1
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
2
|
Vallbona-Garcia A, Lindsey PJ, Kamps R, Stassen APM, Nguyen N, van Tienen FHJ, Hamers IHJ, Hardij R, van Gisbergen MW, Benedikter BJ, de Coo IFM, Webers CAB, Gorgels TGMF, Smeets HJM. Mitochondrial DNA D-loop variants correlate with a primary open-angle glaucoma subgroup. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1309836. [PMID: 38983060 PMCID: PMC11182222 DOI: 10.3389/fopht.2023.1309836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/29/2023] [Indexed: 07/11/2024]
Abstract
Introduction Primary open-angle glaucoma (POAG) is a characteristic optic neuropathy, caused by degeneration of the optic nerve-forming neurons, the retinal ganglion cells (RGCs). High intraocular pressure (IOP) and aging have been identified as major risk factors; yet the POAG pathophysiology is not fully understood. Since RGCs have high energy requirements, mitochondrial dysfunction may put the survivability of RGCs at risk. We explored in buffy coat DNA whether mtDNA variants and their distribution throughout the mtDNA could be risk factors for POAG. Methods The mtDNA was sequenced from age- and sex-matched study groups, being high tension glaucoma (HTG, n=71), normal tension glaucoma patients (NTG, n=33), ocular hypertensive subjects (OH, n=7), and cataract controls (without glaucoma; n=30), all without remarkable comorbidities. Results No association was found between the number of mtDNA variants in genes encoding proteins, tRNAs, rRNAs, and in non-coding regions in the different study groups. Next, variants that controls shared with the other groups were discarded. A significantly higher number of exclusive variants was observed in the D-loop region for the HTG group (~1.23 variants/subject), in contrast to controls (~0.35 variants/subject). In the D-loop, specifically in the 7S DNA sub-region within the Hypervariable region 1 (HV1), we found that 42% of the HTG and 27% of the NTG subjects presented variants, while this was only 14% for the controls and OH subjects. As we have previously reported a reduction in mtDNA copy number in HTG, we analysed if specific D-loop variants could explain this. While the majority of glaucoma patients with the exclusive D-loop variants m.72T>C, m.16163 A>G, m.16186C>T, m.16298T>C, and m.16390G>A presented a mtDNA copy number below controls median, no significant association between these variants and low copy number was found and their possible negative role in mtDNA replication remains uncertain. Approximately 38% of the HTG patients with reduced copy number did not carry any exclusive D-loop or other mtDNA variants, which indicates that variants in nuclear-encoded mitochondrial genes, environmental factors, or aging might be involved in those cases. Conclusion In conclusion, we found that variants in the D-loop region may be a risk factor in a subgroup of POAG, possibly by affecting mtDNA replication.
Collapse
Affiliation(s)
- Antoni Vallbona-Garcia
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Patrick J Lindsey
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rick Kamps
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Alphons P M Stassen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Nhan Nguyen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Florence H J van Tienen
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Ilse H J Hamers
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Rianne Hardij
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Marike W van Gisbergen
- Department of Dermatology, Maastricht University Medical Center, Maastricht, Netherlands
- GROW School for Oncology and Reproduction, Maastricht University, Maastricht, Netherlands
| | - Birke J Benedikter
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Irenaeus F M de Coo
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
| | - Carroll A B Webers
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Theo G M F Gorgels
- University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Hubert J M Smeets
- Department of Toxicogenomics, Maastricht University, Maastricht, Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
3
|
Gupta R, Kanai M, Durham TJ, Tsuo K, McCoy JG, Kotrys AV, Zhou W, Chinnery PF, Karczewski KJ, Calvo SE, Neale BM, Mootha VK. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. Nature 2023; 620:839-848. [PMID: 37587338 PMCID: PMC10447254 DOI: 10.1038/s41586-023-06426-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/11/2023] [Indexed: 08/18/2023]
Abstract
Mitochondrial DNA (mtDNA) is a maternally inherited, high-copy-number genome required for oxidative phosphorylation1. Heteroplasmy refers to the presence of a mixture of mtDNA alleles in an individual and has been associated with disease and ageing. Mechanisms underlying common variation in human heteroplasmy, and the influence of the nuclear genome on this variation, remain insufficiently explored. Here we quantify mtDNA copy number (mtCN) and heteroplasmy using blood-derived whole-genome sequences from 274,832 individuals and perform genome-wide association studies to identify associated nuclear loci. Following blood cell composition correction, we find that mtCN declines linearly with age and is associated with variants at 92 nuclear loci. We observe that nearly everyone harbours heteroplasmic mtDNA variants obeying two principles: (1) heteroplasmic single nucleotide variants tend to arise somatically and accumulate sharply after the age of 70 years, whereas (2) heteroplasmic indels are maternally inherited as mixtures with relative levels associated with 42 nuclear loci involved in mtDNA replication, maintenance and novel pathways. These loci may act by conferring a replicative advantage to certain mtDNA alleles. As an illustrative example, we identify a length variant carried by more than 50% of humans at position chrM:302 within a G-quadruplex previously proposed to mediate mtDNA transcription/replication switching2,3. We find that this variant exerts cis-acting genetic control over mtDNA abundance and is itself associated in-trans with nuclear loci encoding machinery for this regulatory switch. Our study suggests that common variation in the nuclear genome can shape variation in mtCN and heteroplasmy dynamics across the human population.
Collapse
Affiliation(s)
- Rahul Gupta
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Masahiro Kanai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kristin Tsuo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason G McCoy
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anna V Kotrys
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wei Zhou
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Konrad J Karczewski
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Tamás V, Righi C, Mészáros I, D'Errico F, Olasz F, Casciari C, Zádori Z, Magyar T, Petrini S, Feliziani F. Involvement of the MGF 110-11L Gene in the African Swine Fever Replication and Virulence. Vaccines (Basel) 2023; 11:vaccines11040846. [PMID: 37112759 PMCID: PMC10145817 DOI: 10.3390/vaccines11040846] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
African swine fever (ASF) is a highly lethal hemorrhagic viral disease that causes extensive economic and animal welfare losses in the Eurasian pig (Sus scrofa) population. To date, no effective and safe vaccines have been marketed against ASF. A starting point for vaccine development is using naturally occurring attenuated strains as a vaccine base. Here, we aimed to remove the multigene family (MGF) 110 gene of unknown function from the Lv17/WB/Rie1 genome to improve the usability of the virus as a live-attenuated vaccine, reducing unwanted side effects. The MGF 110-11L gene was deleted using the CRISPR/Cas9 method, and the safety and efficacy of the virus were tested in pigs after isolation. The vaccine candidates administered at high doses showed reduced pathogenicity compared to the parental strain and induced immunity in vaccinated animals, although several mild clinical signs were observed. Although Lv17/WB/Rie1/d110-11L cannot be used as a vaccine in its current form, it was encouraging that the undesirable side effects of Lv17/WB/Rie1 at high doses can be reduced by additional mutations without a significant reduction in its protective capacity.
Collapse
Affiliation(s)
- Vivien Tamás
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cecilia Righi
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - István Mészáros
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Federica D'Errico
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Ferenc Olasz
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Cristina Casciari
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Zoltán Zádori
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Hungária krt. 21, 1143 Budapest, Hungary
| | - Stefano Petrini
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Francesco Feliziani
- Istituto Zooprofilattico Sperimentale Umbria-Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
5
|
Abstract
Mitochondrial diseases require customized approaches for reproductive counseling, addressing differences in recurrence risks and reproductive options. The majority of mitochondrial diseases is caused by mutations in nuclear genes and segregate in a Mendelian way. Prenatal diagnosis (PND) or preimplantation genetic testing (PGT) are available to prevent the birth of another severely affected child. In at least 15%-25% of cases, mitochondrial diseases are caused by mitochondrial DNA (mtDNA) mutations, which can occur de novo (25%) or be maternally inherited. For de novo mtDNA mutations, the recurrence risk is low and PND can be offered for reassurance. For maternally inherited, heteroplasmic mtDNA mutations, the recurrence risk is often unpredictable, due to the mitochondrial bottleneck. PND for mtDNA mutations is technically possible, but often not applicable given limitations in predicting the phenotype. Another option for preventing the transmission of mtDNA diseases is PGT. Embryos with mutant load below the expression threshold are being transferred. Oocyte donation is another safe option to prevent the transmission of mtDNA disease to a future child for couples who reject PGT. Recently, mitochondrial replacement therapy (MRT) became available for clinical application as an alternative to prevent the transmission of heteroplasmic and homoplasmic mtDNA mutations.
Collapse
|
6
|
Van Haute L, O'Connor E, Díaz-Maldonado H, Munro B, Polavarapu K, Hock DH, Arunachal G, Athanasiou-Fragkouli A, Bardhan M, Barth M, Bonneau D, Brunetti-Pierri N, Cappuccio G, Caruana NJ, Dominik N, Goel H, Helman G, Houlden H, Lenaers G, Mention K, Murphy D, Nandeesh B, Olimpio C, Powell CA, Preethish-Kumar V, Procaccio V, Rius R, Rebelo-Guiomar P, Simons C, Vengalil S, Zaki MS, Ziegler A, Thorburn DR, Stroud DA, Maroofian R, Christodoulou J, Gustafsson C, Nalini A, Lochmüller H, Minczuk M, Horvath R. TEFM variants impair mitochondrial transcription causing childhood-onset neurological disease. Nat Commun 2023; 14:1009. [PMID: 36823193 PMCID: PMC9950373 DOI: 10.1038/s41467-023-36277-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/20/2023] [Indexed: 02/25/2023] Open
Abstract
Mutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT. We report for the first time that TEFM variants are associated with mitochondrial respiratory chain deficiency and a wide range of clinical presentations including mitochondrial myopathy with a treatable neuromuscular transmission defect. Mechanistically, we show muscle and primary fibroblasts from the affected individuals have reduced levels of promoter distal mitochondrial RNA transcripts. Finally, tefm knockdown in zebrafish embryos resulted in neuromuscular junction abnormalities and abnormal mitochondrial function, strengthening the genotype-phenotype correlation. Our study highlights that TEFM regulates mitochondrial transcription elongation and its defect results in variable, tissue-specific neurological and neuromuscular symptoms.
Collapse
Affiliation(s)
- Lindsey Van Haute
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Emily O'Connor
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Héctor Díaz-Maldonado
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Benjamin Munro
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Daniella H Hock
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
| | - Gautham Arunachal
- Department of Human genetics, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Alkyoni Athanasiou-Fragkouli
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Magalie Barth
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Dominique Bonneau
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, University of Naples Federico II, Via s. Pansini, 5, 80131, Naples, Italy
| | - Nikeisha J Caruana
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Institute for Health and Sport (IHES), Victoria University, Melbourne, VIC, 3011, Australia
| | - Natalia Dominik
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Himanshu Goel
- Hunter Genetics, Waratah, University of Newcastle, Callaghan, NSW, 2298, Australia
| | - Guy Helman
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Henry Houlden
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Guy Lenaers
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Karine Mention
- Pediatric Inherited Metabolic Disorders, Hôpital Jeanne de Flandre, Lille, France
| | - David Murphy
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - Bevinahalli Nandeesh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Catarina Olimpio
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | | | - Vincent Procaccio
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - Rocio Rius
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Cas Simons
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, 12311, Egypt
| | - Alban Ziegler
- Department of Genetics, Mitovasc INSERM 1083, CNRS 6015, University Hospital of Angers, Angers, France
| | - David R Thorburn
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - David A Stroud
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, 30 Flemington Road, Parkville, VIC, 3052, Australia
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
| | - Reza Maroofian
- UCL London, Department of Neuromuscular Disorders, Institute of Neurology, University College London, London, UK
| | - John Christodoulou
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Claes Gustafsson
- Department of Biochemistry and Cell Biology, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON, Canada
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK.
| | - Rita Horvath
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
Santander-Lucio H, Totomoch-Serra A, Muñoz MDL, García-Hernández N, Pérez-Ramírez G, Valladares-Salgado A, Pérez-Muñoz AA. Variants in the Control Region of Mitochondrial Genome Associated with type 2 Diabetes in a Cohort of Mexican Mestizos. Arch Med Res 2023; 54:113-123. [PMID: 36792418 DOI: 10.1016/j.arcmed.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 02/15/2023]
Abstract
BACKGROUND According to the International Diabetes Federation, Mexico is seventh place in the prevalence of type 2 diabetes (T2D) worldwide. Mitochondrial DNA variant association studies in multifactorial diseases like T2D are scarce in Mexican populations. AIM OF THE STUDY The objective of this study was to analyze the association between 18 variants in the mtDNA control region and T2D and related metabolic traits in a Mexican mestizo population from Mexico City. METHODS This study included 1001 participants divided into 477 cases with T2D and 524 healthy controls aged between 42 and 62 years and 18 mtDNA variants with frequencies >15%. RESULTS Association analyses matched by age and sex showed differences in the distribution between cases and controls for variants m.315_316insC (p = 1.18 × 10-6), m.489T>C (p = 0.009), m.16362T>C (p = 0.001), and m.16519T>C (p = 0.004). The associations between T2D and variants m.315_316ins (OR = 6.13, CI = 3.42-10.97, p = 1.97 × 10-6), m.489T>C (OR = 1.45, CI = 1.00-2.11, p = 0.006), m.16362T>C (OR = 2.17, CI = 1.57-3.00, p = 0.001), and m.16519T>C (OR = 1.69, CI = 1.23-2.33, p = 0.006) were significant after performing logistic regression models adjusted for age, sex, and diastolic blood pressure. Metabolic traits in the control group through linear regressions, adjusted for age, sex and BMI, and corrected for multiple comparisons showed nominal association between glucose and variants m.263A>G (p <0.050), m.16183A>C (p <0.010), m.16189T>C (p <0.020), and m.16223C>T (p <0.024); triglycerides, and cholesterol and variant m.309_310insC (p <0.010 and p <0.050 respectively); urea, and creatinine, and variant m.315_316insC (p <0.007, and p <0.004 respectively); diastolic blood pressure and variants m.235A>G (p <0.016), m.263A>G (p <0.013), m.315_316insC (p <0.043), and m.16111C>T (p <0.022). CONCLUSION These results demonstrate a strong association between variant m.315_316insC and T2D and a nominal association with T2D traits.
Collapse
Affiliation(s)
- Heriberto Santander-Lucio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Armando Totomoch-Serra
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Departamento de Electrofisiología, Instituto Nacional de Cardiología, Ignacio Chávez, Ciudad de México, México
| | - María de Lourdes Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México.
| | - Normand García-Hernández
- Unidad de Investigación Médica en Genética Humana, Hospital de Pediatría, Dr. Silvestre Frenk Freud, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Gerardo Pérez-Ramírez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Adán Valladares-Salgado
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Ashael Alfredo Pérez-Muñoz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México; Universidad Anáhuac México Norte, Ciudad de México, México
| |
Collapse
|
8
|
Gupta R, Kanai M, Durham TJ, Tsuo K, McCoy JG, Chinnery PF, Karczewski KJ, Calvo SE, Neale BM, Mootha VK. Nuclear genetic control of mtDNA copy number and heteroplasmy in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.19.23284696. [PMID: 36711677 PMCID: PMC9882621 DOI: 10.1101/2023.01.19.23284696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Human mitochondria contain a high copy number, maternally transmitted genome (mtDNA) that encodes 13 proteins required for oxidative phosphorylation. Heteroplasmy arises when multiple mtDNA variants co-exist in an individual and can exhibit complex dynamics in disease and in aging. As all proteins involved in mtDNA replication and maintenance are nuclear-encoded, heteroplasmy levels can, in principle, be under nuclear genetic control, however this has never been shown in humans. Here, we develop algorithms to quantify mtDNA copy number (mtCN) and heteroplasmy levels using blood-derived whole genome sequences from 274,832 individuals of diverse ancestry and perform GWAS to identify nuclear loci controlling these traits. After careful correction for blood cell composition, we observe that mtCN declines linearly with age and is associated with 92 independent nuclear genetic loci. We find that nearly every individual carries heteroplasmic variants that obey two key patterns: (1) heteroplasmic single nucleotide variants are somatic mutations that accumulate sharply after age 70, while (2) heteroplasmic indels are maternally transmitted as mtDNA mixtures with resulting levels influenced by 42 independent nuclear loci involved in mtDNA replication, maintenance, and novel pathways. These nuclear loci do not appear to act by mtDNA mutagenesis, but rather, likely act by conferring a replicative advantage to specific mtDNA molecules. As an illustrative example, the most common heteroplasmy we identify is a length variant carried by >50% of humans at position m.302 within a G-quadruplex known to serve as a replication switch. We find that this heteroplasmic variant exerts cis -acting genetic control over mtDNA abundance and is itself under trans -acting genetic control of nuclear loci encoding protein components of this regulatory switch. Our study showcases how nuclear haplotype can privilege the replication of specific mtDNA molecules to shape mtCN and heteroplasmy dynamics in the human population.
Collapse
Affiliation(s)
- Rahul Gupta
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, United States
- Broad Institute of MIT and Harvard, United States
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, United States
| | - Masahiro Kanai
- Broad Institute of MIT and Harvard, United States
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, United States
| | - Timothy J Durham
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, United States
- Broad Institute of MIT and Harvard, United States
| | - Kristin Tsuo
- Broad Institute of MIT and Harvard, United States
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, United States
| | - Jason G McCoy
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, United States
- Broad Institute of MIT and Harvard, United States
| | - Patrick F Chinnery
- Department of Clinical Neurosciences & MRC Mitochondrial Biology Unit, University of Cambridge, United Kingdom
| | - Konrad J Karczewski
- Broad Institute of MIT and Harvard, United States
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, United States
| | - Sarah E Calvo
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, United States
- Broad Institute of MIT and Harvard, United States
| | - Benjamin M Neale
- Broad Institute of MIT and Harvard, United States
- Analytic and Translational Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, United States
| | - Vamsi K Mootha
- Howard Hughes Medical Institute and Department of Molecular Biology, Massachusetts General Hospital, United States
- Broad Institute of MIT and Harvard, United States
- Department of Systems Biology, Harvard Medical School, United States
| |
Collapse
|
9
|
Laricchia KM, Lake NJ, Watts NA, Shand M, Haessly A, Gauthier L, Benjamin D, Banks E, Soto J, Garimella K, Emery J, Rehm HL, MacArthur DG, Tiao G, Lek M, Mootha VK, Calvo SE. Mitochondrial DNA variation across 56,434 individuals in gnomAD. Genome Res 2022; 32:569-582. [PMID: 35074858 PMCID: PMC8896463 DOI: 10.1101/gr.276013.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/19/2022] [Indexed: 11/25/2022]
Abstract
Genomic databases of allele frequency are extremely helpful for evaluating clinical variants of unknown significance; however, until now, databases such as the Genome Aggregation Database (gnomAD) have focused on nuclear DNA and have ignored the mitochondrial genome (mtDNA). Here, we present a pipeline to call mtDNA variants that addresses three technical challenges: (1) detecting homoplasmic and heteroplasmic variants, present, respectively, in all or a fraction of mtDNA molecules; (2) circular mtDNA genome; and (3) misalignment of nuclear sequences of mitochondrial origin (NUMTs). We observed that mtDNA copy number per cell varied across gnomAD cohorts and influenced the fraction of NUMT-derived false-positive variant calls, which can account for the majority of putative heteroplasmies. To avoid false positives, we excluded contaminated samples, cell lines, and samples prone to NUMT misalignment due to few mtDNA copies. Furthermore, we report variants with heteroplasmy ≥10%. We applied this pipeline to 56,434 whole-genome sequences in the gnomAD v3.1 database that includes individuals of European (58%), African (25%), Latino (10%), and Asian (5%) ancestry. Our gnomAD v3.1 release contains population frequencies for 10,850 unique mtDNA variants at more than half of all mtDNA bases. Importantly, we report frequencies within each nuclear ancestral population and mitochondrial haplogroup. Homoplasmic variants account for most variant calls (98%) and unique variants (85%). We observed that 1/250 individuals carry a pathogenic mtDNA variant with heteroplasmy above 10%. These mtDNA population allele frequencies are freely accessible and will aid in diagnostic interpretation and research studies.
Collapse
Affiliation(s)
- Kristen M Laricchia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Nicole J Lake
- Yale School of Medicine, New Haven, Connecticut 06510, USA
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
| | - Nicholas A Watts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Megan Shand
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Andrea Haessly
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Laura Gauthier
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - David Benjamin
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Eric Banks
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Jose Soto
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Kiran Garimella
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - James Emery
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Heidi L Rehm
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Daniel G MacArthur
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Murdoch Children's Research Institute, Melbourne, Victoria 3052, Australia
- Garvan Institute of Medical Research and UNSW Sydney, Sydney, New South Wales 2010, Australia
| | - Grace Tiao
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Monkol Lek
- Yale School of Medicine, New Haven, Connecticut 06510, USA
| | - Vamsi K Mootha
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute and Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Sarah E Calvo
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
10
|
Spectroscopic Characterization of Mitochondrial G-Quadruplexes. Int J Mol Sci 2022; 23:ijms23020925. [PMID: 35055110 PMCID: PMC8780183 DOI: 10.3390/ijms23020925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Guanine quadruplexes (G4s) are highly polymorphic four-stranded structures formed within guanine-rich DNA and RNA sequences that play a crucial role in biological processes. The recent discovery of the first G4 structures within mitochondrial DNA has led to a small revolution in the field. In particular, the G-rich conserved sequence block II (CSB II) can form different types of G4s that are thought to play a crucial role in replication. In this study, we decipher the most relevant G4 structures that can be formed within CSB II: RNA G4 at the RNA transcript, DNA G4 within the non-transcribed strand and DNA:RNA hybrid between the RNA transcript and the non-transcribed strand. We show that the more abundant, but unexplored, G6AG7 (37%) and G6AG8 (35%) sequences in CSB II yield more stable G4s than the less profuse G5AG7 sequence. Moreover, the existence of a guanine located 1 bp upstream promotes G4 formation. In all cases, parallel G4s are formed, but their topology changes from a less ordered to a highly ordered G4 when adding small amounts of potassium or sodium cations. Circular dichroism was used due to discriminate different conformations and topologies of nucleic acids and was complemented with gel electrophoresis and fluorescence spectroscopy studies.
Collapse
|
11
|
Guo X, Chen H, Liu Y, Yang D, Li Q, Du H, Liu M, Tang Y, Sun H. An organic molecular compound for in situ identification of mitochondrial G-quadruplexes in live cells. J Mater Chem B 2021; 10:430-437. [PMID: 34940779 DOI: 10.1039/d1tb02296b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Emerging studies have shown that mitochondrial G-quadruplex plays a critical role in regulating mitochondrial gene replication and transcription, which makes it a promising target for the diagnosis and treatment of cancer or other major diseases. Molecular compounds that can highly target the mitochondrial G-quadruplexes in live cells are essential for further revealing the function and mechanism of these G-quadruplexes. Here, we have developed an organic molecular compound that can highly target the mitochondria of living cells by virtue of the membrane potential mechanism. Then it shows high selectivity to the G-quadruplex structure in the mitochondria, and its fluorescence overlaps well with that of the BG4 antibody. Moreover, the compound has extremely low cytotoxicity and does not interfere with the natural state of G-quadruplex structure. With these good properties, this compound will have great potential in mitochondrial G-quadruplex tracking research or targeted drug screening.
Collapse
Affiliation(s)
- Xiaomeng Guo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,Basic Medical Science, Shenyang Medical college, Shenyang, 110034, P. R. China
| | - Hongbo Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Dawei Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hongyan Du
- Institute of Forensic Science, Ministry of Public Security, Beijing, 100038, P. R. China
| | - Meirong Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Yalin Tang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongxia Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
12
|
Bohálová N, Dobrovolná M, Brázda V, Bidula S. Conservation and over-representation of G-quadruplex sequences in regulatory regions of mitochondrial DNA across distinct taxonomic sub-groups. Biochimie 2021; 194:28-34. [PMID: 34942301 DOI: 10.1016/j.biochi.2021.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/02/2022]
Abstract
G-quadruplexes have important regulatory roles in the nuclear genome but their distribution and potential roles in mitochondrial DNA (mtDNA) are poorly understood. We analysed 11883 mtDNA sequences from 18 taxonomic sub-groups and identified their frequency and location within mtDNA. Large differences in both the frequency and number of putative quadruplex-forming sequences (PQS) were observed amongst all the organisms and PQS frequency was negatively correlated with an increase in evolutionary age. PQS were over-represented in the 3'UTRs, D-loops, replication origins, and stem loops, indicating regulatory roles for quadruplexes in mtDNA. Variations of the G-quadruplex-forming sequence in the conserved sequence block II (CSBII) region of the human D-loop were conserved amongst other mammals, amphibians, birds, reptiles, and fishes. This D-loop PQS was conserved in the duplicated control regions of some birds and reptiles, indicating its importance to mitochondrial function. The guanine tracts in these PQS also displayed significant length heterogeneity and the length of these guanine tracts were generally longest in bird mtDNA. This information provides further insights into how G4s may contribute to the regulation and function of mtDNA and acts as a database of information for future studies investigating mitochondrial G4s in organisms other than humans.
Collapse
Affiliation(s)
- Natália Bohálová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Michaela Dobrovolná
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic
| | - Stefan Bidula
- School of Biological Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
13
|
Alikhani M, Touati E, Karimipoor M, Vosough M, Mohammadi M. Mitochondrial DNA Copy Number Variations in Gastrointestinal Tract Cancers: Potential Players. J Gastrointest Cancer 2021; 53:770-781. [PMID: 34486088 DOI: 10.1007/s12029-021-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Alterations of mitochondria have been linked to several cancers. Also, the mitochondrial DNA copy number (mtDNA-CN) is altered in various cancers, including gastrointestinal tract (GIT) cancers, and several research groups have investigated its potential as a cancer biomarker. However, the exact causes of mtDNA-CN variations are not yet revealed. This review discussed the conceivable players in this scheme, including reactive oxygen species (ROS), mtDNA genetic variations, DNA methylation, telomere length, autophagy, immune system activation, aging, and infections, and discussed their possible impact in the initiation and progression of cancer. By further exploring such mechanisms, mtDNA-CN variations may be effectively utilized as cancer biomarkers and provide grounds for developing novel cancer therapeutic agents.
Collapse
Affiliation(s)
- Mehdi Alikhani
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eliette Touati
- Unit of Helicobacter Pathogenesis, Department of Microbiology, CNRS UMR2001, Institut Pasteur, 25-28 Rue du Dr Roux cedex 15, 75724, Paris, France
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Marjan Mohammadi
- Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Gajda R, Samełko A, Czuba M, Piotrowska-Nowak A, Tońska K, Żekanowski C, Klisiewicz A, Drygas W, Gębska-Kuczerowska A, Gajda J, Knechtle B, Adamczyk JG. To Be a Champion of the 24-h Ultramarathon Race. If Not the Heart ... Mosaic Theory? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18052371. [PMID: 33804352 PMCID: PMC7957735 DOI: 10.3390/ijerph18052371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 12/16/2022]
Abstract
This comprehensive case analysis aimed to identify the features enabling a runner to achieve championship in 24-h ultramarathon (UM) races. A 36-year-old, multiple medalist of the World Championships in 24-h running, was assessed before, one and 10 days after a 24-h run. Results of his extensive laboratory and cardiological diagnostics with transthoracic echocardiography (TTE) and a one-time cardiopulmonary exercise test (CPET) were analyzed. After 12 h of running (approximately 130 km), the athlete experienced an increasing pain in the right knee. His baseline clinical data were within the normal range. High physical efficiency in CPET (VO2max 63 mL/kg/min) was similar to the average achieved by other ultramarathoners who had significantly worse results. Thus, we also performed genetic tests and assessed his psychological profile, body composition, and markers of physical and mental stress (serotonin, cortisol, epinephrine, prolactin, testosterone, and luteinizing hormone). The athlete had a mtDNA haplogroup H (HV0a1 subgroup, belonging to the HV cluster), characteristic of athletes with the highest endurance. Psychological studies have shown high and very high intensity of the properties of individual scales of the tools used mental resilience (62–100% depending on the scale), openness to experience (10th sten), coherence (10th sten), positive perfectionism (100%) and overall hope for success score (10th sten). The athlete himself considers the commitment and mental support of his team to be a significant factor of his success. Body composition assessment (%fat 13.9) and the level of stress markers were unremarkable. The tested athlete showed a number of features of the champions of ultramarathon runs, such as: inborn predispositions, mental traits, level of training, and resistance to pain. However, none of these features are reserved exclusively for “champions”. Team support’s participation cannot be underestimated. The factors that guarantee the success of this elite 24-h UM runner go far beyond physiological and psychological explanations. Further studies are needed to identify individual elements of the putative “mosaic theory of being a champion”.
Collapse
Affiliation(s)
- Robert Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, 06-100 Pułtusk, Poland;
- Correspondence: ; Tel.: +48-604286030
| | - Aleksandra Samełko
- Department of Pedagogy and Psychology of Physical Culture, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka St. 34, 00-968 Warsaw, Poland;
| | - Miłosz Czuba
- Department of Applied and Clinical Physiology, Collegium Medicum University of Zielona Gora, 28 Zyty St., 65-417 Zielona Gora, Poland;
- Department of Kinesiology, Institute of Sport, 2 Trylogii St., 01-982 Warsaw, Poland
| | - Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, 02-106 Warsaw, Poland; (A.P.-N.); (K.T.)
| | - Katarzyna Tońska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, 02-106 Warsaw, Poland; (A.P.-N.); (K.T.)
| | - Cezary Żekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Institute, Polish Academy of Sciences, ul. Pawinskiego 5, 02-106 Warszawa, Poland;
| | - Anna Klisiewicz
- The Cardinal Stefan Wyszyński National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (A.K.); (W.D.)
| | - Wojciech Drygas
- The Cardinal Stefan Wyszyński National Institute of Cardiology, ul. Alpejska 42, 04-628 Warszawa, Poland; (A.K.); (W.D.)
- Department of Preventive Medicine, Faculty of Health, Medical University of Lodz, ul. Lucjana Żeligowskiego 7/9, 90-752 Łódź, Poland
| | - Anita Gębska-Kuczerowska
- Faculty of Medicine, Collegium Medicum, Cardinal Stefan Wyszyński University, Kazimierza Wóycickiego 1/3, 01-938 Warsaw, Poland;
| | - Jacek Gajda
- Center for Sports Cardiology, Gajda-Med Medical Center in Pułtusk, 06-100 Pułtusk, Poland;
| | - Beat Knechtle
- Institute of Primary Care, University of Zurich, 8091 Zurich, Switzerland;
- Medbase St. Gallen Am Vadianplatz, 9000 St. Gallen, Switzerland
| | - Jakub Grzegorz Adamczyk
- Department of Theory of Sport, Faculty of Physical Education, Józef Piłsudski University of Physical Education in Warsaw, Marymoncka St. 34, 00-968 Warsaw, Poland;
| |
Collapse
|
15
|
Fei ZY, Wang WS, Li SF, Zi JJ, Yang L, Liu T, Ao S, Liu QQ, Cui QH, Yu M, Xiong W. High expression of the TEFM gene predicts poor prognosis in hepatocellular carcinoma. J Gastrointest Oncol 2020; 11:1291-1304. [PMID: 33457002 PMCID: PMC7807266 DOI: 10.21037/jgo-20-120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Mitochondrial transcription elongation factor (TEFM) is an essential molecule that regulates the replication-transcription switch of mitochondrial DNA. TEFM modulates both transcription elongation and RNA processing in mitochondria. The purpose of the present study was to determine the association of TEFM with tumor progression and prognosis in hepatocellular carcinoma (HCC) patients. METHODS The different protein expression level of TEFM among HCC cell lines was detected by Western blotting. The gene expression profiling interactive analysis (GEPIA) was used to dynamically analyze the mRNA expression of TEFM gene in different stages of HCC. The protein and mRNA expression levels of TEFM were detected by immunohistochemistry, Western blotting and qRT-PCR. The mRNA-SeqV2 expression of TEFM and clinical information of HCC patients were downloaded from the TCGA database by using R3.6.3 software. Next, the relationships between the expression level of TEFM and clinicopathological characteristics and the prognostic value of TEFM were analyzed. A Cox regression model was used for multivariate analysis of the factors that affected the prognosis of HCC. Finally, the association between the expression levels of TEFM and other mitochondrial regulatory genes and HCC biomarker genes was analyzed by GEPIA. RESULTS TEFM is upregulated in HCC cell lines compared to noncancerous liver cell line. TEFM protein and mRNA expression levels in HCC tissues were significantly upregulated compared with those in noncancerous liver tissues. In addition, the mRNA expression level of TEFM was significantly correlated with sex, serum AFP level, and vascular invasion (P<0.05). Further analysis showed that high expression level of TEFM was unfavorable in terms of the prognosis of patients with HCC. Cox multivariate regression analysis showed that patient age, vascular invasion, and TEFM expression were independent factors affecting the prognosis of HCC patients (P<0.05). The expression level of the TEFM gene was significantly positively correlated with the expression of multiple mitochondrial regulatory genes and biomarker genes of HCC (P<0.01, R>0). CONCLUSIONS Our findings reveal that TEFM may play an important role in the progression of HCC. More importantly, the elevated expression of TEFM may potentially predict poor overall survival (OS) and disease-free survival (DFS) in patients with HCC.
Collapse
Affiliation(s)
- Zai-Yi Fei
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei-Si Wang
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Su-Fen Li
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| | - Jia-Ji Zi
- College of Basic Medical Sciences, Dali University, Dali, China
| | - Li Yang
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Ting Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Song Ao
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qian-Qian Liu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Qing-Hua Cui
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Min Yu
- School of Life Sciences, Yunnan University, Kunming, China
- Key Laboratory for Biochemistry and Molecular Biology of High Education in Yunnan Province, Yunnan University, Kunming, China
| | - Wei Xiong
- College of Basic Medical Sciences, Dali University, Dali, China
- Key Laboratory for Clinical Biochemistry of High Education in Yunnan Province, Dali University, Dali, China
| |
Collapse
|
16
|
Røyrvik EC, Johnston IG. MtDNA sequence features associated with 'selfish genomes' predict tissue-specific segregation and reversion. Nucleic Acids Res 2020; 48:8290-8301. [PMID: 32716035 PMCID: PMC7470939 DOI: 10.1093/nar/gkaa622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/25/2020] [Accepted: 07/15/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes cellular machinery vital for cell and organism survival. Mutations, genetic manipulation, and gene therapies may produce cells where different types of mtDNA coexist in admixed populations. In these admixtures, one mtDNA type is often observed to proliferate over another, with different types dominating in different tissues. This ‘segregation bias’ is a long-standing biological mystery that may pose challenges to modern mtDNA disease therapies, leading to substantial recent attention in biological and medical circles. Here, we show how an mtDNA sequence’s balance between replication and transcription, corresponding to molecular ‘selfishness’, in conjunction with cellular selection, can potentially modulate segregation bias. We combine a new replication-transcription-selection (RTS) model with a meta-analysis of existing data to show that this simple theory predicts complex tissue-specific patterns of segregation in mouse experiments, and reversion in human stem cells. We propose the stability of G-quadruplexes in the mtDNA control region, influencing the balance between transcription and replication primer formation, as a potential molecular mechanism governing this balance. Linking mtDNA sequence features, through this molecular mechanism, to cellular population dynamics, we use sequence data to obtain and verify the sequence-specific predictions from this hypothesis on segregation behaviour in mouse and human mtDNA.
Collapse
Affiliation(s)
- Ellen C Røyrvik
- Department of Clinical Science, University of Bergen, Norway.,K.G. Jebsen Center for Autoimmune Diseases, University of Bergen, Norway
| | - Iain G Johnston
- Department of Mathematics, University of Bergen, Norway.,Alan Turing Institute, London, UK
| |
Collapse
|
17
|
Yamada M, Akashi K, Ooka R, Miyado K, Akutsu H. Mitochondrial Genetic Drift after Nuclear Transfer in Oocytes. Int J Mol Sci 2020; 21:E5880. [PMID: 32824295 PMCID: PMC7461576 DOI: 10.3390/ijms21165880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are energy-producing intracellular organelles containing their own genetic material in the form of mitochondrial DNA (mtDNA), which codes for proteins and RNAs essential for mitochondrial function. Some mtDNA mutations can cause mitochondria-related diseases. Mitochondrial diseases are a heterogeneous group of inherited disorders with no cure, in which mutated mtDNA is passed from mothers to offspring via maternal egg cytoplasm. Mitochondrial replacement (MR) is a genome transfer technology in which mtDNA carrying disease-related mutations is replaced by presumably disease-free mtDNA. This therapy aims at preventing the transmission of known disease-causing mitochondria to the next generation. Here, a proof of concept for the specific removal or editing of mtDNA disease-related mutations by genome editing is introduced. Although the amount of mtDNA carryover introduced into human oocytes during nuclear transfer is low, the safety of mtDNA heteroplasmy remains a concern. This is particularly true regarding donor-recipient mtDNA mismatch (mtDNA-mtDNA), mtDNA-nuclear DNA (nDNA) mismatch caused by mixing recipient nDNA with donor mtDNA, and mtDNA replicative segregation. These conditions can lead to mtDNA genetic drift and reversion to the original genotype. In this review, we address the current state of knowledge regarding nuclear transplantation for preventing the inheritance of mitochondrial diseases.
Collapse
Affiliation(s)
- Mitsutoshi Yamada
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (K.A.); (R.O.)
| | - Kazuhiro Akashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (K.A.); (R.O.)
| | - Reina Ooka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo 160-8582, Japan; (K.A.); (R.O.)
| | - Kenji Miyado
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku, Tokyo 157-8535, Japan; (K.M.); (H.A.)
| | - Hidenori Akutsu
- Department of Reproductive Biology, National Research Institute for Child Health and Development, 2-10-1 Okura Setagaya-ku, Tokyo 157-8535, Japan; (K.M.); (H.A.)
| |
Collapse
|
18
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Handelman SK, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. Mitochondrial GWAS and association of nuclear - mitochondrial epistasis with BMI in T1DM patients. BMC Med Genomics 2020; 13:97. [PMID: 32635923 PMCID: PMC7341625 DOI: 10.1186/s12920-020-00752-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 06/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND BMI is a strong indicator of complications from type I diabetes, especially under intensive treatment. METHODS We have genotyped 435 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays and performed mitoGWAS on BMI. We identified additive interactions between mitochondrial and nuclear variants in genes associated with mitochondrial functioning MitoCarta2.0 and confirmed and refined the results on external cohorts: the Framingham Heart Study (FHS) and GTEx data. Linear mixed model analysis was performed using the GENESIS package in R/Bioconductor. RESULTS We find a borderline significant association between the mitochondrial variant rs28357980, localized to MT-ND2, and BMI (β = - 0.69, p = 0.056). This BMI association was confirmed on 1889 patients from FHS cohort (β = - 0.312, p = 0.047). Next, we searched for additive interactions between mitochondrial and nuclear variants. MT-ND2 variants interacted with variants in the genes SIRT3, ATP5B, CYCS, TFB2M and POLRMT. TFB2M is a mitochondrial transcription factor and together with TFAM creates a transcription promoter complex for the mitochondrial polymerase POLRMT. We have found an interaction between rs3021088 in MT-ND2 and rs6701836 in TFB2M leading to BMI decrease (inter_pval = 0.0241), while interaction of rs3021088 in MT-ND2 and rs41542013 in POLRMT led to BMI increase (inter_pval = 0.0004). The influence of these interactions on BMI was confirmed in external cohorts. CONCLUSIONS Here, we have shown that variants in the mitochondrial genome as well as additive interactions between mitochondrial and nuclear SNPs influence BMI in T1DM and general cohorts.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- The Ohio State University Wexner Medical Center, Department of Cancer Biology and Genetics, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Samuel K Handelman
- Department of Internal Medicine, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Urszula Mantaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Paweł Gutaj
- Division of Reproduction, Poznań University of Medical Sciences, Poznań, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | | | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
19
|
Tiphania Kotelawala J, Ranasinghe R, Rodrigo C, Tennekoon KH, Silva KD. Evaluation of non-coding region sequence variants and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in individuals of Sri Lankan Sinhalese ethnicity. Biomed Rep 2020; 12:339-347. [PMID: 32346478 DOI: 10.3892/br.2020.1292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 01/30/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations have been reported to be associated with various diseases, including cancer. The present study investigated the mtDNA non-coding region mutations and mitochondrial haplogroups as potential biomarkers of sporadic breast cancer in Sri Lankan Sinhalese women. Mitochondrial macro-haplogroups were determined using PCR-restriction fragment length polymorphism, whereas non-coding region sequences were determined using Sanger sequencing. The sequence of the non-coding region was also used to confirm haplogroup status. Neither the mutations in the non-coding region nor the mitochondrial haplogroups that were reported as risk factors in other populations, were determined to be potential risk factors for sporadic breast cancer in the present study. Furthermore, several novel mutations were identified in the present matched pairs case-controlled study. The M65a haplogroup with an additional mutation at position 16311 (P=0.0771) and mutations at the ori-b site (P=0.05) were considered a weak risk factor and protective factor, respectively, for sporadic breast cancer in Sinhalese women. Previous studies have indicated the use of mtDNA mutations as a biomarker; however, the present study showed that such biomarkers need to be validated for individual ethnic groups before they can be recommended for use in the prediction of disease.
Collapse
Affiliation(s)
- Joanne Tiphania Kotelawala
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Ruwandi Ranasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Chrishani Rodrigo
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kamani Hemamala Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo 00300, Sri Lanka
| | - Kanishka De Silva
- National Cancer Institute, Apeksha Hospital, Maharagama 10280, Sri Lanka
| |
Collapse
|
20
|
Cuppari A, Fernández-Millán P, Battistini F, Tarrés-Solé A, Lyonnais S, Iruela G, Ruiz-López E, Enciso Y, Rubio-Cosials A, Prohens R, Pons M, Alfonso C, Tóth K, Rivas G, Orozco M, Solà M. DNA specificities modulate the binding of human transcription factor A to mitochondrial DNA control region. Nucleic Acids Res 2020; 47:6519-6537. [PMID: 31114891 PMCID: PMC6614842 DOI: 10.1093/nar/gkz406] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 04/30/2019] [Accepted: 05/15/2019] [Indexed: 12/18/2022] Open
Abstract
Human mitochondrial DNA (h-mtDNA) codes for 13 subunits of the oxidative phosphorylation pathway, the essential route that produces ATP. H-mtDNA transcription and replication depends on the transcription factor TFAM, which also maintains and compacts this genome. It is well-established that TFAM activates the mtDNA promoters LSP and HSP1 at the mtDNA control region where DNA regulatory elements cluster. Previous studies identified still uncharacterized, additional binding sites at the control region downstream from and slightly similar to LSP, namely sequences X and Y (Site-X and Site-Y) (Fisher et al., Cell 50, pp 247-258, 1987). Here, we explore TFAM binding at these two sites and compare them to LSP by multiple experimental and in silico methods. Our results show that TFAM binding is strongly modulated by the sequence-dependent properties of Site-X, Site-Y and LSP. The high binding versatility of Site-Y or the considerable stiffness of Site-X tune TFAM interactions. In addition, we show that increase in TFAM/DNA complex concentration induces multimerization, which at a very high concentration triggers disruption of preformed complexes. Therefore, our results suggest that mtDNA sequences induce non-uniform TFAM binding and, consequently, direct an uneven distribution of TFAM aggregation sites during the essential process of mtDNA compaction.
Collapse
Affiliation(s)
- Anna Cuppari
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Pablo Fernández-Millán
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Aleix Tarrés-Solé
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Sébastien Lyonnais
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Guillermo Iruela
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Elena Ruiz-López
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Yuliana Enciso
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Anna Rubio-Cosials
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| | - Rafel Prohens
- Unitat de Polimorfisme i Calorimetria, Centres Científics i Tecnològics, University of Barcelona, 08028 Barcelona, Spain
| | - Miquel Pons
- BioNMR Laboratory, Inorganic and Organic Chemistry Department, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Carlos Alfonso
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Katalin Tóth
- Deutsches Krebsforschungszentrum, Division Biophysics of Macromolecules, Heidelberg, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.,Department of Biochemistry and Biomedicine, University of Barcelona, Barcelona 08028, Spain
| | - Maria Solà
- Structural MitoLab, Structural Biology Department, Maria de Maeztu Unit of Excellence, Molecular Biology Institute Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
| |
Collapse
|
21
|
Kang E, Koski A, Amato P, Temiakov D, Mitalipov S. Reply to: Reversion after replacement of mitochondrial DNA. Nature 2019; 574:E12-E13. [DOI: 10.1038/s41586-019-1624-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Piotrowska-Nowak A, Kosior-Jarecka E, Schab A, Wrobel-Dudzinska D, Bartnik E, Zarnowski T, Tonska K. Investigation of whole mitochondrial genome variation in normal tension glaucoma. Exp Eye Res 2018; 178:186-197. [PMID: 30312593 DOI: 10.1016/j.exer.2018.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 10/08/2018] [Indexed: 01/06/2023]
Abstract
Glaucoma is one of the leading causes of visual impairment and blindness worldwide. However, the cause of retinal ganglion cell loss and damage of the optic nerve in its pathogenesis is largely unknown. The high energy demands of these cells may reflect their strong dependence on mitochondrial function and thus sensitivity to mitochondrial defects. To address this issue, we studied whole mitochondrial genome variation in normal tension glaucoma patients and control individuals from the Polish population using next generation sequencing. Our findings indicate that few features of mitochondrial DNA variation are different for glaucoma patients and control subjects. New insights into normal tension glaucoma development are discussed. We provide also a comprehensive approach for mitochondrial DNA analysis and variant evaluation.
Collapse
Affiliation(s)
- Agnieszka Piotrowska-Nowak
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Ewa Kosior-Jarecka
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Aleksandra Schab
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Dominika Wrobel-Dudzinska
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland; Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| | - Tomasz Zarnowski
- Department of Diagnostics and Microsurgery of Glaucoma, Medical University of Lublin, Chmielna 1 Street, Lublin, 20-079, Poland.
| | - Katarzyna Tonska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a Street, Warsaw, 02-106, Poland.
| |
Collapse
|
23
|
Structural basis of mitochondrial transcription. Nat Struct Mol Biol 2018; 25:754-765. [PMID: 30190598 DOI: 10.1038/s41594-018-0122-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2018] [Indexed: 01/17/2023]
Abstract
The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation.
Collapse
|
24
|
Barshad G, Marom S, Cohen T, Mishmar D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends Genet 2018; 34:682-692. [DOI: 10.1016/j.tig.2018.05.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
|
25
|
Hillen HS, Parshin AV, Agaronyan K, Morozov YI, Graber JJ, Chernev A, Schwinghammer K, Urlaub H, Anikin M, Cramer P, Temiakov D. Mechanism of Transcription Anti-termination in Human Mitochondria. Cell 2017; 171:1082-1093.e13. [PMID: 29033127 DOI: 10.1016/j.cell.2017.09.035] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/27/2017] [Accepted: 09/18/2017] [Indexed: 11/18/2022]
Abstract
In human mitochondria, transcription termination events at a G-quadruplex region near the replication origin are thought to drive replication of mtDNA by generation of an RNA primer. This process is suppressed by a key regulator of mtDNA-the transcription factor TEFM. We determined the structure of an anti-termination complex in which TEFM is bound to transcribing mtRNAP. The structure reveals interactions of the dimeric pseudonuclease core of TEFM with mobile structural elements in mtRNAP and the nucleic acid components of the elongation complex (EC). Binding of TEFM to the DNA forms a downstream "sliding clamp," providing high processivity to the EC. TEFM also binds near the RNA exit channel to prevent formation of the RNA G-quadruplex structure required for termination and thus synthesis of the replication primer. Our data provide insights into target specificity of TEFM and mechanisms by which it regulates the switch between transcription and replication of mtDNA.
Collapse
Affiliation(s)
- Hauke S Hillen
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Andrey V Parshin
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Karen Agaronyan
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Yaroslav I Morozov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - James J Graber
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Aleksandar Chernev
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Kathrin Schwinghammer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany; Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Michael Anikin
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Dmitry Temiakov
- Department of Cell Biology, Rowan University, School of Osteopathic Medicine, 2 Medical Center Drive, Stratford, NJ 08084, USA.
| |
Collapse
|
26
|
Mitochondrial DNA replication: a PrimPol perspective. Biochem Soc Trans 2017; 45:513-529. [PMID: 28408491 PMCID: PMC5390496 DOI: 10.1042/bst20160162] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 12/20/2022]
Abstract
PrimPol, (primase-polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process.
Collapse
|
27
|
Lyonnais S, Tarrés-Solé A, Rubio-Cosials A, Cuppari A, Brito R, Jaumot J, Gargallo R, Vilaseca M, Silva C, Granzhan A, Teulade-Fichou MP, Eritja R, Solà M. The human mitochondrial transcription factor A is a versatile G-quadruplex binding protein. Sci Rep 2017; 7:43992. [PMID: 28276514 PMCID: PMC5343656 DOI: 10.1038/srep43992] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 02/02/2017] [Indexed: 01/07/2023] Open
Abstract
The ability of the guanine-rich strand of the human mitochondrial DNA (mtDNA) to form G-quadruplex structures (G4s) has been recently highlighted, suggesting potential functions in mtDNA replication initiation and mtDNA stability. G4 structures in mtDNA raise the question of their recognition by factors associated with the mitochondrial nucleoid. The mitochondrial transcription factor A (TFAM), a high-mobility group (HMG)-box protein, is the major binding protein of human mtDNA and plays a critical role in its expression and maintenance. HMG-box proteins are pleiotropic sensors of DNA structural alterations. Thus, we investigated and uncovered a surprising ability of TFAM to bind to DNA or RNA G4 with great versatility, showing an affinity similar than to double-stranded DNA. The recognition of G4s by endogenous TFAM was detected in mitochondrial extracts by pull-down experiments using a G4-DNA from the mtDNA conserved sequence block II (CSBII). Biochemical characterization shows that TFAM binding to G4 depends on both the G-quartets core and flanking single-stranded overhangs. Additionally, it shows a structure-specific binding mode that differs from B-DNA, including G4-dependent TFAM multimerization. These TFAM-G4 interactions suggest functional recognition of G4s in the mitochondria.
Collapse
Affiliation(s)
- Sébastien Lyonnais
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Aleix Tarrés-Solé
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Anna Rubio-Cosials
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Anna Cuppari
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Reicy Brito
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Joaquim Jaumot
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Raimundo Gargallo
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Marta Vilaseca
- Mass Spectrometry Core Facility, Institute for Research in Biomedicine, IRB Barcelona, 08028 Barcelona, Spain
| | - Cristina Silva
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| | - Anton Granzhan
- CNRS UMR9187, INSERM U1196, Institut Curie, Université Paris-Sud, 91405 Orsay, France
| | | | | | - Maria Solà
- Structural MitoLab, Structural Biology Unit, Molecular Biology Institute of Barcelona (CSIC), Barcelona, 08028, Spain
| |
Collapse
|