1
|
Jia Y, Chen Y, Chen M, He M, Xu S, Li H, Lin X, Wang L, Zhou J, Shen P, Luo X, Zhang X, Ruan J. Oncogenic HJURP enhancer promotes the aggressive behavior of triple-negative breast cancer in association with p53/E2F1/FOXM1-axis. Cancer Lett 2024; 611:217423. [PMID: 39736453 DOI: 10.1016/j.canlet.2024.217423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/07/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Triple-negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, lacking effective targeted therapies and presenting with a poor prognosis. In this study, we utilized the epigenomic landscape, TCGA database, and clinical samples to uncover the pivotal role of HJURP in TNBC. Our investigation revealed a strong correlation between elevated HJURP expression and unfavorable prognosis, metastatic progression, and late-stage of breast cancer. RNA-seq analysis indicated that HJURP silencing suppressed transcriptional signatures associated with malignant phenotypes of TNBC, thereby inhibiting cell proliferation, migration, invasion, epithelial-to-mesenchymal transition (EMT), and promoting apoptosis. Knockdown of HJURP impaired the growth of MDA-MB231-engrafted tumors, reducing KI67 and HJURP expression in the shHJURP group. Publicly available datasets showed differential expression of HJURP in TNBC cells harboring mutant p53 (mutp53) compared to those with wild-type p53 (wtp53), highlighting a potential mechanism underlying TNBC's aggressiveness. Mechanistically, we established that loss or mutation of wtp53 enhances HJURP expression, whereas wtp53 accumulation restrains HJURP transcription. We elucidated a regulatory axis where wtp53 positively modulates the transcription factors FOXM1 and E2F1, which form a complex with H3K27ac to bind preferentially to the HJURP enhancer, driving its transcription. CRISPR interference targeting the enhancer region resulted in diminished HJURP expression and phenotypes reminiscent of HJURP knockdown, accompanied by reduced binding of E2F1, FOXM1, and H3K27ac to the enhancer. In a translational perspective, we found marked decreases in survival of breast cancer patients expressing high HJURP levels carrying wtp53. Collectively, our findings identify enhancer-driven HJURP as a pivotal molecular bypass that suppresses the tumor-suppressive and pro-apoptotic effects of wtp53. Targeting HJURP presents a compelling therapeutic strategy to inhibit tumor proliferation, metastasis, and invasiveness specifically p53-mutant TNBC.
Collapse
Affiliation(s)
- Yunlu Jia
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
| | - Ming Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengye He
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Suzhen Xu
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Han Li
- The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Xuanyi Lin
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, China
| | - Peng Shen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
2
|
Stieg DC, Casey K, Karisetty BC, Leu JIJ, Larkin F, Vogel P, Madzo J, Murphy ME. The Ashkenazi-Centric G334R Variant of TP53 is Severely Impaired for Transactivation but Retains Tumor Suppressor Function in a Mouse Model. Mol Cell Biol 2024; 44:607-621. [PMID: 39520074 PMCID: PMC11583612 DOI: 10.1080/10985549.2024.2421885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Mutations in the TP53 tumor suppressor gene are the most abundant genetic occurrences in cancer. Some of these mutations lead to loss of function of p53 protein, some are gain of function, and some variants are hypomorphic (partially functional). Currently, there is no clinical distinction between different p53 mutations and cancer therapy or prognosis. Mutations in the oligomerization domain of p53 appear to be quite distinct in function, compared to mutations in the DNA binding domain. Here we show that, like other p53 oligomerization domain mutants, the Ashkenazi-specific G334R mutant accumulates to very high levels in cells and is significantly impaired for the transactivation of canonical p53 target genes. Surprisingly, we find that this mutant retains the ability to bind to consensus p53 target sites. A mouse model reveals that mice containing the G334R variant show increased predisposition to cancer, but only a fraction of these mice develop late-onset cancer. We show that the G334R variant retains the ability to interact with the SP1 transcription factor and contributes to the transactivation of joint SP1-p53 target genes. The combined evidence indicates that G334R is a unique oligomerization domain mutant that retains some tumor suppressor function.
Collapse
Affiliation(s)
- David C. Stieg
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kaitlyn Casey
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
- Cancer Biology Program, St Joseph’s University, Philadelphia, Pennsylvania, USA
| | | | - Julia I-Ju Leu
- Perelman School of Medicine, Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Fiona Larkin
- Hunterdon County Academies, Annandale, New Jersey, USA
| | - Peter Vogel
- Comparative Pathology Core, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jozef Madzo
- Bioinformatics Facility, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Maureen E. Murphy
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Fajac A, Simeonova I, Leemput J, Gabriel M, Morin A, Lejour V, Hamon A, Rakotopare J, Vaysse-Zinkhöfer W, Eldawra E, Pinskaya M, Morillon A, Bourdon JC, Bardot B, Toledo F. Mutant mice lacking alternatively spliced p53 isoforms unveil Ackr4 as a male-specific prognostic factor in Myc-driven B-cell lymphomas. eLife 2024; 13:RP92774. [PMID: 39298333 PMCID: PMC11412721 DOI: 10.7554/elife.92774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
The Trp53 gene encodes several isoforms of elusive biological significance. Here, we show that mice lacking the Trp53 alternatively spliced (AS) exon, thereby expressing the canonical p53 protein but not isoforms with the AS C-terminus, have unexpectedly lost a male-specific protection against Myc-induced B-cell lymphomas. Lymphomagenesis was delayed in Trp53+/+Eμ-Myc males compared to Trp53ΔAS/ΔAS Eμ-Myc males, but also compared to Trp53+/+Eμ-Myc and Trp53ΔAS/ΔAS Eμ-Myc females. Pre-tumoral splenic cells from Trp53+/+Eμ-Myc males exhibited a higher expression of Ackr4, encoding an atypical chemokine receptor with tumor suppressive effects. We identified Ackr4 as a p53 target gene whose p53-mediated transactivation is inhibited by estrogens, and as a male-specific factor of good prognosis relevant for murine Eμ-Myc-induced and human Burkitt lymphomas. Furthermore, the knockout of ACKR4 increased the chemokine-guided migration of Burkitt lymphoma cells. These data demonstrate the functional relevance of alternatively spliced p53 isoforms and reveal sex disparities in Myc-driven lymphomagenesis.
Collapse
Affiliation(s)
- Anne Fajac
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Iva Simeonova
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Julia Leemput
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Marc Gabriel
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut CurieParisFrance
| | - Aurélie Morin
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Vincent Lejour
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Annaïg Hamon
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Jeanne Rakotopare
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Wilhelm Vaysse-Zinkhöfer
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Eliana Eldawra
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Marina Pinskaya
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
- Non Coding RNA, Epigenetic and Genome Fluidity, Institut CurieParisFrance
| | - Antonin Morillon
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
- School of Medicine, Ninewells Hospital, University of DundeeDundeeUnited Kingdom
| | | | - Boris Bardot
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| | - Franck Toledo
- Genetics of Tumor Suppression, Institut CurieParisFrance
- CNRS UMR3244ParisFrance
- Sorbonne UniversityParisFrance
- PSL Research UniversityParisFrance
| |
Collapse
|
4
|
King DA, McCoy DE, Perdyan A, Mieczkowski J, Douki T, Dionne JA, Herrera RE, Morrison AJ. p53 Regulates Nuclear Architecture to Reduce Carcinogen Sensitivity and Mutagenic Potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613067. [PMID: 39345432 PMCID: PMC11429700 DOI: 10.1101/2024.09.14.613067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The p53 tumor suppressor is an indispensable regulator of DNA damage responses that accelerates carcinogenesis when mutated. In this report, we uncover a new mechanism by which p53 maintains genomic integrity in the absence of canonical DNA damage response activation. Specifically, loss of p53 dramatically alters chromatin structure at the nuclear periphery, allowing increased transmission of an environmental carcinogen, ultraviolet (UV) radiation, into the nucleus. Genome-wide mapping of UV-induced DNA lesions in p53-deficient primary cells reveals elevated lesion abundance in regions corresponding to locations of high mutation burden in malignant melanomas. These findings uncover a novel role of p53 in the suppression of mutations that contribute to cancer and highlight the critical influence of nuclear architecture in regulating sensitivity to carcinogens.
Collapse
Affiliation(s)
- Devin A. King
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Dakota E. McCoy
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jakub Mieczkowski
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, F-38000 Grenoble, France
| | - Jennifer A. Dionne
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Rafael E. Herrera
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Ashby J. Morrison
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Much C, Lasda EL, Pereira IT, Vallery TK, Ramirez D, Lewandowski JP, Dowell RD, Smallegan MJ, Rinn JL. The temporal dynamics of lncRNA Firre-mediated epigenetic and transcriptional regulation. Nat Commun 2024; 15:6821. [PMID: 39122712 PMCID: PMC11316132 DOI: 10.1038/s41467-024-50402-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 07/10/2024] [Indexed: 08/12/2024] Open
Abstract
Numerous studies have now demonstrated that lncRNAs can influence gene expression programs leading to cell and organismal phenotypes. Typically, lncRNA perturbations and concomitant changes in gene expression are measured on the timescale of many hours to days. Thus, we currently lack a temporally grounded understanding of the primary, secondary, and tertiary relationships of lncRNA-mediated transcriptional and epigenetic regulation-a prerequisite to elucidating lncRNA mechanisms. To begin to address when and where a lncRNA regulates gene expression, we genetically engineer cell lines to temporally induce the lncRNA Firre. Using this approach, we are able to monitor lncRNA transcriptional regulatory events from 15 min to four days. We observe that upon induction, Firre RNA regulates epigenetic and transcriptional states in trans within 30 min. These early regulatory events result in much larger transcriptional changes after 12 h, well before current studies monitor lncRNA regulation. Moreover, Firre-mediated gene expression changes are epigenetically remembered for days. Overall, this study suggests that lncRNAs can rapidly regulate gene expression by establishing persistent epigenetic and transcriptional states.
Collapse
Affiliation(s)
- Christian Much
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Erika L Lasda
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Isabela T Pereira
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Tenaya K Vallery
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Daniel Ramirez
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Jordan P Lewandowski
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Robin D Dowell
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA
| | - Michael J Smallegan
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO, 80302, USA.
| | - John L Rinn
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA.
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80303, USA.
| |
Collapse
|
6
|
Fischer M. Gene regulation by the tumor suppressor p53 - The omics era. Biochim Biophys Acta Rev Cancer 2024; 1879:189111. [PMID: 38740351 DOI: 10.1016/j.bbcan.2024.189111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
The transcription factor p53 is activated in response to a variety of cellular stresses and serves as a prominent and potent tumor suppressor. Since its discovery, we have sought to understand how p53 functions as both a transcription factor and a tumor suppressor. Two decades ago, the field of gene regulation entered the omics era and began to study the regulation of entire genomes. The omics perspective has greatly expanded our understanding of p53 functions and has begun to reveal its gene regulatory network. In this mini-review, I discuss recent insights into the p53 transcriptional program from high-throughput analyses.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany.
| |
Collapse
|
7
|
Abad E, Sandoz J, Romero G, Zadra I, Urgel-Solas J, Borredat P, Kourtis S, Ortet L, Martínez CM, Weghorn D, Sdelci S, Janic A. The TP53-activated E3 ligase RNF144B is a tumour suppressor that prevents genomic instability. J Exp Clin Cancer Res 2024; 43:127. [PMID: 38685100 PMCID: PMC11057071 DOI: 10.1186/s13046-024-03045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND TP53, the most frequently mutated gene in human cancers, orchestrates a complex transcriptional program crucial for cancer prevention. While certain TP53-dependent genes have been extensively studied, others, like the recently identified RNF144B, remained poorly understood. This E3 ubiquitin ligase has shown potent tumor suppressor activity in murine Eμ Myc-driven lymphoma, emphasizing its significance in the TP53 network. However, little is known about its targets and its role in cancer development, requiring further exploration. In this work, we investigate RNF144B's impact on tumor suppression beyond the hematopoietic compartment in human cancers. METHODS Employing TP53 wild-type cells, we generated models lacking RNF144B in both non-transformed and cancerous cells of human and mouse origin. By using proteomics, transcriptomics, and functional analysis, we assessed RNF144B's impact in cellular proliferation and transformation. Through in vitro and in vivo experiments, we explored proliferation, DNA repair, cell cycle control, mitotic progression, and treatment resistance. Findings were contrasted with clinical datasets and bioinformatics analysis. RESULTS Our research underscores RNF144B's pivotal role as a tumor suppressor, particularly in lung adenocarcinoma. In both human and mouse oncogene-expressing cells, RNF144B deficiency heightened cellular proliferation and transformation. Proteomic and transcriptomic analysis revealed RNF144B's novel function in mediating protein degradation associated with cell cycle progression, DNA damage response and genomic stability. RNF144B deficiency induced chromosomal instability, mitotic defects, and correlated with elevated aneuploidy and worse prognosis in human tumors. Furthermore, RNF144B-deficient lung adenocarcinoma cells exhibited resistance to cell cycle inhibitors that induce chromosomal instability. CONCLUSIONS Supported by clinical data, our study suggests that RNF144B plays a pivotal role in maintaining genomic stability during tumor suppression.
Collapse
Affiliation(s)
- Etna Abad
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Jérémy Sandoz
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Gerard Romero
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Thoracic Cancers Translational Genomics Unit, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - Ivan Zadra
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Julia Urgel-Solas
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Pablo Borredat
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Savvas Kourtis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Laura Ortet
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain
| | - Carlos M Martínez
- Pathology Platform, Instituto Murciano de Investigación Biosanitaria (IMIB-Pascual Parrilla), Murcia, 30120, Spain
| | - Donate Weghorn
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Sara Sdelci
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, 08003, Spain
| | - Ana Janic
- Department of Medicine and Life Sciences, Universidad Pompeu Fabra, Barcelona, 08003, Spain.
| |
Collapse
|
8
|
Kaller M, Forné I, Imhof A, Hermeking H. LINC01021 Attenuates Expression and Affects Alternative Splicing of a Subset of p53-Regulated Genes. Cancers (Basel) 2024; 16:1639. [PMID: 38730591 PMCID: PMC11083319 DOI: 10.3390/cancers16091639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Loss of the p53-inducible LINC01021 in p53-proficient CRC cell lines results in increased sensitivity to DNA-damaging chemotherapeutics. Here, we comprehensively analyze how LINC01021 affects the p53-induced transcriptional program. METHODS Using a CRISPR/Cas9-approach, we deleted the p53 binding site in the LINC01021 promoter of SW480 colorectal cancer cells and subjected them to RNA-Seq analysis after the activation of ectopic p53. RNA affinity purification followed by mass spectrometry was used to identify proteins associated with LINC01021. RESULTS Loss of the p53-inducibility of LINC01021 resulted in an ~1.8-fold increase in the number of significantly regulated mRNAs compared to LINC01021 wild-type cells after ectopic activation of p53. A subset of direct p53 target genes, such as NOXA and FAS, displayed significantly stronger induction when the p53-inducibility of LINC01021 was abrogated. Loss of the p53-inducibility of LINC01021 resulted in alternative splicing of a small number of mRNAs, such as ARHGAP12, HSF2, and LYN. Several RNA binding proteins involved in pre-mRNA splicing were identified as interaction partners of LINC01021 by mass spectrometry. CONCLUSIONS Our results suggest that LINC01021 may restrict the extent and strength of p53-mediated transcriptional changes via context-dependent regulation of the expression and splicing of a subset of p53-regulated genes.
Collapse
Affiliation(s)
- Markus Kaller
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
| | - Ignasi Forné
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Axel Imhof
- BioMedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 9, D-82152 Planegg-Martinsried, Germany
| | - Heiko Hermeking
- Experimental and Molecular Pathology, Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Thalkirchner Strasse 36, D-80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, D-69120 Heidelberg, Germany
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
9
|
Napoli M, Deshpande AA, Chakravarti D, Rajapakshe K, Gunaratne PH, Coarfa C, Flores ER. Genome-wide p63-Target Gene Analyses Reveal TAp63/NRF2-Dependent Oxidative Stress Responses. CANCER RESEARCH COMMUNICATIONS 2024; 4:264-278. [PMID: 38165157 PMCID: PMC10832605 DOI: 10.1158/2767-9764.crc-23-0358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/14/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
The p53 family member TP63 encodes two sets of N-terminal isoforms, TAp63 and ΔNp63 isoforms. They each regulate diverse biological functions in epidermal morphogenesis and in cancer. In the skin, where their activities have been extensively characterized, TAp63 prevents premature aging by regulating the quiescence and genomic stability of stem cells required for wound healing and hair regeneration, while ΔNp63 controls maintenance and terminal differentiation of epidermal basal cells. This functional diversity is surprising given that these isoforms share a high degree of similarity, including an identical sequence for a DNA-binding domain. To understand the mechanisms of the transcriptional programs regulated by each p63 isoform and leading to diverse biological functions, we performed genome-wide analyses using p63 isoform-specific chromatin immunoprecipitation, RNA sequencing, and metabolomics of TAp63-/- and ΔNp63-/- mouse epidermal cells. Our data indicate that TAp63 and ΔNp63 physically and functionally interact with distinct transcription factors for the downstream regulation of their target genes, thus ultimately leading to the regulation of unique transcriptional programs and biological processes. Our findings unveil novel transcriptomes regulated by the p63 isoforms to control diverse biological functions, including the cooperation between TAp63 and NRF2 in the modulation of metabolic pathways and response to oxidative stress providing a mechanistic explanation for the TAp63 knock out phenotypes. SIGNIFICANCE The p63 isoforms, TAp63 and ΔNp63, control epithelial morphogenesis and tumorigenesis through the interaction with distinct transcription factors and the subsequent regulation of unique transcriptional programs.
Collapse
Affiliation(s)
- Marco Napoli
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Avani A. Deshpande
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Kimal Rajapakshe
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | | | - Cristian Coarfa
- Department of Molecular and Cellular Biology, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Elsa R. Flores
- Department of Molecular Oncology, Division of Basic Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
10
|
Yue Z, Lin J, Lu X, Gao Q, Pan M, Zhang Y, Shen S, Zhu WG, Paus R. Keratin 17 Impacts Global Gene Expression and Controls G2/M Cell Cycle Transition in Ionizing Radiation-Induced Skin Damage. J Invest Dermatol 2023; 143:2436-2446.e13. [PMID: 37414246 DOI: 10.1016/j.jid.2023.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 07/08/2023]
Abstract
Keratin 17 (K17) is a cytoskeletal protein that is part of the intermediate filaments in epidermal keratinocytes. In K17-/- mice, ionizing radiation induced more severe hair follicle damage, whereas the epidermal inflammatory response was attenuated compared with that in wild-type mice. Both p53 and K17 have a major impact on global gene expression because over 70% of the differentially expressed genes in the skin of wild-type mice showed no expression change in p53-/- or K17-/- skin after ionizing radiation. K17 does not interfere with the dynamics of p53 activation; rather, global p53 binding in the genome is altered in K17-/- mice. The absence of K17 leads to aberrant cell cycle progression and mitotic catastrophe in epidermal keratinocytes, which is due to nuclear retention, thus reducing the degradation of B-Myb, a key regulator of the G2/M cell cycle transition. These results expand our understanding of the role of K17 in regulating global gene expression and ionizing radiation-induced skin damage.
Collapse
Affiliation(s)
- ZhiCao Yue
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China.
| | - JianQiong Lin
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - XiaoPeng Lu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - QingXiang Gao
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - MeiPing Pan
- Institute of Life Sciences, Fuzhou University, Fuzhou, China
| | - YaFei Zhang
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - SiTing Shen
- Department of Cell Biology & Medical Genetics, Shenzhen University Medical School, Shenzhen, China; International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China
| | - Wei-Guo Zhu
- International Cancer Center, Shenzhen University Medical School, Shenzhen, China; Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University Medical School, Shenzhen, China; Department of Biochemistry & Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Ralf Paus
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA; Center for Dermatology Research, School of Biological Sciences, The University of Manchester and NIHR Biomedical Research Center, Manchester, United Kingdom
| |
Collapse
|
11
|
Yang X, Wang Z, Zandkarimi F, Liu Y, Duan S, Li Z, Kon N, Zhang Z, Jiang X, Stockwell BR, Gu W. Regulation of VKORC1L1 is critical for p53-mediated tumor suppression through vitamin K metabolism. Cell Metab 2023; 35:1474-1490.e8. [PMID: 37467745 PMCID: PMC10529626 DOI: 10.1016/j.cmet.2023.06.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 04/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
Here, we identified vitamin K epoxide reductase complex subunit 1 like 1 (VKORC1L1) as a potent ferroptosis repressor. VKORC1L1 protects cells from ferroptosis by generating the reduced form of vitamin K, a potent radical-trapping antioxidant, to counteract phospholipid peroxides independent of the canonical GSH/GPX4 mechanism. Notably, we found that VKORC1L1 is also a direct transcriptional target of p53. Activation of p53 induces downregulation of VKORC1L1 expression, thus sensitizing cells to ferroptosis for tumor suppression. Interestingly, a small molecular inhibitor of VKORC1L1, warfarin, is widely prescribed as an FDA-approved anticoagulant drug. Moreover, warfarin represses tumor growth by promoting ferroptosis in both immunodeficient and immunocompetent mouse models. Thus, by downregulating VKORC1L1, p53 executes the tumor suppression function by activating an important ferroptosis pathway involved in vitamin K metabolism. Our study also reveals that warfarin is a potential repurposing drug in cancer therapy, particularly for tumors with high levels of VKORC1L1 expression.
Collapse
Affiliation(s)
- Xin Yang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, NY, USA; Mass Spectrometry Core Facility, Columbia University, New York, NY, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Shoufu Duan
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiming Li
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ning Kon
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhiguo Zhang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pediatrics, and Department of Genetics and Development, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Xuejun Jiang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Brent R Stockwell
- Department of Chemistry, Columbia University, New York, NY, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Bandi DSR, Sarvesh S, Farran B, Nagaraju GP, El-Rayes BF. Targeting the metabolism and immune system in pancreatic ductal adenocarcinoma: Insights and future directions. Cytokine Growth Factor Rev 2023; 71-72:26-39. [PMID: 37407355 DOI: 10.1016/j.cytogfr.2023.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
Pancreatic cancer, specifically pancreatic ductal adenocarcinoma (PDAC), presents a challenging landscape due to its complex nature and the highly immunosuppressive tumor microenvironment (TME). This immunosuppression severely limits the effectiveness of immune-based therapies. Studies have revealed the critical role of immunometabolism in shaping the TME and influencing PDAC progression. Genetic alterations, lysosomal dysfunction, gut microbiome dysbiosis, and altered metabolic pathways have been shown to modulate immunometabolism in PDAC. These metabolic alterations can significantly impact immune cell functions, including T-cells, myeloid-derived suppressor cells (MDSCs), and macrophages, evading anti-tumor immunity. Advances in immunotherapy offer promising avenues for overcoming immunosuppressive TME and enhancing patient outcomes. This review highlights the challenges and opportunities for future research in this evolving field. By exploring the connections between immunometabolism, genetic alterations, and the microbiome in PDAC, it is possible to tailor novel approaches capable of improving immunotherapy outcomes and addressing the limitations posed by immunosuppressive TME. Ultimately, these insights may pave the way for improved treatment options and better outcomes for PDAC patients.
Collapse
Affiliation(s)
- Dhana Sekhar Reddy Bandi
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Sujith Sarvesh
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA
| | - Batoul Farran
- Department of Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ganji Purnachandra Nagaraju
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| | - Bassel F El-Rayes
- Department of Hematology and Oncology, Heersink School of Medicine, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
13
|
Fischer M, Riege K, Hoffmann S. The landscape of human p53-regulated long non-coding RNAs reveals critical host gene co-regulation. Mol Oncol 2023. [PMID: 36852646 DOI: 10.1002/1878-0261.13405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 03/01/2023] Open
Abstract
The role of long non-coding RNAs (lncRNAs) in p53-mediated tumor suppression has become increasingly appreciated in the past decade. Thus, the identification of p53-regulated lncRNAs can be a promising starting point to select and prioritize lncRNAs for functional analyses. By integrating transcriptome and transcription factor-binding data, we identified 379 lncRNAs that are recurrently differentially regulated by p53. Dissecting the mechanisms by which p53 regulates many of them, we identified sets of lncRNAs regulated either directly by p53 or indirectly through the p53-RFX7 and p53-p21-DREAM/RB:E2F pathways. Importantly, we identified multiple p53-responsive lncRNAs that are co-regulated with their protein-coding host genes, revealing an important mechanism by which p53 may regulate lncRNAs. Further analysis of transcriptome data and clinical data from cancer patients showed that recurrently p53-regulated lncRNAs are associated with patient survival. Together, the integrative analysis of the landscape of p53-regulated lncRNAs provides a powerful resource facilitating the identification of lncRNA function and displays the mechanisms of p53-dependent regulation that could be exploited for developing anticancer approaches.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| |
Collapse
|
14
|
Thomas AF, Kelly GL, Strasser A. Of the many cellular responses activated by TP53, which ones are critical for tumour suppression? Cell Death Differ 2022; 29:961-971. [PMID: 35396345 PMCID: PMC9090748 DOI: 10.1038/s41418-022-00996-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour suppressor TP53 is a master regulator of several cellular processes that collectively suppress tumorigenesis. The TP53 gene is mutated in ~50% of human cancers and these defects usually confer poor responses to therapy. The TP53 protein functions as a homo-tetrameric transcription factor, directly regulating the expression of ~500 target genes, some of them involved in cell death, cell cycling, cell senescence, DNA repair and metabolism. Originally, it was thought that the induction of apoptotic cell death was the principal mechanism by which TP53 prevents the development of tumours. However, gene targeted mice lacking the critical effectors of TP53-induced apoptosis (PUMA and NOXA) do not spontaneously develop tumours. Indeed, even mice lacking the critical mediators for TP53-induced apoptosis, G1/S cell cycle arrest and cell senescence, namely PUMA, NOXA and p21, do not spontaneously develop tumours. This suggests that TP53 must activate additional cellular responses to mediate tumour suppression. In this review, we will discuss the processes by which TP53 regulates cell death, cell cycling/cell senescence, DNA damage repair and metabolic adaptation, and place this in context of current understanding of TP53-mediated tumour suppression.
Collapse
Affiliation(s)
- Annabella F Thomas
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. .,The Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Panatta E, Zampieri C, Melino G, Amelio I. Understanding p53 tumour suppressor network. Biol Direct 2021; 16:14. [PMID: 34362419 PMCID: PMC8348811 DOI: 10.1186/s13062-021-00298-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 12/17/2022] Open
Abstract
The mutation of TP53 gene affects half of all human cancers, resulting in impairment of the regulation of several cellular functions, including cell cycle progression and cell death in response to genotoxic stress. In the recent years additional p53-mediated tumour suppression mechanisms have been described, questioning the contribution of its canonical pathway for tumour suppression. These include regulation of alternative cell death modalities (i.e. ferroptosis), cell metabolism and the emerging role in RNA stability. Here we briefly summarize our knowledge on p53 “canonical DNA damage response” and discuss the most relevant recent findings describing potential mechanistic explanation of p53-mediated tumour suppression.
Collapse
Affiliation(s)
- Emanuele Panatta
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carlotta Zampieri
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Ivano Amelio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy. .,School of Life Sciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
16
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53-mediated apoptosis in human cancers. Cell Biol Int 2021; 45:1364-1382. [PMID: 33760332 DOI: 10.1002/cbin.11597] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 02/05/2023]
Abstract
Long noncoding RNAs (lncRNAs) are widely known for their regulatory function in transcriptional and posttranscriptional processes. The involvement of such non-protein-coding RNAs in nuclear organization and chromatin remodeling is often associated with an increased risk of human malignancies. In cancer, lncRNAs either promote cell survival or may act as a growth suppressor, thus conferring a key regulatory function other than their established role in fundamental cellular processes. Interestingly, lncRNAs interfere with the stages of apoptosis and related pathways involving p53. Many of these molecules either regulate or are regulated by p53 while mounting oncogenic events. Consequently, they may confer both prosurvival or proapoptotic functions depending upon the tissue type. Since the mechanism of cell death is bypassed in many human cancers, it has emerged that the lncRNAs are either overexpressed or knocked down to sensitize cells to apoptotic stimuli. Nonetheless, the abundant expression of lncRNAs in tumor cells renders them suitable targets for anticancer therapies. Although the role of lncRNAs in the p53 network and apoptosis has been independently defined, their interplay in activating p53-target genes during cell cycle arrest remains unexplored. Thus, we have specifically reviewed the possible involvement of lncRNAs in the p53-mediated apoptosis of human cancer cells. In particular, we summarize the growing evidence from individual studies and analyze whether lncRNAs are essential to facilitate apoptosis in a p53-dependent manner. This may lead to the identification of p53-associated lncRNAs that are suitable therapeutic targets or diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Marney CB, Anderson ES, Adnan M, Peng KL, Hu Y, Weinhold N, Schmitt AM. p53-intact cancers escape tumor suppression through loss of long noncoding RNA Dino. Cell Rep 2021; 35:109329. [PMID: 34192538 PMCID: PMC8287872 DOI: 10.1016/j.celrep.2021.109329] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/15/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023] Open
Abstract
Many long noncoding RNA (lncRNA) genes exist near cancer-associated loci, yet evidence connecting lncRNA functions to recurrent genetic alterations in cancer are lacking. Here, we report that DINO, the lncRNA transcribed from the cancer-associated DINO/CDKN1A locus, suppresses tumor formation independent of p21, the protein encoded at the locus. Loss of one or two alleles of Dino impairs p53 signaling and apoptosis, resulting in a haplo-insufficient tumor suppressor phenotype in genetically defined mouse models of tumorigenesis. A discrete region of the DINO/CDKN1A locus is recurrently hypermethylated in human cancers, silencing DINO but not CDKN1A, the gene encoding p21. Hypermethylation silences DINO, impairs p53 signaling pathway in trans, and is mutually exclusive with TP53 alterations, indicating that DINO and TP53 comprise a common tumor suppressor module. Therefore, DINO encodes a lncRNA essential for tumor suppression that is recurrently silenced in human cancers as a mechanism to escape p53-dependent tumor suppression.
Collapse
Affiliation(s)
- Christina B Marney
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Erik S Anderson
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Mutayyaba Adnan
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Kai-Lin Peng
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Ya Hu
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Nils Weinhold
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA
| | - Adam M Schmitt
- Division of Translational Oncology, Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10128, USA.
| |
Collapse
|
18
|
Inhibition of the DNA damage response phosphatase PPM1D reprograms neutrophils to enhance anti-tumor immune responses. Nat Commun 2021; 12:3622. [PMID: 34131120 PMCID: PMC8206133 DOI: 10.1038/s41467-021-23330-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
PPM1D/Wip1 is a negative regulator of the tumor suppressor p53 and is overexpressed in several human solid tumors. Recent reports associate gain-of-function mutations of PPM1D in immune cells with worse outcomes for several human cancers. Here we show that mice with genetic knockout of Ppm1d or with conditional knockout of Ppm1d in the hematopoietic system, in myeloid cells, or in neutrophils all display significantly reduced growth of syngeneic melanoma or lung carcinoma tumors. Ppm1d knockout neutrophils infiltrate tumors extensively. Chemical inhibition of Wip1 in human or mouse neutrophils increases anti-tumor phenotypes, p53-dependent expression of co-stimulatory ligands, and proliferation of co-cultured cytotoxic T cells. These results suggest that inhibition of Wip1 in neutrophils enhances immune anti-tumor responses.
Collapse
|
19
|
Chatterjee M, Viswanathan P. Long noncoding RNAs in the regulation of p53‐mediated apoptosis in human cancers. Cell Biol Int 2021. [DOI: https://doi.org/10.1002/cbin.11597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Manjima Chatterjee
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| | - Pragasam Viswanathan
- School of Bio Sciences and Technology, Vellore Institute of Technology Vellore Tamil Nadu India
| |
Collapse
|
20
|
Aravindhan S, Younus LA, Hadi Lafta M, Markov A, Ivanovna Enina Y, Yushchenkо NA, Thangavelu L, Mostafavi SM, Pokrovskii MV, Ahmadi M. P53 long noncoding RNA regulatory network in cancer development. Cell Biol Int 2021; 45:1583-1598. [PMID: 33760334 DOI: 10.1002/cbin.11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
The protein p53 as a transcription factor with strong tumor-suppressive activities is known to trigger apoptosis via multiple pathways and is directly involved in the recognition of DNA damage and DNA repair processes. P53 alteration is now recognized as a common event in the pathogenesis of many types of human malignancies. Deregulation of tumor suppressor p53 pathways plays an important role in the activation of cell proliferation or inactivation of apoptotic cell death during carcinogenesis and tumor progression. Mounting evidence indicates that the p53 status of tumors and also the regulatory functions of p53 may be relevant to the long noncoding RNAs (lncRNA)-dependent gene regulation programs. Besides coding genes, lncRNAs that do not encode for proteins are induced or suppressed by p53 transcriptional response and thus control cancer progression. LncRNAs also have emerged as key regulators that impinge on the p53 signaling network orchestrating global gene-expression profile. Studies have suggested that aberrant expression of lncRNAs as a molecular-genomic signature may play important roles in cancer biology. Accordingly, it is important to elucidate the mechanisms by which the crosstalk between lncRNAs and p53 occurs in the development of numerous cancers. Here, we review how several classes of lncRNAs and p53 pathways are linked together in controlling the cell cycle and apoptosis in various cancer cells in both human and mouse model systems.
Collapse
Affiliation(s)
- Surendar Aravindhan
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, chennai, India
| | - Laith A Younus
- Department of Clinical Laboratory Sciences, Faculty of Pharmacy, Jabir Ibn Hayyan Medical University, Al Najaf Al Ashraf, Najaf, Iraq
| | | | | | - Yulianna Ivanovna Enina
- Department of Propaedeutics of Dental Diseases, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Natalya A Yushchenkо
- Department of Legal Disciplines, Kazan Federal University, Kazan, Russian Federation
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | | | - Michail V Pokrovskii
- Department of Pharmacology and Clinical Pharmacology, Institute of Medicine, Belgorod State National Research University, Belgorod, Russian Federation
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
21
|
Ray SK, Mukherjee S. LncRNAs as Architects in Cancer Biomarkers with Interface of Epitranscriptomics- Incipient Targets in Cancer Therapy. Curr Cancer Drug Targets 2021; 21:416-427. [PMID: 33413062 DOI: 10.2174/1568009620666210106122421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/22/2022]
Abstract
Long non-coding RNAs (LncRNAs) epitomize a class of non-coding regulatory RNAs with more than 200 nucleotides, which are long and situated in the nucleus or cytoplasm and rarely encode proteins. Accruing evidence signposts that lncRNAs act as molecular switches in different cellular activities like differentiation, apoptosis, as well as reprogramming of cellular states by modifying gene expression patterns. The revelation of immense numbers of lncRNA with their wide variety of expression patterns in different kinds of malignancy, tumor explicitness, and their steadiness in circulating body fluids deliver an innovative groundwork for emerging diagnosis and treatments for cancer. Mechanisms associating lncRNAs in carcinogenesis are conquered by deregulation of cellular signaling pathways and altered epitranscriptome along with their expression. Specified these attributes, it becomes clear that the improvement of new tools to identify lncRNAs with higher affectability will be fundamental to allow the identification of the expression pattern of lncRNAs in various kinds of malignant growth and may likewise be utilized to envisage cancer prognosis in addition to the patients' outcome. Improvement of RNA targeting-based therapeutics is delivering incredible prospects to modulate lncRNAs for anti-cancer initiatives. Henceforth, lncRNAs can be used exclusively as possible cancer biomarkers for early diagnosis and anticipation of malignancy, as well as metastasis. In addition to the basic curative targets and along these, lncRNAs hold resilient assurance towards the revelation of innovative diagnostics and therapeutics for malignant growth with the interface of epitranscriptomics information. This review aims to briefly discuss the latest findings regarding the roles and mechanisms of some important lncRNAs in the pathogenesis, regulation, and lncRNA-associated epigenetics of cancer along with targeting lncRNAs with potential approaches for impending diagnosis and therapeutic intervention in malignancies.
Collapse
Affiliation(s)
- Suman Kumar Ray
- Independent Researcher, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| | - Sukhes Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh-462020, India
| |
Collapse
|
22
|
Zmat3 Is a Key Splicing Regulator in the p53 Tumor Suppression Program. Mol Cell 2021; 80:452-469.e9. [PMID: 33157015 PMCID: PMC7654708 DOI: 10.1016/j.molcel.2020.10.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/19/2020] [Accepted: 10/14/2020] [Indexed: 12/22/2022]
Abstract
Although TP53 is the most commonly mutated gene in human cancers, the p53-dependent transcriptional programs mediating tumor suppression remain incompletely understood. Here, to uncover critical components downstream of p53 in tumor suppression, we perform unbiased RNAi and CRISPR-Cas9-based genetic screens in vivo. These screens converge upon the p53-inducible gene Zmat3, encoding an RNA-binding protein, and we demonstrate that ZMAT3 is an important tumor suppressor downstream of p53 in mouse KrasG12D-driven lung and liver cancers and human carcinomas. Integrative analysis of the ZMAT3 RNA-binding landscape and transcriptomic profiling reveals that ZMAT3 directly modulates exon inclusion in transcripts encoding proteins of diverse functions, including the p53 inhibitors MDM4 and MDM2, splicing regulators, and components of varied cellular processes. Interestingly, these exons are enriched in NMD signals, and, accordingly, ZMAT3 broadly affects target transcript stability. Collectively, these studies reveal ZMAT3 as a novel RNA-splicing and homeostasis regulator and a key component of p53-mediated tumor suppression.
Collapse
|
23
|
Zhang W, Frausto R, Chung DD, Griffis CG, Kao L, Chen A, Azimov R, Sampath AP, Kurtz I, Aldave AJ. Energy Shortage in Human and Mouse Models of SLC4A11-Associated Corneal Endothelial Dystrophies. Invest Ophthalmol Vis Sci 2021; 61:39. [PMID: 32721020 PMCID: PMC7425690 DOI: 10.1167/iovs.61.8.39] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To elucidate the molecular events in solute carrier family 4 member 11 (SLC4A11)-deficient corneal endothelium that lead to the endothelial dysfunction that characterizes the dystrophies associated with SLC4A11 mutations, congenital hereditary endothelial dystrophy (CHED) and Fuchs endothelial corneal dystrophy 4. Methods Comparative transcriptomic analysis (CTA) was performed in primary human corneal endothelial cells (pHCEnC) and murine corneal endothelial cells (MCEnC) with normal and reduced levels of SLC4A11 (SLC4A11 KD pHCEnC) and Slc4a11 (Slc4a11−/− MCEnC), respectively. Validation of differentially expressed genes was performed using immunofluorescence staining of CHED corneal endothelium, as well as western blot and quantitative PCR analysis of SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC. Functional analyses were performed to investigate potential functional changes associated with the observed transcriptomic alterations. Results CTA revealed inhibition of cell metabolism and ion transport function as well as mitochondrial dysfunction, leading to reduced adenosine triphosphate (ATP) production, in SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC. Co-localization of SNARE protein STX17 with mitochondria marker COX4 was observed in CHED corneal endothelium, as was activation of AMPK–p53/ULK1 in both SLC4A11 KD pHCEnC and Slc4a11−/− MCEnC, providing additional evidence of mitochondrial dysfunction and mitophagy. Reduced Na+-dependent HCO3− transport activity and altered NH4Cl-induced membrane potential changes were observed in Slc4a11−/− MCEnC. Conclusions Reduced steady-state ATP levels and subsequent activation of the AMPK–p53 pathway provide a link between the metabolic functional deficit and transcriptome alterations, as well as evidence of insufficient ATP to maintain the Na+/K+-ATPase corneal endothelial pump as the cause of the edema that characterizes SLC4A11-associated corneal endothelial dystrophies.
Collapse
|
24
|
Olivero CE, Dimitrova N. Identification and characterization of functional long noncoding RNAs in cancer. FASEB J 2020; 34:15630-15646. [PMID: 33058262 PMCID: PMC7756267 DOI: 10.1096/fj.202001951r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022]
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators in a variety of cellular processes that influence disease states. In particular, many lncRNAs are genetically or epigenetically deregulated in cancer. However, whether lncRNA alterations are passengers acquired during cancer progression or can act as tumorigenic drivers is a topic of ongoing investigation. In this review, we examine the current methodologies underlying the identification of cancer-associated lncRNAs and highlight important considerations for evaluating their biological significance as cancer drivers.
Collapse
Affiliation(s)
- Christiane E. Olivero
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| | - Nadya Dimitrova
- Department of Molecular, Cellular and Developmental BiologyYale UniversityNew HavenCTUSA
| |
Collapse
|
25
|
Sammons MA, Nguyen TAT, McDade SS, Fischer M. Tumor suppressor p53: from engaging DNA to target gene regulation. Nucleic Acids Res 2020; 48:8848-8869. [PMID: 32797160 PMCID: PMC7498329 DOI: 10.1093/nar/gkaa666] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/24/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
The p53 transcription factor confers its potent tumor suppressor functions primarily through the regulation of a large network of target genes. The recent explosion of next generation sequencing protocols has enabled the study of the p53 gene regulatory network (GRN) and underlying mechanisms at an unprecedented depth and scale, helping us to understand precisely how p53 controls gene regulation. Here, we discuss our current understanding of where and how p53 binds to DNA and chromatin, its pioneer-like role, and how this affects gene regulation. We provide an overview of the p53 GRN and the direct and indirect mechanisms through which p53 affects gene regulation. In particular, we focus on delineating the ubiquitous and cell type-specific network of regulatory elements that p53 engages; reviewing our understanding of how, where, and when p53 binds to DNA and the mechanisms through which these events regulate transcription. Finally, we discuss the evolution of the p53 GRN and how recent work has revealed remarkable differences between vertebrates, which are of particular importance to cancer researchers using mouse models.
Collapse
Affiliation(s)
- Morgan A Sammons
- Department of Biological Sciences and The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory and Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Simon S McDade
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7AE, UK
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstraße 11, 07745 Jena, Germany
| |
Collapse
|
26
|
Catizone AN, Uzunbas GK, Celadova P, Kuang S, Bose D, Sammons MA. Locally acting transcription factors regulate p53-dependent cis-regulatory element activity. Nucleic Acids Res 2020; 48:4195-4213. [PMID: 32133495 PMCID: PMC7192610 DOI: 10.1093/nar/gkaa147] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/27/2020] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
The master tumor suppressor p53 controls transcription of a wide-ranging gene network involved in apoptosis, cell cycle arrest, DNA damage repair, and senescence. Recent studies revealed pervasive binding of p53 to cis-regulatory elements (CREs), which are non-coding segments of DNA that spatially and temporally control transcription through the combinatorial binding of local transcription factors. Although the role of p53 as a strong trans-activator of gene expression is well known, the co-regulatory factors and local sequences acting at p53-bound CREs are comparatively understudied. We designed and executed a massively parallel reporter assay (MPRA) to investigate the effect of transcription factor binding motifs and local sequence context on p53-bound CRE activity. Our data indicate that p53-bound CREs are both positively and negatively affected by alterations in local sequence context and changes to co-regulatory TF motifs. Our data suggest p53 has the flexibility to cooperate with a variety of transcription factors in order to regulate CRE activity. By utilizing different sets of co-factors across CREs, we hypothesize that global p53 activity is guarded against loss of any one regulatory partner, allowing for dynamic and redundant control of p53-mediated transcription.
Collapse
Affiliation(s)
- Allison N Catizone
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Gizem Karsli Uzunbas
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Petra Celadova
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Sylvia Kuang
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| | - Daniel Bose
- Sheffield Institute For Nucleic Acids (SInFoNiA) and Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Morgan A Sammons
- Department of Biological Sciences and the RNA Institute, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
27
|
Zhao K, Wang D, Zhao X, Wang C, Gao Y, Liu K, Wang F, Wu X, Wang X, Sun L, Zang J, Mei Y. WDR63 inhibits Arp2/3-dependent actin polymerization and mediates the function of p53 in suppressing metastasis. EMBO Rep 2020; 21:e49269. [PMID: 32128961 DOI: 10.15252/embr.201949269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that p53 plays a suppressive role in cancer metastasis, yet the underlying mechanism remains largely unclear. Regulation of actin dynamics is essential for the control of cell migration, which is an important step in metastasis. The Arp2/3 complex is a major nucleation factor to initiate branched actin polymerization that drives cell migration. However, it is unknown whether p53 could suppress metastasis through modulating Arp2/3 function. Here, we report that WDR63 is transcriptionally upregulated by p53. We show with migration assays and mouse xenograft models that WDR63 negatively regulates cell migration, invasion, and metastasis downstream of p53. Mechanistically, WDR63 interacts with the Arp2/3 complex and inhibits Arp2/3-mediated actin polymerization. Furthermore, WDR63 overexpression is sufficient to dampen the increase in cell migration, invasion, and metastasis induced by p53 depletion. Together, these findings suggest that WDR63 is an important player in the regulation of Arp2/3 function and also implicate WDR63 as a critical mediator of p53 in suppressing metastasis.
Collapse
Affiliation(s)
- Kailiang Zhao
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Decai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongxiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiyue Liu
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Linfeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
28
|
Borys SM, Younger ST. Identification of functional regulatory elements in the human genome using pooled CRISPR screens. BMC Genomics 2020; 21:107. [PMID: 32005150 PMCID: PMC6995077 DOI: 10.1186/s12864-020-6497-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 01/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background Genome-scale pooled CRISPR screens are powerful tools for identifying genetic dependencies across varied cellular processes. The vast majority of CRISPR screens reported to date have focused exclusively on the perturbation of protein-coding gene function. However, protein-coding genes comprise < 2% of the sequence space in the human genome leaving a substantial portion of the genome uninterrogated. Noncoding regions of the genome harbor important regulatory elements (e.g. promoters, enhancers, silencers) that influence cellular processes but high-throughput methods for evaluating their essentiality have yet to be established. Results Here, we describe a CRISPR-based screening approach that facilitates the functional profiling of thousands of noncoding regulatory elements in parallel. We selected the tumor suppressor p53 as a model system and designed a pooled CRISPR library targeting thousands of p53 binding sites throughout the genome. Following transduction into dCas9-KRAB-expressing cells we identified several regulatory elements that influence cell proliferation. Moreover, we uncovered multiple elements that are required for the p53-mediated DNA damage response. Surprisingly, many of these elements are located deep within intergenic regions of the genome that have no prior functional annotations. Conclusions This work diversifies the applications for pooled CRISPR screens and provides a framework for future functional studies focused on noncoding regulatory elements.
Collapse
Affiliation(s)
| | - Scott T Younger
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Center for Pediatric Genomic Medicine, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Children's Mercy Research Institute, Children's Mercy Kansas City, Kansas City, MO, 64108, USA. .,Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS, 66160, USA. .,Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO, 64110, USA.
| |
Collapse
|
29
|
Fujiyama H, Tsuji T, Hironaka K, Yoshida K, Sugimoto N, Fujita M. GRWD1 directly interacts with p53 and negatively regulates p53 transcriptional activity. J Biochem 2020; 167:15-24. [PMID: 31545368 DOI: 10.1093/jb/mvz075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Glutamate-rich WD40 repeat containing 1 (GRWD1) functions as a histone chaperone to promote loading of the MCM replication helicase at replication origins. GRWD1 is overexpressed in several cancer cell lines, and GRWD1 overexpression confers tumorigenic potential in human cells. However, less is known concerning its oncogenic activity. Our previous analysis showed that GRWD1 negatively regulates the tumour suppressor p53 via the RPL11-MDM2-p53 and RPL23-MDM2-p53 axes. Here, we demonstrate that GRWD1 directly interacts with p53 via the p53 DNA-binding domain. Upon DNA damage, GRWD1 downregulation resulted in increased p21 expression. Conversely, GRWD1 co-expression suppressed several p53-regulated promoters. GRWD1 interacted with the p21 and MDM2 promoters, and these interactions required p53. By using the Human Cancer Genome Atlas database, we found that GRWD1 expression levels are inversely correlated with the expression levels of some p53-target genes. Interestingly, high GRWD1 expression in combination with low expression levels of some p53-target genes was significantly correlated with poor prognosis in skin melanoma patients with wild-type p53. Taken together, our findings suggest a novel oncogenic function of GRWD1 as a transcriptional regulator of p53 and that GRWD1 might be an attractive therapeutic target and prognostic marker in cancer therapy.
Collapse
Affiliation(s)
- Hiroki Fujiyama
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Takahiro Tsuji
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kensuke Hironaka
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Kazumasa Yoshida
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Nozomi Sugimoto
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| | - Masatoshi Fujita
- Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashiku, Fukuoka 812-8582, Japan
| |
Collapse
|
30
|
Karaayvaz-Yildirim M, Silberman RE, Langenbucher A, Saladi SV, Ross KN, Zarcaro E, Desmond A, Yildirim M, Vivekanandan V, Ravichandran H, Mylavagnanam R, Specht MC, Ramaswamy S, Lawrence M, Amon A, Ellisen LW. Aneuploidy and a deregulated DNA damage response suggest haploinsufficiency in breast tissues of BRCA2 mutation carriers. SCIENCE ADVANCES 2020; 6:eaay2611. [PMID: 32064343 PMCID: PMC6989139 DOI: 10.1126/sciadv.aay2611] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Women harboring heterozygous germline mutations of BRCA2 have a 50 to 80% risk of developing breast cancer, yet the pathogenesis of these cancers is poorly understood. To reveal early steps in BRCA2-associated carcinogenesis, we analyzed sorted cell populations from freshly-isolated, non-cancerous breast tissues of BRCA2 mutation carriers and matched controls. Single-cell whole-genome sequencing demonstrates that >25% of BRCA2 carrier (BRCA2mut/+ ) luminal progenitor (LP) cells exhibit sub-chromosomal copy number variations, which are rarely observed in non-carriers. Correspondingly, primary BRCA2mut/+ breast epithelia exhibit DNA damage together with attenuated replication checkpoint and apoptotic responses, and an age-associated expansion of the LP compartment. We provide evidence that these phenotypes do not require loss of the wild-type BRCA2 allele. Collectively, our findings suggest that BRCA2 haploinsufficiency and associated DNA damage precede histologic abnormalities in vivo. Using these hallmarks of cancer predisposition will yield unanticipated opportunities for improved risk assessment and prevention strategies in high-risk patients.
Collapse
Affiliation(s)
- Mihriban Karaayvaz-Yildirim
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Rebecca E. Silberman
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Adam Langenbucher
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Srinivas Vinod Saladi
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kenneth N. Ross
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Elena Zarcaro
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrea Desmond
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Murat Yildirim
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Varunika Vivekanandan
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hiranmayi Ravichandran
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ravindra Mylavagnanam
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Michelle C. Specht
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Sridhar Ramaswamy
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Michael Lawrence
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Angelika Amon
- Koch Institute for Integrative Cancer Research, Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Leif W. Ellisen
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
31
|
Overexpression of PURPL and downregulation of NONHSAT062994 as potential biomarkers in gastric cancer. Life Sci 2019; 237:116904. [PMID: 31606380 DOI: 10.1016/j.lfs.2019.116904] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 02/07/2023]
Abstract
AIMS Long non-coding RNAs (LncRNAs) play central roles in the formation and development of gastric cancer (GC). The aim of this study was to evaluate the expression of PURPL and NONHSAT062994 and the relationship between their expressions with clinical characteristics in GC. MAIN METHODS PURPL and NONHSAT062994 LncRNAs and p53 gene expression levels were analyzed both in 50 pairs of cancerous and adjacent noncancerous tissue samples in GC patients using qRT-PCR and in four sets of data obtained from Gene Expression Omnibus (GEO) database. Chi-square (χ2) test was used to determine the relationship between PURPL, NONHSAT062994 RNA levels and the clinicopathological characteristics of GC. Receiver operating characteristic (ROC) curves were drawn to represent sensitivity and specificity of PURPL and NONHSAT062994 expression as markers of GC. KEY FINDINGS Expression of PURPL was significantly upregulated in 50 GC samples as well as in GC tissues from GSE13911 and GSE27342 datasets. Our results demonstrated that PURPL RNA level in GC was significantly related to tumor size and histopathological grade. p53 expression at both protein and mRNA levels were significantly decreased in GC tissues compared to adjacent control samples. NONHSAT062994 expression was downregulated in 50-pair GC and GC tissues from GSE13915 dataset. However, NONHSAT062994 showed no consistently differential expression in GSE2637dataset. NONHSAT062994 was significantly associated with histological grade and tumor size. SIGNIFICANCE Overall, these results suggest that PURPL and NONHSAT062994 may play critical roles in the progression of GC and therefore might be considered as candidate tumor markers for therapeutic goals.
Collapse
|
32
|
Nguyen TAT, Grimm SA, Bushel PR, Li J, Li Y, Bennett BD, Lavender CA, Ward JM, Fargo DC, Anderson CW, Li L, Resnick MA, Menendez D. Revealing a human p53 universe. Nucleic Acids Res 2019; 46:8153-8167. [PMID: 30107566 PMCID: PMC6144829 DOI: 10.1093/nar/gky720] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
p53 transcriptional networks are well-characterized in many organisms. However, a global understanding of requirements for in vivo p53 interactions with DNA and relationships with transcription across human biological systems in response to various p53 activating situations remains limited. Using a common analysis pipeline, we analyzed 41 data sets from genome-wide ChIP-seq studies of which 16 have associated gene expression data, including our recent primary data with normal human lymphocytes. The resulting extensive analysis, accessible at p53 BAER hub via the UCSC browser, provides a robust platform to characterize p53 binding throughout the human genome including direct influence on gene expression and underlying mechanisms. We establish the impact of spacers and mismatches from consensus on p53 binding in vivo and propose that once bound, neither significantly influences the likelihood of expression. Our rigorous approach revealed a large p53 genome-wide cistrome composed of >900 genes directly targeted by p53. Importantly, we identify a core cistrome signature composed of genes appearing in over half the data sets, and we identify signatures that are treatment- or cell-specific, demonstrating new functions for p53 in cell biology. Our analysis reveals a broad homeostatic role for human p53 that is relevant to both basic and translational studies.
Collapse
Affiliation(s)
- Thuy-Ai T Nguyen
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Sara A Grimm
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Pierre R Bushel
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Jianying Li
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yuanyuan Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Brian D Bennett
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christopher A Lavender
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - James M Ward
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - David C Fargo
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA.,Office of Scientific Computing, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Carl W Anderson
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Leping Li
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Michael A Resnick
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Daniel Menendez
- Genome Integrity & Structural Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
33
|
Wang S, Zhang Y, Huang J, Wong CC, Zhai J, Li C, Wei G, Zhao L, Wang G, Wei H, Zhao Z, Yu J. TRIM67 Activates p53 to Suppress Colorectal Cancer Initiation and Progression. Cancer Res 2019; 79:4086-4098. [PMID: 31239268 DOI: 10.1158/0008-5472.can-18-3614] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 05/03/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Tripartite motif (TRIM) family proteins participate in a variety of important cellular processes, including apoptosis, cell-cycle arrest, DNA repair, and senescence. In this study, we demonstrated that a novel TRIM family member, TRIM67, was commonly silenced in colorectal cancer and its downregulation was associated with poor survival. Trim67 knockout in ApcMin/+ mice increased the incidence, multiplicity, and burden of colorectal tumors. Similarly, colon-specific knockout of Trim67 significantly accelerated azoxymethane-induced colorectal cancer in mice. RNA sequencing revealed that the antitumor effect of TRIM67 was mediated by activation of the p53 signaling pathway. TRIM67 interacted directly with the C-terminus of p53, inhibiting p53 degradation by its ubiquitin ligase MDM2. TRIM67 was also a transcriptional target of p53; upon cellular stress, p53 bound to the TRIM67 promoter and induced significant upregulation of TRIM67, thereby forming a TRIM67/p53 self-amplifying loop that boosts p53-induced cell growth inhibition and apoptosis. Consequently, loss of this p53-positive regulatory program profoundly compromised p53-mediated responses to chemotherapy-induced DNA damage. Dampened p53 response was also observed in tumors of Trim67 knockout mice and Trim67 knockout embryonic fibroblasts. TRIM67 reactivation restored p53 activation and sensitized colorectal cancer cells to chemotherapy in vitro and in vivo. TRIM67 thus functions as a pivotal tumor suppressor in colorectal cancer and is a potential target for improving chemotherapy responsiveness. SIGNIFICANCE: The TRIM67/p53 axis represents a novel therapeutic target that could be harnessed to improve chemotherapy efficacy in colorectal cancer expressing wild-type p53 but with repressed p53 signaling.
Collapse
Affiliation(s)
- Shiyan Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Yanquan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Junzhe Huang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Chuangen Li
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Guifeng Wei
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Liuyang Zhao
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Guoping Wang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong
| | - Hong Wei
- Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zengren Zhao
- Department of General Surgery, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
34
|
Kurtz P, Jones AE, Tiwari B, Link N, Wylie A, Tracy C, Krämer H, Abrams JM. Drosophila p53 directs nonapoptotic programs in postmitotic tissue. Mol Biol Cell 2019; 30:1339-1351. [PMID: 30892991 PMCID: PMC6724604 DOI: 10.1091/mbc.e18-12-0791] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/06/2019] [Accepted: 03/13/2019] [Indexed: 12/26/2022] Open
Abstract
TP53 is the most frequently mutated gene in human cancers, and despite intensive research efforts, genome-scale studies of p53 function in whole animal models are rare. The need for such in vivo studies is underscored by recent challenges to established paradigms, indicating that unappreciated p53 functions contribute to cancer prevention. Here we leveraged the Drosophila system to interrogate p53 function in a postmitotic context. In the developing embryo, p53 robustly activates important apoptotic genes in response to radiation-induced DNA damage. We recently showed that a p53 enhancer (p53RErpr) near the cell death gene reaper forms chromatin contacts and enables p53 target activation across long genomic distances. Interestingly, we found that this canonical p53 apoptotic program fails to activate in adult heads. Moreover, this failure to exhibit apoptotic responses was not associated with altered chromatin contacts. Instead, we determined that p53 does not occupy the p53RErpr enhancer in this postmitotic tissue as it does in embryos. Through comparative RNA-seq and chromatin immunoprecipitation-seq studies of developing and postmitotic tissues, we further determined that p53 regulates distinct transcriptional programs in adult heads, including DNA repair, metabolism, and proteolysis genes. Strikingly, in the postmitotic context, p53-binding landscapes were poorly correlated with nearby transcriptional effects, raising the possibility that p53 enhancers could be generally acting through long distances.
Collapse
Affiliation(s)
- Paula Kurtz
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Amanda E. Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Bhavana Tiwari
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Nichole Link
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030
- Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Charles Tracy
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Helmut Krämer
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - John M. Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
35
|
Lin T, Hou PF, Meng S, Chen F, Jiang T, Li ML, Shi ML, Liu JJ, Zheng JN, Bai J. Emerging Roles of p53 Related lncRNAs in Cancer Progression: A Systematic Review. Int J Biol Sci 2019; 15:1287-1298. [PMID: 31223287 PMCID: PMC6567798 DOI: 10.7150/ijbs.33218] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
p53 is the major mediator of the tumor suppressor response. It participates in apoptosis and senescence and can respond to DNA damage. As a crucial sequence-specific transcription factor, p53 regulates the expression of many genes, such as small noncoding RNAs (ncRNAs), microRNAs, and long ncRNAs (lncRNAs). Given the emergence of novel and high-throughput sequencing technologies, many lncRNAs have been discovered. LncRNAs may function as vital gene regulators in a variety of biological processes through extensive mechanisms. Recently, lncRNAs have been demonstrated to be associated with the p53 regulatory pathway. In this review, we discuss the current and fast growing knowledge about the influence of lncRNAs to the p53 signaling pathway, the different mechanisms by which they affect gene expression in cancer. Our findings show that p53-associated lncRNAs may be used as biomarkers for cancer diagnosis or targets for disease therapy.
Collapse
Affiliation(s)
- Tian Lin
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Ping-Fu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Sen Meng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Fang Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Tao Jiang
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Min-Le Li
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Mei-Lin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jin-Jin Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Jun-Nian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China.,Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou 221002, Jiangsu Province, China
| |
Collapse
|
36
|
Dangelmaier E, Lazar SB, Lal A. Long noncoding RNAs: p53's secret weapon in the fight against cancer? PLoS Biol 2019; 17:e3000143. [PMID: 30759134 PMCID: PMC6391031 DOI: 10.1371/journal.pbio.3000143] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/26/2019] [Indexed: 12/22/2022] Open
Abstract
p53 regulates the expression of hundreds of genes. Recent surprising observations indicate that no single protein-coding gene controls the tumor suppressor effects of p53. This raises the possibility that a subset of these genes, regulated by a p53-induced long noncoding RNA (lncRNA), could control p53’s tumor suppressor function. We propose molecular mechanisms through which lncRNAs could regulate this subset of genes and hypothesize an exciting, direct role of lncRNAs in p53’s genome stability maintenance function. Exploring these mechanisms could reveal lncRNAs as indispensable mediators of p53 and lay the foundation for understanding how other transcription factors could act via lncRNAs. Transcription factors regulate hundreds of genes, a subset of which could mediate its effects in a given context. This Unsolved Mystery article explores mechanisms by which long noncoding RNAs might regulate such a subset downstream of p53, a well-studied transcription factor and major tumor suppressor.
Collapse
Affiliation(s)
- Emily Dangelmaier
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah B. Lazar
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Fischer M. Conservation and divergence of the p53 gene regulatory network between mice and humans. Oncogene 2019; 38:4095-4109. [PMID: 30710145 PMCID: PMC6755996 DOI: 10.1038/s41388-019-0706-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/29/2018] [Accepted: 01/04/2019] [Indexed: 12/13/2022]
Abstract
Understanding the p53 tumor suppressor pathway remains crucial for the design of anticancer strategies. Studies in human tumors and mouse models help to unravel the molecular mechanisms that underlie the p53 signaling pathway. Yet, the p53 gene regulatory network (GRN) is not the same in mice and humans. The comparison of the regulatory networks of p53 in mice and humans reveals that gene up- and down-regulation by p53 are distinctly affected during evolution. Importantly, gene up-regulation by p53 underwent more rapid evolution and gene down-regulation has been evolutionarily constrained. This difference stems from the two major mechanisms employed by p53 to regulate gene expression: up-regulation through direct p53 target gene binding and indirect down-regulation through the p53-p21-DREAM pathway. More than 1000 genes have been identified to differ in their p53-dependent expression between mice and humans. Analysis of p53 gene expression profiles and p53 binding data reveal that turnover of p53 binding sites is the major mechanism underlying extensive variation in p53-dependent gene up-regulation. Only a core set of high-confidence genes appears to be directly regulated by p53 in both species. In contrast to up-regulation, p53-induced down-regulation is well conserved between mice and humans and controls cell cycle genes. Here a curated data set is provided that extends the previously established web-atlas at www.targetgenereg.org to assess the p53 response of any human gene of interest and its mouse ortholog. Taken together, the analysis reveals a limited translation potential from mouse models to humans for the p53 GRN.
Collapse
Affiliation(s)
- Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), 07745, Jena, Germany. .,Molecular Oncology Group, Medical School, University of Leipzig, 04103, Leipzig, Germany.
| |
Collapse
|
38
|
Mao C, Wang X, Liu Y, Wang M, Yan B, Jiang Y, Shi Y, Shen Y, Liu X, Lai W, Yang R, Xiao D, Cheng Y, Liu S, Zhou H, Cao Y, Yu W, Muegge K, Yu H, Tao Y. A G3BP1-Interacting lncRNA Promotes Ferroptosis and Apoptosis in Cancer via Nuclear Sequestration of p53. Cancer Res 2018; 78:3484-3496. [PMID: 29588351 PMCID: PMC8073197 DOI: 10.1158/0008-5472.can-17-3454] [Citation(s) in RCA: 327] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 03/23/2018] [Indexed: 12/11/2022]
Abstract
Long noncoding RNAs (lncRNA) have been associated with various types of cancer; however, the precise role of many lncRNAs in tumorigenesis remains elusive. Here we demonstrate that the cytosolic lncRNA P53RRA is downregulated in cancers and functions as a tumor suppressor by inhibiting cancer progression. Chromatin remodeling proteins LSH and Cfp1 silenced or increased P53RRA expression, respectively. P53RRA bound Ras GTPase-activating protein-binding protein 1 (G3BP1) using nucleotides 1 and 871 of P53RRA and the RRM interaction domain of G3BP1 (aa 177-466). The cytosolic P53RRA-G3BP1 interaction displaced p53 from a G3BP1 complex, resulting in greater p53 retention in the nucleus, which led to cell-cycle arrest, apoptosis, and ferroptosis. P53RRA promoted ferroptosis and apoptosis by affecting transcription of several metabolic genes. Low P53RRA expression significantly correlated with poor survival in patients with breast and lung cancers harboring wild-type p53. These data show that lncRNAs can directly interact with the functional domain of signaling proteins in the cytoplasm, thus regulating p53 modulators to suppress cancer progression.Significance: A cytosolic lncRNA functions as a tumor suppressor by activating the p53 pathway. Cancer Res; 78(13); 3484-96. ©2018 AACR.
Collapse
Affiliation(s)
- Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Yating Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Min Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Bin Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yiqun Jiang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ying Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Xiaoli Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weiwei Lai
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Rui Yang
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Cheng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Shuang Liu
- Center for Medicine Research, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hu Zhou
- Shanghai Institute of Material Medica, Chinese Academy of Sciences (CAS), Zhangjiang Hi-Tech Park, Shanghai, China
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Weishi Yu
- Cipher Gene (Beijing) Co., Ltd., Beijing, China
| | - Kathrin Muegge
- Mouse Cancer Genetics Program, National Cancer Institute, Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, Hunan, China.
- Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
39
|
Li XL, Subramanian M, Jones MF, Chaudhary R, Singh DK, Zong X, Gryder B, Sindri S, Mo M, Schetter A, Wen X, Parvathaneni S, Kazandjian D, Jenkins LM, Tang W, Elloumi F, Martindale JL, Huarte M, Zhu Y, Robles AI, Frier SM, Rigo F, Cam M, Ambs S, Sharma S, Harris CC, Dasso M, Prasanth KV, Lal A. Long Noncoding RNA PURPL Suppresses Basal p53 Levels and Promotes Tumorigenicity in Colorectal Cancer. Cell Rep 2018; 20:2408-2423. [PMID: 28877474 DOI: 10.1016/j.celrep.2017.08.041] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/21/2017] [Accepted: 08/09/2017] [Indexed: 12/13/2022] Open
Abstract
Basal p53 levels are tightly suppressed under normal conditions. Disrupting this regulation results in elevated p53 levels to induce cell cycle arrest, apoptosis, and tumor suppression. Here, we report the suppression of basal p53 levels by a nuclear, p53-regulated long noncoding RNA that we termed PURPL (p53 upregulated regulator of p53 levels). Targeted depletion of PURPL in colorectal cancer cells results in elevated basal p53 levels and induces growth defects in cell culture and in mouse xenografts. PURPL associates with MYBBP1A, a protein that binds to and stabilizes p53, and inhibits the formation of the p53-MYBBP1A complex. In the absence of PURPL, MYBBP1A interacts with and stabilizes p53. Silencing MYBBP1A significantly rescues basal p53 levels and proliferation in PURPL-deficient cells, suggesting that MYBBP1A mediates the effect of PURPL in regulating p53. These results reveal a p53-PURPL auto-regulatory feedback loop and demonstrate a role for PURPL in maintaining basal p53 levels.
Collapse
Affiliation(s)
- Xiao Ling Li
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Murugan Subramanian
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Matthew F Jones
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Ritu Chaudhary
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA
| | - Deepak K Singh
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Xinying Zong
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Berkley Gryder
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sivasish Sindri
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Min Mo
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Aaron Schetter
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Swetha Parvathaneni
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Dickran Kazandjian
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Lisa M Jenkins
- Laboratory of Cell Biology, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Wei Tang
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Fathi Elloumi
- Office of Science and Technology Resources, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Jennifer L Martindale
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, NIH, Baltimore, MD 21224, USA
| | - Maite Huarte
- Center for Applied Medical Research, Department of Gene Therapy and Regulation of Gene Expression, University of Navarra, 31008 Pamplona, Spain
| | - Yuelin Zhu
- Molecular Genetics Section, Genetics Branch, CCR, NCI, NIH, Bethesda, MD 28092, USA
| | - Ana I Robles
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | | | - Frank Rigo
- Ionis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Maggie Cam
- Office of Science and Technology Resources, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Sudha Sharma
- Department of Biochemistry and Molecular Biology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Curtis C Harris
- Molecular Genetics and Carcinogenesis Section, Laboratory of Human Carcinogenesis, CCR, NCI, NIH, Bethesda, MD 20892, USA
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ashish Lal
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research (CCR), National Cancer Institute (NCI), NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Irimie AI, Zimta AA, Ciocan C, Mehterov N, Dudea D, Braicu C, Berindan-Neagoe I. The Unforeseen Non-Coding RNAs in Head and Neck Cancer. Genes (Basel) 2018; 9:genes9030134. [PMID: 29494516 PMCID: PMC5867855 DOI: 10.3390/genes9030134] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 12/18/2022] Open
Abstract
Previously ignored non-coding RNAs (ncRNAs) have become the subject of many studies. However, there is an imbalance in the amount of consideration that ncRNAs are receiving. Some transcripts such as microRNAs (miRNAs) or small interfering RNAs (siRNAs) have gained much attention, but it is necessary to investigate other “pieces of the RNA puzzle”. These can offer a more complete view over normal and pathological cell behavior. The other ncRNA species are less studied, either due to their recent discovery, such as stable intronic sequence RNA (sisRNA), YRNA, miRNA-offset RNAs (moRNA), telomerase RNA component (TERC), natural antisense transcript (NAT), transcribed ultraconserved regions (T-UCR), and pseudogene transcript, or because they are still largely seen as non-coding transcripts with no relevance to pathogenesis. Moreover, some are still considered housekeeping RNAs, for instance small nucleolar RNAs (snoRNAs) and TERC. Our review summarizes the biogenesis, mechanism of action and potential role of less known ncRNAs in head and neck cancer, with a particular focus on the installment and progress for this particular cancer type.
Collapse
Affiliation(s)
- Alexandra Iulia Irimie
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cristina Ciocan
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Nikolay Mehterov
- Department of Medical Biology, Medical University Plovdiv, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
- Technological Center for Emergency Medicine, BulVasilAprilov 15-А, Plovdiv 4002, Bulgaria.
| | - Diana Dudea
- Department of Prosthetic Dentistry and Dental Materials, Division Dental Propaedeutic, Aesthetic, "IuliuHatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, University of Medicine and Pharmacy Iuliu-Hatieganu, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Research Center for Functional Genomics and Translational Medicine, "IuliuHatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 40015 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
41
|
Quinet A, Lerner LK, Martins DJ, Menck CFM. Filling gaps in translesion DNA synthesis in human cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 836:127-142. [PMID: 30442338 DOI: 10.1016/j.mrgentox.2018.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/21/2018] [Indexed: 01/06/2023]
Abstract
During DNA replication, forks may encounter unrepaired lesions that hamper DNA synthesis. Cells have universal strategies to promote damage bypass allowing cells to survive. DNA damage tolerance can be performed upon template switch or by specialized DNA polymerases, known as translesion (TLS) polymerases. Human cells count on more than eleven TLS polymerases and this work reviews the functions of some of these enzymes: Rev1, Pol η, Pol ι, Pol κ, Pol θ and Pol ζ. The mechanisms of damage bypass vary according to the lesion, as well as to the TLS polymerases available, and may occur directly at the fork during replication. Alternatively, the lesion may be skipped, leaving a single-stranded DNA gap that will be replicated later. Details of the participation of these enzymes are revised for the replication of damaged template. TLS polymerases also have functions in other cellular processes. These include involvement in somatic hypermutation in immunoglobulin genes, direct participation in recombination and repair processes, and contributing to replicating noncanonical DNA structures. The importance of DNA damage replication to cell survival is supported by recent discoveries that certain genes encoding TLS polymerases are induced in response to DNA damaging agents, protecting cells from a subsequent challenge to DNA replication. We retrace the findings on these genotoxic (adaptive) responses of human cells and show the common aspects with the SOS responses in bacteria. Paradoxically, although TLS of DNA damage is normally an error prone mechanism, in general it protects from carcinogenesis, as evidenced by increased tumorigenesis in xeroderma pigmentosum variant patients, who are deficient in Pol η. As these TLS polymerases also promote cell survival, they constitute an important mechanism by which cancer cells acquire resistance to genotoxic chemotherapy. Therefore, the TLS polymerases are new potential targets for improving therapy against tumors.
Collapse
Affiliation(s)
- Annabel Quinet
- Saint Louis University School of Medicine, St. Louis, MO, United States.
| | - Leticia K Lerner
- MRC Laboratory of Molecular Biology,Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Davi J Martins
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos F M Menck
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
42
|
Loss of p53-inducible long non-coding RNA LINC01021 increases chemosensitivity. Oncotarget 2017; 8:102783-102800. [PMID: 29262524 PMCID: PMC5732690 DOI: 10.18632/oncotarget.22245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 12/19/2022] Open
Abstract
We have previously identified the long non-coding RNA LINC01021 as a direct p53 target (Hünten et al. Mol Cell Proteomics. 2015; 14:2609-2629). Here, we show that LINC01021 is up-regulated in colorectal cancer (CRC) cell lines upon various p53-activating treatments. The LINC01021 promoter and the p53 binding site lie within a MER61C LTR, which originated from insertion of endogenous retrovirus 1 (ERV1) sequences. Deletion of this MER61C element by a CRISPR/Cas9 approach, as well as siRNA-mediated knockdown of LINC01021 RNA significantly enhanced the sensitivity of the CRC cell line HCT116 towards the chemotherapeutic drugs doxorubicin and 5-FU, suggesting that LINC01021 is an integral part of the p53-mediated response to DNA damage. Inactivation of LINC01021 and also its ectopic expression did not affect p53 protein expression and transcriptional activity, implying that LINC01021 does not feedback to p53. Furthermore, in CRC patient samples LINC01021 expression positively correlated with a wild-type p53-associated gene expression signature. LINC01021 expression was increased in primary colorectal tumors and displayed a bimodal distribution that was particularly pronounced in the mesenchymal CMS4 consensus molecular subtype of CRCs. CMS4 tumors with low LINC01021 expression were associated with poor patient survival. Our results suggest that the genomic redistribution of ERV1-derived p53 response elements and generation of novel p53-inducible lncRNA-encoding genes was selected for during primate evolution as integral part of the cellular response to various forms of genotoxic stress.
Collapse
|
43
|
Younger ST, Rinn JL. p53 regulates enhancer accessibility and activity in response to DNA damage. Nucleic Acids Res 2017; 45:9889-9900. [PMID: 28973438 PMCID: PMC5622327 DOI: 10.1093/nar/gkx577] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 06/28/2017] [Indexed: 01/05/2023] Open
Abstract
The tumor suppressor p53 is a well-characterized transcription factor that can bind gene promoters and regulate target gene transcription in response to DNA damage. Recent studies, however, have revealed that p53 binding events occur predominantly within regulatory enhancer elements. The effect of p53 binding on enhancer function has not been systematically evaluated. Here, we perform a genome-scale analysis of enhancer activity from p53-bound sequences using a series of massively parallel reporter assays (MPRAs) coupled with the assay for transposase-accessible chromatin (ATAC-Seq). We find that the majority of sequences examined display p53-dependent enhancer activity during the DNA damage response. Furthermore, we observe that p53 is bound to enhancer elements in healthy fibroblasts and poised for rapid activation in response to DNA damage. Surprisingly, our analyses revealed that most p53-bound enhancers are located within regions of inaccessible chromatin. A large subset of these enhancers become accessible following DNA damage indicating that p53 regulates their activity, in part, by modulating chromatin accessibility. The recognition and activation of enhancer elements located within inaccessible chromatin may contribute to the ability of the p53 network to function across the diverse chromatin landscapes of different tissues and cell types.
Collapse
Affiliation(s)
- Scott T Younger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John L Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| |
Collapse
|
44
|
Mello SS, Valente LJ, Raj N, Seoane JA, Flowers BM, McClendon J, Bieging-Rolett KT, Lee J, Ivanochko D, Kozak MM, Chang DT, Longacre TA, Koong AC, Arrowsmith CH, Kim SK, Vogel H, Wood LD, Hruban RH, Curtis C, Attardi LD. A p53 Super-tumor Suppressor Reveals a Tumor Suppressive p53-Ptpn14-Yap Axis in Pancreatic Cancer. Cancer Cell 2017; 32:460-473.e6. [PMID: 29017057 PMCID: PMC5659188 DOI: 10.1016/j.ccell.2017.09.007] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/19/2017] [Accepted: 09/08/2017] [Indexed: 12/25/2022]
Abstract
The p53 transcription factor is a critical barrier to pancreatic cancer progression. To unravel mechanisms of p53-mediated tumor suppression, which have remained elusive, we analyzed pancreatic cancer development in mice expressing p53 transcriptional activation domain (TAD) mutants. Surprisingly, the p5353,54 TAD2 mutant behaves as a "super-tumor suppressor," with an enhanced capacity to both suppress pancreatic cancer and transactivate select p53 target genes, including Ptpn14. Ptpn14 encodes a negative regulator of the Yap oncoprotein and is necessary and sufficient for pancreatic cancer suppression, like p53. We show that p53 deficiency promotes Yap signaling and that PTPN14 and TP53 mutations are mutually exclusive in human cancers. These studies uncover a p53-Ptpn14-Yap pathway that is integral to p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liz J Valente
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jose A Seoane
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Brittany M Flowers
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jacob McClendon
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kathryn T Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jonghyeob Lee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Danton Ivanochko
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Margaret M Kozak
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daniel T Chang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Teri A Longacre
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Albert C Koong
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheryl H Arrowsmith
- Princess Margaret Cancer Centre, Structural Genomics Consortium and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Seung K Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannes Vogel
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christina Curtis
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
45
|
Bao F, LoVerso PR, Fisk JN, Zhurkin VB, Cui F. p53 binding sites in normal and cancer cells are characterized by distinct chromatin context. Cell Cycle 2017; 16:2073-2085. [PMID: 28820292 PMCID: PMC5731425 DOI: 10.1080/15384101.2017.1361064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tumor suppressor protein p53 interacts with DNA in a sequence-dependent manner. Thousands of p53 binding sites have been mapped genome-wide in normal and cancer cells. However, the way p53 selectively binds its cognate sites in different types of cells is not fully understood. Here, we performed a comprehensive analysis of 25 published p53 cistromes and identified 3,551 and 6,039 ‘high-confidence’ binding sites in normal and cancer cells, respectively. Our analysis revealed 2 distinct epigenetic features underlying p53-DNA interactions in vivo. First, p53 binding sites are associated with transcriptionally active histone marks (H3K4me3 and H3K36me3) in normal-cell chromatin, but with repressive histone marks (H3K27me3) in cancer-cell chromatin. Second, p53 binding sites in cancer cells are characterized by a lower level of DNA methylation than their counterparts in normal cells, probably related to global hypomethylation in cancers. Intriguingly, regardless of the cell type, p53 sites are highly enriched in the endogenous retroviral elements of the ERV1 family, highlighting the importance of this repeat family in shaping the transcriptional network of p53. Moreover, the p53 sites exhibit an unusual combination of chromatin patterns: high nucleosome occupancy and, at the same time, high sensitivity to DNase I. Our results suggest that p53 can access its target sites in a chromatin environment that is non-permissive to most DNA-binding transcription factors, which may allow p53 to act as a pioneer transcription factor in the context of chromatin.
Collapse
Affiliation(s)
- Feifei Bao
- a Thomas H. Gosnell School of Life Sciences , Rochester Institute of Technology , Rochester , NY , USA
| | - Peter R LoVerso
- b Laboratory of Cell Biology , National Cancer Institute , Bethesda , MD , USA
| | - Jeffrey N Fisk
- a Thomas H. Gosnell School of Life Sciences , Rochester Institute of Technology , Rochester , NY , USA
| | - Victor B Zhurkin
- b Laboratory of Cell Biology , National Cancer Institute , Bethesda , MD , USA
| | - Feng Cui
- a Thomas H. Gosnell School of Life Sciences , Rochester Institute of Technology , Rochester , NY , USA
| |
Collapse
|
46
|
Zhang Y, Kang R, Liu W, Yang Y, Ding R, Huang Q, Meng J, Xiong L, Guo Z. Identification and Analysis of P53-Mediated Competing Endogenous RNA Network in Human Hepatocellular Carcinoma. Int J Biol Sci 2017; 13:1213-1221. [PMID: 29104512 PMCID: PMC5666336 DOI: 10.7150/ijbs.21502] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/30/2017] [Indexed: 12/22/2022] Open
Abstract
Recent studies have indicated that long non-coding RNAs (lncRNAs) and mRNA function as competing endogenous RNAs (ceRNAs) that compete to bind to shared microRNA (miRNA) recognition elements (MREs) to perform specific biological functions during tumorigenesis. The tumor suppressor p53 is a master regulator of cancer-related biological processes by acting as a transcription factor to regulate target genes including miRNA and lncRNA. However, the mechanism in human hepatocellular carcinoma and whether p53-mediated RNA targets could form ceRNA network remain unclear. Here, we identified a series of differential expressed miRNAs, lncRNA and mRNA which were potentially regulated by p53 using RNA sequencing in HepG2. Genomic characteristics comparative analysis showed significant differences between mRNAs and lncRNAs. By integrating experimentally confirmed Ago2 and p53 binding sites, we constructed a highly reliable p53-mediated ceRNA network using hypergeometric test. The KEGG pathway enrichment analysis showed that the ceRNA network highly enriched in the cancer or p53-associated signaling pathways. Finally, using betweenness centrality analysis, we identified five master miRNAs (hsa-miR-3620-5p, hsa-miR-3613-3p, hsa-miR-6881-3p, hsa-miR-6087 and hsa-miR-18a-3p) that regulated most of the target RNAs, suggesting these miRNAs play central roles in the whole p53-mediated ceRNAs network. Taken together, our results provide a new regulatory mechanism of p53 networks for future studies in cancer therapeutics.
Collapse
Affiliation(s)
- Yiming Zhang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Ran Kang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Wenrong Liu
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Yalan Yang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Ruofan Ding
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Qingqing Huang
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Junhua Meng
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Lili Xiong
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| | - Zhiyun Guo
- School of Life Sciences and Bioengineering, Southwest Jiaotong University
| |
Collapse
|
47
|
Jain AK, Xi Y, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin C, Li W, Yang L, Barton MC. LncPRESS1 Is a p53-Regulated LncRNA that Safeguards Pluripotency by Disrupting SIRT6-Mediated De-acetylation of Histone H3K56. Mol Cell 2017; 64:967-981. [PMID: 27912097 DOI: 10.1016/j.molcel.2016.10.039] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/07/2016] [Accepted: 10/28/2016] [Indexed: 12/12/2022]
Abstract
Recent evidence suggests that lncRNAs play an integral regulatory role in numerous functions, including determination of cellular identity. We determined global expression (RNA-seq) and genome-wide profiles (ChIP-seq) of histone post-translational modifications and p53 binding in human embryonic stem cells (hESCs) undergoing differentiation to define a high-confidence set of 40 lncRNAs, which are p53 transcriptional targets. We focused on lncRNAs highly expressed in pluripotent hESCs and repressed by p53 during differentiation to identify lncPRESS1 as a p53-regulated transcript that maintains hESC pluripotency in concert with core pluripotency factors. RNA-seq of hESCs depleted of lncPRESS1 revealed that lncPRESS1 controls a gene network that promotes pluripotency. Further, we found that lncPRESS1 physically interacts with SIRT6 and prevents SIRT6 chromatin localization, which maintains high levels of histone H3K56 and H3K9 acetylation at promoters of pluripotency genes. In summary, we describe a p53-regulated, pluripotency-specific lncRNA that safeguards the hESC state by disrupting SIRT6 activity.
Collapse
Affiliation(s)
- Abhinav K Jain
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yuanxin Xi
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kendra Allton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kadir C Akdemir
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lalit R Patel
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA
| | - Bruce Aronow
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Chunru Lin
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wei Li
- Dan L. Duncan Cancer Center, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Liuqing Yang
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Stem Cell and Development Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Center for Cancer Epigenetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Zhang W, Ogando DG, Kim ET, Choi MJ, Li H, Tenessen JM, Bonanno JA. Conditionally Immortal Slc4a11-/- Mouse Corneal Endothelial Cell Line Recapitulates Disrupted Glutaminolysis Seen in Slc4a11-/- Mouse Model. Invest Ophthalmol Vis Sci 2017; 58:3723-3731. [PMID: 28738416 PMCID: PMC5525555 DOI: 10.1167/iovs.17-21781] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To establish conditionally immortal mouse corneal endothelial cell lines with genetically matched Slc4a11+/+ and Slc4a11-/- mice as a model for investigating pathology and therapies for SLC4A11 associated congenital hereditary endothelial dystrophy (CHED) and Fuchs' endothelial corneal dystrophy. Methods We intercrossed H-2Kb-tsA58 mice (Immortomouse) expressing an IFN-γ dependent and temperature-sensitive mutant of the SV40 large T antigen (tsTAg) with Slc4a11+/+ and Slc4a11-/- C57BL/6 mice. The growth characteristics of the cell lines was assessed by doubling time. Ion transport activities (Na+/H+ exchange, bicarbonate, lactate, and Slc4a11 ammonia transport) were analyzed by intracellular pH measurement. The metabolic status of the cell lines was assessed by analyzing TCA cycle intermediates via gas chromatography mass spectrometry (GC-MS). Results The immortalized Slc4a11+/+ and Slc4a11-/- mouse corneal endothelial cells (MCECs) remained proliferative through passage 49 and maintained similar active ion transport activity. As expected, proliferation was temperature sensitive and IFN-γ dependent. Slc4a11-/- MCECs exhibited decreased proliferative capacity, reduced NH3:H+ transport, altered expression of glutaminolysis enzymes similar to the Slc4a11-/- mouse, and reduced proportion of TCA cycle intermediates derived from glutamine with compensatory increases in glucose flux compared with Slc4a11+/+ MCECs. Conclusions This is the first report of the immortalization of MCECs. Ion transport of the immortalized endothelial cells remains active, except for NH3:H+ transporter activity in Slc4a11-/- MCECs. Furthermore, Slc4a11-/- MCECs recapitulate the glutaminolysis defects observed in Slc4a11-/- mouse corneal endothelium, providing an excellent tool to study the pathogenesis of SLC4A11 mutations associated with corneal endothelial dystrophies and to screen potential therapeutic agents.
Collapse
Affiliation(s)
- Wenlin Zhang
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Diego G Ogando
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Edward T Kim
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Moon-Jung Choi
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Hongde Li
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| | - Jason M Tenessen
- Department of Biology, Indiana University, Bloomington, Indiana, United States
| | - Joseph A Bonanno
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
49
|
Fischer M. Census and evaluation of p53 target genes. Oncogene 2017; 36:3943-3956. [PMID: 28288132 PMCID: PMC5511239 DOI: 10.1038/onc.2016.502] [Citation(s) in RCA: 655] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/17/2022]
Abstract
The tumor suppressor p53 functions primarily as a transcription factor. Mutation of the TP53 gene alters its response pathway, and is central to the development of many cancers. The discovery of a large number of p53 target genes, which confer p53's tumor suppressor function, has led to increasingly complex models of p53 function. Recent meta-analysis approaches, however, are simplifying our understanding of how p53 functions as a transcription factor. In the survey presented here, a total set of 3661 direct p53 target genes is identified that comprise 3509 potential targets from 13 high-throughput studies, and 346 target genes from individual gene analyses. Comparison of the p53 target genes reported in individual studies with those identified in 13 high-throughput studies reveals limited consistency. Here, p53 target genes have been evaluated based on the meta-analysis data, and the results show that high-confidence p53 target genes are involved in multiple cellular responses, including cell cycle arrest, DNA repair, apoptosis, metabolism, autophagy, mRNA translation and feedback mechanisms. However, many p53 target genes are identified only in a small number of studies and have a higher likelihood of being false positives. While numerous mechanisms have been proposed for mediating gene regulation in response to p53, recent advances in our understanding of p53 function show that p53 itself is solely an activator of transcription, and gene downregulation by p53 is indirect and requires p21. Taking into account the function of p53 as an activator of transcription, recent results point to an unsophisticated means of regulation.
Collapse
Affiliation(s)
- M Fischer
- Molecular Oncology, Medical School, University of Leipzig, Leipzig, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
50
|
Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, Imam JFC, Vogel H, Wood LD, Sage J, Hirose T, Nakagawa S, Rinn J, Attardi LD. Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 2017; 31:1095-1108. [PMID: 28698299 PMCID: PMC5538433 DOI: 10.1101/gad.284661.116] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
Abstract
Mello et al. identify Neat1, a ncRNA constituent of paraspeckles, as a p53 target gene that plays a crucial role in suppressing transformation in response to oncogenic signals. The p53 gene is mutated in over half of all cancers, reflecting its critical role as a tumor suppressor. Although p53 is a transcriptional activator that induces myriad target genes, those p53-inducible genes most critical for tumor suppression remain elusive. Here, we leveraged p53 ChIP-seq (chromatin immunoprecipitation [ChIP] combined with high-throughput sequencing) and RNA-seq (RNA sequencing) data sets to identify new p53 target genes, focusing on the noncoding genome. We identify Neat1, a noncoding RNA (ncRNA) constituent of paraspeckles, as a p53 target gene broadly induced by mouse and human p53 in different cell types and by diverse stress signals. Using fibroblasts derived from Neat1−/− mice, we examined the functional role of Neat1 in the p53 pathway. We found that Neat1 is dispensable for cell cycle arrest and apoptosis in response to genotoxic stress. In sharp contrast, Neat1 plays a crucial role in suppressing transformation in response to oncogenic signals. Neat1 deficiency enhances transformation in oncogene-expressing fibroblasts and promotes the development of premalignant pancreatic intraepithelial neoplasias (PanINs) and cystic lesions in KrasG12D-expressing mice. Neat1 loss provokes global changes in gene expression, suggesting a mechanism by which its deficiency promotes neoplasia. Collectively, these findings identify Neat1 as a p53-regulated large intergenic ncRNA (lincRNA) with a key role in suppressing transformation and cancer initiation, providing fundamental new insight into p53-mediated tumor suppression.
Collapse
Affiliation(s)
- Stephano S Mello
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Carolyn Sinow
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nitin Raj
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Pawel K Mazur
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kathryn Bieging-Rolett
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Daniela Kenzelmann Broz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jamie F Conklin Imam
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Laura D Wood
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA
| | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Tetsuro Hirose
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - John Rinn
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Laura D Attardi
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|