1
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
2
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis in Arabidopsis by sustaining the translation of cytokinin-signaling inhibitor proteins. Dev Cell 2024:S1534-5807(24)00512-4. [PMID: 39305905 DOI: 10.1016/j.devcel.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/15/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to a constant size to enclose and protect the inner floral organs. We previously characterized the mutant development-related myb-like 1 (drmy1), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin-signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
Affiliation(s)
- Shuyao Kong
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Mingyuan Zhu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - M Regina Scarpin
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - David Pan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Longfei Jia
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Ryan E Martinez
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Simon Alamos
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Feedstocks Division, Joint BioEnergy Institute, Emeryville, CA 94608, USA; Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Batthula Vijaya Lakshmi Vadde
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hernan G Garcia
- Biophysics Graduate Group, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Physics, University of California at Berkeley, Berkeley, CA 94720, USA; Institute for Quantitative Biosciences-QB3, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Chan Zuckerberg Biohub, San Francisco, San Francisco, CA 94158, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jacob O Brunkard
- Laboratory of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Adrienne H K Roeder
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA; Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Cull AH, Kent DG, Warren AJ. Emerging genetic technologies informing personalized medicine in Shwachman-Diamond syndrome and other inherited BMF disorders. Blood 2024; 144:931-939. [PMID: 38905596 DOI: 10.1182/blood.2023019986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT Ribosomopathy Shwachman-Diamond syndrome (SDS) is a rare autosomal recessive inherited bone marrow failure syndrome (IBMFS) caused by mutations in the Shwachman-Bodian-Diamond syndrome gene, which is associated with an increased risk of myeloid malignancy. Tracking how hematopoietic stem cell (HSC) clonal dynamics change over time, assessing whether somatic genetic rescue mechanisms affect these dynamics, and mapping out when leukemic driver mutations are acquired is important to understand which individuals with SDS may go on to develop leukemia. In this review, we discuss how new technologies that allow researchers to map mutations at the level of single HSC clones are generating important insights into genetic rescue mechanisms and their relative risk for driving evolution to leukemia, and how these data can inform the future development of personalized medicine approaches in SDS and other IBMFSs.
Collapse
Affiliation(s)
- Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
- Department of Hematology, School of Clinical Medicine, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Veltra D, Marinakis NM, Kotsios I, Delaporta P, Kekou K, Kosma K, Traeger-Synodinos J, Sofocleous C. Lethal Complications and Complex Genotypes in Shwachman Diamond Syndrome: Report of a Family with Recurrent Neonatal Deaths and a Case-Based Brief Review of the Literature. CHILDREN (BASEL, SWITZERLAND) 2024; 11:705. [PMID: 38929284 PMCID: PMC11201973 DOI: 10.3390/children11060705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
Shwachman Diamond Syndrome (SDS) is a multi-system disease characterized by exocrine pancreatic insufficiency with malabsorption, infantile neutropenia and aplastic anemia. Life-threatening complications include progression to acute myeloid leukemia (AML) or myelodysplastic syndrome (MDS), critical deep-tissue infections and asphyxiating thoracic dystrophy. In most patients, SDS results from biallelic pathogenic variants in the SBDS gene, different combinations of which contribute to heterogenous clinical presentations. Null variants are not well tolerated, supporting the theory that the loss of SBDS expression is likely lethal in both mice and humans. A novel complex genotype (SBDS:c.[242C>G;258+2T>C];[460-1G>A]/WFS1:c.[2327A>T];[1371G>T]) was detected in a family with recurrent neonatal deaths. A female neonate died three hours after birth with hemolytic anemia, and a male neonate with severe anemia, thrombocytopenia and neutropenia succumbed on day 40 after Staphylococcus epidermidis infection. A subsequent review of the literature focused on fatal complications, complex SBDS genotypes and/or unusual clinical presentations and disclosed rare cases, of which some had unexpected combinations of genetic and clinical findings. The impact of pathogenic variants and associated phenotypes is discussed in the context of data sharing towards expanding scientific expert networks, consolidating knowledge and advancing an understanding of novel underlying genotypes and complex phenotypes, facilitating informed clinical decisions and disease management.
Collapse
Affiliation(s)
- Danai Veltra
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Nikolaos M. Marinakis
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
- Research University Institute for the Study of Genetic and Malignant Disease of Childhood, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece
| | - Ioannis Kotsios
- Neonatal Intensive Care Unit, “Hippocration” General Hospital, 54642 Thessaloniki, Greece
| | - Polyxeni Delaporta
- Thalassemia Unit, First Department of Pediatrics, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece;
| | - Kyriaki Kekou
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Konstantina Kosma
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Joanne Traeger-Synodinos
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| | - Christalena Sofocleous
- Laboratory of Medical Genetics, School of Medicine, National and Kapodistrian University of Athens, “Agia Sophia” Children’s Hospital, 11527 Athens, Greece; (D.V.); (N.M.M.); (K.K.); (K.K.); (C.S.)
| |
Collapse
|
5
|
Kong S, Zhu M, Scarpin MR, Pan D, Jia L, Martinez RE, Alamos S, Vadde BVL, Garcia HG, Qian SB, Brunkard JO, Roeder AHK. DRMY1 promotes robust morphogenesis by sustaining the translation of cytokinin signaling inhibitor proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.07.536060. [PMID: 37066395 PMCID: PMC10104159 DOI: 10.1101/2023.04.07.536060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Robustness is the invariant development of phenotype despite environmental changes and genetic perturbations. In the Arabidopsis flower bud, four sepals robustly initiate and grow to constant size to enclose and protect the inner floral organs. We previously characterized the mutant development related myb-like1 ( drmy1 ), where 3-5 sepals initiate variably and grow to different sizes, compromising their protective function. The molecular mechanism underlying this loss of robustness was unclear. Here, we show that drmy1 has reduced TARGET OF RAPAMYCIN (TOR) activity, ribosomal content, and translation. Translation reduction decreases the protein level of ARABIDOPSIS RESPONSE REGULATOR7 (ARR7) and ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 6 (AHP6), two cytokinin signaling inhibitors that are normally rapidly produced before sepal initiation. The resultant upregulation of cytokinin signaling disrupts robust auxin patterning and sepal initiation. Our work shows that the homeostasis of translation, a ubiquitous cellular process, is crucial for the robust spatiotemporal patterning of organogenesis.
Collapse
|
6
|
Da Costa L, Mohandas N, David-NGuyen L, Platon J, Marie I, O'Donohue MF, Leblanc T, Gleizes PE. Diamond-Blackfan anemia, the archetype of ribosomopathy: How distinct is it from the other constitutional ribosomopathies? Blood Cells Mol Dis 2024:102838. [PMID: 38413287 DOI: 10.1016/j.bcmd.2024.102838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Diamond-Blackfan anemia (DBA) was the first ribosomopathy described in humans. DBA is a congenital hypoplastic anemia, characterized by macrocytic aregenerative anemia, manifesting by differentiation blockage between the BFU-e/CFU-e developmental erythroid progenitor stages. In 50 % of the DBA cases, various malformations are noted. Strikingly, for a hematological disease with a relative erythroid tropism, DBA is due to ribosomal haploinsufficiency in 24 different ribosomal protein (RP) genes. A few other genes have been described in DBA-like disorders, but they do not fit into the classical DBA phenotype (Sankaran et al., 2012; van Dooijeweert et al., 2022; Toki et al., 2018; Kim et al., 2017 [1-4]). Haploinsufficiency in a RP gene leads to defective ribosomal RNA (rRNA) maturation, which is a hallmark of DBA. However, the mechanistic understandings of the erythroid tropism defect in DBA are still to be fully defined. Erythroid defect in DBA has been recently been linked in a non-exclusive manner to a number of mechanisms that include: 1) a defect in translation, in particular for the GATA1 erythroid gene; 2) a deficit of HSP70, the GATA1 chaperone, and 3) free heme toxicity. In addition, p53 activation in response to ribosomal stress is involved in DBA pathophysiology. The DBA phenotype may thus result from the combined contributions of various actors, which may explain the heterogenous phenotypes observed in DBA patients, even within the same family.
Collapse
Affiliation(s)
- L Da Costa
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France; University of Paris Saclay, F-94270 Le Kremlin-Bicêtre, France; University of Paris Cité, F-75010 Paris, France; University of Picardie Jules Verne, F-80000 Amiens, France; Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France; Laboratory of Excellence for Red Cells, LABEX GR-Ex, F-75015 Paris, France.
| | | | - Ludivine David-NGuyen
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Jessica Platon
- Inserm U1170, IGR, F-94805 Villejuif/HEMATIM UR4666, F-80000 Amiens, France
| | - Isabelle Marie
- Service d'Hématologie Biologique (Hematology Diagnostic Lab), AP-HP, Hôpital Bicêtre, F-94270 Le Kremlin-Bicêtre, France
| | - Marie Françoise O'Donohue
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Thierry Leblanc
- Service d'immuno-hématologie pédiatrique, Hôpital Robert-Debré, F-75019 Paris, France
| | - Pierre-Emmanuel Gleizes
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
7
|
Cipolli M, Boni C, Penzo M, Villa I, Bolamperti S, Baldisseri E, Frattini A, Porta G, Api M, Selicato N, Roccia P, Pollutri D, Busilacchi EM, Poloni A, Caporelli N, D’Amico G, Pegoraro A, Cesaro S, Oyarbide U, Vella A, Lippi G, Corey SJ, Valli R, Polini A, Bezzerri V. Ataluren improves myelopoiesis and neutrophil chemotaxis by restoring ribosome biogenesis and reducing p53 levels in Shwachman-Diamond syndrome cells. Br J Haematol 2024; 204:292-305. [PMID: 37876306 PMCID: PMC10843527 DOI: 10.1111/bjh.19134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is characterized by neutropenia, exocrine pancreatic insufficiency and skeletal abnormalities. SDS bone marrow haematopoietic progenitors show increased apoptosis and impairment in granulocytic differentiation. Loss of Shwachman-Bodian-Diamond syndrome (SBDS) expression results in reduced eukaryotic 80S ribosome maturation. Biallelic mutations in the SBDS gene are found in ~90% of SDS patients, ~55% of whom carry the c.183-184TA>CT nonsense mutation. Several translational readthrough-inducing drugs aimed at suppressing nonsense mutations have been developed. One of these, ataluren, has received approval in Europe for the treatment of Duchenne muscular dystrophy. We previously showed that ataluren can restore full-length SBDS protein synthesis in SDS-derived bone marrow cells. Here, we extend our preclinical study to assess the functional restoration of SBDS capabilities in vitro and ex vivo. Ataluren improved 80S ribosome assembly and total protein synthesis in SDS-derived cells, restored myelopoiesis in myeloid progenitors, improved neutrophil chemotaxis in vitro and reduced neutrophil dysplastic markers ex vivo. Ataluren also restored full-length SBDS synthesis in primary osteoblasts, suggesting that its beneficial role may go beyond the myeloid compartment. Altogether, our results strengthened the rationale for a Phase I/II clinical trial of ataluren in SDS patients who harbour the nonsense mutation.
Collapse
Affiliation(s)
- Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Christian Boni
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Marianna Penzo
- Department of Medical and Surgical Sciences (DIMEC) AND Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Isabella Villa
- Institute of Endocrine and Metabolic Sciences, Endocrine and Osteometabolic Lab, IRCCS San Raffaele Hospital, Milano, Italy
| | - Simona Bolamperti
- Institute of Endocrine and Metabolic Sciences, Endocrine and Osteometabolic Lab, IRCCS San Raffaele Hospital, Milano, Italy
| | - Elena Baldisseri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Annalisa Frattini
- Institute for Genetic and Biomedical Research (IRGB), UOS Milano CNR, Milano, Italy
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Giovanni Porta
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Martina Api
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Nora Selicato
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Pamela Roccia
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Daniela Pollutri
- Department of Medical and Surgical Sciences (DIMEC) AND Center for Applied Biomedical Research (CRBA), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | | | - Antonella Poloni
- Hematology Clinic, Università Politecnica delle Marche, AOU Ospedali Riuniti, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliero Universitaria Ospedali Riuniti, Ancona, Italy
| | - Giovanna D’Amico
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Anna Pegoraro
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Simone Cesaro
- Pediatric Hematology Oncology, Ospedale Donna Bambino, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Usua Oyarbide
- Departments of Cancer Biology and Pediatric Hematology/Oncology and Stem Cell Transplantation, Cleveland Clinic, Cleveland, USA
| | - Antonio Vella
- Unit of Immunology, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Giuseppe Lippi
- Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Seth J Corey
- Departments of Cancer Biology and Pediatric Hematology/Oncology and Stem Cell Transplantation, Cleveland Clinic, Cleveland, USA
| | - Roberto Valli
- Department of Medicine and Surgery (DMC), Universita' degli Studi dell'Insubria, Varese, Italy
| | - Alessandro Polini
- Institute of Nanotechnology, National Research Council (CNR-NANOTEC), Lecce, Italy
| | - Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
- Section of Clinical Biochemistry, Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| |
Collapse
|
8
|
Catalanotto C, Barbato C, Cogoni C, Benelli D. The RNA-Binding Function of Ribosomal Proteins and Ribosome Biogenesis Factors in Human Health and Disease. Biomedicines 2023; 11:2969. [PMID: 38001969 PMCID: PMC10669870 DOI: 10.3390/biomedicines11112969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
The ribosome is a macromolecular complex composed of RNA and proteins that interact through an integrated and interconnected network to preserve its ancient core activities. In this review, we emphasize the pivotal role played by RNA-binding proteins as a driving force in the evolution of the current form of the ribosome, underscoring their importance in ensuring accurate protein synthesis. This category of proteins includes both ribosomal proteins and ribosome biogenesis factors. Impairment of their RNA-binding activity can also lead to ribosomopathies, which is a group of disorders characterized by defects in ribosome biogenesis that are detrimental to protein synthesis and cellular homeostasis. A comprehensive understanding of these intricate processes is essential for elucidating the mechanisms underlying the resulting diseases and advancing potential therapeutic interventions.
Collapse
Affiliation(s)
- Caterina Catalanotto
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Christian Barbato
- National Research Council (CNR), Department of Sense Organs DOS, Institute of Biochemistry and Cell Biology (IBBC), Sapienza University of Rome, 00185 Rome, Italy;
| | - Carlo Cogoni
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| | - Dario Benelli
- Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy; (C.C.); (C.C.)
| |
Collapse
|
9
|
Reilly CR, Shimamura A. Predisposition to myeloid malignancies in Shwachman-Diamond syndrome: biological insights and clinical advances. Blood 2023; 141:1513-1523. [PMID: 36542827 PMCID: PMC10082379 DOI: 10.1182/blood.2022017739] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is an inherited multisystem ribosomopathy characterized by exocrine pancreatic deficiency, bone marrow failure, and predisposition to myeloid malignancies. The pathobiology of SDS results from impaired ribosomal maturation due to the deficiency of SBDS and the inability to evict the antiassociation factor eIF6 from the 60S ribosomal subunit. Clinical outcomes for patients with SDS who develop myeloid malignancies are extremely poor because of high treatment-related toxicities and a high rate of refractory disease/relapse even after allogeneic hematopoietic stem cell transplant (HSCT). Registry data indicate that outcomes are improved for patients with SDS who undergo routine bone marrow surveillance and receive an HSCT before developing an overt malignancy. However, the optimal approach to hematologic surveillance and the timing of HSCT for patients with SDS is not clearly established. Recent studies have elucidated distinct patterns of somatic blood mutations in patients with SDS that either alleviate the ribosome defect via somatic rescue (heterozygous EIF6 inactivation) or disrupt cellular checkpoints, resulting in increased leukemogenic potential (heterozygous TP53 inactivation). Genomic analysis revealed that most myeloid malignancies in patients with SDS have biallelic loss-of-function TP53 mutations. Single-cell DNA sequencing of SDS bone marrow samples can detect premalignant biallelic TP53-mutated clones before clinical diagnosis, suggesting that molecular surveillance may enhance the detection of incipient myeloid malignancies when HSCT may be most effective. Here, we review the clinical, genetic, and biologic features of SDS. In addition, we present evidence supporting the hematologic surveillance for patients with SDS that incorporates clinical, pathologic, and molecular data to risk stratify patients and prioritize transplant evaluation for patients with SDS with high-risk features.
Collapse
Affiliation(s)
- Christopher R. Reilly
- Division of Hematological Malignancies, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Akiko Shimamura
- Department of Pediatric Hematology/Oncology, Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, MA
| |
Collapse
|
10
|
Site-specific labeling of SBDS to monitor interactions with the 60S ribosomal subunit. Methods 2023; 211:68-72. [PMID: 36781034 DOI: 10.1016/j.ymeth.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/13/2023] Open
Abstract
The Shwachman-Diamond syndrome (SDS) is a rare inherited ribosomopathy that is predominantly caused by mutations in the Shwachman-Bodian-Diamond Syndrome gene (SBDS). SBDS is a ribosomal maturation factor that is essential for the release of eukaryotic translation initiation factor 6 (eIF6) from 60S ribosomal subunits during the late stages of 60S maturation. Release of eIF6 is critical to permit inter-subunit interactions between the 60S and 40S subunits and to form translationally competent 80S monosomes. SBDS has three key domains that are highly flexible and adopt varied conformations in solution. To better understand the domain dynamics of SBDS upon binding to 60S and to assess the effects of SDS-disease specific mutations, we aimed to site-specifically label individual domains of SBDS. Here we detail the generation of a fluorescently labeled SBDS to monitor the dynamics of select domains upon binding to 60S. We describe the incorporation of 4-azido-l-phenylalanine (4AZP), a noncanonical amino acid in human SBDS. Site-specific labeling of SBDS using fluorophore and assessment of 60S binding activity are also described. Such labeling approaches to capture the interactions of individual domains of SBDS with 60S are also applicable to study the dynamics of other multi-domain proteins that interact with the ribosomal subunits.
Collapse
|
11
|
Boussaid I, Fontenay M. Translation defects in ribosomopathies. Curr Opin Hematol 2022; 29:119-125. [PMID: 35102070 DOI: 10.1097/moh.0000000000000705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Congenital or acquired ribosomopathies related to mutations or deletions in ribosomal proteins gene or ribosome-associated proteins exhibit defective ribosome biogenesis that expose the cell to translation defects. The mechanisms leading to low translation rate, loss-of-translation fidelity and translation selectivity are reviewed. RECENT FINDINGS New quantitative techniques to measure ribosome component stoichiometry reveal that the pool of ribosomes could be heterogeneous and/or decreased with a limited number of translationally competent ribosomes. During development or cell differentiation, the absence of specific ribosome components or their replacement by paralogs generate heterogeneous ribosomes that are specialized in the translation of specific mRNAs. Decreased ribosome content by defective biosynthesis of a subunit results in translation selectivity at the expense of short structured transcripts with high codon adaptation index. Activation of p53, as a witness of nucleolar stress associated with the hematological phenotype of ribosomopathies participates in translational reprogramming of the cell by interfering with cap-dependent translation. SUMMARY Translation selectivity is a common feature of ribosomopathies. p53 is more selectively activated in ribosomopathies with erythroid phenotype. The discovery of its dual role in regulating transcriptional and translational program supports new therapeutic perspectives.
Collapse
Affiliation(s)
- Ismael Boussaid
- Université de Paris, Laboratory of excellence for Red blood cells GR-Ex, and Institut Cochin, CNRS UMR 8104, INSERM U1016, Paris, France
| | | |
Collapse
|
12
|
Kumar S, Nattamai KJ, Hassan A, Amoah A, Karns R, Zhang C, Liang Y, Shimamura A, Florian MC, Bissels U, Luevano M, Bosio A, Davies SM, Mulaw M, Geiger H, Myers KC. Repolarization of HSC attenuates HSCs failure in Shwachman-Diamond syndrome. Leukemia 2021; 35:1751-1762. [PMID: 33077869 PMCID: PMC11334678 DOI: 10.1038/s41375-020-01054-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 08/11/2020] [Accepted: 10/05/2020] [Indexed: 01/01/2023]
Abstract
Shwachman-Diamond syndrome (SDS) is a bone marrow failure (BMF) syndrome associated with an increased risk of myelodysplasia and leukemia. The molecular mechanisms of SDS are not fully understood. We report that primitive hematopoietic cells from SDS patients present with a reduced activity of the small RhoGTPase Cdc42 and concomitantly a reduced frequency of HSCs polar for polarity proteins. The level of apolarity of SDS HSCs correlated with the magnitude of HSC depletion in SDS patients. Importantly, exogenously provided Wnt5a or GDF11 that elevates the activity of Cdc42 restored polarity in SDS HSCs and increased the number of HSCs in SDS patient samples in surrogate ex vivo assays. Single cell level RNA-Seq analyses of SDS HSCs and daughter cells demonstrated that SDS HSC treated with GDF11 are transcriptionally more similar to control than to SDS HSCs. Treatment with GDF11 reverted pathways in SDS HSCs associated with rRNA processing and ribosome function, but also viral infection and immune function, p53-dependent DNA damage, spindle checkpoints, and metabolism, further implying a role of these pathways in HSC failure in SDS. Our data suggest that HSC failure in SDS is driven at least in part by low Cdc42 activity in SDS HSCs. Our data thus identify novel rationale approaches to attenuate HSCs failure in SDS.
Collapse
Affiliation(s)
- Sachin Kumar
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Kalpana J Nattamai
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Aishlin Hassan
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA
| | - Amanda Amoah
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH, USA
| | - Cuiping Zhang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Ying Liang
- Department of Toxicology and Cancer Biology, University of Kentucky, Health Sciences Research Building, Room 340, 1095 V.A. Drive, Lexington, KY, 40536, USA
| | - Akiko Shimamura
- Boston Children's Hospital, Dana Farber Cancer Institute, Boston, MA, USA
| | | | - Ute Bissels
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | | | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Medhanie Mulaw
- Institute of Experimental Cancer Research, Ulm University, Ulm, Germany
| | - Hartmut Geiger
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, 45229, USA.
| | - Kasiani C Myers
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Reprogramming translation for gene therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:439-476. [PMID: 34175050 DOI: 10.1016/bs.pmbts.2021.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Translational control plays a fundamental role in the regulation of gene expression in eukaryotes. Modulating translational efficiency allows the cell to fine-tune the expression of genes, spatially control protein localization, and trigger fast responses to environmental stresses. Translational regulation involves mechanisms acting on multiple steps of the protein synthesis pathway: initiation, elongation, and termination. Many cis-acting elements present in the 5' UTR of transcripts can influence translation at the initiation step. Among them, the Kozak sequence impacts translational efficiency by regulating the recognition of the start codon; upstream open reading frames (uORFs) are associated with inhibition of translation of the downstream protein; internal ribosomal entry sites (IRESs) can promote cap-independent translation. CRISPR-Cas technology is a revolutionary gene-editing tool that has also been applied to the regulation of gene expression. In this chapter, we focus on the genome editing approaches developed to modulate the translational efficiency with the aim to find novel therapeutic approaches, in particular acting on the cis-elements, that regulate the initiation of protein synthesis.
Collapse
|
14
|
Kampen KR, Sulima SO, Vereecke S, De Keersmaecker K. Hallmarks of ribosomopathies. Nucleic Acids Res 2020; 48:1013-1028. [PMID: 31350888 PMCID: PMC7026650 DOI: 10.1093/nar/gkz637] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 12/11/2022] Open
Abstract
Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of ‘onco-ribosomes’ that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.
Collapse
Affiliation(s)
- Kim R Kampen
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Sergey O Sulima
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Stijn Vereecke
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI - Leuven Cancer Institute, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Microarray expression studies on bone marrow of patients with Shwachman-Diamond syndrome in relation to deletion of the long arm of chromosome 20, other chromosome anomalies or normal karyotype. Mol Cytogenet 2020; 13:1. [PMID: 31908654 PMCID: PMC6941278 DOI: 10.1186/s13039-019-0466-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/13/2019] [Indexed: 12/04/2022] Open
Abstract
Background Clonal chromosome changes are often found in the bone marrow (BM) of patients with Shwachman-Diamond syndrome (SDS). The most frequent ones include an isochromosome of the long arm of chromosome 7, i (7)(q10), and an interstitial deletion of the long arm of chromosome 20, del (20)(q). These two imbalances are mechanisms of somatic genetic rescue. The literature offers few expression studies on SDS. Results We report the expression analysis of bone marrow (BM) cells of patients with SDS in relation to normal karyotype or to the presence of clonal chromosome anomalies: del (20)(q) (five cases), i (7)(q10) (one case), and other anomalies (two cases). The study was performed using the microarray technique considering the whole transcriptome (WT) and three gene subsets selected as relevant in BM functions. The expression patterns of nine healthy controls and SDS patients with or without chromosome anomalies in the bone marrow showed clear differences. Conclusions There is a significant difference between gene expression in the BM of SDS patients and healthy subjects, both at the WT level and in the selected gene sets. The deletion del (20)(q), with the EIF6 gene consistently lost, even in patients with the smallest losses of material, changes the transcription pattern: a low proportion of abnormal cells led to a pattern similar to SDS patients without acquired anomalies, whereas a high proportion yields a pattern similar to healthy subjects. Hence, the benign prognostic value of del (20)(q). The case of i (7)(q10) showed a transcription pattern similar to healthy subjects, paralleling the positive prognostic role of this anomaly as well.
Collapse
|
16
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
17
|
Tan S, Kermasson L, Hoslin A, Jaako P, Faille A, Acevedo-Arozena A, Lengline E, Ranta D, Poirée M, Fenneteau O, Ducou le Pointe H, Fumagalli S, Beaupain B, Nitschké P, Bôle-Feysot C, de Villartay JP, Bellanné-Chantelot C, Donadieu J, Kannengiesser C, Warren AJ, Revy P. EFL1 mutations impair eIF6 release to cause Shwachman-Diamond syndrome. Blood 2019; 134:277-290. [PMID: 31151987 PMCID: PMC6754720 DOI: 10.1182/blood.2018893404] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) is a recessive disorder typified by bone marrow failure and predisposition to hematological malignancies. SDS is predominantly caused by deficiency of the allosteric regulator Shwachman-Bodian-Diamond syndrome that cooperates with elongation factor-like GTPase 1 (EFL1) to catalyze release of the ribosome antiassociation factor eIF6 and activate translation. Here, we report biallelic mutations in EFL1 in 3 unrelated individuals with clinical features of SDS. Cellular defects in these individuals include impaired ribosomal subunit joining and attenuated global protein translation as a consequence of defective eIF6 eviction. In mice, Efl1 deficiency recapitulates key aspects of the SDS phenotype. By identifying biallelic EFL1 mutations in SDS, we define this leukemia predisposition disorder as a ribosomopathy that is caused by corruption of a fundamental, conserved mechanism, which licenses entry of the large ribosomal subunit into translation.
Collapse
Affiliation(s)
- Shengjiang Tan
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Laëtitia Kermasson
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Angela Hoslin
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
| | - Pekka Jaako
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Alexandre Faille
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Abraham Acevedo-Arozena
- Medical Research Council Mammalian Genetics Unit, Harwell, United Kingdom
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
- Instituto de Tecnologías Biomédicas, Universidad de La Laguna, La Laguna, Spain
- Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas, La Laguna, Spain
| | - Etienne Lengline
- Department of Hematology, CRNMR Aplasie Médullaire, Saint-Louis University Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Dana Ranta
- Department of Haematology, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Maryline Poirée
- Department of Pediatric Hematology-Oncology, Centre Hospitalier Universitaire Lenval, Nice, France
| | - Odile Fenneteau
- Assistance Publique-Hôpitaux de Paris, Laboratory of Hematology, Robert Debré University Hospital, Paris, France
| | - Hubert Ducou le Pointe
- Radiology Department, Armand Trousseau Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Department of Pediatric Imaging, Armand Trousseau Hospital, Sorbonne Universités, Pierre et Marie Curie-Paris University, Paris, France
| | - Stefano Fumagalli
- Institut Necker Enfants Malades, Paris, France
- INSERM, U1151, Université Paris Descartes Sorbonne Cité, Paris, France
| | - Blandine Beaupain
- French Neutropenia Registry, Assistance Publique-Hôpitaux de Paris, Trousseau Hospital, Paris, France
| | - Patrick Nitschké
- INSERM Unité Mixte de Recherche 1163, Bioinformatics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bôle-Feysot
- INSERM Unité Mixte de Recherche 1163, Genomics Platform, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Pierre de Villartay
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Christine Bellanné-Chantelot
- Department of Genetics, Hospital Pitié Salpétriére Assistance Publique-Hôpitaux de Paris, Sorbonne Université, Paris, France
| | - Jean Donadieu
- Service d'Hémato-Oncologie Pédiatrique, Assistance Publique-Hôpitaux de Paris Hôpital Trousseau, Registre des neutropénies-Centre de référence des neutropénies chroniques, Paris, France
| | - Caroline Kannengiesser
- Assistance Publique-Hôpitaux de Paris Service de Génétique, Hôpital Bichat, Paris, France; and
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Revy
- INSERM Unité Mixte de Recherche 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le cancer, Paris, France
- Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
18
|
Sulima SO, Kampen KR, De Keersmaecker K. Cancer Biogenesis in Ribosomopathies. Cells 2019; 8:E229. [PMID: 30862070 PMCID: PMC6468915 DOI: 10.3390/cells8030229] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/23/2022] Open
Abstract
Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim R Kampen
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, LKI⁻Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
19
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
20
|
|
21
|
Nelson AS, Myers KC. Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. Hematol Oncol Clin North Am 2018; 32:687-700. [DOI: 10.1016/j.hoc.2018.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Müller C, Zidek LM, Ackermann T, de Jong T, Liu P, Kliche V, Zaini MA, Kortman G, Harkema L, Verbeek DS, Tuckermann JP, von Maltzahn J, de Bruin A, Guryev V, Wang ZQ, Calkhoven CF. Reduced expression of C/EBPβ-LIP extends health and lifespan in mice. eLife 2018; 7:34985. [PMID: 29708496 PMCID: PMC5986274 DOI: 10.7554/elife.34985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023] Open
Abstract
Ageing is associated with physical decline and the development of age-related diseases such as metabolic disorders and cancer. Few conditions are known that attenuate the adverse effects of ageing, including calorie restriction (CR) and reduced signalling through the mechanistic target of rapamycin complex 1 (mTORC1) pathway. Synthesis of the metabolic transcription factor C/EBPβ-LIP is stimulated by mTORC1, which critically depends on a short upstream open reading frame (uORF) in the Cebpb-mRNA. Here, we describe that reduced C/EBPβ-LIP expression due to genetic ablation of the uORF delays the development of age-associated phenotypes in mice. Moreover, female C/EBPβΔuORF mice display an extended lifespan. Since LIP levels increase upon aging in wild type mice, our data reveal an important role for C/EBPβ in the aging process and suggest that restriction of LIP expression sustains health and fitness. Thus, therapeutic strategies targeting C/EBPβ-LIP may offer new possibilities to treat age-related diseases and to prolong healthspan. The risks of major diseases including type II diabetes, cancer and Alzheimer’s are linked to the biological process of ageing. By finding ways to slow ageing, we can help more people to live longer healthier lives while avoiding these illnesses. Placing some animals on a diet that contains only two-thirds as many calories as they would normally eat can improve their fitness during old age and delay the onset of many age-related problems. It is unrealistic to expect people to control their diet to this extent, yet there may be other ways to bring about the same effects. Calorie restriction affects the activity of many different genes; for example, it causes a gene that produces a protein known as Liver-enriched Inhibitory Protein (LIP for short) to shut down. LIP controls the activity of many genes involved in metabolism, so it could be a key target for drugs to control ageing. Müller, Zidek et al. used mice that are unable to produce LIP to study this protein’s effect on ageing. The life expectancy of female mice lacking LIP increased by up to 20%. These mice were leaner, fitter, more resistant to cancer, had stronger immune systems and controlled their blood sugar levels better than normal mice. Male mice that lacked LIP did not live longer but did experience some ageing-related benefits. Genetic analysis also showed that gene activity particularly of metabolic genes is more robust in old female LIP-deficient mice and thus more similar to young control mice than old control mice. The results presented by Müller, Zidek et al. suggest that targeting the activity of the LIP gene could help to slow the ageing process. It is not yet clear whether shutting off LIP has similar beneficial effects in humans. Further research is also needed to investigate why female mice gain more benefits from a lack of LIP than males do.
Collapse
Affiliation(s)
- Christine Müller
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Laura M Zidek
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Tobias Ackermann
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Tristan de Jong
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Peng Liu
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Verena Kliche
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Mohamad Amr Zaini
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Gertrud Kortman
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Liesbeth Harkema
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Dineke S Verbeek
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Jan P Tuckermann
- Institute for Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | | | - Alain de Bruin
- Dutch Molecular Pathology Centre, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands.,Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Victor Guryev
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands
| | - Zhao-Qi Wang
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Cornelis F Calkhoven
- European Research Institute for the Biology of Ageing, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.,Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| |
Collapse
|
23
|
Warren AJ. Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome. Adv Biol Regul 2018; 67:109-127. [PMID: 28942353 PMCID: PMC6710477 DOI: 10.1016/j.jbior.2017.09.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 01/05/2023]
Abstract
Mutations that target the ubiquitous process of ribosome assembly paradoxically cause diverse tissue-specific disorders (ribosomopathies) that are often associated with an increased risk of cancer. Ribosomes are the essential macromolecular machines that read the genetic code in all cells in all kingdoms of life. Following pre-assembly in the nucleus, precursors of the large 60S and small 40S ribosomal subunits are exported to the cytoplasm where the final steps in maturation are completed. Here, I review the recent insights into the conserved mechanisms of ribosome assembly that have come from functional characterisation of the genes mutated in human ribosomopathies. In particular, recent advances in cryo-electron microscopy, coupled with genetic, biochemical and prior structural data, have revealed that the SBDS protein that is deficient in the inherited leukaemia predisposition disorder Shwachman-Diamond syndrome couples the final step in cytoplasmic 60S ribosomal subunit maturation to a quality control assessment of the structural and functional integrity of the nascent particle. Thus, study of this fascinating disorder is providing remarkable insights into how the large ribosomal subunit is functionally activated in the cytoplasm to enter the actively translating pool of ribosomes.
Collapse
MESH Headings
- Bone Marrow Diseases/metabolism
- Bone Marrow Diseases/pathology
- Cryoelectron Microscopy
- Exocrine Pancreatic Insufficiency/metabolism
- Exocrine Pancreatic Insufficiency/pathology
- Humans
- Lipomatosis/metabolism
- Lipomatosis/pathology
- Mutation
- Proteins/genetics
- Proteins/metabolism
- Ribosome Subunits, Large, Eukaryotic/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Ribosome Subunits, Small, Eukaryotic/genetics
- Ribosome Subunits, Small, Eukaryotic/metabolism
- Ribosome Subunits, Small, Eukaryotic/ultrastructure
- Shwachman-Diamond Syndrome
Collapse
Affiliation(s)
- Alan J Warren
- Cambridge Institute for Medical Research, Cambridge, UK; The Department of Haematology, University of Cambridge, Cambridge, UK; Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
24
|
Carapito R, Konantz M, Paillard C, Miao Z, Pichot A, Leduc MS, Yang Y, Bergstrom KL, Mahoney DH, Shardy DL, Alsaleh G, Naegely L, Kolmer A, Paul N, Hanauer A, Rolli V, Müller JS, Alghisi E, Sauteur L, Macquin C, Morlon A, Sancho CS, Amati-Bonneau P, Procaccio V, Mosca-Boidron AL, Marle N, Osmani N, Lefebvre O, Goetz JG, Unal S, Akarsu NA, Radosavljevic M, Chenard MP, Rialland F, Grain A, Béné MC, Eveillard M, Vincent M, Guy J, Faivre L, Thauvin-Robinet C, Thevenon J, Myers K, Fleming MD, Shimamura A, Bottollier-Lemallaz E, Westhof E, Lengerke C, Isidor B, Bahram S. Mutations in signal recognition particle SRP54 cause syndromic neutropenia with Shwachman-Diamond-like features. J Clin Invest 2017; 127:4090-4103. [PMID: 28972538 DOI: 10.1172/jci92876] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 08/10/2017] [Indexed: 12/12/2022] Open
Abstract
Shwachman-Diamond syndrome (SDS) (OMIM #260400) is a rare inherited bone marrow failure syndrome (IBMFS) that is primarily characterized by neutropenia and exocrine pancreatic insufficiency. Seventy-five to ninety percent of patients have compound heterozygous loss-of-function mutations in the Shwachman-Bodian-Diamond syndrome (sbds) gene. Using trio whole-exome sequencing (WES) in an sbds-negative SDS family and candidate gene sequencing in additional SBDS-negative SDS cases or molecularly undiagnosed IBMFS cases, we identified 3 independent patients, each of whom carried a de novo missense variant in srp54 (encoding signal recognition particle 54 kDa). These 3 patients shared congenital neutropenia linked with various other SDS phenotypes. 3D protein modeling revealed that the 3 variants affect highly conserved amino acids within the GTPase domain of the protein that are critical for GTP and receptor binding. Indeed, we observed that the GTPase activity of the mutated proteins was impaired. The level of SRP54 mRNA in the bone marrow was 3.6-fold lower in patients with SRP54-mutations than in healthy controls. Profound reductions in neutrophil counts and chemotaxis as well as a diminished exocrine pancreas size in a SRP54-knockdown zebrafish model faithfully recapitulated the human phenotype. In conclusion, autosomal dominant mutations in SRP54, a key member of the cotranslation protein-targeting pathway, lead to syndromic neutropenia with a Shwachman-Diamond-like phenotype.
Collapse
Affiliation(s)
- Raphael Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Martina Konantz
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Catherine Paillard
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service d'Onco-hématologie Pédiatrique, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Zhichao Miao
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, LabEx NetRNA, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Angélique Pichot
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Magalie S Leduc
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Holcombe, Houston, Texas, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Katie L Bergstrom
- Department of Pediatrics, Hematology-Oncology Section, Texas Children's Hematology and Cancer Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Donald H Mahoney
- Department of Pediatrics, Hematology-Oncology Section, Texas Children's Hematology and Cancer Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Deborah L Shardy
- Department of Pediatrics, Hematology-Oncology Section, Texas Children's Hematology and Cancer Centers, Baylor College of Medicine, Houston, Texas, USA
| | - Ghada Alsaleh
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Lydie Naegely
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Aline Kolmer
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Nicodème Paul
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Antoine Hanauer
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - Véronique Rolli
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Joëlle S Müller
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Elisa Alghisi
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Loïc Sauteur
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cécile Macquin
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | | | - Consuelo Sebastia Sancho
- Service de Radiologie Pédiatrique, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Patrizia Amati-Bonneau
- CNRS UMR 6015, INSERM UMR - S1083, MitoVasc Institute, Angers University, Angers, France.,Department of Biochemistry and Genetics, Angers Hospital, Angers, France
| | - Vincent Procaccio
- CNRS UMR 6015, INSERM UMR - S1083, MitoVasc Institute, Angers University, Angers, France.,Department of Biochemistry and Genetics, Angers Hospital, Angers, France
| | - Anne-Laure Mosca-Boidron
- Laboratoire de Cytogénétique, Pôle de Biologie, Centre Hospitalier Universitaire (CHU) de Dijon, Dijon, France
| | - Nathalie Marle
- Laboratoire de Cytogénétique, Pôle de Biologie, Centre Hospitalier Universitaire (CHU) de Dijon, Dijon, France
| | - Naël Osmani
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Olivier Lefebvre
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Jacky G Goetz
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Sule Unal
- Division of Pediatric Hematology, Hacettepe University Medical Faculty, Sihhiye, Ankara, Turkey
| | - Nurten A Akarsu
- Gene Mapping Laboratory, Department of Medical Genetics, Hacettepe University Medical Faculty, Sihhiye, Ankara, Turkey
| | - Mirjana Radosavljevic
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Pierre Chenard
- Département de Pathologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Fanny Rialland
- Service d'Oncologie et Hématologie Pédiatrique, Hôpital Femmes-enfants-adolescents, CHU de Nantes, Nantes, France
| | - Audrey Grain
- Service d'Oncologie et Hématologie Pédiatrique, Hôpital Femmes-enfants-adolescents, CHU de Nantes, Nantes, France
| | | | | | - Marie Vincent
- Service de Génétique Médicale, Hôpital Femmes-enfants-adolescents, CHU de Nantes, Nantes, France
| | - Julien Guy
- Service d'Hématologie Biologique, Pôle Biologie, CHU de Dijon, Dijon, France
| | - Laurence Faivre
- Service de Génétique, Hôpital d'enfants, CHU de Dijon, Dijon, France
| | | | - Julien Thevenon
- Service de Génétique, Hôpital d'enfants, CHU de Dijon, Dijon, France
| | - Kasiani Myers
- Division of Blood and Marrow Transplantation and Immune Deficiency, The Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, and
| | - Akiko Shimamura
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Eric Westhof
- Architecture et Réactivité de l'ARN, CNRS UPR 9002, LabEx NetRNA, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Claudia Lengerke
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Division of Hematology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Bertrand Isidor
- Service de Génétique Médicale, Hôpital Femmes-enfants-adolescents, CHU de Nantes, Nantes, France.,Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, INSERM UMR - S957, Faculté de Médecine, Nantes, France
| | - Seiamak Bahram
- Laboratoire d'ImmunoRhumatologie Moléculaire, Plateforme GENOMAX, INSERM UMR - S1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,LabEx TRANSPLANTEX, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Service d'Immunologie Biologique, Plateau Technique de Biologie, Pôle de Biologie, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
25
|
Sulima SO, Hofman IJF, De Keersmaecker K, Dinman JD. How Ribosomes Translate Cancer. Cancer Discov 2017; 7:1069-1087. [PMID: 28923911 PMCID: PMC5630089 DOI: 10.1158/2159-8290.cd-17-0550] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 07/31/2017] [Indexed: 12/13/2022]
Abstract
A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.
Collapse
Affiliation(s)
- Sergey O Sulima
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Isabel J F Hofman
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium
| | - Kim De Keersmaecker
- Department of Oncology, KU Leuven, University of Leuven, LKI, Leuven Cancer Institute, Leuven, Belgium.
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland.
| |
Collapse
|
26
|
Savage SA, Dufour C. Classical inherited bone marrow failure syndromes with high risk for myelodysplastic syndrome and acute myelogenous leukemia. Semin Hematol 2017. [PMID: 28637614 DOI: 10.1053/j.seminhematol.2017.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The inherited marrow failure syndromes (IBMFS) are a heterogeneous group of diseases characterized by failure in the production of one or more blood lineage. The clinical manifestations of the IBMFS vary according to the type and number of blood cell lines involved, including different combinations of anemia, leukopenia, and thrombocytopenia. In some IBMFS, systemic non-hematologic manifestations, including congenital malformations, mucocutaneous abnormalities, developmental delay, and other medical complications, may be present. Fanconi anemia (FA), caused by germline pathogenic variants in the DNA repair genes comprising the FA/BRCA pathway is associated with congenital anomalies, bone marrow failure, and increased risk of myelodysplastic syndrome (MDS), acute myelogenous leukemia (AML), and solid tumors. Dyskeratosis congenita (DC) is a telomere biology disorder (TBD) caused by aberrations in key telomere biology genes. In addition to mucocutaneous manifestations, patients with DC are at increased risk of marrow failure, MDS, AML, pulmonary fibrosis, and other complications. Ribosomal biology defects are the primary causes of Diamond Blackfan anemia (DBA) and Shwachman Diamond syndrome (SDS). In addition to pure red blood cell aplasia, DBA is associated with elevated risk of solid tumors, AML, and MDS. Patients with SDS have pancreatic insufficiency, neutropenia, as well as MDS and AML risks. Patients with severe congenital neutropenia (SCN), caused by pathogenic variants in genes essential in myeloid development, have profound neutropenia and high risk of MDS and AML. Herein we review the genetic causes, clinical features, diagnostic modalities, predisposition to malignancies with focus on leukemogenic markers whenever available, and approaches to treatments of the classical IBMFS: FA, DC, SDS, DBA, and SCN.
Collapse
Affiliation(s)
- Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
| | - Carlo Dufour
- Haematology Unit, Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
27
|
Wegman-Ostrosky T, Savage SA. The genomics of inherited bone marrow failure: from mechanism to the clinic. Br J Haematol 2017; 177:526-542. [PMID: 28211564 DOI: 10.1111/bjh.14535] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 11/19/2016] [Indexed: 12/31/2022]
Abstract
The inherited bone marrow failure syndromes (IBMFS) typically present with significant cytopenias in at least one haematopoietic cell lineage that may progress to pancytopenia, and are associated with increased risk of cancer. Although the clinical features of the IBMFS are often diagnostic, variable disease penetrance and expressivity may result in diagnostic dilemmas. The discovery of the genetic aetiology of the IBMFS has been greatly facilitated by next-generation sequencing methods. This has advanced understanding of the underlying biology of the IBMFS and been essential in improving clinical management and genetic counselling for affected patients. Herein we review the clinical features, underlying biology, and new genomic discoveries in the IBMFS, including Fanconi anaemia, dyskeratosis congenita, Diamond Blackfan anaemia, Shwachman Diamond syndrome and some disorders of the myeloid and megakaryocytic lineages.
Collapse
Affiliation(s)
- Talia Wegman-Ostrosky
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Research Division, Instituto Nacional de Cancerologia, Mexico City, Mexico
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
28
|
A screening strategy for the discovery of drugs that reduce C/EBPβ-LIP translation with potential calorie restriction mimetic properties. Sci Rep 2017; 7:42603. [PMID: 28198412 PMCID: PMC5309760 DOI: 10.1038/srep42603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/11/2017] [Indexed: 11/09/2022] Open
Abstract
An important part of the beneficial effects of calorie restriction (CR) on healthspan and lifespan is mediated through regulation of protein synthesis that is under control of the mechanistic target of rapamycin complex 1 (mTORC1). As one of its activities, mTORC1 stimulates translation into the metabolic transcription factor CCAAT/Enhancer Binding Protein β (C/EBPβ) isoform Liver-specific Inhibitory Protein (LIP). Regulation of LIP expression strictly depends on a translation re-initiation event that requires a conserved cis-regulatory upstream open reading frame (uORF) in the C/EBPβ-mRNA. We showed before that suppression of LIP in mice, reflecting reduced mTORC1-signaling at the C/EBPβ level, results in CR-type of metabolic improvements. Hence, we aim to find possibilities to pharmacologically down-regulate LIP in order to induce CR-mimetic effects. We engineered a luciferase-based cellular reporter system that acts as a surrogate for C/EBPβ-mRNA translation, emulating uORF-dependent C/EBPβ-LIP expression under different translational conditions. By using the reporter system in a high-throughput screening (HTS) strategy we identified drugs that reduce LIP. The drug Adefovir Dipivoxil passed all counter assays and increases fatty acid β-oxidation in a hepatoma cell line in a LIP-dependent manner. Therefore, these drugs that suppress translation into LIP potentially exhibit CR-mimetic properties.
Collapse
|
29
|
Calamita P, Miluzio A, Russo A, Pesce E, Ricciardi S, Khanim F, Cheroni C, Alfieri R, Mancino M, Gorrini C, Rossetti G, Peluso I, Pagani M, Medina DL, Rommens J, Biffo S. SBDS-Deficient Cells Have an Altered Homeostatic Equilibrium due to Translational Inefficiency Which Explains their Reduced Fitness and Provides a Logical Framework for Intervention. PLoS Genet 2017; 13:e1006552. [PMID: 28056084 PMCID: PMC5249248 DOI: 10.1371/journal.pgen.1006552] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/20/2017] [Accepted: 12/24/2016] [Indexed: 12/26/2022] Open
Abstract
Ribosomopathies are a family of inherited disorders caused by mutations in genes necessary for ribosomal function. Shwachman-Diamond Bodian Syndrome (SDS) is an autosomal recessive disease caused, in most patients, by mutations of the SBDS gene. SBDS is a protein required for the maturation of 60S ribosomes. SDS patients present exocrine pancreatic insufficiency, neutropenia, chronic infections, and skeletal abnormalities. Later in life, patients are prone to myelodisplastic syndrome and acute myeloid leukemia (AML). It is unknown why patients develop AML and which cellular alterations are directly due to the loss of the SBDS protein. Here we derived mouse embryonic fibroblast lines from an SbdsR126T/R126T mouse model. After their immortalization, we reconstituted them by adding wild type Sbds. We then performed a comprehensive analysis of cellular functions including colony formation, translational and transcriptional RNA-seq, stress and drug sensitivity. We show that: 1. Mutant Sbds causes a reduction in cellular clonogenic capability and oncogene-induced transformation. 2. Mutant Sbds causes a marked increase in immature 60S subunits, limited impact on mRNA specific initiation of translation, but reduced global protein synthesis capability. 3. Chronic loss of SBDS activity leads to a rewiring of gene expression with reduced ribosomal capability, but increased lysosomal and catabolic activity. 4. Consistently with the gene signature, we found that SBDS loss causes a reduction in ATP and lactate levels, and increased susceptibility to DNA damage. Combining our data, we conclude that a cell-specific fragile phenotype occurs when SBDS protein drops below a threshold level, and propose a new interpretation of the disease. Shwachman Diamond syndrome (SDS) is an inherited disease. SDS presents, as hallmarks, exocrine pancreatic insufficiency, increased rate of infections, and higher incidence of leukemia. Most cases are due to mutations in the SBDS gene. SBDS encodes for a ribosome maturation factor. In this study, we immortalized mouse fibroblasts carrying one of the most common mutation of SDS patients and performed a thorough analysis of their properties. We show that the loss of SBDS activity causes a rewiring of gene expression and cellular metabolism. Overall we find a reduction of protein synthesis capability, a lower energy status, and increased lysosomal capability. SBDS mutant cells have an increased susceptibility to various forms of stress, but are strikingly resistant to oncogene-induced transformation. We propose a model that explains the complex phenotype of SDS patients and suggests roads for a rationale treatment.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- * E-mail: (SB); (PC)
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Arianna Russo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DiSIT, University of Eastern Piedmont, Alessandria, Italy
| | - Elisa Pesce
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Sara Ricciardi
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Farhat Khanim
- School of Biosciences, University of Birmingham Edgbaston Birmingham, United Kingdom
| | - Cristina Cheroni
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Roberta Alfieri
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Marilena Mancino
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Chiara Gorrini
- Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Grazisa Rossetti
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
| | - Ivana Peluso
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | - Massimiliano Pagani
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Diego L. Medina
- Telethon Institute of Genetics and Medicine (TIGEM)-Fondazione Telethon, Pozzuoli, Italy
| | | | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, “Romeo ed Enrica Invernizzi”, Milan, Italy
- DBS, Università degli Studi di Milano, Milan, Italy
- * E-mail: (SB); (PC)
| |
Collapse
|