1
|
Kozhukhar N, Alexeyev MF. Efficient Elimination of mtDNA from Mammalian Cells with 2',3'-Dideoxycytidine. DNA 2024; 4:201-211. [PMID: 39035221 PMCID: PMC11259038 DOI: 10.3390/dna4030013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Mammalian cell lines devoid of mitochondrial DNA (mtDNA) are indispensable in studies aimed at elucidating the contribution of mtDNA to various cellular processes or interactions between nuclear and mitochondrial genomes. However, the repertoire of tools for generating such cells (also known as rho-0 or ρ0 cells) remains limited, and approaches remain time- and labor-intensive, ultimately limiting their availability. Ethidium bromide (EtBr), which is most commonly used to induce mtDNA loss in mammalian cells, is cytostatic and mutagenic as it affects both nuclear and mitochondrial genomes. Therefore, there is growing interest in new tools for generating ρ0 cell lines. Here, we examined the utility of 2',3'-dideoxycytidine (ddC, zalcitabine) alone or in combination with EtBr for generating ρ0 cell lines of mouse and human origin as well as inducing the ρ0 state in mouse/human somatic cell hybrids. We report that ddC is superior to EtBr in both immortalized mouse fibroblasts and human 143B cells. Also, unlike EtBr, ddC exhibits no cytostatic effects at the highest concentration tested (200 μM), making it more suitable for general use. We conclude that ddC is a promising new tool for generating mammalian ρ0 cell lines.
Collapse
Affiliation(s)
- Natalya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
| |
Collapse
|
2
|
Silva-Pinheiro P, Minczuk M. The potential of mitochondrial genome engineering. Nat Rev Genet 2022; 23:199-214. [PMID: 34857922 DOI: 10.1038/s41576-021-00432-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria are subject to unique genetic control by both nuclear DNA and their own genome, mitochondrial DNA (mtDNA), of which each mitochondrion contains multiple copies. In humans, mutations in mtDNA can lead to devastating, heritable, multi-system diseases that display different tissue-specific presentation at any stage of life. Despite rapid advances in nuclear genome engineering, for years, mammalian mtDNA has remained resistant to genetic manipulation, hampering our ability to understand the mechanisms that underpin mitochondrial disease. Recent developments in the genetic modification of mammalian mtDNA raise the possibility of using genome editing technologies, such as programmable nucleases and base editors, for the treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Hussain SRA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome. Front Genet 2021; 12:627050. [PMID: 33889176 PMCID: PMC8055930 DOI: 10.3389/fgene.2021.627050] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Gene editing of the mitochondrial genome using the CRISPR-Cas9 system is highly challenging mainly due to sub-efficient delivery of guide RNA and Cas9 enzyme complexes into the mitochondria. In this study, we were able to perform gene editing in the mitochondrial DNA by appending an NADH-ubiquinone oxidoreductase chain 4 (ND4) targeting guide RNA to an RNA transport-derived stem loop element (RP-loop) and expressing the Cas9 enzyme with a preceding mitochondrial localization sequence. We observe mitochondrial colocalization of RP-loop gRNA and a marked reduction of ND4 expression in the cells carrying a 11205G variant in their ND4 sequence coincidently decreasing the mtDNA levels. This proof-of-concept study suggests that a stem-loop element added sgRNA can be transported to the mitochondria and functionally interact with Cas9 to mediate sequence-specific mtDNA cleavage. Using this novel approach to target the mtDNA, our results provide further evidence that CRISPR-Cas9-mediated gene editing might potentially be used to treat mitochondrial-related diseases.
Collapse
Affiliation(s)
- Syed-Rehan A Hussain
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States.,Center for Clinical and Translational Research, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mehmet E Yalvac
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Benedict Khoo
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - Sigrid Eckardt
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| | - K John McLaughlin
- Center for Molecular and Human Genetics, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
4
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
5
|
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M, Mazza T. MitImpact 3: modeling the residue interaction network of the Respiratory Chain subunits. Nucleic Acids Res 2021; 49:D1282-D1288. [PMID: 33300029 PMCID: PMC7779045 DOI: 10.1093/nar/gkaa1032] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/14/2020] [Accepted: 12/08/2020] [Indexed: 12/26/2022] Open
Abstract
Numerous lines of evidence have shown that the interaction between the nuclear and mitochondrial genomes ensures the efficient functioning of the OXPHOS complexes, with substantial implications in bioenergetics, adaptation, and disease. Their interaction is a fascinating and complex trait of the eukaryotic cell that MitImpact explores with its third major release. MitImpact expands its collection of genomic, clinical, and functional annotations of all non-synonymous substitutions of the human mitochondrial genome with new information on putative Compensated Pathogenic Deviations and co-varying amino acid sites of the Respiratory Chain subunits. It further provides evidence of energetic and structural residue compensation by techniques of molecular dynamics simulation. MitImpact is freely accessible at http://mitimpact.css-mendel.it.
Collapse
Affiliation(s)
- Stefano Castellana
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Tommaso Biagini
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Francesco Petrizzelli
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Luca Parca
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Noemi Panzironi
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Rome 00161, Italy
| | - Angelo Luigi Vescovi
- ISBReMIT Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies, IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| | - Massimo Carella
- Laboratory of Medical Genetics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG) 71013, Italy
| | - Tommaso Mazza
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), 71013, Italy
| |
Collapse
|
6
|
Patananan AN, Sercel AJ, Wu TH, Ahsan FM, Torres A, Kennedy SAL, Vandiver A, Collier AJ, Mehrabi A, Van Lew J, Zakin L, Rodriguez N, Sixto M, Tadros W, Lazar A, Sieling PA, Nguyen TL, Dawson ER, Braas D, Golovato J, Cisneros L, Vaske C, Plath K, Rabizadeh S, Niazi KR, Chiou PY, Teitell MA. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates. Cell Rep 2020; 33:108562. [PMID: 33378680 PMCID: PMC7927156 DOI: 10.1016/j.celrep.2020.108562] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/29/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023] Open
Abstract
Generating mammalian cells with desired mitochondrial DNA (mtDNA) sequences is enabling for studies of mitochondria, disease modeling, and potential regenerative therapies. MitoPunch, a high-throughput mitochondrial transfer device, produces cells with specific mtDNA-nuclear DNA (nDNA) combinations by transferring isolated mitochondria from mouse or human cells into primary or immortal mtDNA-deficient (ρ0) cells. Stable isolated mitochondrial recipient (SIMR) cells isolated in restrictive media permanently retain donor mtDNA and reacquire respiration. However, SIMR fibroblasts maintain a ρ0-like cell metabolome and transcriptome despite growth in restrictive media. We reprogrammed non-immortal SIMR fibroblasts into induced pluripotent stem cells (iPSCs) with subsequent differentiation into diverse functional cell types, including mesenchymal stem cells (MSCs), adipocytes, osteoblasts, and chondrocytes. Remarkably, after reprogramming and differentiation, SIMR fibroblasts molecularly and phenotypically resemble unmanipulated control fibroblasts carried through the same protocol. Thus, our MitoPunch "pipeline" enables the production of SIMR cells with unique mtDNA-nDNA combinations for additional studies and applications in multiple cell types.
Collapse
Affiliation(s)
- Alexander N Patananan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alexander J Sercel
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | - Fasih M Ahsan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alejandro Torres
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie A L Kennedy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy Vandiver
- Division of Dermatology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda J Collier
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | - Lise Zakin
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | | | | | - Adam Lazar
- NantWorks, LLC, Culver City, CA 90232, USA
| | | | - Thang L Nguyen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emma R Dawson
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel Braas
- UCLA Metabolomics Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | - Kathrin Plath
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Shahrooz Rabizadeh
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Kayvan R Niazi
- NanoCav LLC, Culver City, CA 90232, USA; NantWorks, LLC, Culver City, CA 90232, USA
| | - Pei-Yu Chiou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael A Teitell
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
7
|
Wallace DC. CRISPR-Free Mitochondrial DNA Base Editing. CRISPR J 2020; 3:228-230. [PMID: 32833534 DOI: 10.1089/crispr.2020.29101.dwa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Raghav L, Chang YH, Hsu YC, Li YC, Chen CY, Yang TY, Chen KC, Hsu KH, Tseng JS, Chuang CY, Lee MH, Wang CL, Chen HW, Yu SL, Su SF, Yuan SS, Chen JJ, Ho SY, Li KC, Yang PC, Chang GC, Chen HY. Landscape of Mitochondria Genome and Clinical Outcomes in Stage 1 Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E755. [PMID: 32210009 PMCID: PMC7140061 DOI: 10.3390/cancers12030755] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors including genetic effects are still being investigated in lung adenocarcinoma (LUAD). Mitochondria play an important role in controlling imperative cellular parameters, and anomalies in mitochondrial function might be crucial for cancer development. The mitochondrial genomic aberrations found in lung adenocarcinoma and their associations with cancer development and progression are not yet clearly characterized. Here, we identified a spectrum of mitochondrial genome mutations in early-stage lung adenocarcinoma and explored their association with prognosis and clinical outcomes. Next-generation sequencing was used to reveal the mitochondrial genomes of tumor and conditionally normal adjacent tissues from 61 Stage 1 LUADs. Mitochondrial somatic mutations and clinical outcomes including relapse-free survival (RFS) were analyzed. Patients with somatic mutations in the D-loop region had longer RFS (adjusted hazard ratio, adjHR = 0.18, p = 0.027), whereas somatic mutations in mitochondrial Complex IV and Complex V genes were associated with shorter RFS (adjHR = 3.69, p = 0.012, and adjHR = 6.63, p = 0.002, respectively). The risk scores derived from mitochondrial somatic mutations were predictive of RFS (adjHR = 9.10, 95%CI: 2.93-28.32, p < 0.001). Our findings demonstrated the vulnerability of the mitochondrial genome to mutations and the potential prediction ability of somatic mutations. This research may contribute to improving molecular guidance for patient treatment in precision medicine.
Collapse
Affiliation(s)
- Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
- Bioinformatics Program, Taiwan International Graduate Program, Institute of Information Science, Academia Sinica, Taipei 11529, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 32001, Taiwan;
| | - Yu-Cheng Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Chih-Yi Chen
- Institute of Medicine, Department of Surgery, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
| | - Tsung-Ying Yang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Kuo-Hsuan Hsu
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Jeng-Sen Tseng
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Cheng-Yen Chuang
- Division of Thoracic Surgery, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan;
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan;
| | - Chih-Liang Wang
- Department of Thoracic Medicine, Chang Gung Memorial Hospital, Tao-Yuan 33305, Taiwan;
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, National Taiwan University, Taipei 10617, Taiwan;
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei 10617, Taiwan;
| | - Sheng-Fang Su
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10055, Taiwan;
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
| | - Jeremy J.W. Chen
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Shinn-Ying Ho
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30010, Taiwan;
| | - Ker-Chau Li
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095-1554, USA
| | - Pan-Chyr Yang
- Center of Genomic Medicine, National Taiwan University, Taipei 10617, Taiwan;
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan;
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan; (K.-C.C.); (K.-H.H.); (J.-S.T.)
- Comprehensive Cancer Center, Taichung Veterans General Hospital, Taichung 40704, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan; (L.R.); (Y.-H.C.); (Y.-C.L.); (S.-S.Y.); (K.-C.L.)
- College of Medicine, National Taiwan University, Taipei 10617, Taiwan
- College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
9
|
Zheng Y, Tai W. Insight into the siRNA transmembrane delivery—From cholesterol conjugating to tagging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1606. [DOI: 10.1002/wnan.1606] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Yan Zheng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University Wuhan China
| | - Wanyi Tai
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education, School of Pharmaceutical Sciences, Wuhan University Wuhan China
| |
Collapse
|
10
|
Investigating Leber's hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion 2016; 32:19-26. [PMID: 27847334 DOI: 10.1016/j.mito.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/19/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) was the first human disease found to be associated with a mitochondrial DNA (mtDNA) point mutation. The most common LHON mutations are 11778G>A, 3460G>A or 14484T>C. The most common clinical features of LHON are optic nerve and retina atrophy. The affected tissue is not available for studies, therefore a variety of other cell types are used. However, all models face difficulties and limitations in mitochondrial disease research. The advantages and disadvantages of different cell models used to study LHON, recent advances in animal model generation and novel approaches in this field are discussed.
Collapse
|
11
|
Lopez Sanchez M, Crowston J, Mackey D, Trounce I. Emerging Mitochondrial Therapeutic Targets in Optic Neuropathies. Pharmacol Ther 2016; 165:132-52. [DOI: 10.1016/j.pharmthera.2016.06.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Indexed: 12/14/2022]
|
12
|
Spadafora D, Kozhukhar N, Chouljenko VN, Kousoulas KG, Alexeyev MF. Methods for Efficient Elimination of Mitochondrial DNA from Cultured Cells. PLoS One 2016; 11:e0154684. [PMID: 27136098 PMCID: PMC4852919 DOI: 10.1371/journal.pone.0154684] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 04/18/2016] [Indexed: 12/17/2022] Open
Abstract
Here, we document that persistent mitochondria DNA (mtDNA) damage due to mitochondrial overexpression of the Y147A mutant uracil-N-glycosylase as well as mitochondrial overexpression of bacterial Exonuclease III or Herpes Simplex Virus protein UL12.5M185 can induce a complete loss of mtDNA (ρ0 phenotype) without compromising the viability of cells cultured in media supplemented with uridine and pyruvate. Furthermore, we use these observations to develop rapid, sequence-independent methods for the elimination of mtDNA, and demonstrate utility of these methods for generating ρ0 cells of human, mouse and rat origin. We also demonstrate that ρ0 cells generated by each of these three methods can serve as recipients of mtDNA in fusions with enucleated cells.
Collapse
Affiliation(s)
- Domenico Spadafora
- Department of Pharmacology, University of South Alabama, Mobile, Alabama, United States of America
| | - Nataliya Kozhukhar
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
| | - Vladimir N. Chouljenko
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Konstantin G. Kousoulas
- Division of Biotechnology & Molecular Medicine and Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States of America
- * E-mail:
| |
Collapse
|
13
|
Spadafora D, Kozhukhar N, Alexeyev MF. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number. PLoS One 2016; 11:e0152705. [PMID: 27031233 PMCID: PMC4816344 DOI: 10.1371/journal.pone.0152705] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/17/2016] [Indexed: 01/10/2023] Open
Abstract
Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion.
Collapse
Affiliation(s)
- Domenico Spadafora
- Department of Pharmacology, University of South Alabama, 307 University Blvd, Mobile, Alabama, 36688, United States of America
| | - Natalia Kozhukhar
- Department of Physiology and Cell Biology, 307 University Blvd, University of South Alabama, Mobile, Alabama, 36688, United States of America
| | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, 307 University Blvd, University of South Alabama, Mobile, Alabama, 36688, United States of America
- Center for Lung Biology, University of South Alabama, 307 University Blvd, Mobile, Alabama, 36688, United States of America
- * E-mail:
| |
Collapse
|
14
|
Shimizu A, Enoki S, Ishikawa K, Mito T, Obata K, Nagashima R, Yonekawa H, Nakada K, Hayashi JI. Mouse somatic mutation orthologous to MELAS A3302G mutation in the mitochondrial tRNA gene confers respiration defects. Biochem Biophys Res Commun 2015; 467:1097-102. [DOI: 10.1016/j.bbrc.2015.09.072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/12/2015] [Indexed: 01/05/2023]
|