficient for EGFR-driven ISC growth, mitochondrial biogenesis, and proliferation. MEK-dependent EGF signaling stimulated mitochondrial biogenesis in human RPE-1 cells, indicating the conservation of these metabolic effects. This work illustrates how EGFR signaling alters metabolism to coordinately activate cell growth and cell division.
Collapse
Affiliation(s)
- Chenge Zhang
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Yinhua Jin
- Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Department of Developmental Biology, Howard Hughes Medical Institute, Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marco Marchetti
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mitchell R Lewis
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Omar T Hammouda
- Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; Centre for Organismal Studies Heidelberg & Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Bruce A Edgar
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Center for Molecular Biology, Heidelberg University (ZMBH) & German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.
| |
Collapse
|
18
|
Yi TT, Yu JM, Liang YY, Wang SQ, Lin GC, Wu XD. Identification of cystic fibrosis transmembrane conductance regulator as a prognostic marker for juvenile myelomonocytic leukemia via the whole-genome bisulfite sequencing of monozygotic twins and data mining. Transl Pediatr 2022; 11:1521-1533. [PMID: 36247890 PMCID: PMC9561505 DOI: 10.21037/tp-22-381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/08/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Linked deoxyribonucleic acid (DNA) hypermethylation investigations of promoter methylation levels of candidate genes may help to increase the progressiveness and mortality rates of juvenile myelomonocytic leukemia (JMML), which is a unique myelodysplastic/myeloproliferative neoplasm caused by excessive monocyte and granulocyte proliferation in infancy/early childhood. However, the roles of hypermethylation in this malignant disease are uncertain. METHODS Bone marrow samples from a JMML patient and peripheral blood samples from a healthy monozygotic twin and an unrelated healthy donor were collected with the informed consent of the participant's parents. Whole-genome bisulfite sequencing (WGBS) was then performed. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed to analyze specific differentially methylated region (DMG) related genes. The target genes were screened with Cytoscape and Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), which are gene/protein interaction databases. A data mining platform was used to examine the expression level data of the healthy control and JMML patient tissues in Gene Expression Omnibus data sets, and a survival analysis was performed for all the JMML patients. RESULTS The STRING analysis revealed that the red node [i.e., the cystic fibrosis transmembrane conductance regulator (CFTR)] was the gene of interest. The gene-expression microarray data set analysis suggested that the CFTR expression levels did not differ significantly between the JMML patients and healthy controls (P=0.81). A statistically significant difference was observed in the CFTR promoter methylation level but not in the CFTR gene body methylation level. The overall survival analysis demonstrated that a high level of CFTR expression was associated with a worse survival rate in patients with JMML (P=0.039). CONCLUSIONS CFTR promoter hypermethylation may be a novel biomarker for the diagnosis, monitoring of disease progression, and prognosis of JMML.
Collapse
Affiliation(s)
- Tian-Tian Yi
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-Ming Yu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi-Yang Liang
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Si-Qi Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guan-Chuan Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xue-Dong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Amante RJ, Auf der Maur P, Richina V, Sethi A, Iesmantavicius V, Bonenfant D, Aceto N, Bentires-Alj M. Protein Tyrosine Phosphatase SHP2 Controls Interleukin-8 Expression in Breast Cancer Cells. J Mammary Gland Biol Neoplasia 2022; 27:145-153. [PMID: 35739379 PMCID: PMC9433352 DOI: 10.1007/s10911-022-09521-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment of metastasis remains a clinical challenge and the majority of breast cancer-related deaths are the result of drug-resistant metastases. The protein tyrosine phosphatase SHP2 encoded by the proto-oncogene PTPN11 promotes breast cancer progression. Inhibition of SHP2 has been shown to decrease metastases formation in various breast cancer models, but specific downstream effectors of SHP2 remain poorly characterized. Certain cytokines in the metastatic cascade facilitate local invasion and promote metastatic colonization. In this study, we investigated cytokines affected by SHP2 that could be relevant for its pro-tumorigenic properties. We used a cytokine array to investigate differentially released cytokines in the supernatant of SHP2 inhibitor-treated breast cancer cells. Expression of CXCL8 transcripts and protein abundance were assessed in human breast cancer cell lines in which we blocked SHP2 using shRNA constructs or an allosteric inhibitor. The impact of SHP2 inhibition on the phospho-tyrosine-proteome and signaling was determined using mass spectrometry. From previously published RNAseq data (Aceto et al. in Nat. Med. 18:529-37, 2012), we computed transcription factor activities using an integrated system for motif activity response analysis (ISMARA) (Balwierz et al. in Genome Res. 24:869-84, 2014). Finally, using siRNA against ETS1, we investigated whether ETS1 directly influences CXCL8 expression levels. We found that IL-8 is one of the most downregulated cytokines in cell supernatants upon SHP2 blockade, with a twofold decrease in CXCL8 transcripts and a fourfold decrease in IL-8 protein. These effects were also observed in preclinical tumor models. Analysis of the phospho-tyrosine-proteome revealed that several effectors of the mitogen-activated protein kinase (MAPK) pathway are downregulated upon SHP2 inhibition in vitro. MEK1/2 inhibition consistently reduced IL-8 levels in breast cancer cell supernatants. Computational analysis of RNAseq data from SHP2-depleted tumors revealed reduced activity of the transcription factor ETS1, a direct target of ERK and a transcription factor reported to regulate IL-8 expression. Our work reveals that SHP2 mediates breast cancer progression by enhancing the production and secretion of the pro-metastatic cytokine IL-8. We also provide mechanistic insights into the effects of SHP2 inhibition and its downstream repercussions. Overall, these results support a rationale for targeting SHP2 in breast cancer.
Collapse
Affiliation(s)
- Romain J Amante
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Priska Auf der Maur
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Veronica Richina
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Atul Sethi
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | - Debora Bonenfant
- Analytical Sciences and Imaging, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Mohamed Bentires-Alj
- Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
20
|
Endothelial ETS1 inhibition exacerbate blood-brain barrier dysfunction in multiple sclerosis through inducing endothelial-to-mesenchymal transition. Cell Death Dis 2022; 13:462. [PMID: 35568723 PMCID: PMC9107459 DOI: 10.1038/s41419-022-04888-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Blood-brain barrier (BBB) dysfunction has been recognized as an early pathological feature and contributing factor in multiple sclerosis. Endothelial-to-mesenchymal transition is a process associated with endothelial dysfunction leading to the disruption of vessel stability and barrier function, yet its functional consequence in multiple sclerosis remains unclear. Here, we demonstrated that endothelial-to-mesenchymal transition accompanied the blood-brain barrier dysfunction in several neurological disorders, especially in multiple sclerosis. The activity of transcription factor ETS1, which is highly expressed in endothelial cells (ECs) and responded to an inflammatory condition, is suppressed in the central nervous system (CNS) ECs in MS and its animal model experimental autoimmune encephalomyelitis. We identify ETS1 as a central regulator of endothelial-to-mesenchymal transition (EndMT) associated with the compromise of barrier integrity. These phenotypical and functional alterations can further induce high permeability, immune infiltration, and organ fibrosis in multiple sclerosis, thus promoting disease progression. Together, these results demonstrate a functional role of EndMT in blood-brain barrier dysfunction and propose ETS1 as a potential transcriptional switch of EndMT to target the development of multiple sclerosis.
Collapse
|
21
|
Murai Y, Jo U, Murai J, Fukuda S, Takebe N, Pommier Y. Schlafen 11 expression in human acute leukemia cells with gain-of-function mutations in the interferon-JAK signaling pathway. iScience 2021; 24:103173. [PMID: 34693224 PMCID: PMC8517841 DOI: 10.1016/j.isci.2021.103173] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/16/2021] [Accepted: 09/22/2021] [Indexed: 12/28/2022] Open
Abstract
Schlafen11 (SLFN11) is referred to as interferon (IFN)-inducible. Based on cancer genomic databases, we identified human acute myeloid and lymphoblastic leukemia cells with gain-of-function mutations in the Janus kinase (JAK) family as exhibiting high SLFN11 expression. In these cells, the clinical JAK inhibitors cerdulatinib, ruxolitinib, and tofacitinib reduced SLFN11 expression, but IFN did not further induce SLFN11 despite phosphorylated STAT1. We provide evidence that suppression of SLFN11 by JAK inhibitors is caused by inactivation of the non-canonical IFN pathway controlled by AKT and ERK. Accordingly, the AKT and ERK inhibitors MK-2206 and SCH77284 suppressed SLFN11 expression. Both also suppressed the E26 transformation-specific (ETS)-family genes ETS-1 and FLI-1 that act as transcription factors for SLFN11. Moreover, SLFN11 expression was inhibited by the ETS inhibitor TK216. Our study reveals that SLFN11 expression is regulated via the JAK, AKT and ERK, and ETS axis. Pharmacological suppression of SLFN11 warrants future studies.
Collapse
Affiliation(s)
- Yasuhisa Murai
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Naoko Takebe
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
- Developmental Therapeutics Branch and Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
22
|
Liu O, Wang C, Wang S, Hu Y, Gou R, Dong H, Li S, Li X, Lin B. Keratin 80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer. J Cancer 2021; 12:6835-6850. [PMID: 34659572 PMCID: PMC8517993 DOI: 10.7150/jca.64031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/18/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction: Keratin 80 (KRT80) is a type II epithelial keratin protein that plays an important role in cell differentiation and tumor progression. However, its role and mechanisms in ovarian cancer remain unclear. Methods: The effect of KRT80 on the survival and prognosis of patients with ovarian cancer was determined using immunohistochemistry. Cell lines overexpressing KRT80 and with KRT80 knockdown were established to study its effect on the malignant behavior of ovarian cancer cells. Western blotting was used to detect changes in related molecules, and in the MEK/ERK signal transduction pathway. ChIP assay was used to confirm that ETS1 regulates KRT80 at the transcriptional level. A double luciferase assay was used to confirm the target of miR-206. Results: The expression levels of KRT80 were high in ovarian cancer tissue, and were related to survival and prognosis. KRT80 expression is an independent prognostic factor in patients with ovarian cancer. KRT80 overexpression promotes the proliferation of ovarian cancer cells, the transition from G1 phase to S phase, invasion, and migration. KRT80 overexpression increased the expression of BCL2/BAX, CyclinD1, MMP2, MMP9, and N-cadherin, decreased the expression of E-cadherin, and increased the phosphorylation of MEK and ERK. ETS1 binds to the upstream promoter sequence of KRT80 and regulates KRT80 expression at the transcriptional level. ETS1 is a direct target of miR-206 in ovarian cancer cells. Conclusion: KRT80 regulated by miR-206/ETS1 promotes tumor progression via the MEK/ERK pathway in ovarian cancer, and KRT80 may have applications as a screening biomarker and potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Ouxuan Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Caixia Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Shuang Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Yuexin Hu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Rui Gou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Hui Dong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Siting Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Xiao Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Liaoning, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Liaoning, China
| |
Collapse
|
23
|
Ma W, Ou T, Cui X, Wu K, Li H, Li Y, Peng G, Xia W, Wu S. HSP47 contributes to angiogenesis by induction of CCL2 in bladder cancer. Cell Signal 2021; 85:110044. [PMID: 34000383 DOI: 10.1016/j.cellsig.2021.110044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 02/05/2023]
Abstract
Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperone and is involved in tumor progression by promoting angiogenesis. However, the regulatory network of HSP47 in angiogenesis remains elusive. In this study, we report a novel mechanism of HSP47-induced angiogenesis in bladder cancer (BC). We find that HSP47 is abnormally overexpressed in BC and is correlated with poor prognosis. HSP47 down-regulation suppresses angiogenesis in BC cells. Mechanistically, activation of the ERK pathway and induction of C-C Motif Chemokine Ligand 2 (CCL2) are responsible for HSP47-induced angiogenesis. The correlation between HSP47 with CCL2 and angiogenesis is further confirmed in BC clinical samples. Taken together, our findings suggest that HSP47 contributes to BC angiogenesis by induction of CCL2 and provide a potential anti-angiogenesis target for BC therapy.
Collapse
Affiliation(s)
- Wenlong Ma
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Tong Ou
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China; Medical Laboratory, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518001, China
| | - Xiangrui Cui
- Medical Laboratory, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518001, China
| | - Kai Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Hongming Li
- Mudanjiang Medical College, Mudanjiang 157011, China
| | - Yuqing Li
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Guoyu Peng
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Wuchao Xia
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China
| | - Song Wu
- Institute of Urology, The Third Affiliated Hospital of Shenzhen University (Luohu Hospital Group), Shenzhen 518000, China; Shenzhen Following Precision Medical Research Institute, Luohu Hospital Group, Shenzhen 518000, China; Teaching Center of Shenzhen Luohu Hospital, Shantou University Medical College, Shenzhen 518000, China.
| |
Collapse
|
24
|
Nicholas TR, Metcalf SA, Greulich BM, Hollenhorst PC. Androgen signaling connects short isoform production to breakpoint formation at Ewing sarcoma breakpoint region 1. NAR Cancer 2021; 3:zcab033. [PMID: 34409300 PMCID: PMC8364332 DOI: 10.1093/narcan/zcab033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
Ewing sarcoma breakpoint region 1 (EWSR1) encodes a multifunctional protein that can cooperate with the transcription factor ERG to promote prostate cancer. The EWSR1 gene is also commonly involved in oncogenic gene rearrangements in Ewing sarcoma. Despite the cancer relevance of EWSR1, its regulation is poorly understood. Here we find that in prostate cancer, androgen signaling upregulates a 5′ EWSR1 isoform by promoting usage of an intronic polyadenylation site. This isoform encodes a cytoplasmic protein that can strongly promote cell migration and clonogenic growth. Deletion of an Androgen Receptor (AR) binding site near the 5′ EWSR1 polyadenylation site abolished androgen-dependent upregulation. This polyadenylation site is also near the Ewing sarcoma breakpoint hotspot, and androgen signaling promoted R-loop and breakpoint formation. RNase H overexpression reduced breakage and 5′ EWSR1 isoform expression suggesting an R-loop dependent mechanism. These data suggest that androgen signaling can promote R-loops internal to the EWSR1 gene leading to either early transcription termination, or breakpoint formation.
Collapse
Affiliation(s)
- Taylor R Nicholas
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Stephanie A Metcalf
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Benjamin M Greulich
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| |
Collapse
|
25
|
Strittmatter BG, Jerde TJ, Hollenhorst PC. Ras/ERK and PI3K/AKT signaling differentially regulate oncogenic ERG mediated transcription in prostate cells. PLoS Genet 2021; 17:e1009708. [PMID: 34314419 PMCID: PMC8345871 DOI: 10.1371/journal.pgen.1009708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 07/10/2021] [Indexed: 11/19/2022] Open
Abstract
The TMPRSS2/ERG gene rearrangement occurs in 50% of prostate tumors and results in expression of the transcription factor ERG, which is normally silent in prostate cells. ERG expression promotes prostate tumor formation and luminal epithelial cell fates when combined with PI3K/AKT pathway activation, however the mechanism of synergy is not known. In contrast to luminal fates, expression of ERG alone in immortalized normal prostate epithelial cells promotes cell migration and epithelial to mesenchymal transition (EMT). Migration requires ERG serine 96 phosphorylation via endogenous Ras/ERK signaling. We found that a phosphomimetic mutant, S96E ERG, drove tumor formation and clonogenic survival without activated AKT. S96 was only phosphorylated on nuclear ERG, and differential recruitment of ERK to a subset of ERG-bound chromatin associated with ERG-activated, but not ERG-repressed genes. S96E did not alter ERG genomic binding, but caused a loss of ERG-mediated repression, EZH2 binding and H3K27 methylation. In contrast, AKT activation altered the ERG cistrome and promoted expression of luminal cell fate genes. These data suggest that, depending on AKT status, ERG can promote either luminal or EMT transcription programs, but ERG can promote tumorigenesis independent of these cell fates and tumorigenesis requires only the transcriptional activation function. ERG is the most common oncogene in prostate cancer. The ERG protein can bind DNA and can activate some genes and repress others. Previous studies indicated that ERG cannot promote cancer by itself, but that ERG works together with mutations that activate the protein AKT. In this study we found that activation of AKT changes the genes that ERG regulates, leading to luminal epithelial differentiation, which is a hallmark of most prostate tumors. However, we also found that a mutant version of ERG that can activate, but cannot repress genes, can drive prostate tumorigenesis without activation of AKT, but this mutant ERG cannot promote luminal differentiation. Our findings suggest that ERG mediated tumorigenesis only requires ERG’s activation function and can occur independent of luminal cell differentiation.
Collapse
Affiliation(s)
- Brady G. Strittmatter
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Travis J. Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Peter C. Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
26
|
Varela T, Conceição N, Laizé V, Cancela ML. Transcriptional regulation of human DUSP4 gene by cancer-related transcription factors. J Cell Biochem 2021; 122:1556-1566. [PMID: 34254709 DOI: 10.1002/jcb.30078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 11/11/2022]
Abstract
Dual specificity phosphatase 4 (DUSP4), a member of the dual specificity phosphatase family, is responsible for the dephosphorylation and inactivation of ERK, JNK and p38, which are mitogen-activated protein kinases involved in cell proliferation, differentiation and apoptosis, but also in inflammation processes. Given its importance for cellular signalling, DUSP4 is subjected to a tight regulation and there is growing evidence that its expression is dysregulated in several tumours. However, the mechanisms underlying DUSP4 transcriptional regulation remain poorly understood. Here, we analysed the regulation of the human DUSP4 promoters 1 and 2, located upstream of exons 1 and 2, respectively, by the cancer-related transcription factors (TFs) STAT3, FOXA1, CTCF and YY1. The presence of binding sites for these TFs was predicted in both promoters through the in silico analysis of DUSP4, and their functionality was assessed through luciferase activity assays. Regulatory activity of the TFs tested was found to be promoter-specific. While CTCF stimulated the activity of promoter 2 that controls the transcription of variants 2 and X1, STAT3 stimulated the activity of promoter 1 that controls the transcription of variant 1. YY1 positively regulated both promoters, although to different extents. Through site-directed mutagenesis, the functionality of YY1 binding sites present in promoter 2 was confirmed. This study provides novel insights into the transcriptional regulation of DUSP4, contributing to a better comprehension of the mechanisms of its dysregulation observed in several types of cancer.
Collapse
Affiliation(s)
- Tatiana Varela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - Natércia Conceição
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|
27
|
Huang L, Zhai Y, La J, Lui JW, Moore SP, Little EC, Xiao S, Haresi AJ, Brem C, Bhawan J, Lang D. Targeting Pan-ETS Factors Inhibits Melanoma Progression. Cancer Res 2021; 81:2071-2085. [PMID: 33526511 PMCID: PMC8137525 DOI: 10.1158/0008-5472.can-19-1668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 05/14/2020] [Accepted: 01/22/2021] [Indexed: 02/01/2023]
Abstract
The failure of once promising target-specific therapeutic strategies often arises from redundancies in gene expression pathways. Even with new melanoma treatments, many patients are not responsive or develop resistance, leading to disease progression in terms of growth and metastasis. We previously discovered that the transcription factors ETS1 and PAX3 drive melanoma growth and metastasis by promoting the expression of the MET receptor. Here, we find that there are multiple ETS family members expressed in melanoma and that these factors have redundant functions. The small molecule YK-4-279, initially developed to target the ETS gene-containing translocation product EWS-FLI1, significantly inhibited cellular growth, invasion, and ETS factor function in melanoma cell lines and a clinically relevant transgenic mouse model, BrafCA;Tyr-CreERT2;Ptenf/f. One of the antitumor effects of YK-4-279 in melanoma is achieved via interference of multiple ETS family members with PAX3 and the expression of the PAX3-ETS downstream gene MET. Expression of exogenous MET provided partial rescue of the effects of YK-4-279, further supporting that MET loss is a significant contributor to the antitumor effects of the drug. This is the first study identifying multiple overlapping functions of the ETS family promoting melanoma. In addition, targeting all factors, rather than individual members, demonstrated impactful deleterious consequences in melanoma progression. Given that multiple ETS factors are known to have oncogenic functions in other malignancies, these findings have a high therapeutic impact. SIGNIFICANCE: These findings identify YK-4-279 as a promising therapeutic agent against melanoma by targeting multiple ETS family members and blocking their ability to act as transcription factors.
Collapse
Affiliation(s)
- Lee Huang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Yougang Zhai
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jennifer La
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jason W. Lui
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A.,Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, Illinois, U.S.A
| | - Stephen P.G. Moore
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | | | - Sixia Xiao
- Section of Dermatology, University of Chicago, Chicago, Illinois, U.S.A
| | - Adil J. Haresi
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Candice Brem
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Jag Bhawan
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A
| | - Deborah Lang
- Department of Dermatology, Boston University, Boston, Massachusetts, U.S.A.,To whom correspondence should be addressed: Deborah Lang, PhD, Boston University, Department of Dermatology, 609 Albany Street, room J205, Boston, Massachusetts, U.S.A. 02118 Telephone: 01-617-358-9721; Fax: 01-617-638-5515;
| |
Collapse
|
28
|
Animireddy S, Kavadipula P, Kotapalli V, Gowrishankar S, Rao S, Bashyam MD. Aberrant cytoplasmic localization of ARID1B activates ERK signaling and promotes oncogenesis. J Cell Sci 2021; 134:jcs251637. [PMID: 33443092 DOI: 10.1242/jcs.251637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The ARID1B (BAF250b) subunit of the human SWI/SNF chromatin remodeling complex is a canonical nuclear tumor suppressor. We employed in silico prediction, intracellular fluorescence and cellular fractionation-based subcellular localization analyses to identify the ARID1B nuclear localization signal (NLS). A cytoplasm-restricted ARID1B-NLS mutant was significantly compromised in its canonical transcription activation and tumor suppressive functions, as expected. Surprisingly however, cytoplasmic localization appeared to induce a gain of oncogenic function for ARID1B, as evidenced from several cell line- and mouse xenograft-based assays. Mechanistically, cytoplasm-localized ARID1B could bind c-RAF (RAF1) and PPP1CA causing stimulation of RAF-ERK signaling and β-catenin (CTNNB1) transcription activity. ARID1B harboring NLS mutations derived from tumor samples also exhibited aberrant cytoplasmic localization and acquired a neo-morphic oncogenic function via activation of RAF-ERK signaling. Furthermore, immunohistochemistry on a tissue microarray revealed significant correlation of ARID1B cytoplasmic localization with increased levels of active forms of ERK1 and ERK2 (also known as MAPK3 and MAPK1) and of β-catenin, as well as with advanced tumor stage and lymph node positivity in human primary pancreatic tumor tissues. ARID1B therefore promotes oncogenesis through cytoplasm-based gain-of-function mechanisms in addition to dysregulation in the nucleus.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Srinivas Animireddy
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
- Graduate Studies, Manipal Academy of Higher Education, Manipal 576104, India
| | - Padmavathi Kavadipula
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | - Viswakalyan Kotapalli
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| | | | - Satish Rao
- Krishna Institute of Medical Sciences, Hyderabad 500003, India
| | - Murali Dharan Bashyam
- Laboratory of Molecular Oncology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500039, India
| |
Collapse
|
29
|
Zhang T, Liu D, Wang Y, Sun M, Xia L. The E-Twenty-Six Family in Hepatocellular Carcinoma: Moving into the Spotlight. Front Oncol 2021; 10:620352. [PMID: 33585247 PMCID: PMC7873604 DOI: 10.3389/fonc.2020.620352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/08/2020] [Indexed: 11/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of morbidity and mortality worldwide. Although therapeutic strategies have recently advanced, tumor metastasis and drug resistance continue to pose challenges in the treatment of HCC. Therefore, new molecular targets are needed to develop novel therapeutic strategies for this cancer. E-twenty-six (ETS) transcription family has been implicated in human malignancies pathogenesis and progression, including leukemia, Ewing sarcoma, gastrointestinal stromal tumors. Recently, increasing studies have expanded its great potential as functional players in other cancers, including HCC. This review focuses primarily on the key functions and molecular mechanisms of ETS factors in HCC. Elucidating these molecular details may provide novel potential therapeutic strategies for cancers.
Collapse
Affiliation(s)
| | | | | | | | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
30
|
Qi L, Chen J, Yang Y, Hu W. Hypoxia Correlates With Poor Survival and M2 Macrophage Infiltration in Colorectal Cancer. Front Oncol 2020; 10:566430. [PMID: 33330037 PMCID: PMC7714992 DOI: 10.3389/fonc.2020.566430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Background It is widely accepted that the oxygen level in tumor tissue is significantly lower than the adjacent normal tissue, thus termed hypoxia. Intratumoral hypoxia represents a major driving force in cancer progression, recurrence, metastasis, and decreased survival. Though multiple gene signatures reflect the complex cellular response to hypoxia have been established in several cancer types such as head and neck, breast, and lung cancers, the hypoxic panorama in colorectal cancer (CRC) remains poorly understood. Methods A hypoxic signature constituted by a total of 356 genes, including canonical hypoxia-responsive ADM, ANGPTL4, CA9, and VEGFA, was established based on systemic literature search. A total of 1,730 CRC samples across four independent cohorts were used for nonnegative matrix factorization clustering and subtyping. Prognosis, molecular signatures, pathways, and tumor-infiltrating lymphocytes were compared between the subtypes. Results CRCs mainly fell into two subgroups, one indicated as hypoxia and the other one designated as normoxia. Hypoxia was correlated with poor outcomes in CRC and will increase the risk of a subset of stage II patients to the level of normoxic stage III. Additionally, hypoxia was closely associated with activation of RAS signaling pathway independent of KRAS mutation. More M2 macrophage infiltration was another hypoxic marker indicated that subsets of patients with high M2 macrophages may benefit from macrophage-targeting therapy. Conclusions These findings will facilitate the development of a hypoxia-oriented therapy strategy to enhance the treatment effect in the near future.
Collapse
Affiliation(s)
- Lina Qi
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiani Chen
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmei Yang
- Key Laboratory of Reproductive and Genetics, Ministry of Education, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wangxiong Hu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
31
|
Harmston N, Lim JYS, Arqués O, Palmer HG, Petretto E, Virshup DM, Madan B. Widespread Repression of Gene Expression in Cancer by a Wnt/β-Catenin/MAPK Pathway. Cancer Res 2020; 81:464-475. [PMID: 33203702 DOI: 10.1158/0008-5472.can-20-2129] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/06/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Aberrant Wnt signaling drives a number of cancers through regulation of diverse downstream pathways. Wnt/β-catenin signaling achieves this in part by increasing the expression of proto-oncogenes such as MYC and cyclins. However, global assessment of the Wnt-regulated transcriptome in vivo in genetically distinct cancers demonstrates that Wnt signaling suppresses the expression of as many genes as it activates. In this study, we examined the set of genes that are upregulated upon inhibition of Wnt signaling in Wnt-addicted pancreatic and colorectal cancer models. Decreasing Wnt signaling led to a marked increase in gene expression by activating ERK and JNK; these changes in gene expression could be mitigated in part by concurrent inhibition of MEK. These findings demonstrate that increased Wnt signaling in cancer represses MAPK activity, preventing RAS-mediated senescence while allowing cancer cells to proliferate. These results shift the paradigm from Wnt/β-catenin primarily as an activator of transcription to a more nuanced view where Wnt/β-catenin signaling drives both widespread gene repression and activation. SIGNIFICANCE: These findings show that Wnt/β-catenin signaling causes widespread gene repression via inhibition of MAPK signaling, thus fine tuning the RAS-MAPK pathway to optimize proliferation in cancer.
Collapse
Affiliation(s)
- Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Science Division, Yale-NUS College, Singapore
| | - Jun Yi Stanley Lim
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Oriol Arqués
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Héctor G Palmer
- Stem Cells and Cancer Laboratory, Vall d'Hebron Institute of Oncology (VHIO), CIBERONC, Barcelona, Spain
| | - Enrico Petretto
- Center for Computational Biology and Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore. .,Department of Pediatrics, Duke University School of Medicine, Durham, North Carolina
| | - Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.
| |
Collapse
|
32
|
Dinhof C, Pirker C, Kroiss P, Kirchhofer D, Gabler L, Gojo J, Lötsch-Gojo D, Stojanovic M, Timelthaler G, Ferk F, Knasmüller S, Reisecker J, Spiegl-Kreinecker S, Birner P, Preusser M, Berger W. p53 Loss Mediates Hypersensitivity to ETS Transcription Factor Inhibition Based on PARylation-Mediated Cell Death Induction. Cancers (Basel) 2020; 12:cancers12113205. [PMID: 33143299 PMCID: PMC7693367 DOI: 10.3390/cancers12113205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023] Open
Abstract
Simple Summary ETS transcription factors are potent oncogenic drivers in several cancer types and represent promising therapeutic targets. However, molecular factors influencing response to ETS factor inhibition are widely unknown so far. Here, we uncover that sensitivity of cancer cells against ETS factor blockade by the small molecule inhibitor YK-4-279 is strongly promoted by p53 loss in a MAPK-driven background. Induction of a parthanatos-like cell death based on a deregulated MAPK/ETS1/p53/PARP1 signal axis is identified as underlying molecular mechanism. Hence, this study suggests a novel and biomarker-driven therapeutic strategy for p53-deleted tumours, generally known for their profound therapy resistance. Abstract The small-molecule E26 transformation-specific (ETS) factor inhibitor YK-4-279 was developed for therapy of ETS/EWS fusion-driven Ewing’s sarcoma. Here we aimed to identify molecular factors underlying YK-4-279 responsiveness in ETS fusion-negative cancers. Cell viability screenings that deletion of P53 induced hypersensitization against YK-4-279 especially in the BRAFV600E-mutated colon cancer model RKO. This effect was comparably minor in the BRAF wild-type HCT116 colon cancer model. Out of all ETS transcription factor family members, especially ETS1 overexpression at mRNA and protein level was induced by deletion of P53 specifically under BRAF-mutated conditions. Exposure to YK-4-279 reverted ETS1 upregulation induced by P53 knock-out in RKO cells. Despite upregulation of p53 by YK-4-279 itself in RKOp53 wild-type cells, YK-4-279-mediated hyperphosphorylation of histone histone H2A.x was distinctly more pronounced in the P53 knock-out background. YK-4-279-induced cell death in RKOp53-knock-out cells involved hyperPARylation of PARP1, translocation of the apoptosis-inducible factor AIF into nuclei, and induction of mitochondrial membrane depolarization, all hallmarks of parthanatos. Accordingly, pharmacological PARP as well as BRAFV600E inhibition showed antagonistic activity with YK-4-279 especially in the P53 knock-out background. Taken together, we identified ETS factor inhibition as a promising strategy for the treatment of notoriously therapy-resistant p53-null solid tumours with activating MAPK mutations.
Collapse
Affiliation(s)
- Carina Dinhof
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Philipp Kroiss
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Dominik Kirchhofer
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Lisa Gabler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Johannes Gojo
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Pediatrics and Adolescent Medicine and Comprehensive Center for Pediatrics, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Lötsch-Gojo
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Department of Neurosurgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Mirjana Stojanovic
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
| | - Gerald Timelthaler
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Franziska Ferk
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Siegfried Knasmüller
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Johannes Reisecker
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Neuromed Campus, Kepler University Hospital GmbH, Johannes Kepler University, 4040 Linz, Austria;
| | - Peter Birner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria;
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; (C.D.); (C.P.); (P.K.); (D.K.); (L.G.); (D.L.-G.); (M.S.); (G.T.); (F.F.); (S.K.); (J.R.)
- Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria;
- Correspondence: ; Tel.: +43-(0)1-40160-57555
| |
Collapse
|
33
|
Yin X, Ma F, Fan X, Zhao Q, Liu X, Yang Y. Knockdown of AMPKα2 impairs epithelial‑mesenchymal transition in rat renal tubular epithelial cells by downregulating ETS1 and RPS6KA1. Mol Med Rep 2020; 22:4619-4628. [PMID: 33173986 PMCID: PMC7646838 DOI: 10.3892/mmr.2020.11556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/25/2020] [Indexed: 11/07/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) serves an important regulatory role in obstructive nephropathy and renal fibrosis. As an intracellular energy sensor, AMP-activated protein kinase (AMPK) is essential in the process of EMT. The aim of the present study was to elucidate changes in the expression levels of AMPKα2 and which AMPKα2 genes play a role during EMT. TGF-β1 was used to induce EMT in normal rat renal tubular epithelial (NRK-52E) cells. The short hairpin AMPKα2 lentivirus was used to interfere with AMPKα2 expression levels in EMT-derived NRK-52E cells and AMPKα2 expression levels and EMT were detected. Differential gene expression levels following AMPKα2 knockdown in EMT-derived NRK-52E cells were assessed via gene microarray. Potential regulatory pathways were analyzed using ingenuity pathway analysis (IPA) and differentially expressed genes were partially verified by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. AMPKα2 was upregulated in TGF-β1-induced EMT-derived NRK-52E cells. EMT progression was significantly inhibited following downregulation of expression levels of AMPKα2 by shAMPKα2 lentivirus. A total of 1,588 differentially expressed genes were detected following AMPKα2 knockdown in NRK-52E cells in which EMT occurred. The ERK/MAPK pathway was significantly impaired following AMPKα2 knockdown, as indicated by IPA analysis. Furthermore, RT-qPCR and western blot results demonstrated that the expression levels of AMPKα2, v-ets erythroblastosis virus E26 oncogene homolog-1 (ETS1) and ribosomal protein S6 kinase A1 (RPS6KA1) were upregulated following EMT in NRK-52E cells, whereas the expression levels of ETS1 and RPS6KA1 were downregulated following AMPKα2 knockdown. It was concluded that AMPKα2 plays a key role in the regulation of rat renal tubular EMT, which may be achieved by modulating ETS1 and RPS6KA1 in the ERK/MAPK pathway.
Collapse
Affiliation(s)
- Xiaoming Yin
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Fujiang Ma
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xu Fan
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Qi Zhao
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Xin Liu
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi Yang
- Department of Pediatric Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
34
|
Goulet DR, Foster JP, Zawistowski JS, Bevill SM, Noël MP, Olivares-Quintero JF, Sciaky N, Singh D, Santos C, Pattenden SG, Davis IJ, Johnson GL. Discrete Adaptive Responses to MEK Inhibitor in Subpopulations of Triple-Negative Breast Cancer. Mol Cancer Res 2020; 18:1685-1698. [PMID: 32753473 DOI: 10.1158/1541-7786.mcr-19-1011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/18/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancers contain a spectrum of epithelial and mesenchymal phenotypes. SUM-229PE cells represent a model for this heterogeneity, maintaining both epithelial and mesenchymal subpopulations that are genomically similar but distinct in gene expression profiles. We identified differential regions of open chromatin in epithelial and mesenchymal cells that were strongly correlated with regions of H3K27ac. Motif analysis of these regions identified consensus sequences for transcription factors that regulate cell identity. Treatment with the MEK inhibitor trametinib induced enhancer remodeling that is associated with transcriptional regulation of genes in epithelial and mesenchymal cells. Motif analysis of enhancer peaks downregulated in response to chronic treatment with trametinib identified AP-1 motif enrichment in both epithelial and mesenchymal subpopulations. Chromatin immunoprecipitation sequencing (ChIP-seq) of JUNB identified subpopulation-specific localization, which was significantly enriched at regions of open chromatin. These results indicate that cell identity controls localization of transcription factors and chromatin-modifying enzymes to enhancers for differential control of gene expression. We identified increased H3K27ac at an enhancer region proximal to CXCR7, a G-protein-coupled receptor that increased 15-fold in expression in the epithelial subpopulation during chronic treatment. RNAi knockdown of CXCR7 inhibited proliferation in trametinib-resistant cells. Thus, adaptive resistance to chronic trametinib treatment contributes to proliferation in the presence of the drug. Acquired amplification of KRAS following trametinib dose escalation further contributed to POS cell proliferation. Adaptive followed by acquired gene expression changes contributed to proliferation in trametinib-resistant cells, suggesting inhibition of early transcriptional reprogramming could prevent resistance and the bypass of targeted therapy. IMPLICATIONS: We defined the differential responses to trametinib in subpopulations of a clinically relevant in vitro model of TNBC, and identified both adaptive and acquired elements that contribute to the emergence of drug resistance mediated by increased expression of CXCR7 and amplification of KRAS.
Collapse
Affiliation(s)
- Daniel R Goulet
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joseph P Foster
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha M Bevill
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Mélodie P Noël
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - José F Olivares-Quintero
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Noah Sciaky
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Darshan Singh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Charlene Santos
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Samantha G Pattenden
- Eshelman School of Pharmacy, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Ian J Davis
- Curriculum in Bioinformatics and Computational Biology, Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Department of Pediatrics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|
35
|
Priebe V, Sartori G, Napoli S, Chung EYL, Cascione L, Kwee I, Arribas AJ, Mensah AA, Rinaldi A, Ponzoni M, Zucca E, Rossi D, Efremov D, Lenz G, Thome M, Bertoni F. Role of ETS1 in the Transcriptional Network of Diffuse Large B Cell Lymphoma of the Activated B Cell-Like Type. Cancers (Basel) 2020; 12:cancers12071912. [PMID: 32679859 PMCID: PMC7409072 DOI: 10.3390/cancers12071912] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/11/2020] [Indexed: 01/08/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is a heterogenous disease that has been distinguished into at least two major molecular entities, the germinal center-like B cell (GCB) DLBCL and activated-like B cell (ABC) DLBCL, based on transcriptome expression profiling. A recurrent ch11q24.3 gain is observed in roughly a fourth of DLBCL cases resulting in the overexpression of two ETS transcription factor family members, ETS1 and FLI1. Here, we knocked down ETS1 expression by siRNA and analyzed expression changes integrating them with ChIP-seq data to identify genes directly regulated by ETS1. ETS1 silencing affected expression of genes involved in B cell signaling activation, B cell differentiation, cell cycle, and immune processes. Integration of RNA-Seq (RNA sequencing) data and ChIP-Seq (chromatin immunoprecipitation sequencing) identified 97 genes as bona fide, positively regulated direct targets of ETS1 in ABC-DLBCL. Among these was the Fc receptor for IgM, FCMR (also known as FAIM3 or Toso), which showed higher expression in ABC- than GCB-DLBCL clinical specimens. These findings show that ETS1 is contributing to the lymphomagenesis in a subset of DLBCL and identifies FCMR as a novel target of ETS1, predominantly expressed in ABC-DLBCL.
Collapse
Affiliation(s)
- Valdemar Priebe
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Giulio Sartori
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Elaine Yee Lin Chung
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Ivo Kwee
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), 6928 Manno, Switzerland
| | - Alberto Jesus Arribas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Swiss Institute of Bioinformatics (SIB), 1015 Lausanne, Switzerland
| | - Afua Adjeiwaa Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
| | - Maurilio Ponzoni
- San Raffaele Scientific Institute, Vita Salute University, 20132 Milan, Italy;
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Davide Rossi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
| | - Dimitar Efremov
- Molecular Hematology, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy;
| | - Georg Lenz
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, 48149 Münster, Germany;
| | - Margot Thome
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland;
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland; (V.P.); (G.S.); (S.N.); (E.Y.L.C.); (L.C.); (I.K.); (A.J.A.); (A.A.M.); (A.R.); (E.Z.); (D.R.)
- Oncology Institute of Southern Switzerland, 6500 Bellinzona, Switzerland
- Correspondence: ; Tel.: +41-91-8200-367; Fax: +41-91-8200-397
| |
Collapse
|
36
|
Zadora PK, Chumduri C, Imami K, Berger H, Mi Y, Selbach M, Meyer TF, Gurumurthy RK. Integrated Phosphoproteome and Transcriptome Analysis Reveals Chlamydia-Induced Epithelial-to-Mesenchymal Transition in Host Cells. Cell Rep 2020; 26:1286-1302.e8. [PMID: 30699355 DOI: 10.1016/j.celrep.2019.01.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 10/05/2018] [Accepted: 12/31/2018] [Indexed: 12/26/2022] Open
Abstract
Chlamydia trachomatis (Ctr) causes a range of infectious diseases and is epidemiologically associated with cervical and ovarian cancers. To obtain a panoramic view of Ctr-induced signaling, we performed global phosphoproteomic and transcriptomic analyses. We identified numerous Ctr phosphoproteins and Ctr-regulated host phosphoproteins. Bioinformatics analysis revealed that these proteins were predominantly related to transcription regulation, cellular growth, proliferation, and cytoskeleton organization. In silico kinase substrate motif analysis revealed that MAPK and CDK were the most overrepresented upstream kinases for upregulated phosphosites. Several of the regulated host phosphoproteins were transcription factors, including ETS1 and ERF, that are downstream targets of MAPK. Functional analysis of phosphoproteome and transcriptome data confirmed their involvement in epithelial-to-mesenchymal transition (EMT), a phenotype that was validated in infected cells, along with the essential role of ERK1/2, ETS1, and ERF for Ctr replication. Our data reveal the extent of Ctr-induced signaling and provide insights into its pro-carcinogenic potential.
Collapse
Affiliation(s)
- Piotr K Zadora
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Cindrilla Chumduri
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany; Department of Hepatology and Gastroenterology, Charité University Medicine, 13353 Berlin, Germany
| | - Koshi Imami
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Hilmar Berger
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Yang Mi
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Matthias Selbach
- Proteome Dynamics, Max Delbrück Center for Molecular Medicine, 13125 Berlin, Germany
| | - Thomas F Meyer
- Department of Molecular Biology, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
| | | |
Collapse
|
37
|
Oh SS, Lee KW, Madhi H, Jeong JW, Park S, Kim M, Lee Y, Han HT, Hwangbo C, Yoo J, Kim KD. Cordycepin Resensitizes T24R2 Cisplatin-Resistant Human Bladder Cancer Cells to Cisplatin by Inactivating Ets-1 Dependent MDR1 Transcription. Int J Mol Sci 2020; 21:ijms21051710. [PMID: 32131547 PMCID: PMC7084876 DOI: 10.3390/ijms21051710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023] Open
Abstract
Tumor cell resistance to anti-cancer drugs is a major obstacle in tumor therapy. In this study, we investigated the mechanism of cordycepin-mediated resensitization to cisplatin in T24R2 cells, a T24-derived cell line. Treatment with cordycepin or cisplatin (2 μg/mL) alone failed to induce cell death in T24R2 cells, but combination treatment with these drugs significantly induced apoptosis through mitochondrial pathways, including depolarization of mitochondrial membranes, decrease in anti-apoptotic proteins Bcl-2, Bcl-xL, and Mcl-1, and increase in pro-apoptotic proteins Bak and Bax. High expression levels of MDR1 were the cause of cisplatin resistance in T24R2 cells, and cordycepin significantly reduced MDR1 expression through inhibition of MDR1 promoter activity. MDR1 promoter activity was dependent on transcription factor Ets-1 in T24R2 cells. Although correlation exists between MDR1 and Ets-1 expression in bladder cancer patients, active Ets-1, Thr38 phosphorylated form (pThr38), was critical to induce MDR1 expression. Cordycepin decreased pThr-38 Ets-1 levels and reduced MDR1 transcription, probably through its effects on PI3K signaling, inducing the resensitization of T24R2 cells to cisplatin. The results suggest that cordycepin effectively resensitizes cisplatin-resistant bladder cancer cells to cisplatin, thus serving as a potential strategy for treatment of cancer in patients with resistance to anti-cancer drugs.
Collapse
Affiliation(s)
- Sang-Seok Oh
- Gene & Cell Therapy Team, Division of Drug Development & Optimization, New Drug Development Center, Osong Medical Innovation Foundation, Osongsaengmyung-ro 123, Osong-eup, Heungdeok-gu, Cheongju-si, Chungbuk 28160, Korea;
| | - Ki Won Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
| | - Hamadi Madhi
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
| | - Jin-Woo Jeong
- Freshwater Bioresources Utilization Bureau, Nakdonggang National Institute of Biological Resources, Sangju 37242, Korea;
| | - Soojong Park
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
| | - Minju Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
| | - Yerin Lee
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
| | - Hyun-Tak Han
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
| | - Cheol Hwangbo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Jiyun Yoo
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 Plus), Gyeongsang National University, Jinju 52828, Korea; (K.W.L.); (S.P.); (M.K.); (Y.L.); (C.H.); (J.Y.)
- PMBBRC, Gyeongsang National University, Jinju 52828, Korea;
- Division of Life Science, Gyeongsang National University, Jinju 52828, Korea
- Correspondence: ; Tel.: +82-55-772-1365; Fax: +82-55-772-1359
| |
Collapse
|
38
|
Zhang L, Dai Q, Hu L, Yu H, Qiu J, Zhou J, Long M, Zhou S, Zhang K. Hyperoside Alleviates High Glucose-Induced Proliferation of Mesangial Cells through the Inhibition of the ERK/CREB/miRNA-34a Signaling Pathway. Int J Endocrinol 2020; 2020:1361924. [PMID: 32774360 PMCID: PMC7397715 DOI: 10.1155/2020/1361924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. METHODS Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. RESULTS We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. CONCLUSION Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Le Zhang
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Dai
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lanlan Hu
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Qiu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Long
- Preventive Medicine Department, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shiwen Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Kebin Zhang
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
39
|
O'Hara SP, Splinter PL, Trussoni CE, Guicciardi ME, Splinter NP, Al Suraih MS, Nasser-Ghodsi N, Stollenwerk D, Gores GJ, LaRusso NF. The transcription factor ETS1 promotes apoptosis resistance of senescent cholangiocytes by epigenetically up-regulating the apoptosis suppressor BCL2L1. J Biol Chem 2019; 294:18698-18713. [PMID: 31659122 PMCID: PMC6901313 DOI: 10.1074/jbc.ra119.010176] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
Primary sclerosing cholangitis (PSC) is an idiopathic, progressive cholangiopathy. Cholangiocyte senescence is important in PSC pathogenesis, and we have previously reported that senescence is regulated by the transcription factor ETS proto-oncogene 1 (ETS1) and associated with overexpression of BCL2 like 1 (BCL2L1 or BCL-xL), an anti-apoptotic BCL2-family member. Here, we further explored the mechanisms regulating BCL-xL-mediated, apoptosis resistance in senescent cholangiocytes and uncovered that ETS1 and the histone acetyltransferase E1A-binding protein P300 (EP300 or p300) both promote BCL-xL transcription. Using immunofluorescence, we found that BCL-xL protein expression is increased both in cholangiocytes of livers from individuals with PSC and a mouse model of PSC. Using an in vitro model of lipopolysaccharide-induced senescence in normal human cholangiocytes (NHCs), we found increased BCL-xL mRNA and protein levels, and ChIP-PCRs indicated increased occupancy of ETS1, p300, and histone 3 Lys-27 acetylation (H3K27Ac) at the BCL-xL promoter. Using co-immunoprecipitation and proximity ligation assays, we further demonstrate that ETS1 and p300 physically interact in senescent but not control NHCs. Additionally, mutagenesis of predicted ETS1-binding sites within the BCL-xL promoter blocked luciferase reporter activity, and CRISPR/Cas9-mediated genetic deletion of ETS1 reduced senescence-associated BCL-xL expression. In senescent NHCs, TRAIL-mediated apoptosis was reduced ∼70%, and ETS1 deletion or RNAi-mediated BCL-xL suppression increased apoptosis. Overall, our results suggest that ETS1 and p300 promote senescent cholangiocyte resistance to apoptosis by modifying chromatin and inducing BCL-xL expression. These findings reveal ETS1 as a central regulator of both cholangiocyte senescence and the associated apoptosis-resistant phenotype.
Collapse
Affiliation(s)
- Steven P O'Hara
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905.
| | - Patrick L Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Christy E Trussoni
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Maria Eugenia Guicciardi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Noah P Splinter
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Mohammed S Al Suraih
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Navine Nasser-Ghodsi
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Deborah Stollenwerk
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology and the Mayo Clinic Center for Cell Signaling in Gastroenterology, Mayo Clinic, Rochester, Minnesota 55905
| |
Collapse
|
40
|
Bhagyaraj E, Ahuja N, Kumar S, Tiwari D, Gupta S, Nanduri R, Gupta P. TGF-β induced chemoresistance in liver cancer is modulated by xenobiotic nuclear receptor PXR. Cell Cycle 2019; 18:3589-3602. [PMID: 31739702 DOI: 10.1080/15384101.2019.1693120] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma appears as an extremely angiogenic solid tumor marked by apoptosis evasion, dysregulated cell cycle and low sensitivity to chemotherapy. TGF-β, a multifunctional cytokine, plays a pleiotropic role in the tumor microenvironment and has implications in cancer drug resistance. The current study provides novel evidence that TGF-β signaling contributes to drug resistance in liver cancer cells by inducing the expression of xenobiotic nuclear receptor PXR. We observed that PXR increases the expression of drug efflux transporters; therefore, accounting for exacerbated drug resistance. Additionally, anti-apoptotic nature of PXR contributes to TGF-β mediated chemoresistance as seen by procaspase-3 and Mcl-1 cellular levels. TGF-β binding to the TGF-β receptor triggers a complex downstream signaling cascade through a non-canonical SMAD-independent ERK pathway that leads to increased PXR expression. Activated ERK activates ETS1 transcription factor which is a critical regulator of endogenous PXR expression in hepatic cells. Loss of function of ETS1 abrogates the TGF-β induced PXR expression. Together these findings indicate that PXR modulates TGF-β induced resistance to chemotherapy in liver cancer cells. This underscores the need for combinatorial approaches with focus on PXR antagonism to improve drug effectiveness in hepatocellular carcinoma.Abbreviations: HCC: Hepatocellular Carcinoma; FDA: Food and Drug Administration; TGF-β: Transforming growth factor-β; PXR: Pregnane X receptor; CAR: Constitutive androstane receptor; P-gp/ABCB1: P-glycoproteins/ATP-binding cassette transporter subfamily B member 1; MRP1/ABCC1 and MRP2/ABCC2: Multidrug-resistance associated proteins; BCRP/ABCG2: Breast cancer resistant protein; DMEs: Drug-metabolizing enzymes; CFDA: 5,6-carboxyfluorescein diacetate; ETS1: Transcription factor E26 transformation specific sequence 1.
Collapse
Affiliation(s)
- Ella Bhagyaraj
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India.,Department of Infectious disease and Immunology, University of Florida, Gainesville, FL, USA
| | - Nancy Ahuja
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sumit Kumar
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Drishti Tiwari
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Shalini Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Ravikanth Nanduri
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India.,Laboratory of Metabolism, National Cancer Institute, Bethesda, MD, USA
| | - Pawan Gupta
- Department of Molecular Biology, CSIR-Institute of Microbial Technology, Chandigarh, India
| |
Collapse
|
41
|
E Q, Wang C, Gu X, Gan X, Zhang X, Wang S, Ma J, Zhang L, Zhang R, Su L. Competitive endogenous RNA (ceRNA) regulation network of lncRNA-miRNA-mRNA during the process of the nickel-induced steroidogenesis disturbance in rat Leydig cells. Toxicol In Vitro 2019; 63:104721. [PMID: 31734292 DOI: 10.1016/j.tiv.2019.104721] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/14/2023]
Abstract
Nickel (Ni) is a ubiquitous environmental pollutant, which can disrupt the production of steroid in rat Leydig cells. Steroidogenesis can be affected by non-coding RNAs (ncRNAs), which operate in normal physiological processes. To date, however, very few studies have focused on whether ncRNAs are involved in Ni-induced steroidogenesis disturbance. The present study was designed to investigate the impact of NiSO4 on the regulation of RNA networks including long non-coding RNA (lncRNA), microRNA (miRNA), and mRNA in rat Leydig cells. After treatment with 1000 μmol/L NiSO4 for 24 h, 372 lncRNAs, 27 miRNAs (fold change>2, p < .05) and 3666 mRNAs (fold change>2, p < .01, and FDR < 0.01) were identified to be markedly altered by high-throughput sequencing analysis in rat Leydig cells. Functional analysis showed that the differentially expressed mRNAs were annotated into some steroid-related pathways. A dysregulated competing endogenous RNA (ceRNA) network of lncRNA-miRNA-mRNA was constructed based on bioinformatic analysis. Furthermore, a ceRNA network related to steroidogenesis was selected to analyze further and after the validation by qRT-PCR. The LOC102549726/miR-760-3p/Atf6, LOC102549726/miR-760-3p/Ets1, LOC102549726/miR-760-3p/Sik1 and AABR07037489.1/miR-708-5p/MAPK14 ceRNA networks were eventually confirmed. Collectively, our study provided a systematic perspective on the potential role of ncRNAs in steroidogenesis disturbance induced by Ni in rat Leydig cells.
Collapse
Affiliation(s)
- Qiannan E
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Caixia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xueyan Gu
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaoqin Gan
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xiaotian Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Shuang Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jianhua Ma
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Li Su
- School of Public Health, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
42
|
Ruan H, Liao Y, Ren Z, Mao L, Yao F, Yu P, Ye Y, Zhang Z, Li S, Xu H, Liu J, Diao L, Zhou B, Han L, Wang L. Single-cell reconstruction of differentiation trajectory reveals a critical role of ETS1 in human cardiac lineage commitment. BMC Biol 2019; 17:89. [PMID: 31722692 PMCID: PMC6854813 DOI: 10.1186/s12915-019-0709-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/15/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Cardiac differentiation from human pluripotent stem cells provides a unique opportunity to study human heart development in vitro and offers a potential cell source for cardiac regeneration. Compared to the large body of studies investigating cardiac maturation and cardiomyocyte subtype-specific induction, molecular events underlying cardiac lineage commitment from pluripotent stem cells at early stage remain poorly characterized. RESULTS In order to uncover key molecular events and regulators controlling cardiac lineage commitment from a pluripotent state during differentiation, we performed single-cell RNA-Seq sequencing and obtained high-quality data for 6879 cells collected from 6 stages during cardiac differentiation from human embryonic stem cells and identified multiple cell subpopulations with distinct molecular features. Through constructing developmental trajectory of cardiac differentiation and putative ligand-receptor interactions, we revealed crosstalk between cardiac progenitor cells and endoderm cells, which could potentially provide a cellular microenvironment supporting cardiac lineage commitment at day 5. In addition, computational analyses of single-cell RNA-Seq data unveiled ETS1 (ETS Proto-Oncogene 1) activation as an important downstream event induced by crosstalk between cardiac progenitor cells and endoderm cells. Consistent with the findings from single-cell analysis, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq) against ETS1 revealed genomic occupancy of ETS1 at cardiac structural genes at day 9 and day 14, whereas ETS1 depletion dramatically compromised cardiac differentiation. CONCLUSION Together, our study not only characterized the molecular features of different cell types and identified ETS1 as a crucial factor induced by cell-cell crosstalk contributing to cardiac lineage commitment from a pluripotent state, but may also have important implications for understanding human heart development at early embryonic stage, as well as directed manipulation of cardiac differentiation in regenerative medicine.
Collapse
Affiliation(s)
- Hang Ruan
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Yingnan Liao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Zongna Ren
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Lin Mao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Fang Yao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Peng Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Youqiong Ye
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Shengli Li
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Hanshi Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Jiewei Liu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA
| | - Lixia Diao
- Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Bingying Zhou
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China
| | - Leng Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston McGovern Medical School, 6431 Fannin St, MSB6.166, Houston, TX, 77030, USA.
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 North Lishi Road, Beijing, 100037, People's Republic of China.
| |
Collapse
|
43
|
Xu L, Fu M, Chen D, Han W, Ostrowski MC, Grossfeld P, Gao P, Ye M. Endothelial-specific deletion of Ets-1 attenuates Angiotensin II-induced cardiac fibrosis via suppression of endothelial-to-mesenchymal transition. BMB Rep 2019. [PMID: 30670148 PMCID: PMC6827575 DOI: 10.5483/bmbrep.2019.52.10.206] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Lian Xu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Mengxia Fu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Dongrui Chen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Weiqing Han
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Michael C. Ostrowski
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, Ohio State University, Columbus, OH 43210, USA
| | - Paul Grossfeld
- Division of Pediatric Cardiology, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Maoqing Ye
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| |
Collapse
|
44
|
Cao Q, Yang S, Lv Q, Liu Y, Li L, Wu X, Qu G, He X, Zhang X, Sun S, Li B, An J, Hu T, Xue J. Five ETS family members, ELF-1, ETV-4, ETV-3L, ETS-1, and ETS-2 upregulate human leukocyte-associated immunoglobulin-like receptor-1 gene basic promoter activity. Aging (Albany NY) 2019; 10:1390-1401. [PMID: 29915163 PMCID: PMC6046229 DOI: 10.18632/aging.101475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 06/10/2018] [Indexed: 12/14/2022]
Abstract
Human leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1), an immunoinhibitory receptor, is expressed on most types of hematopoietic cells and some tumor cells. LAIR-1 plays an inhibitory role in immune cell maturation, differentiation, and activation. LAIR-1 is also involved in some autoimmune diseases and tumors. However, the mechanism controlling the regulation of the LAIR-1 gene is still unknown. In order to elucidate the molecular mechanisms involved in LAIR-1 regulation, in the present study, we cloned and characterized the promoter region of LAIR-1 gene using a series of truncated promoter plasmids in luciferase reporter assays. Our results show that the basic core promoter of LAIR-1 is located within the region -256/-8 relative to the translational start site. Our further studies indicate that five ETS transcription factors: ELF-1, ETV-4, ETV-3L, ETS-1 and ETS-2, can up-regulate the LAIR-1 basic promoter activity. Of these, ETS-2 is the most effective transcription factor. Moreover, ETS-2 was confirmed to interact directly with the basic promoter of LAIR-1. This study presents the first description of regions/factors capable of up-regulation the promoter activity of LAIR-1. This new knowledge contributes to understanding of the molecular mechanisms involved in LAIR-1 associated immune regulation and diseases.
Collapse
Affiliation(s)
- Qizhi Cao
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China.,Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China
| | - Shude Yang
- School of Agriculture, Ludong University, Shandong 264003, China
| | - Qing Lv
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Yan Liu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Li Li
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaojie Wu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Guiwu Qu
- Anti-aging Research Institution, Binzhou Medical University, Shandong 264003, China.,School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Xiaoli He
- The People's Liberation Army 107 Hospital, Affiliated Hospital of Bin Zhou Medical University, Yantai 264002, China
| | - Xiaoshu Zhang
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Shuqin Sun
- School of Gerontology, Binzhou Medical University, Shandong 264003, China
| | - Boqing Li
- Department of Microbiology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jing An
- School of Medicine, University of California - San Diego, La Jolla, CA 92037, USA
| | - Tao Hu
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| | - Jiangnan Xue
- Department of Immunology, School of Basic Medical Sciences, Binzhou Medical University, Shandong 264003, China
| |
Collapse
|
45
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Gabler L, Lötsch D, Kirchhofer D, van Schoonhoven S, Schmidt HM, Mayr L, Pirker C, Neumayer K, Dinhof C, Kastler L, Azizi AA, Dorfer C, Czech T, Haberler C, Peyrl A, Kumar R, Slavc I, Spiegl-Kreinecker S, Gojo J, Berger W. TERT expression is susceptible to BRAF and ETS-factor inhibition in BRAF V600E/TERT promoter double-mutated glioma. Acta Neuropathol Commun 2019; 7:128. [PMID: 31391125 PMCID: PMC6685154 DOI: 10.1186/s40478-019-0775-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/20/2022] Open
Abstract
The BRAF gene and the TERT promoter are among the most frequently altered genomic loci in low-grade (LGG) and high-grade-glioma (HGG), respectively. The coexistence of BRAF and TERT promoter aberrations characterizes a subset of aggressive glioma. Therefore, we investigated interactions between those alterations in malignant glioma. We analyzed co-occurrence of BRAFV600E and TERT promoter mutations in our clinical data (n = 8) in addition to published datasets (n = 103) and established a BRAFV600E-positive glioma cell panel (n = 9) for in vitro analyses. We investigated altered gene expression, signaling events and TERT promoter activity upon BRAF- and E-twenty-six (ETS)-factor inhibition by qRT-PCR, chromatin immunoprecipitation (ChIP), Western blots and luciferase reporter assays. TERT promoter mutations were significantly enriched in BRAFV600E-mutated HGG as compared to BRAFV600E-mutated LGG. In vitro, BRAFV600E/TERT promoter double-mutant glioma cells showed exceptional sensitivity towards BRAF-targeting agents. Remarkably, BRAF-inhibition attenuated TERT expression and TERT promoter activity exclusively in double-mutant models, while TERT expression was undetectable in BRAFV600E-only cells. Various ETS-factors were broadly expressed, however, only ETS1 expression and phosphorylation were consistently downregulated following BRAF-inhibition. Knock-down experiments and ChIP corroborated the notion of a functional role for ETS1 and, accordingly, all double-mutant tumor cells were highly sensitive towards the ETS-factor inhibitor YK-4-279. In conclusion, our data suggest that concomitant BRAFV600E and TERT promoter mutations synergistically support cancer cell proliferation and immortalization. ETS1 links these two driver alterations functionally and may represent a promising therapeutic target in this aggressive glioma subgroup.
Collapse
Affiliation(s)
- Lisa Gabler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Daniela Lötsch
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Dominik Kirchhofer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sushilla van Schoonhoven
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Hannah M. Schmidt
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Lisa Mayr
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Katharina Neumayer
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Carina Dinhof
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| | - Lucia Kastler
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Amedeo A. Azizi
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christian Dorfer
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Thomas Czech
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Neurosurgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christine Haberler
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Neurology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Andreas Peyrl
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Rajiv Kumar
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Irene Slavc
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Sabine Spiegl-Kreinecker
- Department of Neurosurgery, Kepler University Hospital, Johannes Kepler University, Neuromed Campus, Wagner-Jauregg-Weg 15, 4020 Linz, Austria
| | - Johannes Gojo
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Walter Berger
- Comprehensive Cancer Center-Central Nervous System Tumors Unit, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Borschkegasse 8A, 1090 Vienna, Austria
| |
Collapse
|
47
|
Breast cancer invasion and progression by MMP-9 through Ets-1 transcription factor. Gene 2019; 711:143952. [PMID: 31265880 DOI: 10.1016/j.gene.2019.143952] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 01/08/2023]
|
48
|
Gluck C, Glathar A, Tsompana M, Nowak N, Garrett-Sinha LA, Buck MJ, Sinha S. Molecular dissection of the oncogenic role of ETS1 in the mesenchymal subtypes of head and neck squamous cell carcinoma. PLoS Genet 2019; 15:e1008250. [PMID: 31306413 PMCID: PMC6657958 DOI: 10.1371/journal.pgen.1008250] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 07/25/2019] [Accepted: 06/17/2019] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is a heterogeneous disease of significant mortality and with limited treatment options. Recent genomic analysis of HNSCC tumors has identified several distinct molecular classes, of which the mesenchymal subtype is associated with Epithelial to Mesenchymal Transition (EMT) and shown to correlate with poor survival and drug resistance. Here, we utilize an integrated approach to characterize the molecular function of ETS1, an oncogenic transcription factor specifically enriched in Mesenchymal tumors. To identify the global ETS1 cistrome, we have performed integrated analysis of RNA-Seq, ChIP-Seq and epigenomic datasets in SCC25, a representative ETS1high mesenchymal HNSCC cell line. Our studies implicate ETS1 as a crucial regulator of broader oncogenic processes and specifically Mesenchymal phenotypes, such as EMT and cellular invasion. We found that ETS1 preferentially binds cancer specific regulator elements, in particular Super-Enhancers of key EMT genes, highlighting its role as a master regulator. Finally, we show evidence that ETS1 plays a crucial role in regulating the TGF-β pathway in Mesenchymal cell lines and in leading-edge cells in primary HNSCC tumors that are endowed with partial-EMT features. Collectively our study highlights ETS1 as a key regulator of TGF-β associated EMT and reveals new avenues for sub-type specific therapeutic intervention. The expression of the transcriptional regulator, E26 transformation-specific 1 (ETS1), is elevated in many epithelial cancers and portends aggressive tumor behavior and poor survival. Within these carcinomas, ETS1 function has been shown to be associated with a wide range of cellular responses that include increased proliferation, angiogenesis, metastasis and drug resistance. Here we focus on Head and Neck Squamous Cell Carcinoma (HNSCC) and discover that higher expression of ETS1 is specifically more pronounced in the mesenchymal subtypes of HNSCC, which represent tumors with enriched expression of Epithelial to Mesenchymal Transition (EMT) markers and inflammation. By using genomic and epigenomic strategies, we have identified the global targets of ETS1 in a preclinical Mesenchymal HNSCC cell model and determined the crucial gene network that is most dependent upon its function. We further validate this ETS1-driven gene expression signature within several HNSCC patient derived datasets and conclude that ETS1 acts as a crucial regulator of the TGFβ signaling cascade to drive EMT. Our findings reinforce the challenges of epithelial tumor heterogeneity and offer insights into molecular underpinning of a specific subtype that can be mined for cancer vulnerability.
Collapse
Affiliation(s)
- Christian Gluck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Alexandra Glathar
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Maria Tsompana
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Norma Nowak
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | | | - Michael J. Buck
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
| | - Satrajit Sinha
- Department of Biochemistry, SUNY at Buffalo, Buffalo, NY, United States of America
- * E-mail:
| |
Collapse
|
49
|
Yang Z, Liao J, Carter-Cooper BA, Lapidus RG, Cullen KJ, Dan H. Regulation of cisplatin-resistant head and neck squamous cell carcinoma by the SRC/ETS-1 signaling pathway. BMC Cancer 2019; 19:485. [PMID: 31118072 PMCID: PMC6532223 DOI: 10.1186/s12885-019-5664-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/30/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND We investigated the role of the ETS-1 transcription factor in Head and Neck Squamous Cell Carcinoma (HNSCC) in multiple cisplatin-resistant HNSCC cell lines. METHODS We examined its molecular link with SRC and MEK/ERK pathways and determined the efficacy of either MEK/ERK inhibitor PD0325901 or SRC inhibitor Dasatinib on cisplatin-resistant HNSCC inhibition. RESULTS We found that ETS-1 protein expression levels in a majority of cisplatin-resistant HNSCC cell types were higher than those in their parental cisplatin sensitive partners. High ETS-1 expression was also found in patient-derived, cisplatin-resistant HNSCC cells. While ETS-1 knockdown inhibited cell proliferation, migration, and invasion, it could still re-sensitize cells to cisplatin treatment. Interestingly, previous studies have shown that MER/ERK pathways could regulate ETS-1 through its phosphorylation at threonine 38 (T38). Although almost all cisplatin-resistant HNSCC cells we tested showed higher ETS-1 phosphorylation levels at T38, we found that inhibition of MEK/ERK pathways with the MEK inhibitor PD0325901 did not block this phosphorylation. In addition, treatment of cisplatin-resistant HNSCC cells with the MEK inhibitor completely blocked ERK phosphorylation but did not re-sensitize cells to cisplatin treatment. Furthermore, we found that, consistent with ETS-1 increase, SRC phosphorylation dramatically increased in cisplatin-resistant HNSCC, and treatment of cells with the SRC inhibitor, Dasatinib, blocked SRC phosphorylation and decreased ETS-1 expression. Importantly, we showed that Dasatinib, as a single agent, significantly suppressed cell proliferation, migration, and invasion, in addition to survival. CONCLUSIONS Our results demonstrate that the SRC/ETS-1 pathway plays a crucial role and could be a key therapeutic target in cisplatin-resistant HNSCC treatment.
Collapse
Affiliation(s)
- Zejia Yang
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jipei Liao
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brandon A Carter-Cooper
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rena G Lapidus
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kevin J Cullen
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hancai Dan
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA. .,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
50
|
Kori M, Gov E, Arga KY. Novel Genomic Biomarker Candidates for Cervical Cancer As Identified by Differential Co-Expression Network Analysis. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2019; 23:261-273. [PMID: 31038390 DOI: 10.1089/omi.2019.0025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cervical cancer is the second most common malignancy and the third reason for mortality among women in developing countries. Although infection by the oncogenic human papilloma viruses is a major cause, genomic contributors are still largely unknown. Network analyses, compared with candidate gene studies, offer greater promise to map the interactions among genomic loci contributing to cervical cancer risk. We report here a differential co-expression network analysis in five gene expression datasets (GSE7803, GSE9750, GSE39001, GSE52903, and GSE63514, from the Gene Expression Omnibus) in patients with cervical cancer and healthy controls. Kaplan-Meier Survival and principle component analyses were employed to evaluate prognostic and diagnostic performances of biomarker candidates, respectively. As a result, seven distinct co-expressed gene modules were identified. Among these, five modules (with sizes of 9-45 genes) presented high prognostic and diagnostic capabilities with hazard ratios of 2.28-11.3, and diagnostic odds ratios of 85.2-548.8. Moreover, these modules were associated with several key biological processes such as cell cycle regulation, keratinization, neutrophil degranulation, and the phospholipase D signaling pathway. In addition, transcription factors ETS1 and GATA2 were noted as common regulatory elements. These genomic biomarker candidates identified by differential co-expression network analysis offer new prospects for translational cancer research, not to mention personalized medicine to forecast cervical cancer susceptibility and prognosis. Looking into the future, we also suggest that the search for a molecular basis of common complex diseases should be complemented by differential co-expression analyses to obtain a systems-level understanding of disease phenotype variability.
Collapse
Affiliation(s)
- Medi Kori
- 1 Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Esra Gov
- 2 Department of Bioengineering, Faculty of Engineering, Adana Alparslan Türkeş Science and Technology University, Adana, Turkey
| | - Kazım Yalçın Arga
- 1 Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|