1
|
Zhou J, Wang T, Zhang H, Liu J, Wei P, Xu R, Yan Q, Chen G, Li W, Gao SJ, Lu C. KSHV vIL-6 promotes SIRT3-induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation. PLoS Pathog 2024; 20:e1012082. [PMID: 38470932 PMCID: PMC10959363 DOI: 10.1371/journal.ppat.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guochun Chen
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
2
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. mBio 2024; 15:e0301123. [PMID: 38117084 PMCID: PMC10790708 DOI: 10.1128/mbio.03011-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Kaposi's sarcoma (KS) is the most common cancer in HIV-infected patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. Hyperinflammation is the hallmark of KS. In this study, we have shown that KSHV mediates hyperinflammation by inducing IL-1α and suppressing IL-1Ra. Mechanistically, KSHV miRNAs and vFLIP induce hyperinflammation by activating the NF-κB pathway. A common anti-inflammatory agent dexamethasone blocks KSHV-induced hyperinflammation and tumorigenesis by activating glucocorticoid receptor signaling to suppress IL-1α and induce IL-1Ra. This work has identified IL-1-mediated inflammation as a potential therapeutic target and dexamethasone as a potential therapeutic agent for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
3
|
Tavakolian S, Tabaeian SP, Namazi A, Faghihloo E, Akbari A. Role of the VEGF in virus-associated cancers. Rev Med Virol 2024; 34:e2493. [PMID: 38078693 DOI: 10.1002/rmv.2493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/14/2023] [Indexed: 01/30/2024]
Abstract
The role of numerous risk factors, including consumption of alcohol, smoking, having diet high in fat and sugar and many other items, on caner progression cannot be denied. Viral diseases are one these factors, and they can initiate some signalling pathways causing cancer. For example, they can be effective on providing oxygen and nutrients by inducing VEGF expression. In this review article, we summarised the mechanisms of angiogenesis and VEGF expression in cancerous tissues which are infected with oncoviruses (Epstein-Barr virus, Human papillomavirus infection, Human T-lymphotropic virus, Kaposi's sarcoma-associated herpesvirus, Hepatitis B and hepatitis C virus).
Collapse
Affiliation(s)
- Shaian Tavakolian
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Seidamir Pasha Tabaeian
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Namazi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Akbari
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Occupational Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen L, Ding L, Wang X, Huang Y, Gao SJ. Activation of glucocorticoid receptor signaling inhibits KSHV-induced inflammation and tumorigenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566578. [PMID: 38014281 PMCID: PMC10680621 DOI: 10.1101/2023.11.10.566578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Hyperinflammation is the hallmark of Kaposi's sarcoma (KS), the most common cancer in AIDS patients caused by Kaposi's sarcoma-associated herpesvirus (KSHV) infection. However, the role and mechanism of induction of inflammation in KS remain unclear. In a screening for inhibitors of KSHV-induced oncogenesis, over half of the identified candidates were anti-inflammatory agents including dexamethasone functions by activating glucocorticoid receptor (GR) signaling. Here, we examined the mechanism mediating KSHV-induced inflammation. We found that numerous inflammatory pathways were activated in KSHV-transformed cells. Particularly, interleukin-1 alpha (IL-1α) and IL-1 receptor antagonist (IL-1Ra) from the IL-1 family were the most induced and suppressed cytokines, respectively. We found that KSHV miRNAs mediated IL-1α induction while both miRNAs and vFLIP mediated IL-1Ra suppression. Furthermore, GR signaling was inhibited in KSHV-transformed cells, which was mediated by vFLIP and vCyclin. Dexamethasone treatment activated GR signaling, and inhibited cell proliferation and colony formation in soft agar of KSHV-transformed cells but had a minimal effect on matched primary cells. Consequently, dexamethasone suppressed the initiation and growth of KSHV-induced tumors in mice. Mechanistically, dexamethasone suppressed IL-1α but induced IL-1Ra expression. Treatment with recombinant IL-1α protein rescued the inhibitory effect of dexamethasone while overexpression of IL-1Ra caused a weak growth inhibition of KSHV-transformed cells. Furthermore, dexamethasone induced IκBα expression resulting in inhibition of NF-κB pathway and IL-1α expression. These results reveal an important role of IL-1 pathway in KSHV-induced inflammation and oncogenesis, which can be inhibited by dexamethasone-activated GR signaling, and identify IL-1-mediated inflammation as a potential therapeutic target for KSHV-induced malignancies.
Collapse
Affiliation(s)
- Luping Chen
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ling Ding
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xian Wang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yufei Huang
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shou-Jiang Gao
- Cancer Virology Program, University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
5
|
Sakamoto T, Ajiro M, Watanabe A, Matsushima S, Ueda K, Hagiwara M. Application of the CDK9 inhibitor FIT-039 for the treatment of KSHV-associated malignancy. BMC Cancer 2023; 23:71. [PMID: 36670405 PMCID: PMC9862866 DOI: 10.1186/s12885-023-10540-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Chronic infection with Kaposi's sarcoma-associated herpes virus (KSHV) in B lymphocytes causes primary effusion lymphoma (PEL), the most aggressive form of KSHV-related cancer, which is resistant to conventional chemotherapy. In this study, we report that the BCBL-1 KSHV+ PEL cell line does not harbor oncogenic mutations responsible for its aggressive malignancy. Assuming that KSHV viral oncogenes play crucial roles in PEL proliferation, we examined the effect of cyclin-dependent kinase 9 (CDK9) inhibitor FIT-039 on KSHV viral gene expression and KSHV+ PEL proliferation. We found that FIT-039 treatment impaired the proliferation of KSHV+ PEL cells and the expression of KSHV viral genes in vitro. The effects of FIT-039 treatment on PEL cells were further evaluated in the PEL xenograft model that retains a more physiological environment for the growth of PEL growth and KSHV propagation, and we confirmed that FIT-039 administration drastically inhibited PEL growth in vivo. Our current study indicates that FIT-039 is a potential new anticancer drug targeting KSHV for PEL patients.
Collapse
Affiliation(s)
- Tetsunori Sakamoto
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan ,Present address: Japanese Red Cross Otsu Hospital, Otsu, 520-8511 Japan
| | - Masahiko Ajiro
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501 Japan
| | - Akira Watanabe
- grid.258799.80000 0004 0372 2033Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, 606-8397 Japan
| | - Shingo Matsushima
- grid.258799.80000 0004 0372 2033Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, 606-8501 Japan
| | - Keiji Ueda
- grid.136593.b0000 0004 0373 3971Division of Virology, Osaka University Graduate School of Medicine, Suita, 565-0871 Japan
| | - Masatoshi Hagiwara
- grid.258799.80000 0004 0372 2033Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Building C, 3Rd Floor, Yoshida-Konoe Cho, Sakyo-Ku, Kyoto, 606-8501 Japan
| |
Collapse
|
6
|
Qi X, Yan Q, Shang Y, Zhao R, Ding X, Gao SJ, Li W, Lu C. A viral interferon regulatory factor degrades RNA-binding protein hnRNP Q1 to enhance aerobic glycolysis via recruiting E3 ubiquitin ligase KLHL3 and decaying GDPD1 mRNA. Cell Death Differ 2022; 29:2233-2246. [PMID: 35538151 PMCID: PMC9613757 DOI: 10.1038/s41418-022-01011-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/09/2022] Open
Abstract
Reprogramming of host metabolism is a common strategy of viral evasion of host cells, and is essential for successful viral infection and induction of cancer in the context cancer viruses. Kaposi's sarcoma (KS) is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. KSHV-encoded viral interferon regulatory factor 1 (vIRF1) regulates multiple signaling pathways and plays an important role in KSHV infection and oncogenesis. However, the role of vIRF1 in KSHV-induced metabolic reprogramming remains elusive. Here we show that vIRF1 increases glucose uptake, ATP production and lactate secretion by downregulating heterogeneous nuclear ribonuclear protein Q1 (hnRNP Q1). Mechanistically, vIRF1 upregulates and recruits E3 ubiquitin ligase Kelch-like 3 (KLHL3) to degrade hnRNP Q1 through a ubiquitin-proteasome pathway. Furthermore, hnRNP Q1 binds to and stabilizes the mRNA of glycerophosphodiester phosphodiesterase domain containing 1 (GDPD1). However, vIRF1 targets hnRNP Q1 for degradation, which destabilizes GDPD1 mRNA, resulting in induction of aerobic glycolysis. These results reveal a novel role of vIRF1 in KSHV metabolic reprogramming, and identifying a potential therapeutic target for KSHV infection and KSHV-induced cancers.
Collapse
Affiliation(s)
- Xiaoyu Qi
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Qin Yan
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Yuancui Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Runran Zhao
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China
| | - Xiangya Ding
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Wan Li
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China.
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, P. R. China.
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, P. R. China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, P. R. China.
| |
Collapse
|
7
|
Huang X, Rao W, Wang C, Lu J, Li Z, Kong W, Feng Y, Xu T, Apaer R, Gao F. Kaposi's sarcoma-associated herpes virus-derived microRNA K12-1 over-activates the PI3K/Akt pathway to facilitate cancer progression in HIV-related gastrointestinal Kaposi's sarcoma. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:258-265. [PMID: 35413475 DOI: 10.1016/j.slasd.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Kaposi's sarcoma-associated herpes virus (KSHV) initiate and accelerate the development of Kaposi's sarcoma (KS), and KSHV possesses many cancer-associated genes, including KSHV-derived microRNA miR-K12-1, which has been identified to be closely associated with KS progression. However, the detailed mechanisms by which miR-K12-1 facilitates HIV-related gastrointestinal KS development are still not fully delineated. OBJECTIVES This study strived to evaluate the effect of miR-K12-1 on the progression of HIV-related gastrointestinal KS. MATERIALS AND METHODS The expression levels of miR-K12-1 in HIV-related gastrointestinal KS tissues were determined by RT-qPCR. Proliferation and apoptosis were assessed by colony formation, CCK-8 and flow cytometry, respectively. The expression of all proteins was detected by Western blot. The in vivo effect of miR-K12-1 on the formation of a tumor was explored by using the mouse xenograft model. RESULTS In this study, we uncovered that KSHV-miR-K12-1 was upregulated in HIV-related gastrointestinal KS tissues and associated with poor outcome in HIV-related gastrointestinal KS patients. Compared with the control group, after miR-K12-1 inhibitor transfection, BCBL-1 cell viability was decreased, and the cell apoptosis was significantly increased, whereas transfection of miR-K12-1 mimics promoted cell proliferation and mitosis. In addition, our rescuing experiments verified that miR-K12-1 promoted cell proliferation via activating the PI3K/Akt pathway, and inhibition of the PI3K/Akt pathway by LY294002 abrogated the tumor-promoting effects of miR-K12-1 in HIV-related gastrointestinal KS. CONCLUSIONS In summary, we concluded that KSHV-derived miR-K12-1 activate the PI3K/Akt pathway to initiate and accelerate the development of KS, which convinces us that miR-K12-1 can be used as potential biomarkers for KS diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Xiaoling Huang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Wei Rao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Chun Wang
- Department of Pathology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China.
| | - Jiajie Lu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Ziqiong Li
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Wenjie Kong
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Yan Feng
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Tian Xu
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Rziya Apaer
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| | - Feng Gao
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 830001, China; Xinjiang Clinical Research Center of Digestive System Diseases, Urumqi, 830001, China.
| |
Collapse
|
8
|
Qiu M, Chen M, Lan Z, Liu B, Xie J, Li X. Plasmacytoma variant translocation 1 stabilized by EIF4A3 promoted malignant biological behaviors of lung adenocarcinoma by generating circular RNA LMNB2. Bioengineered 2022; 13:10123-10140. [PMID: 35435126 PMCID: PMC9161831 DOI: 10.1080/21655979.2022.2063666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Minglian Qiu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Meizhen Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Zhongping Lan
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Bo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Jinbao Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| | - Xu Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Jiangxi, China
| |
Collapse
|
9
|
Brocca-Cofano E, Sgadari C, Picconi O, Palladino C, Caputo A, Ensoli B. Kaposi’s Sarcoma Lesion Progression in BKV-Tat Transgenic Mice Is Increased by Inflammatory Cytokines and Blocked by Treatment with Anti-Tat Antibodies. Int J Mol Sci 2022; 23:ijms23042081. [PMID: 35216197 PMCID: PMC8874961 DOI: 10.3390/ijms23042081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
Kaposi’s sarcoma (KS) is an angioproliferative tumor showing an increased frequency and aggressiveness in HIV-infected subjects (AIDS-KS), due to the combined effects of inflammatory cytokines (IC), angiogenic factors, and the HIV-1 Tat protein. While the introduction of effective combined antiretroviral regimens greatly improved AIDS-KS incidence and course, it continues to be an incurable disease and the development of new rational targeted therapies is warranted. We used the BKV/Tat transgenic mouse model to evaluate the effects of IC and anti-Tat antibodies (Abs) treatment on KS-like lesions arising in BKV/Tat mice. We demonstrated here that IC-treatment increases the severity and delays the regression of KS-like lesions. Further, anti-Tat Abs reduced KS-like lesion severity developing in IC-treated mice when anti-Tat Abs were administered at an early-stage of lesion development as compared to more advanced lesions. Early anti-Tat Abs treatment also accelerated KS-like lesion regression and reduced the rate of severe-grade lesions. This effect was more evident in the first weeks after Ab treatment, suggesting that a longer treatment with anti-Tat Abs might be even more effective, particularly if administered just after lesion development. Although preliminary, these results are encouraging, and the approach deserves further studies for the development of anti-Tat Ab-based therapies for AIDS-KS. Clinical studies specifically addressing the effect of anti-Tat antibodies in treating AIDS-KS are not yet available. Nevertheless, the effectiveness of anti-Tat antibodies in controlling HIV/AIDS progression, likely due to the neutralization of extracellular Tat activities, is suggested by several cross-sectional and longitudinal clinical studies, indicating that anti-Tat Ab treatment or Tat-based vaccines may be effective to treat AIDS-KS patients or prevent the tumor in individuals at risk.
Collapse
Affiliation(s)
- Egidio Brocca-Cofano
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 64B, 44121 Ferrara, Italy;
- BlueSphereBio, University of Pittsburgh, 350 Technology Drive, Suite 520, Pittsburgh, PA 15219, USA
| | - Cecilia Sgadari
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.S.); (O.P.); (C.P.)
| | - Orietta Picconi
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.S.); (O.P.); (C.P.)
| | - Clelia Palladino
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.S.); (O.P.); (C.P.)
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 64B, 44121 Ferrara, Italy;
- Correspondence: (A.C.); (B.E.)
| | - Barbara Ensoli
- National HIV/AIDS Research Center, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy; (C.S.); (O.P.); (C.P.)
- Correspondence: (A.C.); (B.E.)
| |
Collapse
|
10
|
Ramorola BR, Goolam-Hoosen T, Alves de Souza Rios L, Mowla S. Modulation of Cellular MicroRNA by HIV-1 in Burkitt Lymphoma Cells-A Pathway to Promoting Oncogenesis. Genes (Basel) 2021; 12:genes12091302. [PMID: 34573283 PMCID: PMC8468732 DOI: 10.3390/genes12091302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022] Open
Abstract
Viruses and viral components have been shown to manipulate the expression of host microRNAs (miRNAs) to their advantage, and in some cases to play essential roles in cancer pathogenesis. Burkitt lymphoma (BL), a highly aggressive B-cell derived cancer, is significantly over-represented among people infected with HIV. This study adds to accumulating evidence demonstrating that the virus plays a direct role in promoting oncogenesis. A custom miRNA PCR was used to identify 32 miRNAs that were differently expressed in Burkitt lymphoma cells exposed to HIV-1, with a majority of these being associated with oncogenic processes. Of those, hsa-miR-200c-3p, a miRNA that plays a crucial role in cancer cell migration, was found to be significantly downregulated in both the array and in single-tube validation assays. Using an in vitro transwell system we found that this downregulation correlated with significantly enhanced migration of BL cells exposed to HIV-1. Furthermore, the expression of the ZEB1 and ZEB2 transcription factors, which are promotors of tumour invasion and metastasis, and which are direct targets of hsa-miR-200c-3p, were found to be enhanced in these cells. This study therefore identifies novel miRNAs as role players in the development of HIV-associated BL, with one of these miRNAs, hsa-miR-200c-3p, being a candidate for further clinical studies as a potential biomarker for prognosis in patients with Burkitt lymphoma, who are HIV positive.
Collapse
|
11
|
Wang Y, Huang L, Shan N, Ma H, Lu S, Chen X, Long H. Establishing a three-miRNA signature as a prognostic model for colorectal cancer through bioinformatics analysis. Aging (Albany NY) 2021; 13:19894-19907. [PMID: 34388112 PMCID: PMC8386531 DOI: 10.18632/aging.203400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
Background: Identification of more promising microRNAs (miRNAs) are being extensively studied with respect to colorectal cancer (CRC), since CRC is the leading cause of cancer deaths and most common malignant tumors worldwide. A series of colon cancer (CCa) samples from The Cancer Genome Atlas (TCGA) were analyzed to provide a new perspective into this field. Methods: The expression of miRNAs, mRNAs and the clinical data of 437 CRC patients were downloaded from the TCGA database. The survival-related differentially expressed miRNAs (sDMIRs) and mRNAs were detected by COX regression analysis. The high-risk group and low-risk group were separated by the median risk score of the risk score model. The potential clinical characteristics of these sDMIRs were analyzed by R software. The potential molecular mechanisms of these sDMIRs were explored by computational biology. The expression levels of three sDMIRs were explored by qPCR in CRC samples. Results: Three DMIRs (hsa-miR-21-3p, hsa-miR-194-3p and hsa-miR-891a-5p) correlated with the most remarkable prognostic values of CRC patients were selected to establish the risk score model (RSM) by univariate and multivariate COX regression analysis and the survival probability of the low-risk group was longer than that in the high-risk group. We detected the target genes of three sDMIRs and the potential molecular mechanisms of these sDMIRs. We further verified the high expression levels of hsa-miR-21-3p and hsa-miR-194-3p were associated with the early T-stages, while hsa-miR-891a-5p illustrated the reversed result. Conclusion: Our study demonstrated three sDMIRs with significantly clinical values illustrated the potential predicting values in the prognosis of CRC patients. Our results may provide a new perspective for the diagnostic methods and treatment strategies in CRC patients.
Collapse
Affiliation(s)
- Yiming Wang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lumi Huang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Nan Shan
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Huiwen Ma
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Songmei Lu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xingyue Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Hao Long
- Department of Palliative Care, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
12
|
Alves de Souza Rios L, Mapekula L, Mdletshe N, Chetty D, Mowla S. HIV-1 Transactivator of Transcription (Tat) Co-operates With AP-1 Factors to Enhance c-MYC Transcription. Front Cell Dev Biol 2021; 9:693706. [PMID: 34277639 PMCID: PMC8278106 DOI: 10.3389/fcell.2021.693706] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
HIV-1 infection often leads to the development of co-morbidities including cancer. Burkitt lymphoma (BL) is one of the most over-represented non-Hodgkin lymphoma among HIV-infected individuals, and displays a highly aggressive phenotype in this population group, with comparatively poorer outcomes, despite these patients being on anti-retroviral therapy. Accumulating evidence indicates that the molecular pathogenesis of HIV-associated malignancies is unique, with components of the virus playing an active role in driving oncogenesis, and in order to improve patient prognosis and treatment, a better understanding of disease pathobiology and progression is needed. In this study, we found HIV-1 Tat to be localized within the tumor cells of BL patients, and enhanced expression of oncogenic c-MYC in these cells. Using luciferase reporter assays we show that HIV-1 Tat enhances the c-MYC gene promoter activity and that this is partially mediated via two AP-1 binding elements located at positions -1128 and -1375 bp, as revealed by mutagenesis experiments. We further demonstrate, using pull-down assays, that Tat can exist within a protein complex with the AP-1 factor JunB, and that this complex can bind these AP-1 sites within the c-MYC promoter, as shown by in vivo chromatin immunoprecipitation assays. Therefore, these findings show that in HIV-infected individuals, Tat infiltrates B-cells, where it can enhance the expression of oncogenic factors, which contributes toward the more aggressive disease phenotype observed in these patients.
Collapse
Affiliation(s)
| | - Lungile Mapekula
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Nontlantla Mdletshe
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Dharshnee Chetty
- Division of Anatomical Pathology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Shaheen Mowla
- Division of Haematology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
13
|
Yao S, Jia X, Wang F, Sheng L, Song P, Cao Y, Shi H, Fan W, Ding X, Gao SJ, Lu C. CircRNA ARFGEF1 functions as a ceRNA to promote oncogenic KSHV-encoded viral interferon regulatory factor induction of cell invasion and angiogenesis by upregulating glutaredoxin 3. PLoS Pathog 2021; 17:e1009294. [PMID: 33539420 PMCID: PMC7888650 DOI: 10.1371/journal.ppat.1009294] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/17/2021] [Accepted: 01/07/2021] [Indexed: 12/15/2022] Open
Abstract
Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs that can decoy other RNAs to inhibit their functions. Kaposi’s sarcoma (KS), caused by oncogenic Kaposi’s sarcoma-associated herpesvirus (KSHV), is a highly angiogenic and invasive vascular tumor of endothelial origin commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) induces cell invasion, angiogenesis and cellular transformation; however, the role of circRNAs is largely unknown in the context of KSHV vIRF1. Herein, transcriptome analysis identified 22 differentially expressed cellular circRNAs regulated by vIRF1 in an endothelial cell line. Among them, circARFGEF1 was the highest upregulated circRNA. Mechanistically, vIRF1 induced circARFGEF1 transcription by binding to transcription factor lymphoid enhancer binding factor 1 (Lef1). Importantly, upregulation of circARFGEF1 was required for vIRF1-induced cell motility, proliferation and in vivo angiogenesis. circARFGEF1 functioned as a competing endogenous RNAs (ceRNAs) by binding to and inducing degradation of miR-125a-3p. Mass spectrometry analysis demonstrated that glutaredoxin 3 (GLRX3) was a direct target of miR-125a-3p. Knockdown of GLRX3 impaired cell motility, proliferation and angiogenesis induced by vIRF1. Taken together, vIRF1 transcriptionally activates circARFGEF1, potentially by binding to Lef1, to promote cell oncogenic phenotypes via inhibiting miR-125a-3p and inducing GLRX3. These findings define a novel mechanism responsible for vIRF1-induced oncogenesis and establish the scientific basis for targeting these molecules for treating KSHV-associated cancers. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi’s sarcoma (KS), which frequently occurs in people with AIDS. We and others had proved that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) was crucial in the pathogenesis of KSHV-induced cancers. KSHV genome transcribes viral circular RNAs (circRNAs), however, the role of cellular circRNAs in vIRF1-induced tumorigenesis remains unknown. CircRNAs serves as competitive endogenous RNAs (ceRNAs) of miRNAs, thus regulating miRNA-mRNA network to influence mRNA stability and protein expression. Here we found that vIRF1 binds to the promoter of the parental gene ARFGEF1 and activate circARFGEF1 transcription through interaction with transcription factor lymphoid enhancer binding factor 1 (Lef1). CircARFGEF1 functioned as a ceRNA by binding to and inducing degradation of miR-125a-3p, thereby abrogating the inhibition effect of this miRNA on its direct targeting of GLRX3. Significantly, circARFGEF1/miR-125a-3p/GLRX3 axis was required for vIRF1 induction of cell motility, proliferation and in vivo angiogenesis. In summary, our study describes a novel mechanism of KSHV-induced oncogenesis by hijacking host circRNAs through a viral oncogene.
Collapse
MESH Headings
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Movement
- Guanine Nucleotide Exchange Factors/genetics
- Herpesvirus 8, Human/physiology
- Human Umbilical Vein Endothelial Cells
- Humans
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/metabolism
- MicroRNAs/genetics
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/virology
- RNA, Circular/genetics
- Sarcoma, Kaposi/genetics
- Sarcoma, Kaposi/metabolism
- Sarcoma, Kaposi/pathology
- Sarcoma, Kaposi/virology
- Viral Proteins/genetics
- Viral Proteins/metabolism
Collapse
Affiliation(s)
- Shuihong Yao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- Medical School, Quzhou College of Technology, Quzhou, P. R. China
| | - Xuemei Jia
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, P. R. China
| | - Fei Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Liuxue Sheng
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Pengxia Song
- Medical School, Quzhou College of Technology, Quzhou, P. R. China
| | - Yanhui Cao
- Medical School, Quzhou College of Technology, Quzhou, P. R. China
| | - Hongjuan Shi
- Medical School, Quzhou College of Technology, Quzhou, P. R. China
| | - Weifei Fan
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Research Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (WF); (XD); (CL)
| | - Xiangya Ding
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (WF); (XD); (CL)
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- State Key Laboratory of Reproductive Medicine, Department of Gynecology, Women’s Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, P. R. China
- Department of Hematology and Oncology, Department of Geriatric Lung Cancer Research Laboratory, Geriatric Hospital of Nanjing Medical University, Nanjing, P. R. China
- * E-mail: (WF); (XD); (CL)
| |
Collapse
|
14
|
Sperm associated antigen 9 promotes oncogenic KSHV-encoded interferon regulatory factor-induced cellular transformation and angiogenesis by activating the JNK/VEGFA pathway. PLoS Pathog 2020; 16:e1008730. [PMID: 32776977 PMCID: PMC7446834 DOI: 10.1371/journal.ppat.1008730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 08/20/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma (KS), caused by Kaposi's sarcoma-associated herpesvirus (KSHV), is a highly angioproliferative disseminated tumor of endothelial cells commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) mediates KSHV-induced cell motility (PLoS Pathog. 2019 Jan 30;15(1):e1007578). However, the role of vIRF1 in KSHV-induced cellular transformation and angiogenesis remains unknown. Here, we show that vIRF1 promotes angiogenesis by upregulating sperm associated antigen 9 (SPAG9) using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice. Mechanistically, vIRF1 interacts with transcription factor Lef1 to promote SPAG9 transcription. vIRF1-induced SPAG9 promotes the interaction of mitogen-activated protein kinase kinase 4 (MKK4) with JNK1/2 to increase their phosphorylation, resulting in enhanced VEGFA expression, angiogenesis, cell proliferation and migration. Finally, genetic deletion of ORF-K9 from KSHV genome abolishes KSHV-induced cellular transformation and impairs angiogenesis. Our results reveal that vIRF1 transcriptionally activates SPAG9 expression to promote angiogenesis and tumorigenesis via activating JNK/VEGFA signaling. These novel findings define the mechanism of KSHV induction of the SPAG9/JNK/VEGFA pathway and establish the scientific basis for targeting this pathway for treating KSHV-associated cancers.
Collapse
|
15
|
An oncogenic viral interferon regulatory factor upregulates CUB domain-containing protein 1 to promote angiogenesis by hijacking transcription factor lymphoid enhancer-binding factor 1 and metastasis suppressor CD82. Cell Death Differ 2020; 27:3289-3306. [PMID: 32555380 DOI: 10.1038/s41418-020-0578-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/25/2022] Open
Abstract
Kaposi's sarcoma (KS), a highly angiogenic and invasive vascular tumor, is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) contributes to KSHV-induced cell motility (PLoS Pathog. 15:e1007578, 2019). However, the role of vIRF1 in KSHV-induced angiogenesis remains unknown. Here, using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice, we show that vIRF1 promotes angiogenesis by upregulating CUB domain (for complement C1r/C1s, Uegf, Bmp1) containing protein 1 (CDCP1). Mechanistically, vIRF1 enhances the expression of transcription factor lymphoid enhancer-binding factor 1 (Lef1) and binds to Lef1 to promote CDCP1 transcription. Meanwhile, vIRF1 degrades metastasis suppressor CD82 through an ubiquitin-proteasome pathway by recruiting E3 ubiquitin ligase AMFR to CD82, which protects CDCP1 from CD82-mediated, palmitoylation-dependent degradation. CDCP1 activates AKT signaling, which is required for vIRF1-induced cell motility but not angiogenesis. Our results illustrate that, by hijacking Lef1 and CD82, vIRF1 upregulates CDCP1 to promote angiogenesis and cell invasion. These novel findings demonstrate the vIRF1 targets multiple cellular proteins and pathways to promote the pathogenesis of KS, which could be attractive therapeutic targets for KSHV-induced malignancies.
Collapse
|
16
|
Investigation of microRNA expression signatures in HCC via microRNA Gene Chip and bioinformatics analysis. Pathol Res Pract 2020; 216:152982. [DOI: 10.1016/j.prp.2020.152982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/27/2020] [Accepted: 04/13/2020] [Indexed: 12/12/2022]
|
17
|
Li W, Wang Q, Qi X, Guo Y, Lu H, Chen Y, Lu Z, Yan Q, Zhu X, Jung JU, Tosato G, Gao SJ, Lu C. Viral interleukin-6 encoded by an oncogenic virus promotes angiogenesis and cellular transformation by enhancing STAT3-mediated epigenetic silencing of caveolin 1. Oncogene 2020; 39:4603-4618. [PMID: 32393833 PMCID: PMC7970339 DOI: 10.1038/s41388-020-1317-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 12/27/2022]
Abstract
Kaposi's sarcoma (KS) caused by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV) is a highly angiogenic and invasive vascular tumor and the most common AIDS-associated cancer. KSHV-encoded viral interleukin-6 (vIL-6) is implicated in the development of KSHV-induced malignancies; however, the mechanisms underlying vIL-6-induced angiogenesis and tumorigenesis remain undefined. Here, we show that vIL-6 promotes angiogenesis, cell proliferation, and invasion by downregulating caveolin 1 (CAV1) that plays a pivotal and versatile role in multiple cancer-associated processes. Mechanistically, vIL-6 signaling led to the phosphorylation and acetylation of STAT3 that targeted DNA methyltransferase 1 (DNMT1) in a sequential manner. Specifically, the vIL-6-induced phosphorylated form of STAT3 transcriptionally activated DNMT1 expression. Furthermore, vIL-6-induced acetylated form of STAT3 interacted with DNMT1 to form a transcription factor complex that bound to and methylated the CAV1 promoter, leading to CAV1 expression silencing. In fact, downregulation of CAV1 expression resulted in the activation of AKT signaling, promoting cell invasion, and growth transformation induced by KSHV. Finally, genetic deletion of vIL-6 from the KSHV genome abolished KSHV-induced cellular transformation and impaired angiogenesis. Our results reveal that vIL-6 epigenetically silences CAV1 expression to promote angiogenesis and tumorigenesis by regulating the formation of STAT3-DNMT1 complex. These novel findings define a mechanism by which KSHV inhibits the CAV1 pathway and establish the scientific basis for targeting this pathway to treat KSHV-associated cancers.
Collapse
Affiliation(s)
- Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaoyu Qi
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Yuanyuan Guo
- The College of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210036, PR China
| | - Yuheng Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Zhongmou Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xiaofei Zhu
- Department of Laboratory Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China.
| | - Jae U Jung
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, 90033, USA
| | - Giovanna Tosato
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Shou-Jiang Gao
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, 211166, PR China.
- Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing, 210029, PR China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
18
|
Toro MD, Reibaldi M, Avitabile T, Bucolo C, Salomone S, Rejdak R, Nowomiejska K, Tripodi S, Posarelli C, Ragusa M, Barbagallo C. MicroRNAs in the Vitreous Humor of Patients with Retinal Detachment and a Different Grading of Proliferative Vitreoretinopathy: A Pilot Study. Transl Vis Sci Technol 2020; 9:23. [PMID: 32821520 PMCID: PMC7409223 DOI: 10.1167/tvst.9.6.23] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/14/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose Although the expression of microRNAs (miRNAs) in retinal pigment epithelial (RPE) cells undergoing epithelial-mesenchymal transition (EMT) is involved in the pathogenesis of proliferative vitreoretinopathy (PVR), its expression in the vitreous of patients with primary retinal detachment (RD) and different PVR grading has not yet been investigated. We assessed the expression of miRNAs in the vitreous humor (VH) of patients diagnosed with RD and different grading of PVR. Methods The VH was extracted from the core of the vitreous chamber in patients who had undergone standard vitrectomy for primary RD. RNA was extracted and TaqMan Low-Density Arrays (TLDAs) were used for miRNA profiling that was performed by single TaqMan assays. A gene ontology (GO) analysis was performed on the differentially expressed miRNAs. Results A total of 15 eyes with RD, 3 eyes for each grade of PVR (A, B, C, and D) and 3 from unaffected individuals, were enrolled in this prospective comparative study. Twenty miRNAs were altered in the comparison among pathological groups. Interestingly, the expression of miR-143-3p, miR-224-5p, miR-361-5p, miR-452-5p, miR-486-3p, and miR-891a-5p increased with the worsening of PVR grading. We also identified 34 miRNAs showing differential expression in PVR compared to control vitreous samples. GO analysis showed that the deregulated miRNAs participate in processes previously associated with PVR pathogenesis. Conclusions The present pilot study suggested that dysregulated vitreal miRNAs may be considered as a biomarker of PVR and associated with the PVR-related complications in patients with RD. Translational Relevance The correlation between vitreal miRNAs and the pathological phenotypes are essential to identify the novel miRNA-based mechanisms underlying the PVR disease that would improve the diagnosis and treatment of the condition.
Collapse
Affiliation(s)
- Mario Damiano Toro
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Eye Clinic, University of Catania, Catania, Italy
| | | | | | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Robert Rejdak
- Department of General Ophthalmology, Medical University of Lublin, Lublin, Poland
- Department of Experimental Pharmacology, Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | | | - Sarah Tripodi
- Department of Ophthalmology, Hospital C. Cantù, Abbiategrasso, Italy
| | - Chiara Posarelli
- Department of Surgical, Medical, Molecular Pathology, and of Critical Area, University of Pisa, Pisa, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
- Oasi Research Institute-IRCSS, Troina, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y, Qu X. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer 2020; 11:3771-3782. [PMID: 32328182 PMCID: PMC7171503 DOI: 10.7150/jca.40750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the most frequent malignant tumors worldwide, with 1.67 million newly-diagnosed cases and 522,000 deaths each year. Therefore, seeking the novel biomarkers and therapeutic targets that contribute to postoperative recurrence and metastasis in patients with breast cancer is emerging and facilitates the development of innovative therapeutics. Methods: Retrieving the dataset of patients with hormone receptor (HR)-positive breast cancers from Gene Expression Omnibus (GEO) and collecting the data from the patients with HR-positive breast cancers enrolled in the First Affiliated Hospital of China Medical University are so as to identify the miRNAs associated with metastasis and distant metastasis-free survival (DMFS). Then MTT and Transwell migration assays were used to validate the effect of miRNAs on cell proliferation and migration of estrogen receptor-positive breast cancer T47D and MCF7 cells in vitro, respectively. Results: From GSE59829 dataset, the miRNA expression levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly downregulated while the levels of miR-128-3p, miR-661 and miR-296-3p were significantly upregulated in breast cancers from patients with metastasis as compared to the matched non-metastatic group. Moreover, low expression levels of miR-891a-5p, miR-383-5p and miR-1295a or high expression levels of miR-128-3p, miR-661 and miR-296-3p were respectively associated with low DMFS in patients with breast cancer. Our clinical cohort study supported that the levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly lower in breast cancers from the metastasis group when compared with non-metastatic group. However, there is no significant difference with regard to the levels of miR-128-3p, miR-661 and miR-296-3p in breast cancer between these two groups. Moreover, low expression levels of miR-891a-5p and miR-383-5p but not miR-1295a in breast cancer were significantly associated with low DMFS in patients, implying that the expression of miR-891a-5p and miR-383-5p were the potential prognosis markers for metastatic human breast cancers. Further investigation disclosed that miR-891a-5p but not miR-383-5p restrained both proliferation and migration of T47D and MCF7 cells. In silico analysis of miRNAs target gene through online computational algorithms revealed that A Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is the downstream target for miR-891a-5p. Further study confirmed that miR-891a-5p impeded ADAM10 expression by directly binding to its 3'UTR, leading to the inhibition of breast cancer cells proliferation and migration. Moreover, silencing ADAM10 inhibited T47D and MCF7 cells growth and migration. Conclusion: miR-891a-5p is the vital prognostic marker for HR-positive breast cancer. In addition, miR-891a-5p and miR-383-5p are the potential targets for HR-positive breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Lu Xu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lijie He
- Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Jin Wang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Shi
- Department of Medical Oncology, the First Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi Li
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
20
|
HIV-1 Tat Interacts with a Kaposi's Sarcoma-Associated Herpesvirus Reactivation-Upregulated Antiangiogenic Long Noncoding RNA, LINC00313, and Antagonizes Its Function. J Virol 2020; 94:JVI.01280-19. [PMID: 31723026 PMCID: PMC7000985 DOI: 10.1128/jvi.01280-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection. Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi’s sarcoma (KS), an AIDS-defining cancer with abnormal angiogenesis. The high incidence of KS in human immunodeficiency virus (HIV)-infected AIDS patients has been ascribed to an interaction between HIV type 1 (HIV-1) and KSHV, focusing on secretory proteins. The HIV-1 secreted protein HIV Tat has been found to synergize with KSHV lytic proteins to induce angiogenesis. However, the impact and underlying mechanisms of HIV Tat in KSHV-infected endothelial cells undergoing viral lytic reactivation remain unclear. Here, we identified LINC00313 as a novel KSHV reactivation-activated long noncoding RNA (lncRNA) that interacts with HIV Tat. We found that LINC00313 overexpression inhibits cell migration, invasion, and tube formation, and this suppressive effect was relieved by HIV Tat. In addition, LINC00313 bound to polycomb repressive complex 2 (PRC2) complex components, and this interaction was disrupted by HIV Tat, suggesting that LINC00313 may mediate transcription repression through recruitment of PRC2 and that HIV Tat alleviates repression through disruption of this association. This notion was further supported by bioinformatics analysis of transcriptome profiles in LINC00313 overexpression combined with HIV Tat treatment. Ingenuity Pathway Analysis (IPA) showed that LINC00313 overexpression negatively regulates cell movement and migration pathways, and enrichment of these pathways was absent in the presence of HIV Tat. Collectively, our results illustrate that an angiogenic repressive lncRNA, LINC00313, which is upregulated during KSHV reactivation, interacts with HIV Tat to promote endothelial cell motility. These results demonstrate that an lncRNA serves as a novel connector in HIV-KSHV interactions. IMPORTANCE KS is a prevalent tumor associated with infections with two distinct viruses, KSHV and HIV. Since KSHV and HIV infect distinct cell types, the virus-virus interaction associated with KS formation has focused on secretory factors. HIV Tat is a well-known RNA binding protein secreted by HIV. Here, we revealed LINC00313, an lncRNA upregulated during KSHV lytic reactivation, as a novel HIV Tat-interacting lncRNA that potentially mediates HIV-KSHV interactions. We found that LINC00313 can repress endothelial cell angiogenesis-related properties potentially by interacting with chromatin remodeling complex PRC2 and downregulation of cell migration-regulating genes. An interaction between HIV Tat and LINC00313 contributed to the dissociation of PRC2 from LINC00313 and the disinhibition of LINC00313-induced repression of cell motility. Given that lncRNAs are emerging as key players in tissue physiology and disease progression, including cancer, the mechanism identified in this study may help decipher the mechanisms underlying KS pathogenesis induced by HIV and KSHV coinfection.
Collapse
|
21
|
Ding X, Jia X, Wang C, Xu J, Gao SJ, Lu C. A DHX9-lncRNA-MDM2 interaction regulates cell invasion and angiogenesis of cervical cancer. Cell Death Differ 2019; 26:1750-1765. [PMID: 30518908 PMCID: PMC6748089 DOI: 10.1038/s41418-018-0242-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/07/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
Cervical cancer (CC) is the third most common carcinoma and the fourth leading cause of cancer-associated mortality in women. Here, we report that MDM2-DHX9 interaction mediates CC motility and angiogenesis in a long noncoding RNA-dependent fashion. A long noncoding RNA, named lnc-CCDST, is significantly downregulated in CC tissues, and binds to pro-oncogenic DHX9. DHX9 is upregulated in CC tissue, and promotes CC cell motility and angiogenesis. The lnc-CCDST and DHX9 interaction promotes DHX9 degradation through the ubiquitin proteasome pathway. Furthermore, DHX9 bound to E3 ubiquitin ligase MDM2, and this interaction is enhanced by lnc-CCDST. Thus, lnc-CCDST promotes DHX9 degradation by serving as a scaffold to facilitate the formation of MDM2 and DHX9 complexes. Moreover, HPV oncogenes E6 and E7 abolish the expression of lnc-CCDST resulting in the increase of DHX9. Our results have revealed a novel mechanism by which high-risk HPVs promote motility and angiogenesis of CC by inhibiting expression of lnc-CCDST to disrupt MDM2 and DHX9 interaction, and DHX9 degradation, and identified a potential therapeutic target for CC.
Collapse
Affiliation(s)
- Xiangya Ding
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xuemei Jia
- Department of Gynecology, Nanjing Maternity and Child Health Hospital, the Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Cong Wang
- Department of Pathology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jingyun Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, 15232, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China.
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
22
|
Rivera-Soto R, Damania B. Modulation of Angiogenic Processes by the Human Gammaherpesviruses, Epstein-Barr Virus and Kaposi's Sarcoma-Associated Herpesvirus. Front Microbiol 2019; 10:1544. [PMID: 31354653 PMCID: PMC6640166 DOI: 10.3389/fmicb.2019.01544] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/20/2019] [Indexed: 12/25/2022] Open
Abstract
Angiogenesis is the biological process by which new blood vessels are formed from pre-existing vessels. It is considered one of the classic hallmarks of cancer, as pathological angiogenesis provides oxygen and essential nutrients to growing tumors. Two of the seven known human oncoviruses, Epstein–Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), belong to the Gammaherpesvirinae subfamily. Both viruses are associated with several malignancies including lymphomas, nasopharyngeal carcinomas, and Kaposi’s sarcoma. The viral genomes code for a plethora of viral factors, including proteins and non-coding RNAs, some of which have been shown to deregulate angiogenic pathways and promote tumor growth. In this review, we discuss the ability of both viruses to modulate the pro-angiogenic process.
Collapse
Affiliation(s)
- Ricardo Rivera-Soto
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Department of Microbiology and Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
23
|
He M, Cheng F, da Silva SR, Tan B, Sorel O, Gruffaz M, Li T, Gao SJ. Molecular Biology of KSHV in Relation to HIV/AIDS-Associated Oncogenesis. Cancer Treat Res 2019; 177:23-62. [PMID: 30523620 DOI: 10.1007/978-3-030-03502-0_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Discovered in 1994, Kaposi's sarcoma-associated herpesvirus (KSHV) has been associated with four human malignancies including Kaposi's sarcoma, primary effusion lymphoma, a subset of multicentric Castleman's disease, and KSHV inflammatory cytokine syndrome. These malignancies mostly occur in immunocompromised patients including patients with acquired immunodeficiency syndrome and often cause significant mortality because of the lack of effective therapies. Significant progresses have been made to understand the molecular basis of KSHV infection and KSHV-induced oncogenesis in the last two decades. This chapter provides an update on the recent advancements focusing on the molecular events of KSHV primary infection, the mechanisms regulating KSHV life cycle, innate and adaptive immunity, mechanism of KSHV-induced tumorigenesis and inflammation, and metabolic reprogramming in KSHV infection and KSHV-transformed cells.
Collapse
Affiliation(s)
- Meilan He
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Fan Cheng
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Suzane Ramos da Silva
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Brandon Tan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Océane Sorel
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Marion Gruffaz
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tingting Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, USA.
| |
Collapse
|
24
|
Zakrzewska M, Gruszka R, Stawiski K, Fendler W, Kordacka J, Grajkowska W, Daszkiewicz P, Liberski PP, Zakrzewski K. Expression-based decision tree model reveals distinct microRNA expression pattern in pediatric neuronal and mixed neuronal-glial tumors. BMC Cancer 2019; 19:544. [PMID: 31170943 PMCID: PMC6555720 DOI: 10.1186/s12885-019-5739-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Background The understanding of the molecular biology of pediatric neuronal and mixed neuronal-glial brain tumors is still insufficient due to low frequency and heterogeneity of those lesions which comprise several subtypes presenting neuronal and/or neuronal-glial differentiation. Important is that the most frequent ganglioglioma (GG) and dysembryoplastic neuroepithelial tumor (DNET) showed limited number of detectable molecular alterations. In such cases analyses of additional genomic mechanisms seem to be the most promising. The aim of the study was to evaluate microRNA (miRNA) profiles in GGs, DNETs and pilocytic asytrocytomas (PA) and test the hypothesis of plausible miRNA connection with histopathological subtypes of particular pediatric glial and mixed glioneronal tumors. Methods The study was designed as the two-stage analysis. Microarray testing was performed with the use of the miRCURY LNA microRNA Array technology in 51 cases. Validation set comprised 107 samples used during confirmation of the profiling results by qPCR bioinformatic analysis. Results Microarray data was compared between the groups using an analysis of variance with the Benjamini-Hochberg procedure used to estimate false discovery rates. After filtration 782 miRNAs were eligible for further analysis. Based on the results of 10 × 10-fold cross-validation J48 algorithm was identified as the most resilient to overfitting. Pairwise comparison showed the DNETs to be the most divergent with the largest number of miRNAs differing from either of the two comparative groups. Validation of array analysis was performed for miRNAs used in the classification model: miR-155-5p, miR-4754, miR-4530, miR-628-3p, let-7b-3p, miR-4758-3p, miRPlus-A1086 and miR-891a-5p. Model developed on their expression measured by qPCR showed weighted AUC of 0.97 (95% CI for all classes ranging from 0.91 to 1.00). A computational analysis was used to identify mRNA targets for final set of selected miRNAs using miRWalk database. Among genomic targets of selected molecules ZBTB20, LCOR, PFKFB2, SYNJ2BP and TPD52 genes were noted. Conclusions Our data showed the existence of miRNAs which expression is specific for different histological types of tumors. miRNA expression analysis may be useful in in-depth molecular diagnostic process of the tumors and could elucidate their origins and molecular background. Electronic supplementary material The online version of this article (10.1186/s12885-019-5739-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland.
| | - Renata Gruszka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Mazowiecka 15, 92-215, Lodz, Poland.,Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joanna Kordacka
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| | - Wiesława Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland.,Department of Experimental and Clinical Neuropathology, Mossakowski Medical Research Centre, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Paweł Daszkiewicz
- Department of Clinical Department of Neurosurgery, The Children's Memorial Health Institute, Av. Dzieci Polskich 20, 04-730, Warsaw, Poland
| | - Paweł P Liberski
- Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Pomorska 251, 92-216, Lodz, Poland
| | - Krzysztof Zakrzewski
- Department of Neurosurgery, Polish Mother Memorial Hospital Research Institute in Lodz, Rzgowska 281/289, 93-338, Lodz, Poland
| |
Collapse
|
25
|
Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, Gong Z, Zhang W, Zhou M, Xiang B, Wu X, Li X, Li Y, Li G, Xiong W, Zeng Z, Xiong F, Guo C. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer 2019; 10:2185-2193. [PMID: 31258722 PMCID: PMC6584404 DOI: 10.7150/jca.30222] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 03/14/2019] [Indexed: 12/26/2022] Open
Abstract
The cytoskeleton is a complex fibrous reticular structure composed of microfilaments, microtubules and intermediate filaments. These components coordinate morphology support and intracellular transport that is involved in a variety of cell activities, such as cell proliferation, migration and differentiation. In addition, the cytoskeleton also plays an important role in viral infection. During an infection by a Herpesvirus, the virus utilizes microfilaments to enter cells and travel to the nucleus by microtubules; the viral DNA replicates with the help of host microfilaments; and the virus particles start assembling with a capsid in the cytoplasm before egress. The cytoskeleton changes in cells infected with Herpesvirus are made to either counteract or obey the virus, thereby promote cell transforming into cancerous ones. This article aims to clarify the interaction between the virus and cytoskeleton components in the process of Herpesvirus infection and the molecular motor, cytoskeleton-associated proteins and drugs that play an important role in the process of a Herpesvirus infection and carcinogenesis process.
Collapse
Affiliation(s)
- Yingfen Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Wei
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Le Tang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Qianjin Liao
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lei Shi
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Zhaojian Gong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Wenling Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Xiang
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Wu
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoling Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Li
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fang Xiong
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Can Guo
- NHC Key Laboratory of Carcinogenesis, Xiangya Hospital, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D. HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 2019; 16:71. [PMID: 30947729 PMCID: PMC6449963 DOI: 10.1186/s12974-019-1466-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/pathology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/pathology
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases
- RNA, Messenger/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transduction, Genetic
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Lin Gao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xinxin Zhou
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Qianwen Cao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Liping Niu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Jing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dongjiao Zuo
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Byoung Wook Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, Sacramento, CA USA
| | - Min Xue
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
27
|
Mapekula L, Ramorola BR, Goolam Hoosen T, Mowla S. The interplay between viruses & host microRNAs in cancer - An emerging role for HIV in oncogenesis. Crit Rev Oncol Hematol 2019; 137:108-114. [PMID: 31014506 DOI: 10.1016/j.critrevonc.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/16/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Human cancers attributed to viral infections represent a growing proportion of the global cancer burden, with these types of cancers being the leading cause of morbidity and mortality in some regions. The concept that viruses play a causal role in human cancers is not new, but the mechanism thereof, while well described for some viruses, still remains elusive and complex for others, especially in the case of HIV-associated B-cell derived cancers. In the last decade, compelling evidence has demonstrated that cellular microRNAs are deregulated in cancers, with an increasing number of studies identifying microRNAs as potential biomarkers for human cancer diagnosis, prognosis and therapeutic targets or tools. Recent research demonstrates that viruses and viral components manipulate host microRNA expressions to their advantage, and the emerging picture suggests that the virus/microRNA pathway interaction is defined by a plethora of complex mechanisms. In this review, we highlight the current knowledge on virus/microRNA pathway interactions in the context of cancer and provide new insights on HIV as an oncogenic virus.
Collapse
Affiliation(s)
- L Mapekula
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - B R Ramorola
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - T Goolam Hoosen
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - S Mowla
- Division of Haematology, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
28
|
Suppression of the SAP18/HDAC1 complex by targeting TRIM56 and Nanog is essential for oncogenic viral FLICE-inhibitory protein-induced acetylation of p65/RelA, NF-κB activation, and promotion of cell invasion and angiogenesis. Cell Death Differ 2019; 26:1970-1986. [PMID: 30670829 DOI: 10.1038/s41418-018-0268-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 12/14/2018] [Accepted: 12/18/2018] [Indexed: 12/26/2022] Open
Abstract
Kaposi's sarcoma (KS), a highly invasive and angiogenic tumor of endothelial spindle-shaped cells, is the most common AIDS-associated cancer caused by KS-associated herpesvirus (KSHV) infection. KSHV-encoded viral FLICE-inhibitory protein (vFLIP) is a viral oncogenic protein, but its role in the dissemination and angiogenesis of KSHV-induced cancers remains unknown. Here, we report that vFLIP facilitates cell migration, invasion, and angiogenesis by downregulating the SAP18-HDAC1 complex. vFLIP degrades SAP18 through a ubiquitin-proteasome pathway by recruiting E3 ubiquitin ligase TRIM56. Further, vFLIP represses HDAC1, a protein partner of SAP18, by inhibiting Nanog occupancy on the HDAC1 promoter. Notably, vFLIP impairs the interaction between the SAP18/HDAC1 complex and p65 subunit, leading to enhancement of p65 acetylation and NF-κB activation. Our data suggest a novel mechanism of vFLIP activation of the NF-κB by decreasing the SAP18/HDAC1 complex to promote the acetylation of p65 subunit, which contributes to vFLIP-induced activation of the NF-κB pathway, cell invasion, and angiogenesis. These findings advance our understanding of the mechanism of KSHV-induced pathogenesis, and providing a rationale for therapeutic targeting of the vFLIP/SAP18/HDAC1 complex as a novel strategy of AIDS-KS.
Collapse
|
29
|
Li W, Wang Q, Feng Q, Wang F, Yan Q, Gao SJ, Lu C. Oncogenic KSHV-encoded interferon regulatory factor upregulates HMGB2 and CMPK1 expression to promote cell invasion by disrupting a complex lncRNA-OIP5-AS1/miR-218-5p network. PLoS Pathog 2019; 15:e1007578. [PMID: 30699189 PMCID: PMC6370251 DOI: 10.1371/journal.ppat.1007578] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/11/2019] [Accepted: 01/14/2019] [Indexed: 02/07/2023] Open
Abstract
Kaposi's sarcoma (KS), a highly disseminated tumor of hyperproliferative spindle endothelial cells, is the most common AIDS-associated malignancy caused by infection of Kaposi's sarcoma-associated herpesvirus (KSHV). KSHV-encoded viral interferon regulatory factor 1 (vIRF1) is a viral oncogene but its role in KSHV-induced tumor invasiveness and motility remains unknown. Here, we report that vIRF1 promotes endothelial cell migration, invasion and proliferation by down-regulating miR-218-5p to relieve its suppression of downstream targets high mobility group box 2 (HMGB2) and cytidine/uridine monophosphate kinase 1 (CMPK1). Mechanistically, vIRF1 inhibits p53 function to increase the expression of DNA methyltransferase 1 (DNMT1) and DNA methylation of the promoter of pre-miR-218-1, a precursor of miR-218-5p, and increases the expression of a long non-coding RNA OIP5 antisense RNA 1 (lnc-OIP5-AS1), which acts as a competing endogenous RNA (ceRNA) of miR-218-5p to inhibit its function and reduce its stability. Moreover, lnc-OIP5-AS1 increases DNA methylation of the pre-miR-218-1 promoter. Finally, deletion of vIRF1 from the KSHV genome reduces the level of lnc-OIP5-AS1, increases the level of miR-218-5p, and inhibits KSHV-induced invasion. Together, these results define a novel complex lnc-OIP5-AS1/miR-218-5p network hijacked by vIRF1 to promote invasiveness and motility of KSHV-induced tumors.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qingxia Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qi Feng
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Fei Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, P. R. China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
- * E-mail:
| |
Collapse
|
30
|
Down-regulation of HPGD by miR-146b-3p promotes cervical cancer cell proliferation, migration and anchorage-independent growth through activation of STAT3 and AKT pathways. Cell Death Dis 2018; 9:1055. [PMID: 30333561 PMCID: PMC6192999 DOI: 10.1038/s41419-018-1059-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While the application of early screening and HPV vaccines has reduced the incidence and mortality rates of cervical cancer, it remains the third most common carcinoma and fourth leading cause of cancer-associated death among women worldwide. The precise mechanisms underlying progression of cervical cancer are not fully understood at present. Here, we detected significant down-regulation of 15-hydroxyprostaglandin dehydrogenase (HPGD) in cervical cancer tissues. Overexpression of HPGD inhibited cervical cancer cell proliferation, migration and anchorage-independent growth to a significant extent. To clarify the mechanisms underlying HPGD down-regulation in cervical cancer, miRNA microarray, bioinformatics and luciferase reporter analyses were performed. HPGD was identified as a direct target of miR-146b-3p displaying up-regulation in cervical cancer tissues. Similar to the effects of HPGD overexpression, down-regulation of miR-146b-3p strongly suppressed proliferation, migration and anchorage-independent growth of cervical cancer cells. Furthermore, HPGD negatively regulated activities of STAT3 and AKT that promote cervical cancer cell proliferation. Notably, HPV oncogenes E6 and E7 were determined as potential contributory factors to these alterations. Our results collectively suggest that the HPGD/miR-146b-3p axis plays a significant role in cervical cancer and may serve as a potentially effective therapeutic target.
Collapse
|
31
|
Manners O, Murphy JC, Coleman A, Hughes DJ, Whitehouse A. Contribution of the KSHV and EBV lytic cycles to tumourigenesis. Curr Opin Virol 2018; 32:60-70. [PMID: 30268927 PMCID: PMC6259586 DOI: 10.1016/j.coviro.2018.08.014] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 08/24/2018] [Indexed: 12/21/2022]
Abstract
Kaposi's Sarcoma-associated herpesvirus (KSHV) and Epstein Barr virus (EBV) are the causative agents of several malignancies. Like all herpesviruses, KSHV and EBV undergo distinct latent and lytic replication programmes. The transition between these states allows the establishment of a lifelong persistent infection, dissemination to sites of disease and the spread to new hosts. Latency-associated viral proteins have been well characterised in transformation and tumourigenesis pathways; however, a number of studies have shown that abrogation of KSHV and EBV lytic gene expression impairs the oncogenesis of several cancers. Furthermore, several lytically expressed proteins have been functionally tethered to the angioproliferative and anti-apoptotic phenotypes of virus-infected cells. As a result, the investigation and therapeutic targeting of KSHV and EBV lytic cycles may be essential for the treatment of their associated malignancies.
Collapse
Affiliation(s)
- Oliver Manners
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - James C Murphy
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Alex Coleman
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David J Hughes
- School of Biology, Biomolecular Sciences Building, University of St Andrews, Fife, KY16 9AJ, United Kingdom
| | - Adrian Whitehouse
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, United Kingdom; Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom; Department of Biochemistry & Microbiology, Rhodes University, Grahamstown, 6140, South Africa.
| |
Collapse
|
32
|
Yan Q, Zhao R, Shen C, Wang F, Li W, Gao SJ, Lu C. Upregulation of MicroRNA 711 Mediates HIV-1 Vpr Promotion of Kaposi's Sarcoma-Associated Herpesvirus Latency and Induction of Pro-proliferation and Pro-survival Cytokines by Targeting the Notch/NF-κB-Signaling Axis. J Virol 2018; 92:JVI.00580-18. [PMID: 29976660 PMCID: PMC6146700 DOI: 10.1128/jvi.00580-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/21/2018] [Indexed: 02/05/2023] Open
Abstract
Coinfection with HIV-1 and Kaposi's sarcoma-associated herpesvirus (KSHV) often leads to AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The interaction between HIV and KSHV plays a pivotal role in the progression of these malignancies. We have previously demonstrated that, by upregulating miR-942-5p, HIV-1 viral protein R (Vpr) inhibits KSHV lytic replication by targeting IκBα to activate the NF-κB signaling (Q. Yan, C. Shen, J. Qin, W. Li, M. Hu, H. Lu, D. Qin, J. Zhu, S. J. Gao, C. Lu, J Virol 90:8739-8753, 2016). Here, we show that Vpr inactivates Notch signaling, resulting in inhibition of KSHV lytic replication and induction of pro-proliferative and -survival cytokines, including interleukin-2 (IL-2), TIMP-1, IGF-1, and NT-4. Mechanistically, Vpr upregulates miR-711, which directly targets the Notch1 3' untranslated region. Suppression of miR-711 relieved Notch1 and reduced Vpr inhibition of KSHV lytic replication and Vpr induction of pro-proliferation and -survival cytokines, while overexpression of miR-711 exhibited the opposite effect. Finally, overexpression of Notch1 reduced Vpr induction of NF-κB activity by promoting IκBα promoter activity. Our novel findings reveal that by upregulating miR-711 to target Notch1, Vpr silences Notch signaling to activate the NF-κB pathway by reducing IκBα expression, leading to inhibition of KSHV lytic replication and induction of pro-proliferation and -survival cytokines. Therefore, the miR-711/Notch/NF-κB axis is important in the pathogenesis of AIDS-related malignancies and could be an attractive therapeutic target.IMPORTANCE HIV-1 infection significantly increases the risk of KS and PEL in KSHV-infected individuals. Our previous study has shown that HIV-1 Vpr regulates the KSHV life cycle by targeting IκBα to activate NF-κB signaling through upregulating cellular miR-942-5p. In this study, we have further found that Vpr inactivates Notch signaling to promote KSHV latency and production of pro-proliferation and -survival cytokines. Another Vpr-upregulated cellular microRNA, miR-711, participates in this process by directly targeting Notch1. As a result, Notch1 upregulation of the IκBα promoter activity is attenuated, resulting in reduced levels of IκBα transcript and protein. Overall, these results illustrate an alternative mechanism of HIV-1 Vpr regulation of KSHV latency and aberrant cytokines through the miR-711/Notch/NF-κB axis. Our novel findings further demonstrate the role of an HIV-1-secreted regulatory protein in the KSHV life cycle and KSHV-related malignancies.
Collapse
Affiliation(s)
- Qin Yan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Runran Zhao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenyou Shen
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Fei Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Wan Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shou-Jiang Gao
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
- Laboratory of Human Virology and Oncology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- UPMC Hillman Cancer Center, Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
33
|
Liu YP, Chen CH, Yen CH, Tung CW, Chen CJ, Chen YMA, Huang MS. Human immunodeficiency virus Tat-TIP30 interaction promotes metastasis by enhancing the nuclear translocation of Snail in lung cancer cell lines. Cancer Sci 2018; 109:3105-3114. [PMID: 30099830 PMCID: PMC6172071 DOI: 10.1111/cas.13768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/03/2018] [Accepted: 08/06/2018] [Indexed: 01/02/2023] Open
Abstract
Lung cancer patients with human immunodeficiency virus (HIV) have a poorer prognosis than do patients without HIV infection. HIV1 Tat is a secreted viral protein that penetrates the plasma membrane and interacts with a number of proteins in non‐HIV‐infected cells. The loss of function of Tat‐interacting protein 30 (TIP30) has been linked to metastasis in non‐small cell lung cancer (NSCLC). However, it is unknown how the interaction of HIV1 Tat with TIP30 regulates the metastasis of NSCLC cells. In this study, the overexpression of TIP30 decreased tumor growth factor‐β‐induced epithelial‐to‐mesenchymal transition (EMT) and invasion of NSCLC cells, whereas the knockdown of TIP30 promoted EMT, invasion and stemness. Exposure to recombinant HIV1 Tat proteins promoted EMT and invasion. A mechanistic study showed that the interaction of HIV1 Tat with TIP30 blocked the binding of TIP30 to importin‐β, which is required for the nuclear translocation of Snail. Indeed, the loss of TIP30 promoted the nuclear translocation of Snail. In vivo studies demonstrated that the overexpression of TIP30 inhibited the metastasis of NSCLC cells. In contrast, the coexpression of HIV1 Tat and TIP30 diminished the inhibitory effect of TIP30 on metastasis. Immunohistochemistry confirmed that TIP30 overexpression reduced the nuclear localization of Snail, whereas the coexpression of HIV1 Tat and TIP30 increased nuclear Snail in metastatic tumors. In conclusion, the binding of HIV1 Tat to TIP30 enhanced EMT and metastasis by regulating the nuclear translocation of Snail. Targeting Tat‐interacting proteins may be a potential therapeutic strategy to prevent metastasis in NSCLC patients with HIV infection.
Collapse
Affiliation(s)
- Yu-Peng Liu
- Graduate Institute of Clinical Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Hsiung Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Research Center for Natural Products & Drug Development, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Wei Tung
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Ju Chen
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ming A Chen
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ming-Shyan Huang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, E-DA Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
34
|
Wu X, Dong H, Ye X, Zhong L, Cao T, Xu Q, Wang J, Zhang Y, Xu J, Wang W, Wei Q, Liu Y, Wang S, Shao Y, Xing H. HIV-1 Tat increases BAG3 via NF-κB signaling to induce autophagy during HIV-associated neurocognitive disorder. Cell Cycle 2018; 17:1614-1623. [PMID: 29962275 DOI: 10.1080/15384101.2018.1480219] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The human immunodeficiency virus-1 (HIV-1) regulatory protein Tat plays an important role during HIV-1-associated neurocognitive disorders (HAND) by inducing neuronal autophagy. In this study, we used immunohistochemistry, immunofluorescence, western blot, qRT-PCR, and RNA interference to elucidate the involvement of Bcl-2-associated athanogene 3 (BAG3) in the pathogenesis of HIV-1 Tat-induced autophagy during HAND. We found that BAG3 expression is elevated in astrocytes in frontal cortex of macaques infected with simian immunodeficiency virus-human immunodeficiency chimeric virus (SHIV). In addition, in human primary glioblastoma cells (U87), HIV-1 Tat upregulated BAG3 in an NF-κB-dependent manner to induce autophagy. Importantly, suppression of BAG3 or inhibition of NF-κB activity reversed the HIV-1 Tat-induced autophagy. These results indicate that HIV-1 Tat induces autophagy by upregulating BAG3 via NF-κB signaling, which suggests BAG3 and NF-κB could potentially serve as novel targets for HAND therapies.
Collapse
Affiliation(s)
- Xiaoyan Wu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Huaqian Dong
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Xiang Ye
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Li Zhong
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Tiantian Cao
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Qiping Xu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Jun Wang
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Yu Zhang
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Jinhong Xu
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| | - Wei Wang
- b Institute of Laboratory Animal Sciences of Chinese Academy of Medical Science , Beijing , China
| | - Qiang Wei
- b Institute of Laboratory Animal Sciences of Chinese Academy of Medical Science , Beijing , China
| | - Ying Liu
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Shuhui Wang
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Yiming Shao
- c State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases , National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing , China
| | - Huiqin Xing
- a Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Pathology , Basic Medicine, Medical College, Xiamen University , Xiamen , China
| |
Collapse
|
35
|
Zhou J, Zhao GL, Wang XM, Du XS, Su S, Li CG, Nair V, Yao YX, Cheng ZQ. Synergistic Viral Replication of Marek's Disease Virus and Avian Leukosis Virus Subgroup J is Responsible for the Enhanced Pathogenicity in the Superinfection of Chickens. Viruses 2018; 10:E271. [PMID: 29783672 PMCID: PMC5977264 DOI: 10.3390/v10050271] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/09/2018] [Accepted: 05/15/2018] [Indexed: 12/13/2022] Open
Abstract
Superinfection of Marek's disease virus (MDV) and avian leukosis virus subgroup J (ALV-J) causes lethal neoplasia and death in chickens. However, whether there is synergism between the two viruses in viral replication and pathogenicity has remained elusive. In this study, we found that the superinfection of MDV and ALV-J increased the viral replication of the two viruses in RNA and protein level, and synergistically promoted the expression of IL-10, IL-6, and TGF-β in chicken embryo fibroblasts (CEF). Moreover, MDV and ALV-J protein expression in dual-infected cells detected by confocal laser scanning microscope appeared earlier in the cytoplasm and the nucleus, and caused more severe cytopathy than single infection, suggesting that synergistically increased MDV and ALV-J viral-protein biosynthesis is responsible for the severe cytopathy. In vivo, compared to the single virus infected chickens, the mortality and tumor formation rates increased significantly in MDV and ALV-J dual-infected chickens. Viral loads of MDV and ALV-J in tissues of dual-infected chickens were significantly higher than those of single-infected chickens. Histopathology observation showed that more severe inflammation and tumor cells metastases were present in dual-infected chickens. In the present study, we concluded that synergistic viral replication of MDV and ALV-J is responsible for the enhanced pathogenicity in superinfection of chickens.
Collapse
Affiliation(s)
- Jing Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Guo-Liang Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xiao-Man Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Xu-Sheng Du
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Shuai Su
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
| | - Chen-Gui Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| | - Venugopal Nair
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Yong-Xiu Yao
- The Pirbright Institute & UK-China Centre of Excellence on Avian Disease Research, Pirbright, Ash Road, Guildford, Surrey GU24 0NF, UK.
| | - Zi-Qiang Cheng
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an 271018, China.
| |
Collapse
|
36
|
Hasegawa T, Glavich GJ, Pahuski M, Short A, Semmes OJ, Yang L, Galkin V, Drake R, Esquela-Kerscher A. Characterization and Evidence of the miR-888 Cluster as a Novel Cancer Network in Prostate. Mol Cancer Res 2018; 16:669-681. [PMID: 29330297 DOI: 10.1158/1541-7786.mcr-17-0321] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/10/2017] [Accepted: 12/27/2017] [Indexed: 12/19/2022]
Abstract
Prostate cancer afflicts 1 in 7 men and is the second leading cause of male cancer-related deaths in the United States. MicroRNAs (miRNAs), an extensive class of approximately 22 nucleotide noncoding RNAs, are often aberrantly expressed in tissues and fluids from prostate cancer patients, but the mechanisms of how specific miRNAs regulate prostate tumorigenesis and metastasis are poorly understood. Here, miR-888 was identified as a novel prostate factor that promotes proliferation and migration. miR-888 resides within a genomic cluster of 7 miRNA genes (mir-892c, mir-890, mir-888, mir-892a, mir-892b, mir-891b, mir-891a) on human chromosome Xq27.3. Moreover, as miR-888 maps within HPCX1, a locus associated with susceptibility and/or hereditary prostate cancer, it was hypothesized that additional miRNA cluster members also play functional roles in the prostate. Expression analysis determined that cluster members were similarly elevated in metastatic PC3-ML prostate cells and their secreted exosomes, as well as enriched in expressed prostatic secretions urine-derived exosomes obtained from clinical patients with high-grade prostate cancer. In vitro assays revealed that miR-888 cluster members selectively modulated PC3-derived and LNCaP cell proliferation, migration, invasion, and colony formation. Mouse xenograft studies verified miR-888 and miR-891a as pro-oncogenic factors that increased prostate tumor growth in vivo Further analysis validated RBL1, KLF5, SMAD4, and TIMP2 as direct miR-888 targets and that TIMP2 is also coregulated by miR-891a. This study provides the first comprehensive analysis of the entire miR-888 cluster and reveals biological insight.Implications: This work reveals a complex noncoding RNA network in the prostate that could be developed as effective diagnostic and therapeutic tools for advanced prostate cancer. Mol Cancer Res; 16(4); 669-81. ©2018 AACR.
Collapse
Affiliation(s)
- Tsuyoshi Hasegawa
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Garrison J Glavich
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mary Pahuski
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Aleena Short
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - O John Semmes
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Lifang Yang
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia
| | - Vitold Galkin
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Richard Drake
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | - Aurora Esquela-Kerscher
- Department of Microbiology & Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia.
| |
Collapse
|
37
|
Li W, Jia X, Shen C, Zhang M, Xu J, Shang Y, Zhu K, Hu M, Yan Q, Qin D, Lee MS, Zhu J, Lu H, Krueger BJ, Renne R, Gao SJ, Lu C. A KSHV microRNA enhances viral latency and induces angiogenesis by targeting GRK2 to activate the CXCR2/AKT pathway. Oncotarget 2017; 7:32286-305. [PMID: 27058419 PMCID: PMC5078013 DOI: 10.18632/oncotarget.8591] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 03/28/2016] [Indexed: 12/24/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS), primary effusion lymphoma (PEL) and multicentric Castleman's disease (MCD). Most tumor cells in these malignancies are latently infected by KSHV. Thus, viral latency is critical for the development of tumor and induction of tumor-associated angiogenesis. KSHV encodes more than two dozens of miRNAs but their roles in KSHV-induced angiogenesis remains unknown. We have recently shown that miR-K12-3 (miR-K3) promoted cell migration and invasion by targeting GRK2/CXCR2/AKT signaling (PLoS Pathog, 2015;11(9):e1005171). Here, we further demonstrated a role of miR-K3 and its induced signal pathway in KSHV latency and KSHV-induced angiogenesis. We found that overexpression of miR-K3 not only promoted viral latency by inhibiting viral lytic replication, but also induced angiogenesis. Further, knockdown of GRK2 inhibited KSHV replication and enhanced KSHV-induced angiogenesis by enhancing the CXCR2/AKT signals. As a result, blockage of CXCR2 or AKT increased KSHV replication and decreased angiogenesis induced by PEL cells in vivo. Finally, deletion of miR-K3 from viral genome reduced KSHV-induced angiogenesis and increased KSHV replication. These findings indicate that the miR-K3/GRK2/CXCR2/AKT axis plays an essential role in KSHV-induced angiogenesis and promotes KSHV latency, and thus may be a potential therapeutic target of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Xuemei Jia
- Department of Gynecology and Obstetrics, Nanjing Maternity and Child Health Hospital Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Mi Zhang
- Department of Gynecology and Obstetrics, Nanjing Maternity and Child Health Hospital Affiliated Hospital of Nanjing Medical University, Nanjing, P. R. China.,The Fourth Clinical Medical College of Nanjing Medical University, Nanjing, P. R. China
| | - Jingyun Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Yuancui Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Kaixiang Zhu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Minmin Hu
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| | - Myung-Shin Lee
- Department of Microbiology and Immunology, Eulji University School of Medicine, Daejeon, Republic of Korea
| | - Jianzhong Zhu
- Cancer Virology Program, University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Brian J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, P. R. China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, P. R. China.,Department of Microbiology, Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
38
|
Liu Z, Fang Q, Zhou S, Minhas V, Wood C, He N, Zhang T. Seroprevalence of Kaposi's sarcoma-associated herpesvirus among HIV-infected Uygurs in Xinjiang, China. J Med Virol 2017; 89:1629-1635. [PMID: 28252177 PMCID: PMC9995688 DOI: 10.1002/jmv.24804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/15/2017] [Indexed: 12/25/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi's sarcoma (KS), which primarily affects human immunodeficiency virus (HIV)-infected adults with advanced immunodeficiency. Xinjiang province in China is an endemic area for Kaposi's sarcoma (KS), however, currently, only limited data for KSHV infection among HIV-infected individuals living in this endemic area is available. A cross-sectional study of 86 HIV positive participants was conducted in Xinjiang, China from 2014 through 2015. Plasma samples were collected and screened for KSHV and HIV infection. HIV pol gene and KSHV ORF-K1 gene were amplified and sequenced, genotypes were determined by phylogenetic analysis. Over all, prevalence was 48.9% (42/86; 95%CI 38.4-59.3%) for KSHV. Only CRF07_BC subtype has been identified among all these HIV positive individuals, while the subtype A and C of KSHV were detected in the participants. Meanwhile, we found that those with high CD4 counts (>500) showed a lower anti-KSHV titer, compared with other groups. Our study indicated a high prevalence of KSHV among HIV positive individuals in Xinjiang, China. Thus, management of HIV/AIDS patients should include KSHV screen and should consider the risk of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Zhenqiu Liu
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Qiwen Fang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Sujuan Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Veenu Minhas
- Nebraska Center of Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Charles Wood
- Nebraska Center of Virology and the School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Na He
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| | - Tiejun Zhang
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China.,Key Laboratory of Public Health Safety, Ministry of Education, Fudan University, Shanghai, China.,Collaborative Innovation Center of Social Risks Governance in Health, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Li W, Hu M, Wang C, Lu H, Chen F, Xu J, Shang Y, Wang F, Qin J, Yan Q, Krueger BJ, Renne R, Gao SJ, Lu C. A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling. Oncogene 2017; 36:5407-5420. [PMID: 28534512 PMCID: PMC5608636 DOI: 10.1038/onc.2017.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Kaposi’s sarcoma (KS) is the most common AIDS-associated malignancy etiologically caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). KS is a highly disseminated and vascularized tumor comprised of poorly differentiated spindle-shaped endothelial cells. KSHV encodes 12 pre-microRNAs (pre-miRNAs) that yield 25 mature miRNAs, but their roles in KSHV-induced tumor dissemination and angiogenesis remain largely unknown. KSHV-encoded miR-K12-6 (miR-K6) can produce two mature miRNAs, miR-K6-3p and miR-K6-5p. Recently, we have shown that miR-K6-3p promoted cell migration and angiogenesis by directly targeting SH3 domain binding glutamate-rich protein (SH3BGR) (PLoS Pathog. 2016;12(4):e1005605). Here, by using mass spectrometry, bioinformatics analysis and luciferase reporter assay, we showed that miR-K6-5p directly targeted the coding sequence (CDS) of CD82 molecule (CD82), a metastasis suppressor. Ectopic expression of miR-K6-5p specifically inhibited the expression of endogenous CD82 and strongly promoted endothelial cells invasion in vitro and angiogenesis in vivo. Overexpression of CD82 significantly inhibited cell invasion and angiogenesis induced by miR-K6-5p. Mechanistically, CD82 directly interacted with c-Met to inhibit its activation. MiR-K6-5p directly repressed CD82, relieving its inhibition on c-Met activation and inducing cell invasion and angiogenesis. Deletion of miR-K6 from KSHV genome abrogated KSHV suppression of CD82 resulting in compromised KSHV activation of c-Met pathway, and KSHV-induced invasion and angiogenesis. In conclusion, these results show that by inhibiting CD82, KSHV miR-K6-5p promotes cell invasion and angiogenesis by activating the c-Met pathway. Our findings illustrate that KSHV miRNAs may play an essential role in the dissemination and angiogenesis of KSHV-induced malignancies.
Collapse
Affiliation(s)
- W Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - M Hu
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - C Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - F Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Y Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - F Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Q Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - B J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - R Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - S-J Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
40
|
Mthembu NN, Mbita Z, Hull R, Dlamini Z. Abnormalities in alternative splicing of angiogenesis-related genes and their role in HIV-related cancers. HIV AIDS-RESEARCH AND PALLIATIVE CARE 2017; 9:77-93. [PMID: 28694706 PMCID: PMC5490432 DOI: 10.2147/hiv.s124911] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alternative splicing of mRNA leads to an increase in proteome biodiversity by allowing the generation of multiple mRNAs, coding for multiple protein isoforms of various structural and functional properties from a single primary pre-mRNA transcript. The protein isoforms produced are tightly regulated in normal development but are mostly deregulated in various cancers. In HIV-infected individuals with AIDS, there is an increase in aberrant alternative splicing, resulting in an increase in HIV/AIDS-related cancers, such as Kaposi’s sarcoma, non-Hodgkin’s lymphoma, and cervical cancer. This aberrant splicing leads to abnormal production of protein and is caused by mutations in cis-acting elements or trans-acting factors in angiogenesis-related genes. Restoring the normal regulation of alternative splicing of angiogenic genes would alter the expression of protein isoforms and may confer normal cell physiology in patients with these cancers. This review highlights the abnormalities in alternative splicing of angiogenesis-related genes and their implication in HIV/AIDS-related cancers. This allows us to gain an insight into the pathogenesis of HIV/AIDS-related cancer and in turn elucidate the therapeutic potential of alternatively spliced genes in HIV/AIDS-related malignancies.
Collapse
Affiliation(s)
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| | - Rodney Hull
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban
| | - Zodwa Dlamini
- Research, Innovation and Engagements, Mangosuthu University of Technology, Durban
| |
Collapse
|
41
|
Qin J, Lu C. Infection of KSHV and Interaction with HIV: The Bad Romance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1018:237-251. [PMID: 29052142 DOI: 10.1007/978-981-10-5765-6_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), namely, human herpesvirus 8 (HHV-8), is considered as the pathogen of Kaposi's sarcoma (KS), the most frequent cancer in untreated HIV-infected individuals. Patients infected with HIV have a much higher possibility developing KS than average individual. Researchers have found that HIV, which functions as a cofactor of KS, contributes a lot to the development of KS. In this article, we will give a brief introduction of KS and KSHV and how the interaction between KSHV and HIV contributes to the development of KS. Also we will take a glance at the development of treatment in KS, especially AIDS-KS.
Collapse
Affiliation(s)
- Jie Qin
- Key Laboratory of Pathogen Biology (Jiangsu Province), Nanjing Medical University, Nanjing, People's Republic of China.,Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chun Lu
- Key Laboratory of Pathogen Biology (Jiangsu Province), Nanjing Medical University, Nanjing, People's Republic of China. .,Department of Microbiology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
42
|
Tozetto-Mendoza TR, Ibrahim KY, Tateno AF, de Oliveira CM, Sumita LM, Sanchez MCA, Luna EJ, Pierrotti LC, Drexler JF, Braz-Silva PH, Pannuti CS, Romano CM. Genotypic distribution of HHV-8 in AIDS individuals without and with Kaposi sarcoma: Is genotype B associated with better prognosis of AIDS-KS? Medicine (Baltimore) 2016; 95:e5291. [PMID: 27902590 PMCID: PMC5134807 DOI: 10.1097/md.0000000000005291] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIDS-associated Kaposi's sarcoma (AIDS-KS) caused by human herpes virus 8 (HHV-8) is the most severe and resistant form of KS tumor. Our aim was to verify whether there is an association between HHV-8 variability and development of AIDS-KS in Brazil by comparing the HHV-8 variability between individuals without and with KS. Saliva samples and blood, when available, were analyzed by polymerase chain reaction (PCR) techniques for detection of the fragments of ORF K1 of HHV-8, which were then genotyped and analyzed regarding the genetic variability. Our study described 106 positive cases for HHV-8 in the saliva from 751 AIDS patients without previous KS. In addition, we performed a phylogenetic analysis of HHV-8 in 34 of the 106 AIDS patients without KS and in 33 of the 37 patients with active KS. The distribution of HHV-8 genotypes A, B, C, and F in AIDS individuals was indistinguishable by comparing non-KS and KS groups, as well as regarding ethnicity. Considering the KS group, genotype B was associated with better prognosis of KS tumor. Interestingly, we found a particular profile of diversity within clade C and 2 recombinant patterns of HHV-8 in the saliva of AIDS individuals without KS. We emphasize the need to achieve standard genotyping protocol for ORF K1 amplification, thus allowing for substantial detection of HHV-8 variants. Our findings can shed light on the role of HHV-8 variability in the pathogenesis of AIDS-KS.
Collapse
Affiliation(s)
| | - Karim Yaqub Ibrahim
- Department of Infectious Diseases, Clinics Hospital of the School of Medicine
| | - Adriana Fumie Tateno
- Institute of Tropical Medicine Laboratory of Virology LIM52
- Institute of Virology, University of Bonn Medical Centre, Bonn, German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | | | | | | | | | | | - Jan Felix Drexler
- Institute of Virology, University of Bonn Medical Centre, Bonn, German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Germany
| | - Paulo Henrique Braz-Silva
- Institute of Tropical Medicine Laboratory of Virology LIM52
- Pathology Department of the School of Dentistry, University of São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
43
|
Soini Y. Epigenetic and genetic changes in soft tissue sarcomas: a review. APMIS 2016; 124:925-934. [PMID: 27670825 DOI: 10.1111/apm.12600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
Abstract
Soft tissue sarcomas are a versatile group of tumors with a proposed origin from mesenchymal stem cells. During recent years, the molecular biologic mechanisms behind the histogenesis of these tumors have become clearer. In addition to translocations and other genomic changes, epigenetic mechanisms have been shown to be greatly involved in the histogenesis of sarcomas as well as other cancers. Even though the molecular mechanisms behind sarcomas appear to be more complex than previously expected, epigenetic mechanisms bring new opportunities and means for the treatment of these complex diseases.
Collapse
Affiliation(s)
- Ylermi Soini
- Department of Pathology and Forensic Medicine, University of Eastern Finland, Kuopio and Cancer Center of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
44
|
HIV-1 Vpr Inhibits Kaposi's Sarcoma-Associated Herpesvirus Lytic Replication by Inducing MicroRNA miR-942-5p and Activating NF-κB Signaling. J Virol 2016; 90:8739-53. [PMID: 27440900 DOI: 10.1128/jvi.00797-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/15/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED Kaposi's sarcoma-associated herpesvirus (KSHV) infection is required for the development of several AIDS-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The high incidence of AIDS-KS has been ascribed to the interaction of KSHV and HIV-1. We have previously shown that HIV-1-secreted proteins Tat and Nef regulate the KSHV life cycle and synergize with KSHV oncogenes to promote angiogenesis and tumorigenesis. Here, we examined the regulation of KSHV latency by HIV-1 viral protein R (Vpr). We found that soluble Vpr inhibits the expression of KSHV lytic transcripts and proteins, as well as viral particle production by activating NF-κB signaling following internalization into PEL cells. By analyzing the expression profiles of microRNAs combined with target search by bioinformatics and luciferase reporter analyses, we identified a Vpr-upregulated cellular microRNA (miRNA), miR-942-5p, that directly targeted IκBα. Suppression of miR-942-5p relieved the expression of IκBα and reduced Vpr inhibition of KSHV lytic replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV lytic replication. Our findings collectively illustrate that, by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized HIV-1 Vpr inhibits KSHV lytic replication. These results have demonstrated an essential role of Vpr in the life cycle of KSHV. IMPORTANCE Coinfection by HIV-1 promotes the aggressive growth of Kaposi's sarcoma-associated herpesvirus (KSHV)-related malignancies, including Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). In this study, we have shown that soluble HIV-1 Vpr inhibits KSHV lytic replication by activating NF-κB signaling following internalization into PEL cells. Mechanistic studies revealed that a cellular microRNA upregulated by Vpr, miR-942-5p, directly targeted IκBα. Suppression of miR-942-5p relieved IκBα expression and reduced Vpr inhibition of KSHV replication, while overexpression of miR-942-5p enhanced Vpr inhibition of KSHV replication. These results indicate that by activating NF-κB signaling through upregulating a cellular miRNA to target IκBα, internalized Vpr inhibits KSHV lytic replication. This work illustrates a molecular mechanism by which HIV-1-secreted regulatory protein Vpr regulates KSHV latency and the pathogenesis of AIDS-related malignancies.
Collapse
|
45
|
Purushothaman P, Uppal T, Sarkar R, Verma SC. KSHV-Mediated Angiogenesis in Tumor Progression. Viruses 2016; 8:E198. [PMID: 27447661 PMCID: PMC4974533 DOI: 10.3390/v8070198] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.
Collapse
Affiliation(s)
- Pravinkumar Purushothaman
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Timsy Uppal
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Roni Sarkar
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| | - Subhash C Verma
- Department of Microbiology and Immunology, University of Nevada, Reno, School of Medicine, 1664 N Virginia Street, MS 320, Reno, NV 89557, USA.
| |
Collapse
|
46
|
Li W, Yan Q, Ding X, Shen C, Hu M, Zhu Y, Qin D, Lu H, Krueger BJ, Renne R, Gao SJ, Lu C. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA. PLoS Pathog 2016; 12:e1005605. [PMID: 27128969 PMCID: PMC4851422 DOI: 10.1371/journal.ppat.1005605] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 04/08/2016] [Indexed: 12/27/2022] Open
Abstract
Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. Kaposi’s Sarcoma (KS), caused by infection of Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV), is a tumor of endothelial cells characterized by angiogenesis and invasiveness. In vitro, KSHV-infected endothelial cells display an increased invasiveness and angiogenicity. KSHV encodes twelve precursor miRNAs (pre-miRNAs), which are processed into at least 25 mature miRNAs. However, the roles of these miRNAs in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We demonstrated that miR-K6-3p promoted cell migration and angiogenesis by directly targeting SH3 domain binding glutamate-rich protein (SH3BGR). Furthermore, we found that STAT3, which was negatively regulated by SH3BGR mediated miR-K6-3p-induced cell migration and angiogenesis. MiR-K6-3p downregulation of SH3BGR, hence relieved SH3BGR direct inhibition of STAT3 resulting in the activation of STAT3 and induction of cell migration and angiogenesis. These results identify miR-K6-3p and its the downstream pathway as potential therapeutic targets for the treatment of KSHV-associated malignancies.
Collapse
Affiliation(s)
- Wan Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangya Ding
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenyou Shen
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Minmin Hu
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ying Zhu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Di Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongmei Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Brian J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Chun Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, People's Republic of China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Microbiology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
47
|
Thakker S, Verma SC. Co-infections and Pathogenesis of KSHV-Associated Malignancies. Front Microbiol 2016; 7:151. [PMID: 26913028 PMCID: PMC4753363 DOI: 10.3389/fmicb.2016.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/27/2016] [Indexed: 12/25/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV), also known as human herpes virus 8 (HHV-8) is one of the several carcinogenic viruses that infect humans. KSHV infection has been implicated in the development of Kaposi’s sarcoma (KS), primary effusion lymphoma, and multicentric Castleman’s Disease. While KSHV infection is necessary for the development of KSHV associated malignancies, it is not sufficient to induce tumorigenesis. Evidently, other co-factors are essential for the progression of KSHV induced malignancies. One of the most important co-factors, necessary for the progression of KSHV induced tumors, is immune suppression that frequently arises during co-infection with HIV and also by other immune suppressants. In this mini-review, we discuss the roles of co-infection with HIV and other pathogens on KSHV infection and pathogenesis.
Collapse
|
48
|
Santulli G. MicroRNAs and Endothelial (Dys) Function. J Cell Physiol 2015; 231:1638-44. [PMID: 26627535 DOI: 10.1002/jcp.25276] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Accumulating evidence indicates that microRNAs (miRs)-non-coding RNAs that can regulate gene expression via translational repression and/or post-transcriptional degradation-are becoming one of the most fascinating areas of physiology, given their fundamental roles in countless pathophysiological processes. The relative roles of different miRs in vascular biology as direct or indirect post-transcriptional regulators of fundamental genes implied in vascular remodeling designate miRs as potential biomarkers and/or promising drug targets. The mechanistic importance of miRs in modulating endothelial cell (EC) function in physiology and in disease is addressed here. Drawbacks of currently available therapeutic options are also discussed, pointing at the challenges and clinical opportunities provided by miR-based treatments. J. Cell. Physiol. 231: 1638-1644, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gaetano Santulli
- Columbia University Medical Center, New York Presbyterian Hospital-Manhattan, New York, New York
| |
Collapse
|