1
|
Liu X, Luo Y, Zhang Y, Xie Z, Xu C. Gold nanoparticle-mediated fluorescence resonance energy transfer for analytical applications in the fields of life health and safety. Talanta 2025; 282:127023. [PMID: 39406076 DOI: 10.1016/j.talanta.2024.127023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/24/2024] [Accepted: 10/08/2024] [Indexed: 11/20/2024]
Abstract
Fluorescence Resonance Energy Transfer (FRET) has emerged as a predominant, highly sensitive, and homogeneous optical analytical technique in the realm of analytical testing and bio-imaging. Gold nanoparticles (AuNPs) demonstrate a size-dependent, broader absorption range within visible wavelengths owing to the phenomenon of surface plasmon resonance. As a result, they can effectively act as light acceptors, enabling the creation of a donor-acceptor system crucial for achieving precise target analyte analysis. In this comprehensive review, we present an extensive survey of recent research advancements in the field of FRET techniques based on AuNPs for the analytical detection of a wide range of entities, including some biomolecules, pesticides, enzymes, microorganisms, food safety and environmental pollutants. Additionally, we elucidate the procedural strategies and underlying mechanisms involved. Finally, we provide perspectives on the current issues and future efforts surrounding the FRET applications of AuNPs in biological analysis. Overall, this review aims to provide a holistic comprehension of gold nanoparticle applications in life analysis using FRET, while also presenting a promising vision for future endeavors in this domain.
Collapse
Affiliation(s)
- Xuemei Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Yunjing Luo
- Beijing Key Laboratory of Environmental and Viral Oncology, College of Chemistry and Life Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China.
| | - Yong Zhang
- College of Chemistry & Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, State Key Laboratory of New Pharmaceutical Preparations and Excipients, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding, 071002, China
| | - Ziqi Xie
- College of Mathematics Statistics and Mechanics, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang District, Beijing, 100124, China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
2
|
Gummadi ASC, Muppa DK, Yella VR. Dissecting non-B DNA structural motifs in untranslated regions of eukaryotic genomes. Genomics Inform 2024; 22:25. [PMID: 39605082 PMCID: PMC11603647 DOI: 10.1186/s44342-024-00028-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
The untranslated regions (UTRs) of genes significantly impact various biological processes, including transcription, posttranscriptional control, mRNA stability, localization, and translation efficiency. In functional areas of genomes, non-B DNA structures such as cruciform, curved, triplex, G-quadruplex, and Z-DNA structures are common and have an impact on cellular physiology. Although the role of these structures in cis-regulatory regions such as promoters is well established in eukaryotic genomes, their prevalence within UTRs across different eukaryotic classes has not been extensively documented. Our study investigated the prevalence of various non-B DNA motifs within the 5' and 3' UTRs across diverse eukaryotic species. Our comparative analysis encompassed the 5'-UTRs and 3'UTRs of 360 species representing diverse eukaryotic domains of life, including Arthropoda (Diptera, Hemiptera, and Hymenoptera), Chordata (Artiodactyla, Carnivora, Galliformes, Passeriformes, Primates, Rodentia, Squamata, Testudines), Magnoliophyta (Brassicales), Fabales (Poales), and Nematoda (Rhabditida), on the basis of datasets derived from the UTRdb. We observed that species belonging to taxonomic orders such as Rhabditida, Diptera, Brassicales, and Hemiptera present a prevalence of curved DNA motifs in their UTRs, whereas orders such as Testudines, Galliformes, and Rodentia present a preponderance of G-quadruplexes in both UTRs. The distribution of motifs is conserved across different taxonomic classes, although species-specific variations in motif preferences were also observed. Our research unequivocally illuminates the prevalence and potential functional implications of non-B DNA motifs, offering invaluable insights into the evolutionary and biological significance of these structures.
Collapse
Affiliation(s)
- Aruna Sesha Chandrika Gummadi
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Divya Kumari Muppa
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India
| | - Venakata Rajesh Yella
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522302, India.
| |
Collapse
|
3
|
Zhang Y, Cheng Y, Liu X, Tang H, Wang F, Tang LJ, Jiang JH. Visualization of Mitochondrial DNA G-Quadruplexes with Isaindigotone Derived Near-Infrared Fluorogenic Probe. Anal Chem 2024; 96:17329-17336. [PMID: 39412418 DOI: 10.1021/acs.analchem.4c03722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Mitochondrial DNA G-quadruplexes (mtDNA G4s) play potential regulatory roles in mitochondrial functions. Fluorescent probes for imaging mtDNA G4s may provide useful information to unveil their regulating dynamics and functions. However, the existing probes for mtDNA G4s still exhibit short absorption and emission wavelengths and limited sensitivity. Here, we develop a new isaindigotone-derived near-infrared (NIR) fluorogenic probe for imaging mtDNA G4s in live cells and in vivo. Different fluorescent probes are engineered by conjugating the isaindigotone scaffold with varying electron-donating groups. It is shown that the probe ISAP using dimethylaminophenyl as the electron-donating group exhibits near-infrared absorption/emission and a high fluorescence activation fold in response to G4s. Molecular docking simulations reveal that ISAP binds to c-Myc G4 via multiple π-π stacking and hydrogen-bond interaction. Cellular studies show that ISAP exhibits an excellent mitochondrial targeting ability and allows specific imaging of mtDNA G4s. We further employed ISAP to image the dynamics of mtDNA G4s under glycolysis and oxidative stresses in live cells. Its capability to mtDNA G4s in vivo is showcased using a tumor-bearing mice model. This probe may serve as a useful tool to image mtDNA G4s and interrogate their biological roles in living systems.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yidan Cheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Xianjun Liu
- College of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, P. R. China
| | - Hao Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Li-Juan Tang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
4
|
Fujimoto A, Kinjo M, Kitamura A. Short Repeat Ribonucleic Acid Reduces Cytotoxicity by Preventing the Aggregation of TDP-43 and Its 25 KDa Carboxy-Terminal Fragment. JACS AU 2024; 4:3896-3909. [PMID: 39483234 PMCID: PMC11522920 DOI: 10.1021/jacsau.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
TAR DNA/RNA-binding protein 43 kDa (TDP-43) proteinopathy is a hallmark of neurodegenerative disorders, such as amyotrophic lateral sclerosis, in which cytoplasmic aggregates containing TDP-43 and its C-terminal fragments, such as TDP-25, are observed in degenerative neuronal cells. However, few reports have focused on small molecules that can reduce their aggregation and cytotoxicity. Here, we show that short RNA repeats of GGGGCC and AAAAUU are aggregation suppressors of TDP-43 and TDP-25. TDP-25 interacts with these RNAs, as well as TDP-43, despite the lack of major RNA-recognition motifs using fluorescence cross-correlation spectroscopy. Expression of these RNAs significantly decreases the number of cells harboring cytoplasmic aggregates of TDP-43 and TDP-25 and ameliorates cell death by TDP-25 and mislocalized TDP-43 without altering the cellular transcriptome of molecular chaperones. Consequently, short RNA repeats of GGGGCC and AAAAUU can maintain proteostasis by preventing the aggregation of TDP-43 and TDP-25.
Collapse
Affiliation(s)
- Ai Fujimoto
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- Graduate
School of Life Science, Hokkaido University, N10W8, Kita-ku, Sapporo 060-0810, Japan
| | - Masataka Kinjo
- Laboratory
of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
| | - Akira Kitamura
- Laboratory
of Cellular and Molecular Sciences, Faculty of Advanced Life Science, Hokkaido University, N21W11, Kita-ku, Sapporo 001-0021, Japan
- PRIME,
Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
5
|
Li G, She FF, Liao CY, Wang ZW, Wang YT, Wu YD, Huang XX, Xie CK, Lin HY, Zhu SC, Chen YH, Wu ZH, Chen JZ, Chen S, Chen YL. cNEK6 induces gemcitabine resistance by promoting glycolysis in pancreatic ductal adenocarcinoma via the SNRPA/PPA2c/mTORC1 axis. Cell Death Dis 2024; 15:742. [PMID: 39394197 PMCID: PMC11470042 DOI: 10.1038/s41419-024-07138-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Resistance to gemcitabine in pancreatic ductal adenocarcinoma (PDAC) leads to ineffective chemotherapy and, consequently, delayed treatment, thereby contributing to poor prognosis. Glycolysis is an important intrinsic reason for gemcitabine resistance as it competitively inhibits gemcitabine activity by promoting deoxycytidine triphosphate accumulation in PDAC. However, biomarkers are lacking to determine which patients can benefit significantly from glycolysis inhibition under the treatment of gemcitabine activity, and a comprehensive understanding of the molecular mechanisms that promote glycolysis in PDAC will contribute to the development of a strategy to sensitize gemcitabine chemotherapy. In this study, we aimed to identify a biomarker that can robustly indicate the intrinsic resistance of PDAC to gemcitabine and guide chemotherapy sensitization strategies. After establishing gemcitabine-resistant cell lines in our laboratory and collecting pancreatic cancer and adjacent normal tissues from gemcitabine-treated patients, we observed that circRNA hsa_circ_0008383 (namely cNEK6) was highly expressed in the peripheral blood and tumor tissues of patients and xenografts with gemcitabine-resistant PDAC. cNEK6 enhanced resistance to gemcitabine by promoting glycolysis in PDAC. Specifically, cNEK6 prevented K48 ubiquitination of small ribonucleoprotein peptide A from the BTRC, a ubiquitin E3 ligase; thus, the accumulated SNRPA stopped PP2Ac translation by binding to its G-quadruplexes in 5' UTR of mRNA. mTORC1 pathway was aberrantly phosphorylated and activated owing to the absence of PP2Ac. The expression level of cNEK6 in the peripheral blood and tumor tissues correlated significantly and positively with the activation of the mTORC1 pathway and degree of glycolysis. Hence, the therapeutic effect of gemcitabine is limited in patients with high cNEK6 levels, and in combination with the mTORC1 inhibitor, rapamycin, can enhance sensitivity to gemcitabine chemotherapy.
Collapse
Affiliation(s)
- Ge Li
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Fei-Fei She
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Cheng-Yu Liao
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zu-Wei Wang
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yi-Ting Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yong-Din Wu
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiao-Xiao Huang
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Cheng-Ke Xie
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Hong-Yi Lin
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Shun-Cang Zhu
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yin-Hao Chen
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Zhen-Heng Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
- Fujian Medical University Cancer Center, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| | - Jiang-Zhi Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Medical University Cancer Center, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| | - Shi Chen
- Fuzhou University Affiliated Provincial Hospital, Fuzhou, China.
- Department of Hepatopancreatobiliary Surgery, Fujian Provincial Hospital, Fuzhou, China.
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.
| | - Yan-Ling Chen
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Medical University Cancer Center, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, China.
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
6
|
Sundaresan S, Uttamrao PP, Kovuri P, Rathinavelan T. Entangled World of DNA Quadruplex Folds. ACS OMEGA 2024; 9:38696-38709. [PMID: 39310165 PMCID: PMC11411666 DOI: 10.1021/acsomega.4c04579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
DNA quadruplexes participate in many biological functions. It takes up a variety of folds based on the sequence and environment. Here, a meticulous analysis of experimentally determined 437 quadruplex structures (433 PDBs) deposited in the PDB is carried out. The analysis reveals the modular representation of the quadruplex folds. Forty-eight unique quadruplex motifs (whose diversity arises out of the propeller, bulge, diagonal, and lateral loops that connect the quartets) are identified, leading to simple to complex inter/intramolecular quadruplex folds. The two-layered structural motifs are further classified into 33 continuous and 15 discontinuous motifs. While the continuous motifs can directly be extended to a quadruplex fold, the discontinuous motif requires an additional loop(s) to complete a fold, as illustrated here with examples. Similarly, higher-order quadruplex folds can also be represented by continuous or discontinuous motifs or their combinations. Such a modular representation of the quadruplex folds may assist in custom engineering of quadruplexes, designing motif-based drugs, and the prediction of the quadruplex structure. Furthermore, it could facilitate understanding of the role of quadruplexes in biological functions and diseases.
Collapse
Affiliation(s)
- Sruthi Sundaresan
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Patil Pranita Uttamrao
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | - Purnima Kovuri
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana 502284, India
| | | |
Collapse
|
7
|
Sun H, Sun R, Yang D, Li Q, Jiang W, Zhou T, Bai R, Zhong F, Zhang B, Xiang J, Liu J, Tang Y, Yao L. A Cyanine Dye for Highly Specific Recognition of Parallel G-Quadruplex Topology and Its Application in Clinical RNA Detection for Cancer Diagnosis. J Am Chem Soc 2024; 146:22736-22746. [PMID: 39078265 DOI: 10.1021/jacs.4c07698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
G-quadruplex (G4), an unconventional nucleic acid structure, shows polymorphism in its topological morphology. The parallel G4 topology is the most prevalent form in organisms and plays a regulatory role in many biological processes. Designing fluorescent probes with high specificity for parallel G4s is important but challenging. Herein, a supramolecular assembly of the anionic cyanine dye SCY-5 is reported, which selectively identifies parallel G4 topology. SCY-5 can clearly distinguish parallel G4s from other G4s and non-G4s, even including hybrid-type G4s with parallel characteristics. The high specificity mechanism of SCY-5 involves a delicate balance between electrostatic repulsion and π-π interaction between SCY-5 and G4s. Using SCY-5, cellular RNA extracted from peripheral venous blood was quantitatively detected, and a remarkable increase in RNA G4 content in cancer patients compared to healthy volunteers was confirmed for the first time. This study provides new insights for designing specific probes for parallel G4 topology and opens a new path for clinical cancer diagnosis using RNA G4 as a biomarker.
Collapse
Affiliation(s)
- Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ranran Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Li
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Jiang
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Tianxing Zhou
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ruiyang Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Fanru Zhong
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Boyang Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng Xiang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang Y, Wang L, Wang F, Chu X, Jiang JH. G-Quadruplex mRNAs Silencing with Inducible Ribonuclease Targeting Chimera for Precision Tumor Therapy. J Am Chem Soc 2024; 146:15815-15824. [PMID: 38832857 DOI: 10.1021/jacs.4c02091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Ribonuclease targeting chimera (RIBOTAC) represents an emerging strategy for targeted therapy. However, RIBOTAC that is selectively activated by bio-orthogonal or cell-specific triggers has not been explored. We developed a strategy of inducible RIBOTAC (iRIBOTAC) that enables on-demand degradation of G-quadruplex (G4) RNAs for precision cancer therapy. iRIBOTAC is designed by coupling an RNA G4 binder with a caged ribonuclease recruiter, which can be decaged by a bio-orthogonal reaction, tumor-specific enzyme, or metabolite. A bivalent G4 binder is engineered by conjugating a near-infrared (NIR) fluorescence G4 ligand to a noncompetitive G4 ligand, conferring fluorescence activation on binding G4s with synergistically enhanced affinity. iRIBOTAC is demonstrated to greatly knockdown G4 RNAs upon activation under bio-orthogonal or cell-specific stimulus, with dysregulation of gene expressions involving cell killing, channel regulator activity, and metabolism as revealed by RNA sequencing. This strategy also shows a crucial effect on cell fate with remarkable biochemical hallmarks of apoptosis. Mice model studies demonstrate that iRIBOTAC allows selective imaging and growth suppression of tumors with bio-orthogonal and tumor-specific controls, highlighting G4 RNA targeting and inducible silencing as a valuable RIBOTAC paradigm for cancer therapy.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Lingyan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
9
|
Koksaldi I, Park D, Atilla A, Kang H, Kim J, Seker UOS. RNA-Based Sensor Systems for Affordable Diagnostics in the Age of Pandemics. ACS Synth Biol 2024; 13:1026-1037. [PMID: 38588603 PMCID: PMC11036506 DOI: 10.1021/acssynbio.3c00698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024]
Abstract
In the era of the COVID-19 pandemic, the significance of point-of-care (POC) diagnostic tools has become increasingly vital, driven by the need for quick and precise virus identification. RNA-based sensors, particularly toehold sensors, have emerged as promising candidates for POC detection systems due to their selectivity and sensitivity. Toehold sensors operate by employing an RNA switch that changes the conformation when it binds to a target RNA molecule, resulting in a detectable signal. This review focuses on the development and deployment of RNA-based sensors for POC viral RNA detection with a particular emphasis on toehold sensors. The benefits and limits of toehold sensors are explored, and obstacles and future directions for improving their performance within POC detection systems are presented. The use of RNA-based sensors as a technology for rapid and sensitive detection of viral RNA holds great potential for effectively managing (dealing/coping) with present and future pandemics in resource-constrained settings.
Collapse
Affiliation(s)
- Ilkay
Cisil Koksaldi
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Dongwon Park
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Abdurahman Atilla
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| | - Hansol Kang
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Jongmin Kim
- Department
of Life Sciences, Pohang University of Science
and Technology, Pohang 37673, South Korea
| | - Urartu Ozgur Safak Seker
- UNAM
− Institute of Materials Science and Nanotechnology, National
Nanotechnology Research Center (UNAM), Bilkent
University, Ankara 06800, Turkey
| |
Collapse
|
10
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
11
|
Valdes Angues R, Perea Bustos Y. SARS-CoV-2 Vaccination and the Multi-Hit Hypothesis of Oncogenesis. Cureus 2023; 15:e50703. [PMID: 38234925 PMCID: PMC10792266 DOI: 10.7759/cureus.50703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2023] [Indexed: 01/19/2024] Open
Abstract
Cancer is a complex and dynamic disease. The "hallmarks of cancer" were proposed by Hanahan and Weinberg (2000) as a group of biological competencies that human cells attain as they progress from normalcy to neoplastic transformation. These competencies include self-sufficiency in proliferative signaling, insensitivity to growth-suppressive signals and immune surveillance, the ability to evade cell death, enabling replicative immortality, reprogramming energy metabolism, inducing angiogenesis, and activating tissue invasion and metastasis. Underlying these competencies are genome instability, which expedites their acquisition, and inflammation, which fosters their function(s). Additionally, cancer exhibits another dimension of complexity: a heterogeneous repertoire of infiltrating and resident host cells, secreted factors, and extracellular matrix, known as the tumor microenvironment, that through a dynamic and reciprocal relationship with cancer cells supports immortality, local invasion, and metastatic dissemination. This staggering intricacy calls for caution when advising all people with cancer (or a previous history of cancer) to receive the COVID-19 primary vaccine series plus additional booster doses. Moreover, because these patients were not included in the pivotal clinical trials, considerable uncertainty remains regarding vaccine efficacy, safety, and the risk of interactions with anticancer therapies, which could reduce the value and innocuity of either medical treatment. After reviewing the available literature, we are particularly concerned that certain COVID-19 vaccines may generate a pro-tumorigenic milieu (i.e., a specific environment that could lead to neoplastic transformation) that predisposes some (stable) oncologic patients and survivors to cancer progression, recurrence, and/or metastasis. This hypothesis is based on biological plausibility and fulfillment of the multi-hit hypothesis of oncogenesis (i.e., induction of lymphopenia and inflammation, downregulation of angiotensin-converting enzyme 2 (ACE2) expression, activation of oncogenic cascades, sequestration of tumor suppressor proteins, dysregulation of the RNA-G quadruplex-protein binding system, alteration of type I interferon responses, unsilencing of retrotransposable elements, etc.) together with growing evidence and safety reports filed to Vaccine Adverse Effects Report System (VAERS) suggesting that some cancer patients experienced disease exacerbation or recurrence following COVID-19 vaccination. In light of the above and because some of these concerns (i.e., alteration of oncogenic pathways, promotion of inflammatory cascades, and dysregulation of the renin-angiotensin system) also apply to cancer patients infected with SARS-CoV-2, we encourage the scientific and medical community to urgently evaluate the impact of both COVID-19 and COVID-19 vaccination on cancer biology and tumor registries, adjusting public health recommendations accordingly.
Collapse
Affiliation(s)
- Raquel Valdes Angues
- Neurology, Oregon Health and Science University School of Medicine, Portland, USA
| | | |
Collapse
|
12
|
Benasutti H, Maricelli JW, Seto J, Hall J, Halbert C, Wicki J, Heusgen L, Purvis N, Regnier M, Lin DC, Rodgers BD, Chamberlain JS. Efficacy and muscle safety assessment of fukutin-related protein gene therapy. Mol Ther Methods Clin Dev 2023; 30:65-80. [PMID: 37361354 PMCID: PMC10285450 DOI: 10.1016/j.omtm.2023.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
Limb-girdle muscular dystrophy type R9 (LGMDR9) is a muscle-wasting disease that begins in the hip and shoulder regions of the body. This disease is caused by mutations in fukutin-related protein (FKRP), a glycosyltransferase critical for maintaining muscle cell integrity. Here we investigated potential gene therapies for LGMDR9 containing an FKRP expression construct with untranslated region (UTR) modifications. Initial studies treated an aged dystrophic mouse model (FKRPP448L) with adeno-associated virus vector serotype 6 (AAV6). Grip strength improved in a dose- and time-dependent manner, injected mice exhibited fewer central nuclei and serum creatine kinase levels were 3- and 5-fold lower compared to those in non-injected FKRPP448L mice. Treatment also partially stabilized the respiratory pattern during exercise and improved treadmill running, partially protecting muscle from exercise-induced damage. Western blotting of C2C12 myotubes using a novel rabbit antibody confirmed heightened translation with the UTR modifications. We further explored the question of FKRP toxicity in wild-type mice using high doses of two additional muscle-tropic capsids: AAV9 and AAVMYO1. No toxic effects were detected with either therapeutic agent. These data further support the feasibility of gene therapy to treat LGMDR9.
Collapse
Affiliation(s)
- Halli Benasutti
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Joseph W. Maricelli
- School of Molecular Biosciences, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA
- Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Jane Seto
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - John Hall
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Christine Halbert
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Jacqueline Wicki
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Lydia Heusgen
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Nicholas Purvis
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington School of Medicine, Seattle, WA, USA
| | - David C. Lin
- Department of Integrative Physiology and Neuroscience and the Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99164, USA
| | - Buel D. Rodgers
- School of Molecular Biosciences, Washington State University College of Veterinary Medicine, Pullman, WA 99164, USA
- Washington Center for Muscle Biology, Washington State University, Pullman, WA 99164, USA
| | - Jeffrey S. Chamberlain
- Department of Biochemistry, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
- Sen. Paul D. Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
13
|
Asamitsu S, Yabuki Y, Matsuo K, Kawasaki M, Hirose Y, Kashiwazaki G, Chandran A, Bando T, Wang DO, Sugiyama H, Shioda N. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. SCIENCE ADVANCES 2023; 9:eade2035. [PMID: 36827365 PMCID: PMC9956113 DOI: 10.1126/sciadv.ade2035] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Consecutive guanine RNA sequences can adopt quadruple-stranded structures, termed RNA G-quadruplexes (rG4s). Although rG4-forming sequences are abundant in transcriptomes, the physiological roles of rG4s in the central nervous system remain poorly understood. In the present study, proteomics analysis of the mouse forebrain identified DNAPTP6 as an RNA binding protein with high affinity and selectivity for rG4s. We found that DNAPTP6 coordinates the assembly of stress granules (SGs), cellular phase-separated compartments, in an rG4-dependent manner. In neurons, the knockdown of DNAPTP6 diminishes the SG formation under oxidative stress, leading to synaptic dysfunction and neuronal cell death. rG4s recruit their mRNAs into SGs through DNAPTP6, promoting RNA self-assembly and DNAPTP6 phase separation. Together, we propose that the rG4-dependent phase separation of DNAPTP6 plays a critical role in neuronal function through SG assembly.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Moe Kawasaki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Anandhakumar Chandran
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dan Ohtan Wang
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
14
|
Ma Y, Yang Y, Xin J, He L, Hu Z, Gao T, Pan F, Guo Z. RNA G-Quadruplex within the 5'-UTR of FEN1 Regulates mRNA Stability under Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12020276. [PMID: 36829835 PMCID: PMC9952066 DOI: 10.3390/antiox12020276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) are a group of highly oxidative molecules that induce DNA damage, affecting DNA damage response (DDR) and gene expression. It is now recognized that DNA base excision repair (BER) is one of the important pathways responsible for sensing oxidative stress to eliminate DNA damage, in which FEN1 plays an important role in this process. However, the regulation of FEN1 under oxidative stress is still unclear. Here, we identified a novel RNA G-quadruplex (rG4) sequence in the 5'untranslated region (5'UTR) of FEN1 mRNA. Under oxidative stress, the G bases in the G4-forming sequence can be oxidized by ROS, resulting in structural disruption of the G-quadruplex. ROS or TMPyP4, a G4-structural ligand, disrupted the formation of G4 structure and affected the expression of FEN1. Furthermore, pull-down experiments identified a novel FEN1 rG4-binding protein, heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1), and cellular studies have shown that hnRNPA1 plays an important role in regulating FEN1 expression. This work demonstrates that rG4 acts as a ROS sensor in the 5'UTR of FEN1 mRNA. Taken together, these results suggest a novel role for rG4 in translational control under oxidative stress.
Collapse
Affiliation(s)
- Ying Ma
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yang Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingyu Xin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Lingfeng He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tao Gao
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Feiyan Pan
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| | - Zhigang Guo
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Correspondence: (F.P.); (Z.G.)
| |
Collapse
|
15
|
Apostolidi M, Stamatopoulou V. Aberrant splicing in human cancer: An RNA structural code point of view. Front Pharmacol 2023; 14:1137154. [PMID: 36909167 PMCID: PMC9995731 DOI: 10.3389/fphar.2023.1137154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Alternative splicing represents an essential process that occurs widely in eukaryotes. In humans, most genes undergo alternative splicing to ensure transcriptome and proteome diversity reflecting their functional complexity. Over the last decade, aberrantly spliced transcripts due to mutations in cis- or trans-acting splicing regulators have been tightly associated with cancer development, largely drawing scientific attention. Although a plethora of single proteins, ribonucleoproteins, complexed RNAs, and short RNA sequences have emerged as nodal contributors to the splicing cascade, the role of RNA secondary structures in warranting splicing fidelity has been underestimated. Recent studies have leveraged the establishment of novel high-throughput methodologies and bioinformatic tools to shed light on an additional layer of splicing regulation in the context of RNA structural elements. This short review focuses on the most recent available data on splicing mechanism regulation on the basis of RNA secondary structure, emphasizing the importance of the complex RNA G-quadruplex structures (rG4s), and other specific RNA motifs identified as splicing silencers or enhancers. Moreover, it intends to provide knowledge on newly established techniques that allow the identification of RNA structural elements and highlight the potential to develop new RNA-oriented therapeutic strategies against cancer.
Collapse
Affiliation(s)
- Maria Apostolidi
- Agilent Laboratories, Agilent Technologies, Santa Clara, CA, United States
| | | |
Collapse
|
16
|
Kabbara A, Vialet B, Marquevielle J, Bonnafous P, Mackereth CD, Amrane S. RNA G-quadruplex forming regions from SARS-2, SARS-1 and MERS coronoviruses. Front Chem 2022; 10:1014663. [PMID: 36479439 PMCID: PMC9719988 DOI: 10.3389/fchem.2022.1014663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/26/2022] [Indexed: 11/14/2023] Open
Abstract
COVID-19 (Corona Virus Disease 2019), SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) are infectious diseases each caused by coronavirus outbreaks. Small molecules and other therapeutics are rapidly being developed to treat these diseases, but the threat of new variants and outbreaks argue for the identification of additional viral targets. Here we identify regions in each of the three coronavirus genomes that are able to form G-quadruplex (G4) structures. G4s are structures formed by DNA or RNA with a core of two or more stacked planes of guanosine tetrads. In recent years, numerous DNA and RNA G4s have emerged as promising pharmacological targets for the treatment of cancer and viral infection. We use a combination of bioinformatics and biophysical approaches to identify conserved RNA G4 regions from the ORF1A and S sequences of SARS-CoV, SARS-CoV-2 and MERS-CoV. Although a general depletion of G4-forming regions is observed in coronaviridae, the preservation of these selected G4 sequences support a significance in viral replication. Targeting these RNA structures may represent a new antiviral strategy against these viruses distinct from current approaches that target viral proteins.
Collapse
Affiliation(s)
| | | | | | | | | | - Samir Amrane
- Université de Bordeaux, INSERM U1212, CNRS UMR 5320, ARNA Laboratory, IECB, Bordeaux, France
| |
Collapse
|
17
|
Bazzicalupi C, Bonardi A, Biver T, Ferraroni M, Papi F, Savastano M, Lombardi P, Gratteri P. Probing the Efficiency of 13-Pyridylalkyl Berberine Derivatives to Human Telomeric G-Quadruplexes Binding: Spectroscopic, Solid State and In Silico Analysis. Int J Mol Sci 2022; 23:ijms232214061. [PMID: 36430540 PMCID: PMC9693123 DOI: 10.3390/ijms232214061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The interaction between the series of berberine derivatives 1-5 (NAX071, NAX120, NAX075, NAX077 and NAX079) and human telomeric G-quadruplexes (G4), which are able to inhibit the Telomerase enzyme's activity in malignant cells, was investigated. The derivatives bear a pyridine moiety connected by a hydrocarbon linker of varying length (n = 1-5, with n number of aliphatic carbon atoms) to the C13 position of the parent berberine. As for the G4s, both bimolecular 5'-TAGGGTTAGGGT-3' (Tel12) and monomolecular 5'-TAGGGTTAGGGTTAGGGTTAGGG-3' (Tel23) DNA oligonucleotides were considered. Spectrophotometric titrations, melting tests, X-ray diffraction solid state analysis and in silico molecular dynamics (MD) simulations were used to describe the different systems. The results were compared in search of structure-activity relationships. The analysis pointed out the formation of 1:1 complexes between Tel12 and all ligands, whereas both 1:1 and 2:1 ligand/G4 stoichiometries were found for the adduct formed by NAX071 (n = 1). Tel12, with tetrads free from the hindrance by the loop, showed a higher affinity. The details of the different binding geometries were discussed, highlighting the importance of H-bonds given by the berberine benzodioxole group and a correlation between the strength of binding and the hydrocarbon linker length. Theoretical (MD) and experimental (X-ray) structural studies evidence the possibility for the berberine core to interact with one or both G4 strands, depending on the constraints given by the linker length, thus affecting the G4 stabilization effect.
Collapse
Affiliation(s)
- Carla Bazzicalupi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| | - Alessandro Bonardi
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Tarita Biver
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Marta Ferraroni
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Francesco Papi
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
| | - Matteo Savastano
- Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Firenze, Italy
| | - Paolo Lombardi
- Naxospharma srl, Via G. Di Vittorio 70, Novate Milanese, 20026 Milano, Italy
| | - Paola Gratteri
- Laboratory of Molecular Modeling Cheminformatics & QSAR, Department NEUROFARBA—Pharmaceutical and Nutraceutical Section, University of Firenze, Via Ugo Schiff 6, 50019 Firenze, Italy
- Correspondence: (C.B.); (P.G.)
| |
Collapse
|
18
|
Cheng A, Liu C, Ye W, Huang D, She W, Liu X, Fung CP, Xu N, Suen MC, Ye W, Sung HHY, Williams ID, Zhu G, Qian PY. Selective C9orf72 G-Quadruplex-Binding Small Molecules Ameliorate Pathological Signatures of ALS/FTD Models. J Med Chem 2022; 65:12825-12837. [PMID: 36226410 PMCID: PMC9574859 DOI: 10.1021/acs.jmedchem.2c00654] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The G-quadruplex (G4) forming C9orf72 GGGGCC (G4C2) expanded hexanucleotide repeat (EHR)
is the predominant genetic cause of amyotrophic lateral sclerosis
(ALS) and frontotemporal dementia (FTD). Developing selective G4-binding
ligands is challenging due to the conformational polymorphism and
similarity of G4 structures. We identified three first-in-class marine
natural products, chrexanthomycin A (cA), chrexanthomycin
B (cB), and chrexanthomycin C (cC), with
remarkable bioactivities. Thereinto, cA shows the highest
permeability and lowest cytotoxicity to live cells. NMR titration
experiments and in silico analysis demonstrate that cA, cB, and cC selectively bind
to DNA and RNA G4C2 G4s. Notably, cA and cC dramatically reduce G4C2 EHR-caused cell death, diminish G4C2 RNA
foci in (G4C2)29-expressing Neuro2a cells, and significantly
eliminate ROS in HT22 cells. In (G4C2)29-expressing Drosophila, cA and cC significantly
rescue eye degeneration and improve locomotor deficits. Overall, our
findings reveal that cA and cC are potential
therapeutic agents deserving further clinical study.
Collapse
Affiliation(s)
- Aifang Cheng
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changdong Liu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Wenkang Ye
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Duli Huang
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Weiyi She
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China
| | - Xin Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Chun Po Fung
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Naining Xu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Department of Oral and Maxillofacial Surgery, Stomatological Center, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
| | - Monica Ching Suen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Wei Ye
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Herman Ho Yung Sung
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ian Duncan Williams
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Guang Zhu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Shenzhen Research Institute, The Hong Kong University of Science and Technology, Hi-Tech Park, Nanshan, Shenzhen 518057, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Hong Kong 999077, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
19
|
Optimization of Gonyautoxin1/4-Binding G-Quadruplex Aptamers by Label-Free Surface-Enhanced Raman Spectroscopy. Toxins (Basel) 2022; 14:toxins14090622. [PMID: 36136560 PMCID: PMC9505997 DOI: 10.3390/toxins14090622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Nucleic acids with G-quadruplex (G4) structures play an important role in physiological function, analysis and detection, clinical diagnosis and treatment, and new drug research and development. Aptamers obtained using systematic evolution of ligands via exponential enrichment (SELEX) screening technology do not always have the best affinity or binding specificity to ligands. Therefore, the establishment of a structure-oriented experimental method is of great significance. To study the potential of surface-enhanced Raman spectroscopy (SERS) in aptamer optimization, marine biotoxin gonyautoxin (GTX)1/4 and its G4 aptamer obtained using SELEX were selected. The binding site and the induced fit of the aptamer to GTX1/4 were confirmed using SERS combined with two-dimensional correlation spectroscopy. The intensity of interaction between GTX1/4 and G4 was also quantified by measuring the relative intensity of SERS bands corresponding to intramolecular hydrogen bonds. Furthermore, the interaction between GTX1/4 and optimized aptamers was analyzed. The order of intensity change in the characteristic bands of G4 aptamers was consistent with the order of affinity calculated using microscale thermophoresis and molecular dynamics simulations. SERS provides a rapid, sensitive, and economical post-SELEX optimization of aptamers. It is also a reference for future research on other nucleic acid sequences containing G4 structures.
Collapse
|
20
|
Zhai LY, Liu JF, Zhao JJ, Su AM, Xi XG, Hou XM. Targeting the RNA G-Quadruplex and Protein Interactome for Antiviral Therapy. J Med Chem 2022; 65:10161-10182. [PMID: 35862260 DOI: 10.1021/acs.jmedchem.2c00649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses. Next, we introduce small-molecule ligands developed as G4 modulators and highlight their applications in antiviral studies. In addition to G4s, we comprehensively review the medical intervention of G4-interacting proteins from both the virus (N protein, viral-encoded helicases, severe acute respiratory syndrome-unique domain, and Epstein-Barr nuclear antigen 1) and the host (heterogeneous nuclear ribonucleoproteins, RNA helicases, zinc-finger cellular nucelic acid-binding protein, and nucleolin) by inhibitors as an alternative way to disturb the normal functions of G4s. Finally, we discuss the challenges and opportunities in G4-based antiviral therapy.
Collapse
Affiliation(s)
- Li-Yan Zhai
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jing-Fan Liu
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Jian-Jin Zhao
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Ai-Min Su
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| | - Xu-Guang Xi
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China.,Laboratory of Biology and Applied Pharmacology, CNRS UMR 8113, IDA FR3242, ENS Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Xianyang, Shaanxi 712100, China
| |
Collapse
|
21
|
Ishiguro A, Ishihama A. Essential Roles and Risks of G-Quadruplex Regulation: Recognition Targets of ALS-Linked TDP-43 and FUS. Front Mol Biosci 2022; 9:957502. [PMID: 35898304 PMCID: PMC9309350 DOI: 10.3389/fmolb.2022.957502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
A non-canonical DNA/RNA structure, G-quadruplex (G4), is a unique structure formed by two or more guanine quartets, which associate through Hoogsteen hydrogen bonding leading to form a square planar arrangement. A set of RNA-binding proteins specifically recognize G4 structures and play certain unique physiological roles. These G4-binding proteins form ribonucleoprotein (RNP) through a physicochemical phenomenon called liquid-liquid phase separation (LLPS). G4-containing RNP granules are identified in both prokaryotes and eukaryotes, but extensive studies have been performed in eukaryotes. We have been involved in analyses of the roles of G4-containing RNAs recognized by two G4-RNA-binding proteins, TDP-43 and FUS, which both are the amyotrophic lateral sclerosis (ALS) causative gene products. These RNA-binding proteins play the essential roles in both G4 recognition and LLPS, but they also carry the risk of agglutination. The biological significance of G4-binding proteins is controlled through unique 3D structure of G4, of which the risk of conformational stability is influenced by environmental conditions such as monovalent metals and guanine oxidation.
Collapse
|
22
|
tiRNAs: Insights into Their Biogenesis, Functions, and Future Applications in Livestock Research. Noncoding RNA 2022; 8:ncrna8030037. [PMID: 35736634 PMCID: PMC9231384 DOI: 10.3390/ncrna8030037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Transfer RNA (tRNA)-derived small RNAs (tsRNAs) belong to a group of transfer ribonucleic acid (tRNA)-derived fragments that have recently gained interest as molecules with specific biological functions. Their involvement in the regulation of physiological processes and pathological phenotypes suggests molecular roles similar to those of miRNAs. tsRNA biogenesis under specific physiological conditions will offer new perspectives in understanding diseases, and may provide new sources for biological marker design to determine and monitor the health status of farm animals. In this review, we focus on the latest discoveries about tsRNAs and give special attention to molecules initially thought to be mainly associated with tRNA-derived stress-induced RNAs (tiRNAs). We present an outline of their biological functions, offer a collection of useful databases, and discuss future research perspectives and applications in livestock basic and applied research.
Collapse
|
23
|
Rossi F, Paiardini A. A Machine Learning Perspective on DNA and RNA G-quadruplexes. Curr Bioinform 2022. [DOI: 10.2174/1574893617666220224105702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
G-quadruplexes (G4s) are particular structures found in guanine-rich DNA and RNA sequences that exhibit a wide diversity of three-dimensional conformations and exert key functions in the control of gene expression. G4s are able to interact with numerous small molecules and endogenous proteins, and their dysregulation can lead to a variety of disorders and diseases. Characterization and prediction of G4-forming sequences could elucidate their mechanism of action and could thus represent an important step in the discovery of potential therapeutic drugs. In this perspective, we propose an overview of G4s, discussing the state of the art of methodologies and tools developed to characterize and predict the presence of these structures in genomic sequences. In particular, we report on machine learning (ML) approaches and artificial neural networks (ANNs) that could open new avenues for the accurate analysis of quadruplexes, given their potential to derive informative features by learning from large, high-density datasets.
Collapse
Affiliation(s)
- Fabiana Rossi
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences \'A. Rossi Fanelli\', University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
24
|
Genetic and Histopathological Heterogeneity of Neuroblastoma and Precision Therapeutic Approaches for Extremely Unfavorable Histology Subgroups. Biomolecules 2022; 12:biom12010079. [PMID: 35053227 PMCID: PMC8773700 DOI: 10.3390/biom12010079] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/16/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Peripheral neuroblastic tumors (neuroblastoma, ganglioneuroblastoma and ganglioneuroma) are heterogeneous and their diverse and wide range of clinical behaviors (spontaneous regression, tumor maturation and aggressive progression) are closely associated with genetic/molecular properties of the individual tumors. The International Neuroblastoma Pathology Classification, a biologically relevant and prognostically significant morphology classification distinguishing the favorable histology (FH) and unfavorable histology (UH) groups in this disease, predicts survival probabilities of the patients with the highest hazard ratio. The recent advance of neuroblastoma research with precision medicine approaches demonstrates that tumors in the UH group are also heterogeneous and four distinct subgroups—MYC, TERT, ALT and null—are identified. Among them, the first three subgroups are collectively named extremely unfavorable histology (EUH) tumors because of their highly aggressive clinical behavior. As indicated by their names, these EUH tumors are individually defined by their potential targets detected molecularly and immunohistochemically, such as MYC-family protein overexpression, TERT overexpression and ATRX (or DAXX) loss. In the latter half on this paper, the current status of therapeutic targeting of these EUH tumors is discussed for the future development of effective treatments of the patients.
Collapse
|
25
|
Pozojevic J, Cruz JN, Westenberger A. X-linked dystonia-parkinsonism: over and above a repeat disorder. MED GENET-BERLIN 2021; 33:319-324. [PMID: 38835428 PMCID: PMC11006257 DOI: 10.1515/medgen-2021-2105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 06/06/2024]
Abstract
X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative movement disorder, caused by a founder retrotransposon insertion in an intron of the TAF1 gene. This insertion contains a polymorphic hexanucleotide repeat (CCCTCT)n, the length of which inversely correlates with the age at disease onset (AAO) and other clinical parameters, aligning XDP with repeat expansion disorders. Nevertheless, many other pathogenic mechanisms are conceivably at play in XDP, indicating that in contrast to other repeat disorders, the (CCCTCT)n repeat may not be the actual (or only) disease cause. Here, we summarize and discuss genetic and molecular aspects of XDP, highlighting the role of the hexanucleotide repeat in age-related disease penetrance and expressivity.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Joseph Neos Cruz
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
- Disease Molecular Biology and Epigenetics Laboratory, University of the Philippines Diliman, Quezon City, Philippines
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| |
Collapse
|
26
|
Liu Y, Zhu X, Wang K, Zhang B, Qiu S. The Cellular Functions and Molecular Mechanisms of G-Quadruplex Unwinding Helicases in Humans. Front Mol Biosci 2021; 8:783889. [PMID: 34912850 PMCID: PMC8667583 DOI: 10.3389/fmolb.2021.783889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/02/2021] [Indexed: 01/19/2023] Open
Abstract
G-quadruplexes (G4s) are stable non-canonical secondary structures formed by G-rich DNA or RNA sequences. They play various regulatory roles in many biological processes. It is commonly agreed that G4 unwinding helicases play key roles in G4 metabolism and function, and these processes are closely related to physiological and pathological processes. In recent years, more and more functional and mechanistic details of G4 helicases have been discovered; therefore, it is necessary to carefully sort out the current research efforts. Here, we provide a systematic summary of G4 unwinding helicases from the perspective of functions and molecular mechanisms. First, we provide a general introduction about helicases and G4s. Next, we comprehensively summarize G4 unfolding helicases in humans and their proposed cellular functions. Then, we review their study methods and molecular mechanisms. Finally, we share our perspective on further prospects. We believe this review will provide opportunities for researchers to reach the frontiers in the functions and molecular mechanisms of human G4 unwinding helicases.
Collapse
Affiliation(s)
- Yang Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Xinting Zhu
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Kejia Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Bo Zhang
- College of Basic Medicine, Zunyi Medical University, Zunyi, China
| | - Shuyi Qiu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology and Agro-Bioengineering (CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, China
- The Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
27
|
He X, Yuan J, Wang Y. G3BP1 binds to guanine quadruplexes in mRNAs to modulate their stabilities. Nucleic Acids Res 2021; 49:11323-11336. [PMID: 34614161 PMCID: PMC8565330 DOI: 10.1093/nar/gkab873] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 09/12/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
RNA guanine quadruplexes (rG4) assume important roles in post-transcriptional regulations of gene expression, which are often modulated by rG4-binding proteins. Hence, understanding the biological functions of rG4s requires the identification and functional characterizations of rG4-recognition proteins. By employing a bioinformatic approach based on the analysis of overlap between peaks obtained from rG4-seq analysis and those detected in >230 eCLIP-seq datasets for RNA-binding proteins generated from the ENCODE project, we identified a large number of candidate rG4-binding proteins. We showed that one of these proteins, G3BP1, is able to bind directly to rG4 structures with high affinity and selectivity, where the binding entails its C-terminal RGG domain and is further enhanced by its RRM domain. Additionally, our seCLIP-Seq data revealed that pyridostatin, a small-molecule rG4 ligand, could displace G3BP1 from mRNA in cells, with the most pronounced effects being observed for the 3′-untranslated regions (3′-UTR) of mRNAs. Moreover, luciferase reporter assay results showed that G3BP1 positively regulates mRNA stability through its binding with rG4 structures. Together, we identified a number of candidate rG4-binding proteins and validated that G3BP1 can bind directly with rG4 structures and regulate the stabilities of mRNAs.
Collapse
Affiliation(s)
- Xiaomei He
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Jun Yuan
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, CA 92521-0403, USA
| |
Collapse
|
28
|
Translational control by DHX36 binding to 5'UTR G-quadruplex is essential for muscle stem-cell regenerative functions. Nat Commun 2021; 12:5043. [PMID: 34413292 PMCID: PMC8377060 DOI: 10.1038/s41467-021-25170-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/06/2021] [Indexed: 12/30/2022] Open
Abstract
Skeletal muscle has a remarkable ability to regenerate owing to its resident stem cells (also called satellite cells, SCs). SCs are normally quiescent; when stimulated by damage, they activate and expand to form new fibers. The mechanisms underlying SC proliferative progression remain poorly understood. Here we show that DHX36, a helicase that unwinds RNA G-quadruplex (rG4) structures, is essential for muscle regeneration by regulating SC expansion. DHX36 (initially named RHAU) is barely expressed at quiescence but is highly induced during SC activation and proliferation. Inducible deletion of Dhx36 in adult SCs causes defective proliferation and muscle regeneration after damage. System-wide mapping in proliferating SCs reveals DHX36 binding predominantly to rG4 structures at various regions of mRNAs, while integrated polysome profiling shows that DHX36 promotes mRNA translation via 5′-untranslated region (UTR) rG4 binding. Furthermore, we demonstrate that DHX36 specifically regulates the translation of Gnai2 mRNA by unwinding its 5′ UTR rG4 structures and identify GNAI2 as a downstream effector of DHX36 for SC expansion. Altogether, our findings uncover DHX36 as an indispensable post-transcriptional regulator of SC function and muscle regeneration acting through binding and unwinding rG4 structures at 5′ UTR of target mRNAs. Skeletal muscle stem cells (or satellite cells, SCs) are normally quiescent but activate and expand in response to injury. Here the authors show that induction of DHX36 helicase during SC activation promotes mRNA translation by binding to 5′UTR mRNA G-quadruplexes (rG4) in targets including Gnai2 and unwinding them.
Collapse
|
29
|
Policarpo R, Sierksma A, De Strooper B, d'Ydewalle C. From Junk to Function: LncRNAs in CNS Health and Disease. Front Mol Neurosci 2021; 14:714768. [PMID: 34349622 PMCID: PMC8327212 DOI: 10.3389/fnmol.2021.714768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/25/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in RNA sequencing technologies helped to uncover the existence of tens of thousands of long non-coding RNAs (lncRNAs) that arise from the dark matter of the genome. These lncRNAs were originally thought to be transcriptional noise but an increasing number of studies demonstrate that these transcripts can modulate protein-coding gene expression by a wide variety of transcriptional and post-transcriptional mechanisms. The spatiotemporal regulation of lncRNA expression is particularly evident in the central nervous system, suggesting that they may directly contribute to specific brain processes, including neurogenesis and cellular homeostasis. Not surprisingly, lncRNAs are therefore gaining attention as putative novel therapeutic targets for disorders of the brain. In this review, we summarize the recent insights into the functions of lncRNAs in the brain, their role in neuronal maintenance, and their potential contribution to disease. We conclude this review by postulating how these RNA molecules can be targeted for the treatment of yet incurable neurological disorders.
Collapse
Affiliation(s)
- Rafaela Policarpo
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | - Annerieke Sierksma
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB-KU Leuven Center For Brain & Disease Research, Leuven, Belgium.,Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, United Kingdom
| | - Constantin d'Ydewalle
- Neuroscience Discovery, Janssen Research & Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| |
Collapse
|
30
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
31
|
Wang E, Thombre R, Shah Y, Latanich R, Wang J. G-Quadruplexes as pathogenic drivers in neurodegenerative disorders. Nucleic Acids Res 2021; 49:4816-4830. [PMID: 33784396 PMCID: PMC8136783 DOI: 10.1093/nar/gkab164] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/20/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
G-quadruplexes (G4s), higher-order DNA and RNA secondary structures featuring guanine-rich nucleic acid sequences with various conformations, are widely distributed in the human genome. These structural motifs are known to participate in basic cellular processes, including transcription, splicing, and translation, and their functions related to health and disease are becoming increasingly recognized. In this review, we summarize the landscape of G4s involved in major neurodegenerative disorders, describing the genes that contain G4-forming sequences and proteins that have high affinity for G4-containing elements. The functions of G4s are diverse, with potentially protective or deleterious effects in the pathogenic cascades of various neurological diseases. While the studies of the functions of G4s in vivo, including those involved in pathophysiology, are still in their early stages, we will nevertheless discuss the evidence pointing to their biological relevance. A better understanding of this unique structural element in the biological context is important for unveiling its potential roles in the pathogenesis of diseases such as neurodegeneration and for designing new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ernest Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Ravi Thombre
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Yajas Shah
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Rachel Latanich
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore MD, 21205, USA.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
32
|
Pipier A, Devaux A, Lavergne T, Adrait A, Couté Y, Britton S, Calsou P, Riou JF, Defrancq E, Gomez D. Constrained G4 structures unveil topology specificity of known and new G4 binding proteins. Sci Rep 2021; 11:13469. [PMID: 34188089 PMCID: PMC8241873 DOI: 10.1038/s41598-021-92806-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022] Open
Abstract
G-quadruplexes (G4) are non-canonical secondary structures consisting in stacked tetrads of hydrogen-bonded guanines bases. An essential feature of G4 is their intrinsic polymorphic nature, which is characterized by the equilibrium between several conformations (also called topologies) and the presence of different types of loops with variable lengths. In cells, G4 functions rely on protein or enzymatic factors that recognize and promote or resolve these structures. In order to characterize new G4-dependent mechanisms, extensive researches aimed at identifying new G4 binding proteins. Using G-rich single-stranded oligonucleotides that adopt non-controlled G4 conformations, a large number of G4-binding proteins have been identified in vitro, but their specificity towards G4 topology remained unknown. Constrained G4 structures are biomolecular objects based on the use of a rigid cyclic peptide scaffold as a template for directing the intramolecular assembly of the anchored oligonucleotides into a single and stabilized G4 topology. Here, using various constrained RNA or DNA G4 as baits in human cell extracts, we establish the topology preference of several well-known G4-interacting factors. Moreover, we identify new G4-interacting proteins such as the NELF complex involved in the RNA-Pol II pausing mechanism, and we show that it impacts the clastogenic effect of the G4-ligand pyridostatin.
Collapse
Affiliation(s)
- A Pipier
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - A Devaux
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - T Lavergne
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - A Adrait
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - Y Couté
- CEA, INSERM, IRIG, BGE, Université Grenoble Alpes, 38000, Grenoble, France
| | - S Britton
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - P Calsou
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France
| | - J F Riou
- Structure et Instabilité des Génomes, Muséum National d'Histoire Naturelle, CNRS, INSERM, CP 26, 75005, Paris, France
| | - E Defrancq
- Département de Chimie Moléculaire, UMR CNRS 5250, Université Grenoble Alpes, 38058, Grenoble, France
| | - D Gomez
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France.
- Equipe Labellisée Ligue Contre Le Cancer 2018, Toulouse, France.
| |
Collapse
|
33
|
Javadekar SM, Nilavar NM, Paranjape A, Das K, Raghavan SC. Characterization of G-quadruplex antibody reveals differential specificity for G4 DNA forms. DNA Res 2021; 27:5934508. [PMID: 33084858 PMCID: PMC7711166 DOI: 10.1093/dnares/dsaa024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulating evidence suggests that human genome can fold into non-B DNA structures, when appropriate sequence and favourable conditions are present. Among these, G-quadruplexes (G4-DNA) are associated with gene regulation, chromosome fragility and telomere maintenance. Although several techniques are used in detecting such structures in vitro, understanding their intracellular existence has been challenging. Recently, an antibody, BG4, was described to study G4 structures within cells. Here, we characterize BG4 for its affinity towards G4-DNA, using several biochemical and biophysical tools. BG4 bound to G-rich DNA derived from multiple genes that form G-quadruplexes, unlike complementary C-rich or random sequences. BLI studies revealed robust binding affinity (Kd = 17.4 nM). Gel shift assays show BG4 binds to inter- and intramolecular G4-DNA, when it is in parallel orientation. Mere presence of G4-motif in duplex DNA is insufficient for antibody recognition. Importantly, BG4 can bind to G4-DNA within telomere sequence in a supercoiled plasmid. Finally, we show that BG4 binds to form efficient foci in four cell lines, irrespective of their lineage, demonstrating presence of G4-DNA in genome. Importantly, number of BG4 foci within the cells can be modulated, upon knockdown of G4-resolvase, WRN. Thus, we establish specificity of BG4 towards G4-DNA and discuss its potential applications.
Collapse
Affiliation(s)
- Saniya M Javadekar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Namrata M Nilavar
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Amita Paranjape
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kohal Das
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
34
|
Geng Y, Liu C, Cai Q, Luo Z, Miao H, Shi X, Xu N, Fung CP, Choy TT, Yan B, Li N, Qian P, Zhou B, Zhu G. Crystal structure of parallel G-quadruplex formed by the two-repeat ALS- and FTD-related GGGGCC sequence. Nucleic Acids Res 2021; 49:5881-5890. [PMID: 34048588 PMCID: PMC8191786 DOI: 10.1093/nar/gkab302] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/23/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
The hexanucleotide repeat expansion, GGGGCC (G4C2), within the first intron of the C9orf72 gene is known to be the most common genetic cause of both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 repeat expansions, either DNA or RNA, are able to form G-quadruplexes which induce toxicity leading to ALS/FTD. Herein, we report a novel crystal structure of d(G4C2)2 that self-associates to form an eight-layer parallel tetrameric G-quadruplex. Two d(G4C2)2 associate together as a parallel dimeric G-quadruplex which folds into a tetramer via 5'-to-5' arrangements. Each dimer consists of four G-tetrads connected by two CC propeller loops. Especially, the 3'-end cytosines protrude out and form C·C+•C·C+/ C·C•C·C+ quadruple base pair or C•C·C+ triple base pair stacking on the dimeric block. Our work sheds light on the G-quadruplexes adopted by d(G4C2) and yields the invaluable structural details for the development of small molecules to tackle neurodegenerative diseases, ALS and FTD.
Collapse
Affiliation(s)
- Yanyan Geng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Changdong Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Qixu Cai
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Zhipu Luo
- Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Haitao Miao
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Xiao Shi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Naining Xu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Chun Po Fung
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - To To Choy
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bing Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Peiyuan Qian
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Bo Zhou
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| | - Guang Zhu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
- State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 00000, China
| |
Collapse
|
35
|
Tomaszewska M, Szabat M, Zielińska K, Kierzek R. Identification and Structural Aspects of G-Quadruplex-Forming Sequences from the Influenza A Virus Genome. Int J Mol Sci 2021; 22:6031. [PMID: 34199658 PMCID: PMC8199785 DOI: 10.3390/ijms22116031] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 12/19/2022] Open
Abstract
Influenza A virus (IAV) causes seasonal epidemics and sporadic pandemics, therefore is an important research subject for scientists around the world. Despite the high variability of its genome, the structure of viral RNA (vRNA) possesses features that remain constant between strains and are biologically important for virus replication. Therefore, conserved structural motifs of vRNA can represent a novel therapeutic target. Here, we focused on the presence of G-rich sequences within the influenza A/California/07/2009(H1N1) genome and their ability to form RNA G-quadruplex structures (G4s). We identified 12 potential quadruplex-forming sequences (PQS) and determined their conservation among the IAV strains using bioinformatics tools. Then we examined the propensity of PQS to fold into G4s by various biophysical methods. Our results revealed that six PQS oligomers could form RNA G-quadruplexes. However, three of them were confirmed to adopt G4 structures by all utilized methods. Moreover, we showed that these PQS motifs are present within segments encoding polymerase complex proteins indicating their possible role in the virus biology.
Collapse
Affiliation(s)
- Maria Tomaszewska
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Marta Szabat
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Karolina Zielińska
- Department of Biomolecular NMR, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| | - Ryszard Kierzek
- Department of Structural Chemistry and Biology of Nucleic Acids, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland;
| |
Collapse
|
36
|
Cui Y, Li Z, Cao J, Lane J, Birkin E, Dong X, Zhang L, Jiang WG. The G4 Resolvase DHX36 Possesses a Prognosis Significance and Exerts Tumour Suppressing Function Through Multiple Causal Regulations in Non-Small Cell Lung Cancer. Front Oncol 2021; 11:655757. [PMID: 33987090 PMCID: PMC8111079 DOI: 10.3389/fonc.2021.655757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the most prevalent cancers in both men and women worldwide. The nucleic acid G4 structures have been implicated in the transcriptional programmes of cancer-related genes in some cancers such as lung cancer. However, the role of the dominant G4 resolvase DHX36 in the progression of lung cancer remains unknown. In this study, by bioinformatic analysis of public datasets (TCGA and GEO), we find DHX36 is an independent prognosis indicator in non-small-cell lung carcinoma (NSCLC) with subtype dependence. The stable lentiviral knockdown of the DHX36 results in accelerated migration and aggregation of the S-phase subpopulation in lung cancer cells. The reduction of DHX36 level de-sensitises the proliferation response of lung cancer cells to chemotherapeutic drugs such as paclitaxel with cell dependence. The knockdown of this helicase leads to promoted tumour growth, demonstrated by a 3D fluorescence spheroid lung cancer model, and the stimulation of cell colony formation as shown by single-cell cultivation. High throughput proteomic array indicates that DHX36 functions in lung cancer cells through regulating multiple signalling pathways including activation of protein activity, protein autophosphorylation, Fc-receptor signalling pathway, response to peptide hormone and stress-activated protein kinase signalling cascade. A causal transcriptomic analysis suggests that DHX36 is significantly associated with mRNA surveillance, RNA degradation, DNA replication and Myc targets. Therefore, we unveil that DHX36 presents clinical significance and plays a role in tumour suppression in lung cancer, and propose a potentially new concept for an anti-cancer therapy based on helicase-specific targeting.
Collapse
Affiliation(s)
- Yuxin Cui
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Zhilei Li
- Department of Pharmacy, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Junxia Cao
- Biotherapy Center, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Jane Lane
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Emily Birkin
- Cardiff & Vale University Health Board, University Hospital of Wales, Cardiff, United Kingdom
| | - Xuefei Dong
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lijian Zhang
- Department of Thoracic Surgery, Peking University Cancer Hospital, Beijing, China
| | - Wen G Jiang
- Cardiff China Medical Research Collaborative, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
37
|
Tassinari M, Richter SN, Gandellini P. Biological relevance and therapeutic potential of G-quadruplex structures in the human noncoding transcriptome. Nucleic Acids Res 2021; 49:3617-3633. [PMID: 33721024 PMCID: PMC8053107 DOI: 10.1093/nar/gkab127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs are functional transcripts that are not translated into proteins. They represent the largest portion of the human transcriptome and have been shown to regulate gene expression networks in both physiological and pathological cell conditions. Research in this field has made remarkable progress in the comprehension of how aberrations in noncoding RNA drive relevant disease-associated phenotypes; however, the biological role and mechanism of action of several noncoding RNAs still need full understanding. Besides fulfilling its function through sequence-based mechanisms, RNA can form complex secondary and tertiary structures which allow non-canonical interactions with proteins and/or other nucleic acids. In this context, the presence of G-quadruplexes in microRNAs and long noncoding RNAs is increasingly being reported. This evidence suggests a role for RNA G-quadruplexes in controlling microRNA biogenesis and mediating noncoding RNA interaction with biological partners, thus ultimately regulating gene expression. Here, we review the state of the art of G-quadruplexes in the noncoding transcriptome, with their structural and functional characterization. In light of the existence and further possible development of G-quadruplex binders that modulate G-quadruplex conformation and protein interactions, we also discuss the therapeutic potential of G-quadruplexes as targets to interfere with disease-associated noncoding RNAs.
Collapse
Affiliation(s)
- Martina Tassinari
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padova, Italy
| | - Paolo Gandellini
- Department of Biosciences, University of Milan, via G. Celoria 26, 20133 Milano, Italy
| |
Collapse
|
38
|
Liu H, Lu YN, Paul T, Periz G, Banco MT, Ferré-D'Amaré AR, Rothstein JD, Hayes LR, Myong S, Wang J. A Helicase Unwinds Hexanucleotide Repeat RNA G-Quadruplexes and Facilitates Repeat-Associated Non-AUG Translation. J Am Chem Soc 2021; 143:7368-7379. [PMID: 33855846 DOI: 10.1021/jacs.1c00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The expansion of a hexanucleotide repeat GGGGCC (G4C2) in the C9orf72 gene is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The G4C2 expansion leads to repeat-associated non-AUG (RAN) translation and the production of toxic dipeptide repeat (DPR) proteins, but the mechanisms of RAN translation remain enigmatic. Here, we report that the RNA helicase DHX36 is a robust positive regulator of C9orf72 RAN translation. DHX36 has a high affinity for the G4C2 repeat RNA, preferentially binds to the repeat RNA's G-quadruplex conformation, and efficiently unwinds the G4C2 G-quadruplex structures. Native DHX36 interacts with the G4C2 repeat RNA and is essential for effective RAN translation in the cell. In induced pluripotent stem cells and differentiated motor neurons derived from C9orf72-linked ALS patients, reducing DHX36 significantly decreased the levels of endogenous DPR proteins. DHX36 is also aberrantly upregulated in tissues of C9orf72-linked ALS patients. These results indicate that DHX36 facilitates C9orf72 RAN translation by resolving repeat RNA G-quadruplex structures and may be a potential target for therapeutic intervention.
Collapse
Affiliation(s)
- Honghe Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Yu-Ning Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Michael T Banco
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States
| | - Jeffrey D Rothstein
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Lindsey R Hayes
- Brain Science Institute and Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, United States.,Department of Neuroscience, School of Medicine, Johns Hopkins University, Baltimore, Maryland 21205, United States
| |
Collapse
|
39
|
Ajjugal Y, Kolimi N, Rathinavelan T. Secondary structural choice of DNA and RNA associated with CGG/CCG trinucleotide repeat expansion rationalizes the RNA misprocessing in FXTAS. Sci Rep 2021; 11:8163. [PMID: 33854084 PMCID: PMC8046799 DOI: 10.1038/s41598-021-87097-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
CGG tandem repeat expansion in the 5'-untranslated region of the fragile X mental retardation-1 (FMR1) gene leads to unusual nucleic acid conformations, hence causing genetic instabilities. We show that the number of G…G (in CGG repeat) or C…C (in CCG repeat) mismatches (other than A…T, T…A, C…G and G…C canonical base pairs) dictates the secondary structural choice of the sense and antisense strands of the FMR1 gene and their corresponding transcripts in fragile X-associated tremor/ataxia syndrome (FXTAS). The circular dichroism (CD) spectra and electrophoretic mobility shift assay (EMSA) reveal that CGG DNA (sense strand of the FMR1 gene) and its transcript favor a quadruplex structure. CD, EMSA and molecular dynamics (MD) simulations also show that more than four C…C mismatches cannot be accommodated in the RNA duplex consisting of the CCG repeat (antisense transcript); instead, it favors an i-motif conformational intermediate. Such a preference for unusual secondary structures provides a convincing justification for the RNA foci formation due to the sequestration of RNA-binding proteins to the bidirectional transcripts and the repeat-associated non-AUG translation that are observed in FXTAS. The results presented here also suggest that small molecule modulators that can destabilize FMR1 CGG DNA and RNA quadruplex structures could be promising candidates for treating FXTAS.
Collapse
Affiliation(s)
- Yogeeshwar Ajjugal
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | - Narendar Kolimi
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Telangana State, 502285, India
| | | |
Collapse
|
40
|
Ye S, Chen Z, Zhang X, Li F, Guo L, Hou XM, Wu WQ, Wang J, Liu C, Zheng K, Sun B. Proximal Single-Stranded RNA Destabilizes Human Telomerase RNA G-Quadruplex and Induces Its Distinct Conformers. J Phys Chem Lett 2021; 12:3361-3366. [PMID: 33783224 DOI: 10.1021/acs.jpclett.1c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Single-stranded guanine-rich RNA sequences have a propensity to fold into compact G-quadruplexes (RG4s). The conformational transitions of these molecules provide an important way to regulate their biological functions. Here, we examined the stability and conformation of an RG4-forming sequence identified near the end of human telomerase RNA. We found that a proximal single-stranded (ss) RNA significantly impairs RG4 stability at physiological K+ concentrations, resulting in a reduced RG4 rupture force of ∼ 24.4 pN and easier accessibility of the G-rich sequence. The destabilizing effect requires a minimum of six nucleotides of ssRNA and is effective at either end of RG4. Remarkably, this RG4-forming sequence, under the influence of such a proximal ssRNA, exhibits interconversions between at least three less stable RG4 conformers that might represent potential intermediates along its folding/unfolding pathway. This work provides insights into the stability and folding dynamics of RG4 that are essential for understanding its biological functions.
Collapse
Affiliation(s)
- Shasha Ye
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fangfang Li
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi-Miao Hou
- College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wen-Qiang Wu
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Cong Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
41
|
Long, Noncoding RNA Dysregulation in Glioblastoma. Cancers (Basel) 2021; 13:cancers13071604. [PMID: 33807183 PMCID: PMC8037018 DOI: 10.3390/cancers13071604] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Developing effective therapies for glioblastoma (GBM), the most common primary brain cancer, remains challenging due to the heterogeneity within tumors and therapeutic resistance that drives recurrence. Noncoding RNAs are transcribed from a large proportion of the genome and remain largely unexplored in their contribution to the evolution of GBM tumors. Here, we will review the general mechanisms of long, noncoding RNAs and the current knowledge of how these impact heterogeneity and therapeutic resistance in GBM. A better understanding of the molecular drivers required for these aggressive tumors is necessary to improve the management and outcomes of this challenging disease. Abstract Transcription occurs across more than 70% of the human genome and more than half of currently annotated genes produce functional noncoding RNAs. Of these transcripts, the majority—long, noncoding RNAs (lncRNAs)—are greater than 200 nucleotides in length and are necessary for various roles in the cell. It is increasingly appreciated that these lncRNAs are relevant in both health and disease states, with the brain expressing the largest number of lncRNAs compared to other organs. Glioblastoma (GBM) is an aggressive, fatal brain tumor that demonstrates remarkable intratumoral heterogeneity, which has made the development of effective therapies challenging. The cooperation between genetic and epigenetic alterations drives rapid adaptation that allows therapeutic evasion and recurrence. Given the large repertoire of lncRNAs in normal brain tissue and the well-described roles of lncRNAs in molecular and cellular processes, these transcripts are important to consider in the context of GBM heterogeneity and treatment resistance. Herein, we review the general mechanisms and biological roles of lncRNAs, with a focus on GBM, as well as RNA-based therapeutics currently in development.
Collapse
|
42
|
Dupas SJ, Gussakovsky D, Wai A, Brown MJF, Hausner G, McKenna SA. Predicting human RNA quadruplex helicases through comparative sequence approaches and helicase mRNA interactome analyses. Biochem Cell Biol 2021; 99:536-553. [PMID: 33587669 DOI: 10.1139/bcb-2020-0590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
RNA quadruplexes are non-canonical nucleic acid structures involved in several human disease states and are regulated by a specific subset of RNA helicases. Given the difficulty in identifying RNA quadruplex helicases due to the multifunctionality of these enzymes, we sought to provide a comprehensive in silico analysis of features found in validated RNA quadruplex helicases to predict novel human RNA quadruplex helicases. Using the 64 human RNA helicases, we correlated their amino acid compositions with subsets of RNA quadruplex helicases categorized by varying levels of evidence of RNA quadruplex interaction. Utilizing phylogenetic and synonymous/non-synonymous substitution analyses, we identified an evolutionarily conserved pattern involving predicted intrinsic disorder and a previously identified motif. We analyzed available next-generation sequencing data to determine which RNA helicases directly interacted with predicted RNA quadruplex regions intracellularly and elucidated the relationship with miRNA binding sites adjacent to RNA quadruplexes. Finally, we performed a phylogenetic analysis of all 64 human RNA helicases to establish how RNA quadruplex detection and unwinding activity may be conserved among helicase subfamilies. This work furthers the understanding of commonalities between RNA quadruplex helicases and provides support for the future validation of several human RNA helicases.
Collapse
Affiliation(s)
- Steven J Dupas
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | | | - Alvan Wai
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Mira J F Brown
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| | - Georg Hausner
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sean A McKenna
- Department of Chemistry, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
43
|
Bartas M, Červeň J, Guziurová S, Slychko K, Pečinka P. Amino Acid Composition in Various Types of Nucleic Acid-Binding Proteins. Int J Mol Sci 2021; 22:ijms22020922. [PMID: 33477647 PMCID: PMC7831508 DOI: 10.3390/ijms22020922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022] Open
Abstract
Nucleic acid-binding proteins are traditionally divided into two categories: With the ability to bind DNA or RNA. In the light of new knowledge, such categorizing should be overcome because a large proportion of proteins can bind both DNA and RNA. Another even more important features of nucleic acid-binding proteins are so-called sequence or structure specificities. Proteins able to bind nucleic acids in a sequence-specific manner usually contain one or more of the well-defined structural motifs (zinc-fingers, leucine zipper, helix-turn-helix, or helix-loop-helix). In contrast, many proteins do not recognize nucleic acid sequence but rather local DNA or RNA structures (G-quadruplexes, i-motifs, triplexes, cruciforms, left-handed DNA/RNA form, and others). Finally, there are also proteins recognizing both sequence and local structural properties of nucleic acids (e.g., famous tumor suppressor p53). In this mini-review, we aim to summarize current knowledge about the amino acid composition of various types of nucleic acid-binding proteins with a special focus on significant enrichment and/or depletion in each category.
Collapse
|
44
|
Gueiderikh A, Maczkowiak-Chartois F, Rouvet G, Souquère-Besse S, Apcher S, Diaz JJ, Rosselli F. Fanconi anemia A protein participates in nucleolar homeostasis maintenance and ribosome biogenesis. SCIENCE ADVANCES 2021; 7:7/1/eabb5414. [PMID: 33523834 PMCID: PMC7775781 DOI: 10.1126/sciadv.abb5414] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 10/28/2020] [Indexed: 05/22/2023]
Abstract
Fanconi anemia (FA), the most common inherited bone marrow failure and leukemia predisposition syndrome, is generally attributed to alterations in DNA damage responses due to the loss of function of the DNA repair and replication rescue activities of the FANC pathway. Here, we report that FANCA deficiency, whose inactivation has been identified in two-thirds of FA patients, is associated with nucleolar homeostasis loss, mislocalization of key nucleolar proteins, including nucleolin (NCL) and nucleophosmin 1 (NPM1), as well as alterations in ribosome biogenesis and protein synthesis. FANCA coimmunoprecipitates with NCL and NPM1 in a FANCcore complex-independent manner and, unique among the FANCcore complex proteins, associates with ribosomal subunits, influencing the stoichiometry of the translational machineries. In conclusion, we have identified unexpected nucleolar and translational consequences specifically associated with FANCA deficiency that appears to be involved in both DNA damage and nucleolar stress responses, challenging current hypothesis on FA physiopathology.
Collapse
Affiliation(s)
- Anna Gueiderikh
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Frédérique Maczkowiak-Chartois
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Guillaume Rouvet
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| | - Sylvie Souquère-Besse
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- CNRS-UMS3655, 94805 Villejuif, France
| | - Sébastien Apcher
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
- INSERM-UMR1015, 94805 Villejuif, France
| | - Jean-Jacques Diaz
- Université Lyon, Université Claude Bernard Lyon 1, Inserm 1052, CNRS 5286, Centre Léon Bérard, Cancer Research Center of Lyon, 69373 Lyon cedex 08, France
| | - Filippo Rosselli
- CNRS-UMR9019, Équipe labellisée "La Ligue contre le Cancer," 94805 Villejuif, France.
- Gustave Roussy Cancer Center, 94805 Villejuif, France
- Université Paris-Saclay-Paris Sud, Orsay, France
| |
Collapse
|
45
|
Ratnasinghe BD, Salsbury AM, Lemkul JA. Ion Binding Properties and Dynamics of the bcl-2 G-Quadruplex Using a Polarizable Force Field. J Chem Inf Model 2020; 60:6476-6488. [PMID: 33264004 DOI: 10.1021/acs.jcim.0c01064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-quadruplexes (GQs) are topologically diverse, highly thermostable noncanonical nucleic acid structures that form in guanine-rich sequences in DNA and RNA. GQs are implicated in transcriptional and translational regulation and genome maintenance, and deleterious alterations to their structures contribute to diseases such as cancer. The expression of the B-cell lymphoma 2 (Bcl-2) antiapoptotic protein, for example, is under transcriptional control of a GQ in the promoter of the bcl-2 gene. Modulation of the bcl-2 GQ by small molecules is of interest for chemotherapeutic development but doing so requires knowledge of the factors driving GQ folding and stabilization. To develop a greater understanding of the electrostatic properties of the bcl-2 promoter GQ, we performed molecular dynamics simulations using the Drude-2017 polarizable force field and compared relevant outcomes to the nonpolarizable CHARMM36 force field. Our simulation outcomes highlight the importance of dipole-dipole interactions in the bcl-2 GQ, particularly during the recruitment of a bulk K+ ion to the solvent-exposed face of the tetrad stem. We also predict and characterize an "electronegative pocket" at the tetrad-long loop junction that induces local backbone conformational change and may induce local conformational changes at cellular concentrations of K+. These outcomes suggest that moieties within the bcl-2 GQ can be targeted by small molecules to modulate bcl-2 GQ stability.
Collapse
Affiliation(s)
- Brian D Ratnasinghe
- Department of Biochemistry, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| | - Alexa M Salsbury
- Department of Biochemistry, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| | - Justin A Lemkul
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States
| |
Collapse
|
46
|
Miglietta G, Russo M, Capranico G. G-quadruplex-R-loop interactions and the mechanism of anticancer G-quadruplex binders. Nucleic Acids Res 2020; 48:11942-11957. [PMID: 33137181 PMCID: PMC7708042 DOI: 10.1093/nar/gkaa944] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/05/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Genomic DNA and cellular RNAs can form a variety of non-B secondary structures, including G-quadruplex (G4) and R-loops. G4s are constituted by stacked guanine tetrads held together by Hoogsteen hydrogen bonds and can form at key regulatory sites of eukaryote genomes and transcripts, including gene promoters, untranslated exon regions and telomeres. R-loops are 3-stranded structures wherein the two strands of a DNA duplex are melted and one of them is annealed to an RNA. Specific G4 binders are intensively investigated to discover new effective anticancer drugs based on a common rationale, i.e.: the selective inhibition of oncogene expression or specific impairment of telomere maintenance. However, despite the high number of known G4 binders, such a selective molecular activity has not been fully established and several published data point to a different mode of action. We will review published data that address the close structural interplay between G4s and R-loops in vitro and in vivo, and how these interactions can have functional consequences in relation to G4 binder activity. We propose that R-loops can play a previously-underestimated role in G4 binder action, in relation to DNA damage induction, telomere maintenance, genome and epigenome instability and alterations of gene expression programs.
Collapse
Affiliation(s)
- Giulia Miglietta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Marco Russo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Giovanni Capranico
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
47
|
Kharel P, Becker G, Tsvetkov V, Ivanov P. Properties and biological impact of RNA G-quadruplexes: from order to turmoil and back. Nucleic Acids Res 2020; 48:12534-12555. [PMID: 33264409 PMCID: PMC7736831 DOI: 10.1093/nar/gkaa1126] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
Guanine-quadruplexes (G4s) are non-canonical four-stranded structures that can be formed in guanine (G) rich nucleic acid sequences. A great number of G-rich sequences capable of forming G4 structures have been described based on in vitro analysis, and evidence supporting their formation in live cells continues to accumulate. While formation of DNA G4s (dG4s) within chromatin in vivo has been supported by different chemical, imaging and genomic approaches, formation of RNA G4s (rG4s) in vivo remains a matter of discussion. Recent data support the dynamic nature of G4 formation in the transcriptome. Such dynamic fluctuation of rG4 folding-unfolding underpins the biological significance of these structures in the regulation of RNA metabolism. Moreover, rG4-mediated functions may ultimately be connected to mechanisms underlying disease pathologies and, potentially, provide novel options for therapeutics. In this framework, we will review the landscape of rG4s within the transcriptome, focus on their potential impact on biological processes, and consider an emerging connection of these functions in human health and disease.
Collapse
Affiliation(s)
- Prakash Kharel
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Gertraud Becker
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vladimir Tsvetkov
- Computational Oncology Group, I. M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
- Federal Research and Clinical Center for Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow 119435, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 117912, Russia
| | - Pavel Ivanov
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Initiative for RNA Medicine, Boston, MA 02115, USA
| |
Collapse
|
48
|
Schwartz JL, Jones KL, Yeo GW. Repeat RNA expansion disorders of the nervous system: post-transcriptional mechanisms and therapeutic strategies. Crit Rev Biochem Mol Biol 2020; 56:31-53. [PMID: 33172304 PMCID: PMC8192115 DOI: 10.1080/10409238.2020.1841726] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dozens of incurable neurological disorders result from expansion of short repeat sequences in both coding and non-coding regions of the transcriptome. Short repeat expansions underlie microsatellite repeat expansion (MRE) disorders including myotonic dystrophy (DM1, CUG50–3,500 in DMPK; DM2, CCTG75–11,000 in ZNF9), fragile X tremor ataxia syndrome (FXTAS, CGG50–200 in FMR1), spinal bulbar muscular atrophy (SBMA, CAG40–55 in AR), Huntington’s disease (HD, CAG36–121 in HTT), C9ORF72-amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD and C9-ALS/FTD, GGGGCC in C9ORF72), and many others, like ataxias. Recent research has highlighted several mechanisms that may contribute to pathology in this heterogeneous class of neurological MRE disorders – bidirectional transcription, intranuclear RNA foci, and repeat associated non-AUG (RAN) translation – which are the subject of this review. Additionally, many MRE disorders share similar underlying molecular pathologies that have been recently targeted in experimental and preclinical contexts. We discuss the therapeutic potential of versatile therapeutic strategies that may selectively target disrupted RNA-based processes and may be readily adaptable for the treatment of multiple MRE disorders. Collectively, the strategies under consideration for treatment of multiple MRE disorders include reducing levels of toxic RNA, preventing RNA foci formation, and eliminating the downstream cellular toxicity associated with peptide repeats produced by RAN translation. While treatments are still lacking for the majority of MRE disorders, several promising therapeutic strategies have emerged and will be evaluated within this review.
Collapse
Affiliation(s)
- Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Krysten Leigh Jones
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Zhang Y, El Omari K, Duman R, Liu S, Haider S, Wagner A, Parkinson GN, Wei D. Native de novo structural determinations of non-canonical nucleic acid motifs by X-ray crystallography at long wavelengths. Nucleic Acids Res 2020; 48:9886-9898. [PMID: 32453431 PMCID: PMC7515729 DOI: 10.1093/nar/gkaa439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 01/08/2023] Open
Abstract
Obtaining phase information remains a formidable challenge for nucleic acid structure determination. The introduction of an X-ray synchrotron beamline designed to be tunable to long wavelengths at Diamond Light Source has opened the possibility to native de novo structure determinations by the use of intrinsic scattering elements. This provides opportunities to overcome the limitations of introducing modifying nucleotides, often required to derive phasing information. In this paper, we build on established methods to generate new tools for nucleic acid structure determinations. We report on the use of (i) native intrinsic potassium single-wavelength anomalous dispersion methods (K-SAD), (ii) use of anomalous scattering elements integral to the crystallization buffer (extrinsic cobalt and intrinsic potassium ions), (iii) extrinsic bromine and intrinsic phosphorus SAD to solve complex nucleic acid structures. Using the reported methods we solved the structures of (i) Pseudorabies virus (PRV) RNA G-quadruplex and ligand complex, (ii) PRV DNA G-quadruplex, and (iii) an i-motif of human telomeric sequence. Our results highlight the utility of using intrinsic scattering as a pathway to solve and determine non-canonical nucleic acid motifs and reveal the variability of topology, influence of ligand binding, and glycosidic angle rearrangements seen between RNA and DNA G-quadruplexes of the same sequence.
Collapse
Affiliation(s)
- Yashu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kamel El Omari
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Ramona Duman
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Sisi Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Shozeb Haider
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Armin Wagner
- Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot OX11 0DE, UK
| | - Gary N Parkinson
- UCL School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Dengguo Wei
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Science, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
50
|
Li B, Cao Y, Westhof E, Miao Z. Advances in RNA 3D Structure Modeling Using Experimental Data. Front Genet 2020; 11:574485. [PMID: 33193680 PMCID: PMC7649352 DOI: 10.3389/fgene.2020.574485] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
RNA is a unique bio-macromolecule that can both record genetic information and perform biological functions in a variety of molecular processes, including transcription, splicing, translation, and even regulating protein function. RNAs adopt specific three-dimensional conformations to enable their functions. Experimental determination of high-resolution RNA structures using x-ray crystallography is both laborious and demands expertise, thus, hindering our comprehension of RNA structural biology. The computational modeling of RNA structure was a milestone in the birth of bioinformatics. Although computational modeling has been greatly improved over the last decade showing many successful cases, the accuracy of such computational modeling is not only length-dependent but also varies according to the complexity of the structure. To increase credibility, various experimental data were integrated into computational modeling. In this review, we summarize the experiments that can be integrated into RNA structure modeling as well as the computational methods based on these experimental data. We also demonstrate how computational modeling can help the experimental determination of RNA structure. We highlight the recent advances in computational modeling which can offer reliable structure models using high-throughput experimental data.
Collapse
Affiliation(s)
- Bing Li
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yang Cao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Eric Westhof
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Zhichao Miao
- Translational Research Institute of Brain and Brain-Like Intelligence, Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, United Kingdom
| |
Collapse
|