1
|
Shen L, Zhao H, Xi Y, Wang Z, Deng K, Gou W, Zhang K, Hu W, Tang J, Xu F, Jiang Z, Fu Y, Zhu Y, Zhou D, Chen YM, Zheng JS. Mapping the gut microbial structural variations in healthy aging within the Chinese population. Cell Rep 2024; 43:114968. [PMID: 39520681 DOI: 10.1016/j.celrep.2024.114968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/14/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Mapping gut microbial structural variants (SVs) during human aging may provide fundamental knowledge and mechanistic understanding of the gut microbiome's relationship with healthy aging. We characterize gut microbial SVs from 3,230 Chinese participants, identifying key SVs associated with aging, healthy aging, and age-related chronic diseases. Our findings reveal a pattern of copy number loss in aging-related SVs, with 35 core SVs consistently detected. Additionally, eight SVs distinguish healthy from unhealthy aging, regardless of age. Notably, a 3-kbp deletion SV of Bifidobacterium pseudocatenulatum, encoding plant polysaccharide degradation, is regulated by plant-based diet and contributes to healthy aging through bile acid metabolism. Our analysis also connects SVs to age-related diseases, such as chronic kidney disease, via genes in the methionine-homocysteine pathway. This study deepens our understanding of the gut microbiome's role in aging and could inform future efforts to enhance lifespan and healthspan.
Collapse
Affiliation(s)
- Luqi Shen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Hui Zhao
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zhaoping Wang
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kui Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wanglong Gou
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ke Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun Tang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Fengzhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Zengliang Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China
| | - Yuanqing Fu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Yimin Zhu
- Department of Epidemiology & Biostatistics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Dan Zhou
- School of Public Health and the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| | - Ju-Sheng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China; Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China; Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou, China.
| |
Collapse
|
2
|
Minor CM, Takayesu A, Ha SM, Salwinski L, Sawaya MR, Pellegrini M, Clubb RT. A genomic analysis reveals the diversity of cellulosome displaying bacteria. Front Microbiol 2024; 15:1473396. [PMID: 39539715 PMCID: PMC11557425 DOI: 10.3389/fmicb.2024.1473396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction Several species of cellulolytic bacteria display cellulosomes, massive multi-cellulase containing complexes that degrade lignocellulosic plant biomass (LCB). A greater understanding of cellulosome structure and enzyme content could facilitate the development of new microbial-based methods to produce renewable chemicals and materials. Methods To identify novel cellulosome-displaying microbes we searched 305,693 sequenced bacterial genomes for genes encoding cellulosome proteins; dockerin-fused glycohydrolases (DocGHs) and cohesin domain containing scaffoldins. Results and discussion This analysis identified 33 bacterial species with the genomic capacity to produce cellulosomes, including 10 species not previously reported to produce these complexes, such as Acetivibrio mesophilus. Cellulosome-producing bacteria primarily originate from the Acetivibrio, Ruminococcus, Ruminiclostridium, and Clostridium genera. A rigorous analysis of their enzyme, scaffoldin, dockerin, and cohesin content reveals phylogenetically conserved features. Based on the presence of a high number of genes encoding both scaffoldins and dockerin-fused GHs, the cellulosomes in Acetivibrio and Ruminococcus bacteria possess complex architectures that are populated with a large number of distinct LCB degrading GH enzymes. Their complex cellulosomes are distinguishable by their mechanism of attachment to the cell wall, the structures of their primary scaffoldins, and by how they are transcriptionally regulated. In contrast, bacteria in the Ruminiclostridium and Clostridium genera produce 'simple' cellulosomes that are constructed from only a few types of scaffoldins that based on their distinct complement of GH enzymes are predicted to exhibit high and low cellulolytic activity, respectively. Collectively, the results of this study reveal conserved and divergent architectural features in bacterial cellulosomes that could be useful in guiding ongoing efforts to harness their cellulolytic activities for bio-based chemical and materials production.
Collapse
Affiliation(s)
- Christine M. Minor
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Allen Takayesu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sung Min Ha
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Lukasz Salwinski
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert T. Clubb
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, United States
- UCLA-DOE Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
3
|
Stiffler AK, Hesketh-Best PJ, Varona NS, Zagame A, Wallace BA, Lapointe BE, Silveira CB. Genomic and induction evidence for bacteriophage contributions to sargassum-bacteria symbioses. MICROBIOME 2024; 12:143. [PMID: 39090708 PMCID: PMC11295528 DOI: 10.1186/s40168-024-01860-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Symbioses between primary producers and bacteria are crucial for nutrient exchange that fosters host growth and niche adaptation. Yet, how viruses that infect bacteria (phages) influence these bacteria-eukaryote interactions is still largely unknown. Here, we investigate the role of viruses on the genomic diversity and functional adaptations of bacteria associated with pelagic sargassum. This brown alga has dramatically increased its distribution range in the Atlantic in the past decade and is predicted to continue expanding, imposing severe impacts on coastal ecosystems, economies, and human health. RESULTS We reconstructed 73 bacterial and 3963 viral metagenome-assembled genomes (bMAGs and vMAGs, respectively) from coastal Sargassum natans VIII and surrounding seawater. S. natans VIII bMAGs were enriched in prophages compared to seawater (28% and 0.02%, respectively). Rhodobacterales and Synechococcus bMAGs, abundant members of the S. natans VIII microbiome, were shared between the algae and seawater but were associated with distinct phages in each environment. Genes related to biofilm formation and quorum sensing were enriched in S. natans VIII phages, indicating their potential to influence algal association in their bacterial hosts. In-vitro assays with a bacterial community harvested from sargassum surface biofilms and depleted of free viruses demonstrated that these bacteria are protected from lytic infection by seawater viruses but contain intact and inducible prophages. These bacteria form thicker biofilms when growing on sargassum-supplemented seawater compared to seawater controls, and phage induction using mitomycin C was associated with a significant decrease in biofilm formation. The induced metagenomes were enriched in genomic sequences classified as temperate viruses compared to uninduced controls. CONCLUSIONS Our data shows that prophages contribute to the flexible genomes of S. natans VIII-associated bacteria. These prophages encode genes with symbiotic functions, and their induction decreases biofilm formation, an essential capacity for flexible symbioses between bacteria and the alga. These results indicate that prophage acquisition and induction contribute to genomic and functional diversification during sargassum-bacteria symbioses, with potential implications for algae growth. Video Abstract.
Collapse
Affiliation(s)
| | - Poppy J Hesketh-Best
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Department of Veterinary Population Medicine, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Natascha S Varona
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Ashley Zagame
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Bailey A Wallace
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
| | - Brian E Lapointe
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL, 34946, USA
| | - Cynthia B Silveira
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA.
| |
Collapse
|
4
|
Chang T, Gavelis GS, Brown JM, Stepanauskas R. Genomic representativeness and chimerism in large collections of SAGs and MAGs of marine prokaryoplankton. MICROBIOME 2024; 12:126. [PMID: 39010229 PMCID: PMC11247762 DOI: 10.1186/s40168-024-01848-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND Single amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) are the predominant sources of information about the coding potential of uncultured microbial lineages, but their strengths and limitations remain poorly understood. Here, we performed a direct comparison of two previously published collections of thousands of SAGs and MAGs obtained from the same, global environment. RESULTS We found that SAGs were less prone to chimerism and more accurately reflected the relative abundance and the pangenome content of microbial lineages inhabiting the epipelagic of the tropical and subtropical ocean, as compared to MAGs. SAGs were also better suited to link genome information with taxa discovered through 16S rRNA amplicon analyses. Meanwhile, MAGs had the advantage of more readily recovering genomes of rare lineages. CONCLUSIONS Our analyses revealed the relative strengths and weaknesses of the two most commonly used genome recovery approaches in environmental microbiology. These considerations, as well as the need for better tools for genome quality assessment, should be taken into account when designing studies and interpreting data that involve SAGs or MAGs. Video Abstract.
Collapse
Affiliation(s)
- Tianyi Chang
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | - Gregory S Gavelis
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | - Julia M Brown
- Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, 04544, USA
| | | |
Collapse
|
5
|
de Oliveira Lino FS, Garg S, Li SS, Misiakou MA, Kang K, Vale da Costa BL, Beyer-Pedersen TSA, Giacon TG, Basso TO, Panagiotou G, Sommer MOA. Strain dynamics of contaminating bacteria modulate the yield of ethanol biorefineries. Nat Commun 2024; 15:5323. [PMID: 38909053 PMCID: PMC11193817 DOI: 10.1038/s41467-024-49683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/16/2024] [Indexed: 06/24/2024] Open
Abstract
Bioethanol is a sustainable energy alternative and can contribute to global greenhouse-gas emission reductions by over 60%. Its industrial production faces various bottlenecks, including sub-optimal efficiency resulting from bacteria. Broad-spectrum removal of these contaminants results in negligible gains, suggesting that the process is shaped by ecological interactions within the microbial community. Here, we survey the microbiome across all process steps at two biorefineries, over three timepoints in a production season. Leveraging shotgun metagenomics and cultivation-based approaches, we identify beneficial bacteria and find improved outcome when yeast-to-bacteria ratios increase during fermentation. We provide a microbial gene catalogue which reveals bacteria-specific pathways associated with performance. We also show that Limosilactobacillus fermentum overgrowth lowers production, with one strain reducing yield by ~5% in laboratory fermentations, potentially due to its metabolite profile. Temperature is found to be a major driver for strain-level dynamics. Improved microbial management strategies could unlock environmental and economic gains in this US $ 60 billion industry enabling its wider adoption.
Collapse
Affiliation(s)
- Felipe Senne de Oliveira Lino
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Shilpa Garg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Simone S Li
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, 4072, Australia
| | - Maria-Anna Misiakou
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kang Kang
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, 07745, Germany
| | | | | | - Thamiris Guerra Giacon
- Departamento de Engenharia Química da Escola Politécnica da Universidade de São Paulo. Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Thiago Olitta Basso
- Departamento de Engenharia Química da Escola Politécnica da Universidade de São Paulo. Universidade de São Paulo, 05508-000, São Paulo, SP, Brazil
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology, Jena, 07745, Germany
| | - Morten Otto Alexander Sommer
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark.
| |
Collapse
|
6
|
Wienhausen G, Moraru C, Bruns S, Tran DQ, Sultana S, Wilkes H, Dlugosch L, Azam F, Simon M. Ligand cross-feeding resolves bacterial vitamin B 12 auxotrophies. Nature 2024; 629:886-892. [PMID: 38720071 DOI: 10.1038/s41586-024-07396-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 04/08/2024] [Indexed: 05/24/2024]
Abstract
Cobalamin (vitamin B12, herein referred to as B12) is an essential cofactor for most marine prokaryotes and eukaryotes1,2. Synthesized by a limited number of prokaryotes, its scarcity affects microbial interactions and community dynamics2-4. Here we show that two bacterial B12 auxotrophs can salvage different B12 building blocks and cooperate to synthesize B12. A Colwellia sp. synthesizes and releases the activated lower ligand α-ribazole, which is used by another B12 auxotroph, a Roseovarius sp., to produce the corrin ring and synthesize B12. Release of B12 by Roseovarius sp. happens only in co-culture with Colwellia sp. and only coincidently with the induction of a prophage encoded in Roseovarius sp. Subsequent growth of Colwellia sp. in these conditions may be due to the provision of B12 by lysed cells of Roseovarius sp. Further evidence is required to support a causative role for prophage induction in the release of B12. These complex microbial interactions of ligand cross-feeding and joint B12 biosynthesis seem to be widespread in marine pelagic ecosystems. In the western and northern tropical Atlantic Ocean, bacteria predicted to be capable of salvaging cobinamide and synthesizing only the activated lower ligand outnumber B12 producers. These findings add new players to our understanding of B12 supply to auxotrophic microorganisms in the ocean and possibly in other ecosystems.
Collapse
Affiliation(s)
- Gerrit Wienhausen
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA.
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
- Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Stefan Bruns
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Den Quoc Tran
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Sabiha Sultana
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Farooq Azam
- Scripps Institution of Oceanography, Marine Biology Research Division, University of California San Diego, La Jolla, CA, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany.
| |
Collapse
|
7
|
Sun Y, Staley ZR, Woodbury B, Riethoven JJ, Li X. Composting reduces the risks of resistome in beef cattle manure at the transcriptional level. Appl Environ Microbiol 2024; 90:e0175223. [PMID: 38445903 PMCID: PMC11022583 DOI: 10.1128/aem.01752-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Transcriptomic evidence is needed to determine whether composting is more effective than conventional stockpiling in mitigating the risk of resistome in livestock manure. The objective of this study is to compare composting and stockpiling for their effectiveness in reducing the risk of antibiotic resistance in beef cattle manure. Samples collected from the center and the surface of full-size manure stockpiling and composting piles were subject to metagenomic and metatranscriptomic analyses. While the distinctions in resistome between stockpiled and composted manure were not evident at the DNA level, the advantages of composting over stockpiling were evident at the transcriptomic level in terms of the abundance of antibiotic resistance genes (ARGs), the number of ARG subtypes, and the prevalence of high-risk ARGs (i.e., mobile ARGs associated with zoonotic pathogens). DNA and transcript contigs show that the pathogen hosts of high-risk ARGs included Escherichia coli O157:H7 and O25b:H4, Klebsiella pneumoniae, and Salmonella enterica. Although the average daily temperatures for the entire composting pile exceeded 55°C throughout the field study, more ARG and ARG transcripts were removed at the center of the composting pile than at the surface. This work demonstrates the advantage of composting over stockpiling in reducing ARG risk in active populations in beef cattle manure.IMPORTANCEProper treatment of manure before land application is essential to mitigate the spread of antibiotic resistance in the environment. Stockpiling and composting are two commonly used methods for manure treatment. However, the effectiveness of composting in reducing antibiotic resistance in manure has been debated. This work compared the ability of these two methods to reduce the risk of antibiotic resistance in beef cattle manure. Our results demonstrate that composting reduced more high-risk resistance genes at the transcriptomic level in cattle manure than conventional stockpiling. This finding not only underscores the effectiveness of composting in reducing antibiotic resistance in manure but also highlights the importance of employing RNA analyses alongside DNA analyses.
Collapse
Affiliation(s)
- Yuepeng Sun
- School of Ecology and Environment, Inner Mongolia University, Hohhot, China
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zachery R. Staley
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Bryan Woodbury
- USDA-ARS U.S. Meat Animal Research Center, Clay Center, Clay Center, Nebraska, USA
| | - Jean-Jack Riethoven
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Xu Li
- Department of Civil and Environmental Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Giordano N, Gaudin M, Trottier C, Delage E, Nef C, Bowler C, Chaffron S. Genome-scale community modelling reveals conserved metabolic cross-feedings in epipelagic bacterioplankton communities. Nat Commun 2024; 15:2721. [PMID: 38548725 PMCID: PMC10978986 DOI: 10.1038/s41467-024-46374-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024] Open
Abstract
Marine microorganisms form complex communities of interacting organisms that influence central ecosystem functions in the ocean such as primary production and nutrient cycling. Identifying the mechanisms controlling their assembly and activities is a major challenge in microbial ecology. Here, we integrated Tara Oceans meta-omics data to predict genome-scale community interactions within prokaryotic assemblages in the euphotic ocean. A global genome-resolved co-activity network revealed a significant number of inter-lineage associations across diverse phylogenetic distances. Identified co-active communities include species displaying smaller genomes but encoding a higher potential for quorum sensing, biofilm formation, and secondary metabolism. Community metabolic modelling reveals a higher potential for interaction within co-active communities and points towards conserved metabolic cross-feedings, in particular of specific amino acids and group B vitamins. Our integrated ecological and metabolic modelling approach suggests that genome streamlining and metabolic auxotrophies may act as joint mechanisms shaping bacterioplankton community assembly in the global ocean surface.
Collapse
Affiliation(s)
- Nils Giordano
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Marinna Gaudin
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Camille Trottier
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Erwan Delage
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France
| | - Charlotte Nef
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, F-75016, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France
| | - Samuel Chaffron
- Nantes Université, École Centrale Nantes, CNRS, LS2N, UMR 6004, F-44000, Nantes, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GOSEE, F-75016, Paris, France.
| |
Collapse
|
9
|
Zhernakova DV, Wang D, Liu L, Andreu-Sánchez S, Zhang Y, Ruiz-Moreno AJ, Peng H, Plomp N, Del Castillo-Izquierdo Á, Gacesa R, Lopera-Maya EA, Temba GS, Kullaya VI, van Leeuwen SS, Xavier RJ, de Mast Q, Joosten LAB, Riksen NP, Rutten JHW, Netea MG, Sanna S, Wijmenga C, Weersma RK, Zhernakova A, Harmsen HJM, Fu J. Host genetic regulation of human gut microbial structural variation. Nature 2024; 625:813-821. [PMID: 38172637 PMCID: PMC10808065 DOI: 10.1038/s41586-023-06893-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 11/23/2023] [Indexed: 01/05/2024]
Abstract
Although the impact of host genetics on gut microbial diversity and the abundance of specific taxa is well established1-6, little is known about how host genetics regulates the genetic diversity of gut microorganisms. Here we conducted a meta-analysis of associations between human genetic variation and gut microbial structural variation in 9,015 individuals from four Dutch cohorts. Strikingly, the presence rate of a structural variation segment in Faecalibacterium prausnitzii that harbours an N-acetylgalactosamine (GalNAc) utilization gene cluster is higher in individuals who secrete the type A oligosaccharide antigen terminating in GalNAc, a feature that is jointly determined by human ABO and FUT2 genotypes, and we could replicate this association in a Tanzanian cohort. In vitro experiments demonstrated that GalNAc can be used as the sole carbohydrate source for F. prausnitzii strains that carry the GalNAc-metabolizing pathway. Further in silico and in vitro studies demonstrated that other ABO-associated species can also utilize GalNAc, particularly Collinsella aerofaciens. The GalNAc utilization genes are also associated with the host's cardiometabolic health, particularly in individuals with mucosal A-antigen. Together, the findings of our study demonstrate that genetic associations across the human genome and bacterial metagenome can provide functional insights into the reciprocal host-microbiome relationship.
Collapse
Affiliation(s)
- Daria V Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Daoming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Lei Liu
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Yue Zhang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Angel J Ruiz-Moreno
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands
| | - Haoran Peng
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Niels Plomp
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Ángela Del Castillo-Izquierdo
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Ranko Gacesa
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Esteban A Lopera-Maya
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Godfrey S Temba
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Vesla I Kullaya
- Department of Medical Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Moshi, Tanzania
- Kilimanjaro Clinical Research Institute, Kilimanjaro Christian Medical Center, Moshi, Tanzania
| | - Sander S van Leeuwen
- University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, The Netherlands
| | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology, Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Quirijn de Mast
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Immunology and Metabolism, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
- Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Romania
| | - Serena Sanna
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
- Institute for Genetic and Biomedical Research, National Research Council, Cagliari, Italy
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Rinse K Weersma
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, The Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands
| | - Hermie J M Harmsen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands.
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, The Netherlands.
| |
Collapse
|
10
|
Zhelyazkova M, Yordanova R, Mihaylov I, Tsonev S, Vassilev D. In silico discovering relationship between bacteriophages and antimicrobial resistance. BIOTECHNOL BIOTEC EQ 2023. [DOI: 10.1080/13102818.2022.2151378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Maya Zhelyazkova
- Faculty of Mathematics and Informatics, Department of Probability, Operations Research and Statistics, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Roumyana Yordanova
- Faculty of Science, Department of Mathematics, Hokkaido University, Sapporo, Japan
- Department of Informatics modeling, Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Sofia, Bulgaria
| | - Iliyan Mihaylov
- Faculty of Mathematics and Informatics, Department of Information Technologies, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Stefan Tsonev
- Department of Functional Genetics, Abiotic and Biotic Stress, AgroBioInstitute, Agricultural Academy, Sofia, Bulgaria
| | - Dimitar Vassilev
- Faculty of Mathematics and Informatics, Department of Computational Informatics, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| |
Collapse
|
11
|
Liu C, Shan X, Zhang Y, Song L, Chen H. Microcosm experiments revealed resistome coalescence of sewage treatment plant effluents in river environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122661. [PMID: 37778491 DOI: 10.1016/j.envpol.2023.122661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/01/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Sewage treatment plant (STP) effluents are important contributors of antibiotic resistance (AR) pollution in rivers. Effluent discharging into rivers causes resistome coalescence. However, their mechanisms and dynamic processes are poorly understood, especially for the effects of dilution, diffusion, and sunlight-induced attenuation on coalescence. In this study, we have constructed microcosmic experiments based on in-situ investigation to explore these issues. The first batch experiment revealed the effects of dilution and diffusion. The coverage of water coalesced resistomes ranged 66.26∼152.18 × /Gb and was positively correlated with effluent volume (Mann-Kendall test, p < 0.01). Principal coordinate analysis (PCoA) and source tracking analysis demonstrated that dilution and diffusion stepwise reduced AR pollution. The second batch experiment explored the temporal dynamics and sunlight attenuation on coalesced resistomes. Under natural light, the coverage and diversity of water resistomes posed decreasing trends, primarily attributed to drastic erasure of effluent traces. The proportion of effluent-specific ARGs in coalesced resistomes significantly declined over time (Spearman's r = -0.83 and -0.94 in coverage and richness). While under dark condition, the coverage and diversity increased. Sunlight radiation intensified the interactions between water and sediment resistomes, as evidenced by more shared ARGs and less dissimilarities across niches. Network analysis, metagenome-assembled genome (MAG) analysis and variation partitioning analysis (VPA) showed that microbiome controlled resistome coalescence, explaining 56.5% and 58.4% of resistomes in water and sediment, respectively. Biotic and abiotic factors synergistically explained 40% of water resistomes. This study offers a comprehensive understanding of AR transmission and provides theoretical bases for grasping AR pollution and developing effective suppression strategies.
Collapse
Affiliation(s)
- Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Xin Shan
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China.
| |
Collapse
|
12
|
Liu R, Zou Y, Wang WQ, Chen JH, Zhang L, Feng J, Yin JY, Mao XY, Li Q, Luo ZY, Zhang W, Wang DM. Gut microbial structural variation associates with immune checkpoint inhibitor response. Nat Commun 2023; 14:7421. [PMID: 37973916 PMCID: PMC10654443 DOI: 10.1038/s41467-023-42997-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/27/2023] [Indexed: 11/19/2023] Open
Abstract
The gut microbiota may have an effect on the therapeutic resistance and toxicity of immune checkpoint inhibitors (ICIs). However, the associations between the highly variable genomes of gut bacteria and the effectiveness of ICIs remain unclear, despite the fact that merely a few gene mutations between similar bacterial strains may cause significant phenotypic variations. Here, using datasets from the gut microbiome of 996 patients from seven clinical trials, we systematically identify microbial genomic structural variants (SVs) using SGV-Finder. The associations between SVs and response, progression-free survival, overall survival, and immune-related adverse events are systematically explored by metagenome-wide association analysis and replicated in different cohorts. Associated SVs are located in multiple species, including Akkermansia muciniphila, Dorea formicigenerans, and Bacteroides caccae. We find genes that encode enzymes that participate in glucose metabolism be harbored in these associated regions. This work uncovers a nascent layer of gut microbiome heterogeneity that is correlated with hosts' prognosis following ICI treatment and represents an advance in our knowledge of the intricate relationships between microbiota and tumor immunotherapy.
Collapse
Affiliation(s)
- Rong Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - You Zou
- Information and Network center, Central South University, Changsha, 410083, P.R. China
| | - Wei-Quan Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Jun-Hong Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Lei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Jia Feng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Qing Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China
| | - Zhi-Ying Luo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, PR China
- Institute of Clinical Pharmacy, Central South University, Changsha, PR China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, P. R. China.
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, 110 Xiangya Road, Changsha, 410078, P. R. China.
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, P. R. China.
- National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, P.R. China.
| | - Dao-Ming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9713AV, the Netherlands.
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen, 9713AV, the Netherlands.
| |
Collapse
|
13
|
Xu JM, Lv Y, Xu K, Liu X, Wang K, Zi HY, Zhang G, Wang AJ, Lu S, Cheng HY. Long-distance responses of ginger to soil sulfamethoxazole and chromium: Growth, co-occurrence with antibiotic resistance genes, and consumption risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122081. [PMID: 37414118 DOI: 10.1016/j.envpol.2023.122081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 07/08/2023]
Abstract
The coexistence of antibiotics and heavy metals in agroecosystems is nonnegligible, which permits the promotion of antibiotic resistance genes (ARGs) in crops, thus posing a potential threat to humans along the food chain. In this study, we investigated the bottom-up (rhizosphere→rhizome→root→leaf) long-distance responses and bio-enrichment characteristics of ginger to different sulfamethoxazole (SMX) and chromium (Cr) contamination patterns. The results showed that ginger root systems adapted to SMX- and/or Cr-stress by increasing humic-like exudates, which may help to maintain the rhizosphere indigenous bacterial phyla (i.e., Proteobacteria, Chloroflexi, Acidobacteria and Actinobacteria). The root activity, leaf photosynthesis and fluorescence, and antioxidant enzymes (SOD, POD, CAT) of ginger were significantly decreased under high-dose Cr and SMX co-contamination, while a "hormesis effect" was observed under single low-dose SMX contamination. For example, CS100 (co-contamination of 100 mg/L SMX and 100 mg/L Cr) caused the most severe inhibition to leaf photosynthetic function by reducing photochemical efficiency (reflected on PAR-ETR, φPSII and qP). Meanwhile, CS100 induced the highest ROS production, in which H2O2 and O2·- increased by 328.82% and 238.00% compared with CK (the blank control without contamination). Moreover, co-selective stress by Cr and SMX induced the increase of ARG bacterial hosts and bacterial phenotypes containing mobile elements, contributing to the high detected abundance of target ARGs (sul1, sul2) up to 10-2∼10-1 copies/16S rRNA in rhizomes intended for consumption.
Collapse
Affiliation(s)
- Jia-Min Xu
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yao Lv
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Kun Xu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Xiaohui Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Kai Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, 271018, China
| | - Hu-Yi Zi
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Guodong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ai-Jie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Shaoyong Lu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Hao-Yi Cheng
- School of Civil and Environmental Engineering, Harbin Institute of Technology-Shenzhen (HIT-SZ), Shenzhen, 518055, China; State Key Laboratory of Urban Water Resources and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Yu K, Qiu Y, Shi Y, Yu X, Zhou B, Sun T, Wu Y, Xu S, Chen L, Shu Q, Huang L. Early environmental exposure to oxytetracycline in Danio rerio may contribute to neurobehavioral abnormalities in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163482. [PMID: 37062325 DOI: 10.1016/j.scitotenv.2023.163482] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 06/01/2023]
Abstract
The common antibiotic oxytetracycline (OTC) is nowadays commonly found in natural aquatic environments. However, the underlying mechanisms of low-dose OTC exposure and its neurotoxic effects on aquatic animals remain unknown. In this study, we exposed zebrafish larvae to environmental concentrations of OTC in early life and performed neurobehavioral, 16S rRNA gene sequencing, and transcriptomic analyses. OTC exposure resulted in hyperactivity of larvae and a significant reduction in the number of neurons in the midbrain. The expression levels of 15 genes related to neural function changed. Additionally, the composition of 65 genera of the gut microbiota of larvae was altered, which may be one of the reasons for the abnormal neural development. We further studied the long-term outcomes among adult fish long after cessation of OTC exposure. OTC treatment caused adult fish to be depressive and impulsive, symbolizing bipolar disorder. Adult fish exposed to OTC had significantly fewer neurons and their gut bacteria composition did not recover 104 days after terminating OTC exposure. Finally, we analyzed the correlation between the gut microbiota of larvae, genes related to neural function, and metabolites of adult fish brain tissue. The results showed that the abundance of several members of the biome in larvae was related to the transcription levels of genes related to neural function, which were related to the metabolic levels in the adult brain. In conclusion, our study showed that early-life exposure to environmental concentrations of OTC can lead to persistent neurobehavioral abnormalities until adulthood through dysbiosis in the gut microbiota.
Collapse
Affiliation(s)
- Kan Yu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yushu Qiu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Yi Shi
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Baosong Zhou
- School of Data Science, Fudan University, Shanghai 200433, China.
| | - Tong Sun
- School of Life Sciences, Fudan University, Shanghai 200438, China.
| | - Yuhang Wu
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Shanshan Xu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Qiang Shu
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, Hangzhou 310052, China.
| | - Lisu Huang
- Department of Infectious Diseases, the Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China; Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
15
|
Frioux C, Ansorge R, Özkurt E, Ghassemi Nedjad C, Fritscher J, Quince C, Waszak SM, Hildebrand F. Enterosignatures define common bacterial guilds in the human gut microbiome. Cell Host Microbe 2023; 31:1111-1125.e6. [PMID: 37339626 DOI: 10.1016/j.chom.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/03/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023]
Abstract
The human gut microbiome composition is generally in a stable dynamic equilibrium, but it can deteriorate into dysbiotic states detrimental to host health. To disentangle the inherent complexity and capture the ecological spectrum of microbiome variability, we used 5,230 gut metagenomes to characterize signatures of bacteria commonly co-occurring, termed enterosignatures (ESs). We find five generalizable ESs dominated by either Bacteroides, Firmicutes, Prevotella, Bifidobacterium, or Escherichia. This model confirms key ecological characteristics known from previous enterotype concepts, while enabling the detection of gradual shifts in community structures. Temporal analysis implies that the Bacteroides-associated ES is "core" in the resilience of westernized gut microbiomes, while combinations with other ESs often complement the functional spectrum. The model reliably detects atypical gut microbiomes correlated with adverse host health conditions and/or the presence of pathobionts. ESs provide an interpretable and generic model that enables an intuitive characterization of gut microbiome composition in health and disease.
Collapse
Affiliation(s)
- Clémence Frioux
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK; Inria, University of Bordeaux, INRAE, 33400 Talence, France.
| | - Rebecca Ansorge
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Ezgi Özkurt
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | | | - Joachim Fritscher
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Christopher Quince
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK
| | - Sebastian M Waszak
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo and Oslo University Hospital, Oslo 0318, Norway; Department of Neurology, University of California, San Francisco, San Francisco, CA 94148, USA; Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Falk Hildebrand
- Food, Microbiome, and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich Research Park, NR4 7UQ Norwich, Norfolk, UK; Digital Biology, Earlham Institute NR4 7UZ Norwich, Norfolk, UK.
| |
Collapse
|
16
|
Liu C, Chen J, Yang Y, Teng Y, Chen H. Biogeography and diversity patterns of antibiotic resistome in the sediments of global lakes. J Environ Sci (China) 2023; 127:421-430. [PMID: 36522074 DOI: 10.1016/j.jes.2022.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 06/17/2023]
Abstract
Lakes act as one of the reservoirs and dispersal routes of antibiotic resistance genes (ARGs) and pathogenic resistant bacteria in aquatic environments. Previous studies reported the occurrence and distribution of ARGs in lakes worldwide; however, few investigated the biogeography and diversity patterns of antibiotic resistome in the environment. To fill this gap, a large-scale data set of sediment metagenomes was collected from globally distributed lakes and characterized comprehensively using metagenomic assembly-based analysis, aiming to shed light on the biogeography and diversity patterns of ARGs in lake ecosystems from a global perspective. Our analyses showed that abundant and diverse ARGs were found in the global lake sediments, including a set of emerging ARGs such as mcr-type and carbapenem-resistant Enterobacteriaceae related genes. Most of the identified ARGs were generally associated with the commonly used antibiotics, suggesting the role of increasing antibiotic consumptions on the resistome prevalence. Spatially, the composition and diversity of ARGs varied across geographical distances and exhibited a scale-dependent distance-decay relationship. Notably, the composition of ARGs was largely shaped by bacterial community structure, and their diversities were co-governed by stochastic process (∼48%) and deterministic process (∼52%). Findings provide a valuable insight to better understand ecological mechanisms of ARGs in lake ecosystems and have important implication for the prevention and control of resistome risk.
Collapse
Affiliation(s)
- Chang Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jinping Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
17
|
Three Bacterial DedA Subfamilies with Distinct Functions and Phylogenetic Distribution. mBio 2023; 14:e0002823. [PMID: 36856409 PMCID: PMC10127716 DOI: 10.1128/mbio.00028-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Recent studies in bacteria have suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated our findings to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in archaea, bacteria, and eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and that some bacterial DedA proteins are undecaprenyl phosphate flippases. We performed a phylogenetic analysis of this protein family in bacteria that revealed 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our bioinformatic analysis lays the groundwork for future experimental studies on the role of DedA proteins in maintaining and modifying the membrane.
Collapse
|
18
|
Fullam A, Letunic I, Schmidt TSB, Ducarmon QR, Karcher N, Khedkar S, Kuhn M, Larralde M, Maistrenko O, Malfertheiner L, Milanese A, Rodrigues J, Sanchis-López C, Schudoma C, Szklarczyk D, Sunagawa S, Zeller G, Huerta-Cepas J, von Mering C, Bork P, Mende DR. proGenomes3: approaching one million accurately and consistently annotated high-quality prokaryotic genomes. Nucleic Acids Res 2023; 51:D760-D766. [PMID: 36408900 PMCID: PMC9825469 DOI: 10.1093/nar/gkac1078] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/15/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/.
Collapse
Affiliation(s)
- Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr. 142, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Quinten R Ducarmon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Nicolai Karcher
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Supriya Khedkar
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Michael Kuhn
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Martin Larralde
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Marine Microbiology & Biogeochemistry, 1797 SZ, ’t Horntje (Texel), Netherlands
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Alessio Milanese
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | | | - Claudia Sanchis-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Christian Schudoma
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Damian Szklarczyk
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Department of Biology and Swiss Institute of Bioinformatics, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Jaime Huerta-Cepas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Campus de Montegancedo-UPM, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, 8057 Zurich, Switzerland
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
- Max Delbrück Centre for Molecular Medicine, 13125 Berlin, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, 97074 Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, 03722 Seoul, South Korea
| | - Daniel R Mende
- Department of Medical Microbiology, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Todor H, Herrera N, Gross C. Three bacterial DedA subfamilies with distinct functions and phylogenetic distribution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522824. [PMID: 36712119 PMCID: PMC9881974 DOI: 10.1101/2023.01.04.522824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recent studies in bacteria suggested that the broadly conserved but enigmatic DedA proteins function as undecaprenyl-phosphate (UndP) flippases, recycling this essential lipid carrier. To determine whether all DedA proteins have UndP flippase activity, we performed a phylogenetic analysis and correlated it to previously published experimental results and predicted structures. We uncovered three major DedA subfamilies: one contains UndP flippases, the second contains putative phospholipid flippases and is associated with aerobic metabolism, and the third is found only in specific Gram-negative phyla. IMPORTANCE DedA-family proteins are highly conserved and nearly ubiquitous integral membrane proteins found in Archaea, Bacteria, and Eukaryotes. Recent work revealed that eukaryotic DedA proteins are phospholipid scramblases and some bacterial DedA proteins are undecaprenyl phosphate flippases. We perform a phylogenetic analysis of this protein family in Bacteria revealing 3 DedA subfamilies with distinct phylogenetic distributions, genomic contexts, and putative functions. Our analysis lays the groundwork for a deeper understanding of DedA proteins and their role in maintaining and modifying the membrane.
Collapse
Affiliation(s)
- Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.,Lead Contact
| | - Nadia Herrera
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Carol Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.,Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA.,California Institute of Quantitative Biology, University of California, San Francisco, San Francisco 94158, CA, USA
| |
Collapse
|
20
|
Liu L, Teng Y, Chen H, Hu J. Characteristics of resistome and bacterial community structure in constructed wetland during dormant period: A fullscale study from Annan wetland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114347. [PMID: 36455350 DOI: 10.1016/j.ecoenv.2022.114347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
As a green technology, constructed wetlands (CWs) can provide a low-cost solution for wastewater treatment. Either as a standalone treatment or integrated with conventional treatment, nutrients, antibiotic resistant bacteria (ARB)/antibiotic resistance genes (ARGs) can be removed by CW efficiently. While, few studies have focused on characteristics of resistome and bacterial community (BC) structure in CW during dormant period. Therefore, in this study, Annan CW (a full-scale hybrid CW) was selected to characterize resistome and BC during dormant period. The profiles of bacteria / ARGs were monitored in combination of shotgun sequencing and metagenomic assembly analysis. And multidrug ARGs are the most abundant in Annan CW, and surface flow wetland had the relatively high ARG diversity and abundance compared with subsurface flow wetland and the front pond. The most dominant phylum in CW is Proteobacteria, while the other dominant phylum in three parts have different order. COD, TP, TN, ARGs, and mobile genetic genes (MGEs) were removed by subsurface flow CW with better performance, but virulent factors (VFs) were removed by surface flow CW with better performance. Based on the spatiotemporal distribution of ARGs, the internal mechanism of ARGs dynamic variation was explored by the redundancy analysis (RDA) and variation partitioning analysis (VPA). BCs, MGEs and environmental factors (EFs) were responsible for 45.6 %, 28.3 % and 15.4 % of the ARGs variations. Among these factors, BCs and MGEs were the major co-drivers impacting the ARG profile, and EFs indirectly influence the ARG profile. This study illustrates the specific functions of ARG risk elimination in different CW components, promotes a better understanding of the efficiency of CWs for the reduction of ARG and ARB, contributing to improve the removal performance of constructed wetlands. And provide management advice to further optimize the operation of CWs during dormant period.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jingdan Hu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
21
|
Yilmaz B, Fuhrer T, Morgenthaler D, Krupka N, Wang D, Spari D, Candinas D, Misselwitz B, Beldi G, Sauer U, Macpherson AJ. Plasticity of the adult human small intestinal stoma microbiota. Cell Host Microbe 2022; 30:1773-1787.e6. [PMID: 36318918 DOI: 10.1016/j.chom.2022.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/18/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022]
Abstract
The human distal small intestine (ileum) has a distinct microbiota, but human studies investigating its composition and function have been limited by the inaccessibility of the ileum without purging and/or deep intubation. We investigated inherent instability, temporal dynamics, and the contribution of fed and fasted states using stoma samples from cured colorectal cancer patients as a non-invasive access route to the otherwise inaccessible small and large intestines. Sequential sampling of the ileum before and after stoma formation indicated that ileostoma microbiotas represented that of the intact small intestine. Ileal and colonic stoma microbiotas were confirmed as distinct, and two types of instability in ileal host-microbial relationships were observed: inter-digestive purging followed by the rapid postprandial blooming of bacterial biomass and sub-strain appearance and disappearance within individual taxa after feeding. In contrast to the relative stability of colonic microbiota, the human small intestinal microbiota biomass and its sub-strain composition can be highly dynamic.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, 3008 Bern, Switzerland.
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland
| | - Deborah Morgenthaler
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Niklas Krupka
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713AV, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713AV, the Netherlands
| | - Daniel Spari
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Daniel Candinas
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Benjamin Misselwitz
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Guido Beldi
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH) Zürich, 8093 Zürich, Switzerland
| | - Andrew J Macpherson
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, 3008 Bern, Switzerland; Bern Center for Precision Medicine (BCPM), University of Bern, 3008 Bern, Switzerland.
| |
Collapse
|
22
|
Jiang C, Chen H, Grossart HP, Zhang Q, Stoks R, Zhao Y, Ju F, Liu W, Yang Y. Frequency of occurrence and habitat selection shape the spatial variation in the antibiotic resistome in riverine ecosystems in eastern China. ENVIRONMENTAL MICROBIOME 2022; 17:53. [PMID: 36324162 PMCID: PMC9632137 DOI: 10.1186/s40793-022-00447-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 10/16/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Riverine ecosystems are one of the most important reservoirs of antibiotic resistance genes (ARGs) in the environment, but the occurrence and controlling factors of ARG distribution in different habitats of riverine ecosystems remain poorly understood. In this study, a metagenomic approach was used to characterize ARG types and their abundance in different habitats (rhizosphere soil, surface bulk soil, bottom bulk soil, and sediment) of riverine ecosystems in eastern China. Sampling sites were located along different rivers of eastern China, which are geographically isolated. Differences in bacterial communities, mobile genetic elements (MGEs), pattern and intensity of human activities, climate, and other environmental factors at the sampling sites and habitats were expected to affect ARG occurrence. RESULTS ARGs were observed with high variations in diversity (44-206 subtypes) and abundance (6.85-105.68 ×/Gb). There were significant south-north differences in ARG occurrence in the same habitat, except for surface bulk soil. And the significant difference was found in ARGs among four southern habitats. South-north differences in ARGs of the same habitat were mainly attributed to the combination of different occurrence frequencies and habitat selections of ARGs. Differences in ARG profiles among the four habitats in the south and the north were both mainly attributed to the different occurrence frequencies of ARGs. Bacterial communities and MGEs (Mobile genetic elements) could account for the observed variance in the resistome of riverine ecosystems across eastern China. The co-occurrences of specific ARGs with bacterial communities and MGEs were more frequent at the northern sampling sites than in the south, and co-occurrence patterns (i.e. ARGs and bacterial communities or ARGs and MGEs) varied between the habitats. Moreover, building land in all habitats, except bulk soils, showed significant positive correlations with ARG abundance. CONCLUSION This study reveals a high variance in the resistome of riverine ecosystems in eastern China and its controlling factors. We appeal to the importance of assessment of ARGs in the riverine ecosystem and the need for future prevention and intervention of ARG spread.
Collapse
Affiliation(s)
- Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing, 100875, China
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), 16775, Neuglobsow, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Maulbeerallee 2, 14469, Potsdam, Germany
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, B-3000, Leuven, Belgium
| | - Yi Zhao
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100080, China
| | - Feng Ju
- Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang, China
| | - Wenzhi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| |
Collapse
|
23
|
Higgins SA, Mann M, Heck M. Strain Tracking of ' Candidatus Liberibacter asiaticus', the Citrus Greening Pathogen, by High-Resolution Microbiome Analysis of Asian Citrus Psyllids. PHYTOPATHOLOGY 2022; 112:2273-2287. [PMID: 35678589 DOI: 10.1094/phyto-02-22-0067-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri, is an invasive insect and a vector of 'Candidatus Liberibacter asiaticus' (CLas), a bacterium whose growth in Citrus species results in huanglongbing (HLB), also known as citrus greening disease. Methods to enrich and sequence CLas from D. citri often rely on biased genome amplification and nevertheless contain significant quantities of host DNA. To overcome these hurdles, we developed a simple pretreatment DNase and filtration (PDF) protocol to remove host DNA and directly sequence CLas and the complete, primarily uncultivable microbiome from D. citri adults. The PDF protocol yielded CLas abundances upward of 60% and facilitated direct measurement of CLas and endosymbiont replication rates in psyllids. The PDF protocol confirmed our lab strains derived from a progenitor Florida CLas strain and accumulated 156 genetic variants, underscoring the utility of this method for bacterial strain tracking. CLas genetic polymorphisms arising in lab-reared psyllid populations included prophage-encoding regions with key functions in CLas pathogenesis, putative antibiotic resistance loci, and a single secreted effector. These variants suggest that laboratory propagation of CLas could result in different phenotypic trajectories among laboratories and could confound CLas physiology or therapeutic design and evaluation if these differences remain undocumented. Finally, we obtained genetic signatures affiliated with Citrus nuclear and organellar genomes, entomopathogenic fungal mitochondria, and commensal bacteria from laboratory-reared and field-collected D. citri adults. Hence, the PDF protocol can directly inform agricultural management strategies related to bacterial strain tracking, insect microbiome surveillance, and antibiotic resistance screening.
Collapse
Affiliation(s)
- Steven A Higgins
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
| | - Marina Mann
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Ithaca, NY 14853
- Plant Pathology and Plant Microbe Biology Department, Cornell University, Ithaca, NY 14853
| |
Collapse
|
24
|
Liu L, Zhang Y, Chen H, Teng Y. Fate of resistome components and characteristics of microbial communities in constructed wetlands and their receiving river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157226. [PMID: 35809723 DOI: 10.1016/j.scitotenv.2022.157226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Currently, most researches focus on that constructed wetlands (CWs) achieve desirable removal of antibiotics, antibiotic resistance genes (ARGs) and human pathogens. However, few studies have assessed the fate of resistome components, especially the behavior and cooccurrence of ARGs, mobile genetic elements (MGEs) and virulence factors (VFs). Therefore, characteristics of microbial communities (MCs) in CWs and their receiving rivers also deserve attention. These factors are critical to water ecological security. This study used two CWs to explore the fate of resistome components and characteristics of MCs in the CWs and their receiving river. Eleven samples were collected from the two CWs and their receiving river. High-throughput profiles of ARGs and microbial taxa in the samples were characterized. 31 ARG types consisting of 400 subtypes with total relative abundance 42.63-84.94× /Gb of sequence were detected in CWs, and 62.07-88.08× /Gb of sequence in river, evidencing that ARG pollution covered CWs and the river, and implying huge potential risks from ARGs. MGEs and VFs were detected, and tnpA, IS91 and intI1 were the three dominant MGEs, while Flagella. Type IV pili and peritrichous flagella were main VFs. Both CWs can remove ARGs, MGEs and VFs efficiently. However, some ARGs were difficult to remove, such as sul1 and sul2, and certain ARGs remained in the effluent of the CWs. The co-occurrence of ARGs, MGEs, and VFs implies the risk of antibiotic resistance and dissemination of ARGs. Eighty-five types of human pathogen were detected in the river samples, particularly Pseudomonas aeruginosa, Bordetella bronchiseptica, Aeromonas hydrophila and Helicobacter pylori. Correlation analysis indicated that MCs had significant effects on the profiles of ARGs in the water environment. This study reveals potential risks of the reuse of reclaimed water, and illustrates the removal ability of ARGs and related elements by CWs. This study will be helpful for monitoring and managing resistomes in water environments.
Collapse
Affiliation(s)
- Linmei Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuxin Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
25
|
Kayani MUR, Yu K, Qiu Y, Yu X, Chen L, Huang L. Longitudinal analysis of exposure to a low concentration of oxytetracycline on the zebrafish gut microbiome. Front Microbiol 2022; 13:985065. [PMID: 36212820 PMCID: PMC9536460 DOI: 10.3389/fmicb.2022.985065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
Oxytetracycline, a widely produced and administered antibiotic, is uncontrollably released in low concentrations in various types of environments. However, the impact of exposure to such low concentrations of antibiotics on the host remains poorly understood. In this study, we exposed zebrafish to a low concentration (5,000 ng/L) of oxytetracycline for 1 month, collected samples longitudinally (Baseline, and Days 3, 6, 9, 12, 24, and 30), and elucidated the impact of exposure on microbial composition, antibiotic resistance genes, mobile genetic elements, and phospholipid metabolism pathway through comparison of the sequenced data with respective sequence databases. We identified Pseudomonas aeruginosa, a well-known pathogen, to be significantly positively associated with the duration of oxytetracycline exposure (Adjusted P = 5.829e-03). Several tetracycline resistance genes (e.g., tetE) not only showed significantly higher abundance in the exposed samples but were also positively associated with the duration of exposure (Adjusted P = 1.114e-02). Furthermore, in the exposed group, the relative abundance of genes involved in phospholipid metabolism had also decreased. Lastly, we characterized the impact of exposure on zebrafish intestinal structure and found that the goblet cell counts were decreased (~82%) after exposure. Overall, our results show that a low concentration of oxytetracycline can increase the abundance of pathogenic bacteria and lower the abundance of key metabolic pathways in the zebrafish gut microbiome that can render them prone to bacterial infections and health-associated complications.
Collapse
Affiliation(s)
- Masood ur Rehman Kayani
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kan Yu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences, Fudan University, Shanghai, China
| | - Yushu Qiu
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaogang Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lisu Huang
- Department of Infectious Diseases, Xinhua Children's Hospital, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Clinical Research Center for Child Health, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
26
|
Drivers and determinants of strain dynamics following fecal microbiota transplantation. Nat Med 2022; 28:1902-1912. [PMID: 36109636 PMCID: PMC9499871 DOI: 10.1038/s41591-022-01913-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 06/23/2022] [Indexed: 02/06/2023]
Abstract
AbstractFecal microbiota transplantation (FMT) is a therapeutic intervention for inflammatory diseases of the gastrointestinal tract, but its clinical mode of action and subsequent microbiome dynamics remain poorly understood. Here we analyzed metagenomes from 316 FMTs, sampled pre and post intervention, for the treatment of ten different disease indications. We quantified strain-level dynamics of 1,089 microbial species, complemented by 47,548 newly constructed metagenome-assembled genomes. Donor strain colonization and recipient strain resilience were mostly independent of clinical outcomes, but accurately predictable using LASSO-regularized regression models that accounted for host, microbiome and procedural variables. Recipient factors and donor–recipient complementarity, encompassing entire microbial communities to individual strains, were the main determinants of strain population dynamics, providing insights into the underlying processes that shape the post-FMT gut microbiome. Applying an ecology-based framework to our findings indicated parameters that may inform the development of more effective, targeted microbiome therapies in the future, and suggested how patient stratification can be used to enhance donor microbiota colonization or the displacement of recipient microbes in clinical practice.
Collapse
|
27
|
Wienhausen G, Bruns S, Sultana S, Dlugosch L, Groon LA, Wilkes H, Simon M. The overlooked role of a biotin precursor for marine bacteria - desthiobiotin as an escape route for biotin auxotrophy. THE ISME JOURNAL 2022; 16:2599-2609. [PMID: 35963899 PMCID: PMC9561691 DOI: 10.1038/s41396-022-01304-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin B7) is involved in a wide range of essential biochemical reactions and a crucial micronutrient that is vital for many pro- and eukaryotic organisms. The few biotin measurements in the world’s oceans show that availability is subject to strong fluctuations. Numerous marine microorganisms exhibit biotin auxotrophy and therefore rely on supply by other organisms. Desthiobiotin is the primary precursor of biotin and has recently been detected at concentrations similar to biotin in seawater. The last enzymatic reaction in the biotin biosynthetic pathway converts desthiobiotin to biotin via the biotin synthase (BioB). The role of desthiobiotin as a precursor of biotin synthesis in microbial systems, however, is largely unknown. Here we demonstrate experimentally that bacteria can overcome biotin auxotrophy if they retain the bioB gene and desthiobiotin is available. A genomic search of 1068 bacteria predicts that the biotin biosynthetic potential varies greatly among different phylogenetic groups and that 20% encode solely bioB and thus can potentially overcome biotin auxotrophy. Many Actino- and Alphaproteobacteria cannot synthesize biotin de novo, but some possess solely bioB, whereas the vast majority of Gammaproteobacteria and Flavobacteriia exhibit the last four crucial biotin synthesis genes. We detected high intra- and extracellular concentrations of the precursor relative to biotin in the prototrophic bacterium, Vibrio campbellii, with extracellular desthiobiotin reaching up to 1.09 ± 0.15*106 molecules per cell during exponential growth. Our results provide evidence for the ecological role of desthiobiotin as an escape route to overcome biotin auxotrophy for bacteria in the ocean and presumably in other ecosystems.
Collapse
|
28
|
Kartal E, Schmidt TSB, Molina-Montes E, Rodríguez-Perales S, Wirbel J, Maistrenko OM, Akanni WA, Alashkar Alhamwe B, Alves RJ, Carrato A, Erasmus HP, Estudillo L, Finkelmeier F, Fullam A, Glazek AM, Gómez-Rubio P, Hercog R, Jung F, Kandels S, Kersting S, Langheinrich M, Márquez M, Molero X, Orakov A, Van Rossum T, Torres-Ruiz R, Telzerow A, Zych K, Benes V, Zeller G, Trebicka J, Real FX, Malats N, Bork P. A faecal microbiota signature with high specificity for pancreatic cancer. Gut 2022; 71:1359-1372. [PMID: 35260444 PMCID: PMC9185815 DOI: 10.1136/gutjnl-2021-324755] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 12/05/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression. OBJECTIVE To explore the faecal and salivary microbiota as potential diagnostic biomarkers. METHODS We applied shotgun metagenomic and 16S rRNA amplicon sequencing to samples from a Spanish case-control study (n=136), including 57 cases, 50 controls, and 29 patients with chronic pancreatitis in the discovery phase, and from a German case-control study (n=76), in the validation phase. RESULTS Faecal metagenomic classifiers performed much better than saliva-based classifiers and identified patients with PDAC with an accuracy of up to 0.84 area under the receiver operating characteristic curve (AUROC) based on a set of 27 microbial species, with consistent accuracy across early and late disease stages. Performance further improved to up to 0.94 AUROC when we combined our microbiome-based predictions with serum levels of carbohydrate antigen (CA) 19-9, the only current non-invasive, Food and Drug Administration approved, low specificity PDAC diagnostic biomarker. Furthermore, a microbiota-based classification model confined to PDAC-enriched species was highly disease-specific when validated against 25 publicly available metagenomic study populations for various health conditions (n=5792). Both microbiome-based models had a high prediction accuracy on a German validation population (n=76). Several faecal PDAC marker species were detectable in pancreatic tumour and non-tumour tissue using 16S rRNA sequencing and fluorescence in situ hybridisation. CONCLUSION Taken together, our results indicate that non-invasive, robust and specific faecal microbiota-based screening for the early detection of PDAC is feasible.
Collapse
Affiliation(s)
- Ece Kartal
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Thomas S B Schmidt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Esther Molina-Montes
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Sandra Rodríguez-Perales
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
- Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Jakob Wirbel
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree, European Molecular Biology Laboratory and Heidelberg University, Heidelberg, Germany
| | - Oleksandr M Maistrenko
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Wasiu A Akanni
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bilal Alashkar Alhamwe
- Member of the German Center for Lung Research (DZL) and the Universities of Giessen and Marburg Lung School (UGMLC), Philipps University Marburg Faculty of Medicine, Marburg, Germany
| | - Renato J Alves
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Alfredo Carrato
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
- Medical Oncology Department of Oncology, Hospital Ramón y Cajal, Madrid, Spain
- University of Alcala de Henares, Alcala de Henares, Spain
| | - Hans-Peter Erasmus
- Translational Hepatology Department of Internal Medicine I, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
| | - Lidia Estudillo
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Fabian Finkelmeier
- Translational Hepatology Department of Internal Medicine I, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt am Main, Hessen, Germany
| | - Anthony Fullam
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anna M Glazek
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paulina Gómez-Rubio
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Rajna Hercog
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ferris Jung
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stefanie Kandels
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Stephan Kersting
- Department of Surgery, Erlangen University Hospital, Erlangen, Germany
- Department of Surgery, University of Greifswald, Greifswald, Germany
| | | | - Mirari Márquez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Xavier Molero
- Hospital Universitari Vall d'Hebron, Institut de Recerca (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Askarbek Orakov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thea Van Rossum
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Raul Torres-Ruiz
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
- Molecular Cytogenetics Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Anja Telzerow
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Konrad Zych
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomic Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Georg Zeller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jonel Trebicka
- Translational Hepatology Department of Internal Medicine I, Goethe-Universitat Frankfurt am Main, Frankfurt am Main, Germany
- EF Clif, European Foundation for the Study of Chronic Liver Failure, Barcelona, Spain
| | - Francisco X Real
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
- Epithelial Carcinogenesis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Nuria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Oncología (CIBERONC), Madrid, Spain
| | - Peer Bork
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany
- Yonsei Frontier Lab (YFL), Yonsei University, Seoul, South Korea
- Max Delbrück Centre for Molecular Medicine, Berlin, Germany
| |
Collapse
|
29
|
Nocedal I, Laub MT. Ancestral reconstruction of duplicated signaling proteins reveals the evolution of signaling specificity. eLife 2022; 11:e77346. [PMID: 35686729 PMCID: PMC9208753 DOI: 10.7554/elife.77346] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/27/2022] [Indexed: 01/30/2023] Open
Abstract
Gene duplication is crucial to generating novel signaling pathways during evolution. However, it remains unclear how the redundant proteins produced by gene duplication ultimately acquire new interaction specificities to establish insulated paralogous signaling pathways. Here, we used ancestral sequence reconstruction to resurrect and characterize a bacterial two-component signaling system that duplicated in α-proteobacteria. We determined the interaction specificities of the signaling proteins that existed before and immediately after this duplication event and then identified key mutations responsible for establishing specificity in the two systems. Just three mutations, in only two of the four interacting proteins, were sufficient to establish specificity of the extant systems. Some of these mutations weakened interactions between paralogous systems to limit crosstalk. However, others strengthened interactions within a system, indicating that the ancestral interaction, although functional, had the potential to be strengthened. Our work suggests that protein-protein interactions with such latent potential may be highly amenable to duplication and divergence.
Collapse
Affiliation(s)
- Isabel Nocedal
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Howard Hughes Medical Institute, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
30
|
Availability of vitamin B 12 and its lower ligand intermediate α-ribazole impact prokaryotic and protist communities in oceanic systems. THE ISME JOURNAL 2022; 16:2002-2014. [PMID: 35585186 PMCID: PMC9296465 DOI: 10.1038/s41396-022-01250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 01/22/2023]
Abstract
Genome analyses predict that the cofactor cobalamin (vitamin B12, called B12 herein) is produced by only one-third of all prokaryotes but almost all encode at least one B12-dependent enzyme, in most cases methionine synthase. This implies that the majority of prokaryotes relies on exogenous B12 supply and interacts with producers. B12 consists of a corrin ring centred around a cobalt ion and the lower ligand 5’6-dimethylbenzimidazole (DMB). It has never been tested whether availability of this pivotal cofactor, DMB or its intermediate α-ribazole affect growth and composition of prokaryotic microbial communities. Here we show that in the subtropical, equatorial and polar frontal Pacific Ocean supply of B12 and α-ribazole enhances heterotrophic prokaryotic production and alters the composition of prokaryotic and heterotrophic protist communities. In the polar frontal Pacific, the SAR11 clade and Oceanospirillales increased their relative abundances upon B12 supply. In the subtropical Pacific, Oceanospirillales increased their relative abundance upon B12 supply as well but also downregulated the transcription of the btuB gene, encoding the outer membrane permease for B12. Surprisingly, Prochlorococcus, known to produce pseudo-B12 and not B12, exhibited significant upregulation of genes encoding key proteins of photosystem I + II, carbon fixation and nitrate reduction upon B12 supply in the subtropical Pacific. These findings show that availability of B12 and α-ribazole affect growth and composition of prokaryotic and protist communities in oceanic systems thus revealing far-reaching consequences of methionine biosynthesis and other B12-dependent enzymatic reactions on a community level.
Collapse
|
31
|
The WalRK Two-Component System Is Essential for Proper Cell Envelope Biogenesis in Clostridioides difficile. J Bacteriol 2022; 204:e0012122. [PMID: 35575581 PMCID: PMC9210968 DOI: 10.1128/jb.00121-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The WalR-WalK two-component regulatory system (TCS) is found in all Firmicutes, in which it regulates the expression of multiple genes required for remodeling the cell envelope during growth and division. Unlike most TCSs, WalRK is essential for viability, so it has attracted interest as a potential antibiotic target. In this study, we used overexpression of WalR and CRISPR interference to investigate the Wal system of Clostridioides difficile, a major cause of hospital-associated diarrhea in high-income countries. We confirmed that the wal operon is essential and identified morphological defects and cell lysis as the major terminal phenotypes of altered wal expression. We also used transcriptome sequencing (RNA-seq) to identify over 150 genes whose expression changes in response to WalR levels. This gene set is enriched in cell envelope genes and includes genes encoding several predicted PG hydrolases and proteins that could regulate PG hydrolase activity. A distinct feature of the C. difficile cell envelope is the presence of an S-layer, and we found that WalR affects expression of several genes which encode S-layer proteins. An unexpected finding was that some Wal-associated phenotypic defects were inverted in comparison to what has been reported for other Firmicutes. For example, downregulation of Wal signaling caused C. difficile cells to become longer rather than shorter, as in Bacillus subtilis. Likewise, downregulation of Wal rendered C. difficile more sensitive to vancomycin, whereas reduced Wal activity is linked to increased vancomycin resistance in Staphylococcus aureus. IMPORTANCE The WalRK two-component system (TCS) is essential for coordinating synthesis and turnover of peptidoglycan in Firmicutes. We investigated the WalRK TCS in Clostridioides difficile, an important bacterial pathogen with an atypical cell envelope. We confirmed that WalRK is essential and regulates cell envelope biogenesis, although several of the phenotypic changes we observed were opposite to what has been reported for other Firmicutes. We also identified over 150 genes whose expression is controlled either directly or indirectly by WalR. Overall, our findings provide a foundation for future investigations of an important regulatory system and potential antibiotic target in C. difficile.
Collapse
|
32
|
Khedkar S, Smyshlyaev G, Letunic I, Maistrenko OM, Coelho LP, Orakov A, Forslund SK, Hildebrand F, Luetge M, Schmidt TSB, Barabas O, Bork P. Landscape of mobile genetic elements and their antibiotic resistance cargo in prokaryotic genomes. Nucleic Acids Res 2022; 50:3155-3168. [PMID: 35323968 PMCID: PMC8989519 DOI: 10.1093/nar/gkac163] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/30/2022] [Accepted: 03/11/2022] [Indexed: 12/02/2022] Open
Abstract
Prokaryotic Mobile Genetic Elements (MGEs) such as transposons, integrons, phages and plasmids, play important roles in prokaryotic evolution and in the dispersal of cargo functions like antibiotic resistance. However, each of these MGE types is usually annotated and analysed individually, hampering a global understanding of phylogenetic and environmental patterns of MGE dispersal. We thus developed a computational framework that captures diverse MGE types, their cargos and MGE-mediated horizontal transfer events, using recombinases as ubiquitous MGE marker genes and pangenome information for MGE boundary estimation. Applied to ∼84k genomes with habitat annotation, we mapped 2.8 million MGE-specific recombinases to six operational MGE types, which together contain on average 13% of all the genes in a genome. Transposable elements (TEs) dominated across all taxa (∼1.7 million occurrences), outnumbering phages and phage-like elements (<0.4 million). We recorded numerous MGE-mediated horizontal transfer events across diverse phyla and habitats involving all MGE types, disentangled and quantified the extent of hitchhiking of TEs (17%) and integrons (63%) with other MGE categories, and established TEs as dominant carriers of antibiotic resistance genes. We integrated all these findings into a resource (proMGE.embl.de), which should facilitate future studies on the large mobile part of genomes and its horizontal dispersal.
Collapse
Affiliation(s)
- Supriya Khedkar
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Georgy Smyshlyaev
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Ivica Letunic
- Biobyte solutions GmbH, Bothestr 142, 69117 Heidelberg, Germany
| | - Oleksandr M Maistrenko
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Luis Pedro Coelho
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Askarbek Orakov
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Sofia K Forslund
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Charité-Universitätsmedizin and Max-Delbrück Center, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Falk Hildebrand
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mechthild Luetge
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Thomas S B Schmidt
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Orsolya Barabas
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Department of Molecular Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.,Max Delbrück Centre for Molecular Medicine, Berlin, Germany.,Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.,Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea
| |
Collapse
|
33
|
Zhang Y, Chen J, Chen H, Liu L, Liu C, Teng Y. An integrated multidisciplinary-based framework for characterizing environmental risks of heavy metals and their effects on antibiotic resistomes in agricultural soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128113. [PMID: 34952501 DOI: 10.1016/j.jhazmat.2021.128113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
In this study, a new integrated multidisciplinary-based framework has been proposed to better understand the environmental risks of heavy metals (HMs) in agricultural soils. The source apportionment results revealed by a multilinear engine model were incorporated into the geochemical indexes and the probabilistic health risk assessment models for identifying the source-oriented risks of HMs in the environment. High-throughput sequencing-based metagenomic assembly analysis was used for characterizing the prevalence and dissemination risk of antibiotic resistomes and their associations with the geochemical enrichment of HMs in the soils. Results showed agricultural and industrial activities were the main sources of HMs in the environment. Although the soils were contaminated moderately by HMs and the health risks posed by soil metals were negligible for both adult and children, source-oriented risk evaluation suggested agricultural activities contributed relatively higher contamination and health risks than the other sources. Notably, abundant and diverse antibiotic resistant genes, mobile gene elements, virulence factors, and antibiotic-resistant bacterial pathogens were identified in the agricultural soils, as well as their co-occurrences on the same contigs, implying a non-negligible resistome risk. Further, statistical and network analyses showed the geochemical enrichment of HMs exerted significant effects on the antibiotic resistomes in the environment.
Collapse
Affiliation(s)
- Yuxin Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Jinping Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Haiyang Chen
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| | - Linmei Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Chang Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China
| | - Yanguo Teng
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing Normal University; College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China.
| |
Collapse
|
34
|
Dlugosch L, Poehlein A, Wemheuer B, Pfeiffer B, Badewien TH, Daniel R, Simon M. Significance of gene variants for the functional biogeography of the near-surface Atlantic Ocean microbiome. Nat Commun 2022; 13:456. [PMID: 35075131 PMCID: PMC8786918 DOI: 10.1038/s41467-022-28128-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 01/06/2022] [Indexed: 01/21/2023] Open
Abstract
Microbial communities are major drivers of global elemental cycles in the oceans due to their high abundance and enormous taxonomic and functional diversity. Recent studies assessed microbial taxonomic and functional biogeography in global oceans but microbial functional biogeography remains poorly studied. Here we show that in the near-surface Atlantic and Southern Ocean between 62°S and 47°N microbial communities exhibit distinct taxonomic and functional adaptations to regional environmental conditions. Richness and diversity showed maxima around 40° latitude and intermediate temperatures, especially in functional genes (KEGG-orthologues, KOs) and gene profiles. A cluster analysis yielded three clusters of KOs but five clusters of genes differing in the abundance of genes involved in nutrient and energy acquisition. Gene profiles showed much higher distance-decay rates than KO and taxonomic profiles. Biotic factors were identified as highly influential in explaining the observed patterns in the functional profiles, whereas temperature and biogeographic province mainly explained the observed taxonomic patterns. Our results thus indicate fine-tuned genetic adaptions of microbial communities to regional biotic and environmental conditions in the Atlantic and Southern Ocean. The taxonomic and functional diversity of marine microbial communities are shaped by both environmental and biotic factors. Here, the authors investigate the functional biogeography of epipelagic prokaryotic communities along a 13,000-km transect in the Southern and Atlantic Oceans, showing finely tuned genetic adaptations to regional conditions.
Collapse
Affiliation(s)
- Leon Dlugosch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Bernd Wemheuer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Birgit Pfeiffer
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Thomas H Badewien
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstr. 8, D-37077, Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl von Ossietzky Str. 9-11, D-26129, Oldenburg, Germany. .,Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstr. 231, D-26129, Oldenburg, Germany.
| |
Collapse
|
35
|
Gulyaeva A, Garmaeva S, Ruigrok RAAA, Wang D, Riksen NP, Netea MG, Wijmenga C, Weersma RK, Fu J, Vila AV, Kurilshikov A, Zhernakova A. Discovery, diversity, and functional associations of crAss-like phages in human gut metagenomes from four Dutch cohorts. Cell Rep 2022; 38:110204. [PMID: 35021085 DOI: 10.1016/j.celrep.2021.110204] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
The crAss-like phages are a diverse group of related viruses that includes some of the most abundant viruses of the human gut. To explore their diversity and functional role in human population and clinical cohorts, we analyze gut metagenomic data collected from 1,950 individuals from the Netherlands. We identify 1,556 crAss-like phage genomes, including 125 species-level and 32 genus-level clusters absent from the reference databases used. Analysis of their genomic features shows that closely related crAss-like phages can possess strikingly divergent regions responsible for transcription, presumably acquired through recombination. Prediction of crAss-like phage hosts points primarily to bacteria of the phylum Bacteroidetes, consistent with previous reports. Finally, we explore the temporal stability of crAss-like phages over a 4-year period and identify associations between the abundance of crAss-like phages and several human phenotypes, including depletion of crAss-like phages in inflammatory bowel disease patients.
Collapse
Affiliation(s)
- Anastasia Gulyaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands.
| | - Sanzhima Garmaeva
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Renate A A A Ruigrok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Daoming Wang
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA, the Netherlands
| | - Mihai G Netea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen 6525GA, the Netherlands
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Rinse K Weersma
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713GZ, the Netherlands.
| |
Collapse
|
36
|
Ghimire S, Cady NM, Lehman P, Peterson SR, Shahi SK, Rashid F, Giri S, Mangalam AK. Dietary Isoflavones Alter Gut Microbiota and Lipopolysaccharide Biosynthesis to Reduce Inflammation. Gut Microbes 2022; 14:2127446. [PMID: 36179318 PMCID: PMC9542810 DOI: 10.1080/19490976.2022.2127446] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/16/2022] [Indexed: 02/04/2023] Open
Abstract
The etiopathogenesis of multiple sclerosis (MS) is strongly affected by environmental factors such as diet and the gut microbiota. An isoflavone-rich (ISO) diet was previously shown to reduce the severity of MS in the animal model experimental autoimmune encephalomyelitis (EAE). Translation of this concept to clinical trial where dietary isoflavones may be recommended for MS patients will require preliminary evidence that providing the isoflavone-rich diet to people with MS (PwMS) who lack phytoestrogen-metabolizing bacteria has beneficial effects. We have previously shown that the gut microbiota of PwMS resembles the gut microbiota of mice raised under a phytoestrogen-free (phyto-free) diet in that it lacks phytoestrogen-metabolizing bacteria. To investigate the effects of phytoestrogens on the microbiota inflammatory response and EAE disease severity we switched the diet of mice raised under a phyto-free (PF) diet to an isoflavone-rich diet. Microbiota analysis showed that the change in diet from one that is ISO to one that is PF reduces beneficial bacteria such as Bifidobacterium species. In addition we observed functional differences in lipopolysaccharide (LPS) biosynthesis pathways. Moreover LPS extracted from feces of mice fed an ISO diet induced increased production of anti-inflammatory cytokines from bone marrow-derived macrophages relative to fecal-LPS isolated from mice fed a PF diet. Eventually mice whose diet was switched from a PF diet to an ISO diet trended toward reduced EAE severity and mortality. Overall we show that an isoflavone-rich diet specifically modulates LPS biosynthesis of the gut microbiota imparts an anti-inflammatory response and decreases disease severity.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Pathology University of IowaIowa CityIowaUSA
| | - Nicole M. Cady
- Department of Pathology University of IowaIowa CityIowaUSA
| | - Peter Lehman
- Department of Pathology University of IowaIowa CityIowaUSA
- Department of Pathology Graduate Program University of IowaIowa CityIAUSA
| | - Stephanie R. Peterson
- Department of Pathology University of IowaIowa CityIowaUSA
- Graduate Program in Immunology University of IowaIowa CityIowaUSA
| | | | - Faraz Rashid
- Department of Neurology Henry Ford Health SystemDetroitMIUSA
| | - Shailendra Giri
- Department of Neurology Henry Ford Health SystemDetroitMIUSA
| | - Ashutosh K. Mangalam
- Department of Pathology University of IowaIowa CityIowaUSA
- Graduate Program in Immunology University of IowaIowa CityIowaUSA
| |
Collapse
|
37
|
Thompson MK, Nocedal I, Culviner PH, Zhang T, Gozzi KR, Laub MT. Escherichia coli SymE is a DNA-binding protein that can condense the nucleoid. Mol Microbiol 2021; 117:851-870. [PMID: 34964191 DOI: 10.1111/mmi.14877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/28/2022]
Abstract
Type I toxin-antitoxin (TA) systems typically consist of a protein toxin that imbeds in the inner membrane where it can oligomerize and form pores that change membrane permeability, and an RNA antitoxin that interacts directly with toxin mRNA to inhibit its translation. In Escherichia coli, symE/symR is annotated as a type I TA system with a non-canonical toxin. SymE was initially suggested to be an endoribonuclease, but has predicted structural similarity to DNA binding proteins. To better understand SymE function, we used RNA-seq to examine cells ectopically producing it. Although SymE drives major changes in gene expression, we do not find strong evidence of endoribonucleolytic activity. Instead, our biochemical and cell biological studies indicate that SymE binds DNA. We demonstrate that the toxicity of symE overexpression likely stems from its ability to drive severe nucleoid condensation, which disrupts DNA and RNA synthesis and leads to DNA damage, similar to the effects of overproducing the nucleoid-associated protein H-NS. Collectively, our results suggest that SymE represents a new class of nucleoid-associated proteins that is widely distributed in bacteria.
Collapse
Affiliation(s)
- Mary K Thompson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Isabel Nocedal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Kevin R Gozzi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
38
|
Wang D, Doestzada M, Chen L, Andreu-Sánchez S, van den Munckhof ICL, Augustijn HE, Koehorst M, Ruiz-Moreno AJ, Bloks VW, Riksen NP, Rutten JHW, Joosten LAB, Netea MG, Wijmenga C, Zhernakova A, Kuipers F, Fu J. Characterization of gut microbial structural variations as determinants of human bile acid metabolism. Cell Host Microbe 2021; 29:1802-1814.e5. [PMID: 34847370 DOI: 10.1016/j.chom.2021.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/06/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022]
Abstract
Bile acids (BAs) facilitate intestinal fat absorption and act as important signaling molecules in host-gut microbiota crosstalk. BA-metabolizing pathways in the microbial community have been identified, but it remains largely unknown how the highly variable genomes of gut bacteria interact with host BA metabolism. We characterized 8,282 structural variants (SVs) of 55 bacterial species in the gut microbiomes of 1,437 individuals from two cohorts and performed a systematic association study with 39 plasma BA parameters. Both variations in SV-based continuous genetic makeup and discrete clusters showed correlations with BA metabolism. Metagenome-wide association analysis identified 809 replicable associations between bacterial SVs and BAs and SV regulators that mediate the effects of lifestyle factors on BA metabolism. This is the largest microbial genetic association analysis to demonstrate the impact of bacterial SVs on human BA composition, and it highlights the potential of targeting gut microbiota to regulate BA metabolism through lifestyle intervention.
Collapse
Affiliation(s)
- Daoming Wang
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Marwah Doestzada
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Lianmin Chen
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Sergio Andreu-Sánchez
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Inge C L van den Munckhof
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Hannah E Augustijn
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Martijn Koehorst
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen 9713AV, the Netherlands
| | - Angel J Ruiz-Moreno
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Vincent W Bloks
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands
| | - Niels P Riksen
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Joost H W Rutten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands; Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca 400000, Romania
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen 6500HB, the Netherlands; Department for Genomics & Immunoregulation, Life and Medical Sciences Institute, University of Bonn, Bonn 53113, Germany; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova 200349, Romania
| | - Cisca Wijmenga
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands
| | - Alexandra Zhernakova
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands
| | - Folkert Kuipers
- University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen 9713AV, the Netherlands
| | - Jingyuan Fu
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen 9713AV, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pediatrics, Groningen 9713AV, the Netherlands.
| |
Collapse
|
39
|
Development of Stable Mixed Microbiota for High Yield Power to Methane Conversion. ENERGIES 2021. [DOI: 10.3390/en14217336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The performance of a mixed microbial community was tested in lab-scale power-to-methane reactors at 55 °C. The main aim was to uncover the responses of the community to starvation and stoichiometric H2/CO2 supply as the sole substrate. Fed-batch reactors were inoculated with the fermentation effluent of a thermophilic biogas plant. Various volumes of pure H2/CO2 gas mixtures were injected into the headspace daily and the process parameters were followed. Gas volumes and composition were measured by gas-chromatography, the headspace was replaced with N2 prior to the daily H2/CO2 injection. Total DNA samples, collected at the beginning and end (day 71), were analyzed by metagenome sequencing. Low levels of H2 triggered immediate CH4 evolution utilizing CO2/HCO3− dissolved in the fermentation effluent. Biomethanation continued when H2/CO2 was supplied. On the contrary, biomethane formation was inhibited at higher initial H2 doses and concomitant acetate formation indicated homoacetogenesis. Biomethane production started upon daily delivery of stoichiometric H2/CO2. The fed-batch operational mode allowed high H2 injection and consumption rates albeit intermittent operation conditions. Methane was enriched up to 95% CH4 content and the H2 consumption rate attained a remarkable 1000 mL·L−1·d−1. The microbial community spontaneously selected the genus Methanothermobacter in the enriched cultures.
Collapse
|
40
|
Kimbrel JA, Jeffrey BM, Ward CS. Prokaryotic Genome Annotation. Methods Mol Biol 2021; 2349:193-214. [PMID: 34718997 DOI: 10.1007/978-1-0716-1585-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
In the last decade, the high-throughput and relatively low cost of short-read sequencing technologies have revolutionized prokaryotic genomics. This has led to an exponential increase in the number of bacterial and archaeal genome sequences available, as well as corresponding increase of genome assembly and annotation tools developed. Together, these hardware and software technologies have given scientists unprecedented options to study their chosen microbial systems without the need for large teams of bioinformaticists or supercomputing facilities. While these analysis tools largely fall into only a few categories, each may have different requirements, caveats and file formats, and some may be rarely updated or even abandoned. And so, despite the apparent ease in sequencing and analyzing a prokaryotic genome, it is no wonder that the budding genomicist may quickly find oneself overwhelmed. Here, we aim to provide the reader with an overview of genome annotation and its most important considerations, as well as an easy-to-follow protocol to get started with annotating a prokaryotic genome.
Collapse
Affiliation(s)
- Jeffrey A Kimbrel
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Brendan M Jeffrey
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MA, USA
| | - Christopher S Ward
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
41
|
Ghimire S, Wongkuna S, Sankaranarayanan R, Ryan EP, Bhat GJ, Scaria J. Positive Synergistic Effects of Quercetin and Rice Bran on Human Gut Microbiota Reduces Enterobacteriaceae Family Abundance and Elevates Propionate in a Bioreactor Model. Front Microbiol 2021; 12:751225. [PMID: 34659185 PMCID: PMC8516403 DOI: 10.3389/fmicb.2021.751225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
Dietary fiber and flavonoids have substantial influence on the human gut microbiota composition that significantly impact health. Recent studies with dietary supplements such as quercetin and rice bran have shown beneficial impacts on the host alongside a positive influence of the gut microbiota. The specific bacterial species impacted by quercetin or rice bran in the diet is not well understood. In this study, we used a minibioreactor array system as a model to determine the effect of quercetin and rice bran individually, as well as in combination, on gut microbiota without the confounding host factors. We found that rice bran exerts higher shift in gut microbiome composition when compared to quercetin. At the species level, Acidaminococcus intestini was the only significantly enriched taxa when quercetin was supplemented, while 15 species were enriched in rice bran supplementation and 13 were enriched when quercetin and rice bran were supplemented in combination. When comparing the short chain fatty acid production, quercetin supplementation increased isobutyrate production while propionate dominated the quercetin and rice bran combined group. Higher levels of propionate were highly correlated to the lower abundance of the potentially pathogenic Enterobacteriaceae family. These findings suggest that the combination of quercetin and rice bran serve to enrich beneficial bacteria and reduce potential opportunistic pathogens. In vivo studies are necessary to determine how this synergy of quercetin and rice bran on microbiota impact host health.
Collapse
Affiliation(s)
- Sudeep Ghimire
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD, United States
| | - Supapit Wongkuna
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD, United States
| | - Ranjini Sankaranarayanan
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - G Jayarama Bhat
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, United States
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, United States.,South Dakota Center for Biologics Research and Commercialization, Brookings, SD, United States
| |
Collapse
|
42
|
Hyun DW, Lee JY, Kim MS, Shin NR, Whon TW, Kim KH, Kim PS, Tak EJ, Jung MJ, Lee JY, Kim HS, Kang W, Sung H, Jeon CO, Bae JW. Pathogenomics of Streptococcus ilei sp. nov., a newly identified pathogen ubiquitous in human microbiome. J Microbiol 2021; 59:792-806. [PMID: 34302622 DOI: 10.1007/s12275-021-1165-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 01/09/2023]
Abstract
Viridans group streptococci are a serious health concern because most of these bacteria cause life-threatening infections, especially in immunocompromised and hospitalized individuals. We focused on two alpha-hemolytic Streptococcus strains (I-G2 and I-P16) newly isolated from an ileostomy effluent of a colorectal cancer patient. We examined their pathogenic potential by investigating their prevalence in human and assessing their pathogenicity in a mouse model. We also predicted their virulence factors and pathogenic features by using comparative genomic analysis and in vitro tests. Using polyphasic and systematic approaches, we identified the isolates as belonging to a novel Streptococcus species and designated it as Streptococcus ilei. Metagenomic survey based on taxonomic assignment of datasets from the Human Microbiome Project revealed that S. ilei is present in most human population and at various body sites but is especially abundant in the oral cavity. Intraperitoneal injection of S. ilei was lethal to otherwise healthy C57BL/6J mice. Pathogenomics and in vitro assays revealed that S. ilei possesses a unique set of virulence factors. In agreement with the in vivo and in vitro data, which indicated that S. ilei strain I-G2 is more pathogenic than strain I-P16, only the former displayed the streptococcal group A antigen. We here newly identified S. ilei sp. nov., and described its prevalence in human, virulence factors, and pathogenicity. This will help to prevent S. ilei strain misidentification in the future, and improve the understanding and management of streptococcal infections.
Collapse
Affiliation(s)
- Dong-Wook Hyun
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Min-Soo Kim
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Na-Ri Shin
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Tae Woong Whon
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyung Hyun Kim
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Pil Soo Kim
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Euon Jung Tak
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Mi-Ja Jung
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - June Young Lee
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Woorim Kang
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology, Department of Biomedical and Pharmaceutical Sciences, and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
43
|
Yen S, Johnson JS. Metagenomics: a path to understanding the gut microbiome. Mamm Genome 2021; 32:282-296. [PMID: 34259891 PMCID: PMC8295064 DOI: 10.1007/s00335-021-09889-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022]
Abstract
The gut microbiome is a major determinant of host health, yet it is only in the last 2 decades that the advent of next-generation sequencing has enabled it to be studied at a genomic level. Shotgun sequencing is beginning to provide insight into the prokaryotic as well as eukaryotic and viral components of the gut community, revealing not just their taxonomy, but also the functions encoded by their collective metagenome. This revolution in understanding is being driven by continued development of sequencing technologies and in consequence necessitates reciprocal development of computational approaches that can adapt to the evolving nature of sequence datasets. In this review, we provide an overview of current bioinformatic strategies for handling metagenomic sequence data and discuss their strengths and limitations. We then go on to discuss key technological developments that have the potential to once again revolutionise the way we are able to view and hence understand the microbiome.
Collapse
Affiliation(s)
- Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK
| | - Jethro S Johnson
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7FY, UK.
| |
Collapse
|
44
|
Hildebrand F, Gossmann TI, Frioux C, Özkurt E, Myers PN, Ferretti P, Kuhn M, Bahram M, Nielsen HB, Bork P. Dispersal strategies shape persistence and evolution of human gut bacteria. Cell Host Microbe 2021; 29:1167-1176.e9. [PMID: 34111423 PMCID: PMC8288446 DOI: 10.1016/j.chom.2021.05.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 03/19/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Human gut bacterial strains can co-exist with their hosts for decades, but little is known about how these microbes persist and disperse, and evolve thereby. Here, we examined these processes in 5,278 adult and infant fecal metagenomes, longitudinally sampled in individuals and families. Our analyses revealed that a subset of gut species is extremely persistent in individuals, families, and geographic regions, represented often by locally successful strains of the phylum Bacteroidota. These “tenacious” bacteria show high levels of genetic adaptation to the human host but a high probability of loss upon antibiotic interventions. By contrast, heredipersistent bacteria, notably Firmicutes, often rely on dispersal strategies with weak phylogeographic patterns but strong family transmissions, likely related to sporulation. These analyses describe how different dispersal strategies can lead to the long-term persistence of human gut microbes with implications for gut flora modulations. Bacterial strains may persist within family members through transfer Bacteria adapt dispersal strategies: heredipersistent, spatiopersistent, and tenacious Dispersal strategies correlate with genetic bottlenecks and effective population size
Collapse
Affiliation(s)
- Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, NR4 7UQ Norwich, UK; Digital Biology, Earlham Institute, NR4 7UZ Norwich, UK; European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany.
| | - Toni I Gossmann
- Department of Animal Behaviour, Bielefeld University, Bielefeld DE-33501, Germany
| | - Clémence Frioux
- Gut Microbes and Health, Quadram Institute Bioscience, NR4 7UQ Norwich, UK; Inria, INRAE, CNRS, Univ. Bordeaux, 33405 Talence, France
| | - Ezgi Özkurt
- Gut Microbes and Health, Quadram Institute Bioscience, NR4 7UQ Norwich, UK; Digital Biology, Earlham Institute, NR4 7UZ Norwich, UK
| | - Pernille Neve Myers
- Clinical Microbiomics A/S, Copenhagen, Denmark; Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Pamela Ferretti
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Michael Kuhn
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls väg 16, 750 07 Uppsala, Sweden; Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
| | | | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, 69117 Heidelberg, Germany; Max Delbrück Center for Molecular Medicine, Berlin, Germany; Yonsei Frontier Lab (YFL), Yonsei University, Seoul 03722, South Korea; Department of Bioinformatics, Biocenter, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
45
|
Li Y, Chen H, Song L, Wu J, Sun W, Teng Y. Effects on microbiomes and resistomes and the source-specific ecological risks of heavy metals in the sediments of an urban river. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124472. [PMID: 33199139 DOI: 10.1016/j.jhazmat.2020.124472] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 06/11/2023]
Abstract
This study aims to better understand the effects of heavy metal enrichment on microbiomes and resistomes and the source-specific ecological risks of metals in the sediments of an urban river. Geo-accumulation index and enrichment factor suggested the river sediments were contaminated by Cd, Cu, Pb, and Zn in varying degrees. High-throughput sequencing-based metagenomics analysis identified 430 types of antibiotic resistance genes (ARGs), dominated by the multidrug, MLS, bacitracin, quinolone, and aminoglycoside ARGs, and 52 metal resistance genes (MRGs) mainly conferring resistance to zinc, copper, cadmium, lead, mercury and multiple metals. Spearman correlation analysis and Mantel test showed the heavy metal enrichment exerted significant effects on the microbial community, ARGs and MRGs. Source apportionment using positive matrix factorization revealed that natural source (42.8%) was the largest contributor of metals in the river sediments, followed by urban activities (35.4%) and a mixed source (21.7%). However, when incorporating the apportionment results into a modified risk model to evaluate the source-specific ecological risks, results showed human activities dominated the risks of metals. Comparatively, the urban activities majorly caused moderate- and considerable- ecological risks, while the mixed source with respect to agricultural and industrial activities contributed higher percentages on high- and extremely high- ecological risks.
Collapse
Affiliation(s)
- Yuezhao Li
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Haiyang Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| | - Liuting Song
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China
| | - Jin Wu
- College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wenchao Sun
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Beijing 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing 100875, China.
| |
Collapse
|
46
|
Assessment of phylo-functional coherence along the bacterial phylogeny and taxonomy. Sci Rep 2021; 11:8299. [PMID: 33859339 PMCID: PMC8050241 DOI: 10.1038/s41598-021-87909-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2021] [Indexed: 11/25/2022] Open
Abstract
In this report we use available curated phylogenies, taxonomy, and genome annotations to assess the phylogenetic and gene content similarity associated with each different taxon and taxonomic rank. Subsequently, we employ the same data to assess the frontiers of functional coherence along the bacterial phylogeny. Our results show that within-group phylogenetic and gene content similarity of taxa in the same rank are not homogenous, and that these values show extensive overlap between ranks. Functional coherence along the 16S rRNA gene-based phylogeny was limited to 44 particular nodes presenting large variations in phylogenetic depth. For instance, the deep subtree affiliated to class Actinobacteria presented functional coherence, while the shallower family Enterobacteriaceae-affiliated subtree did not. On the other hand, functional coherence along the genome-based phylogeny delimited deep subtrees affiliated to phyla Actinobacteriota, Deinococcota, Chloroflexota, Firmicutes, and a subtree containing the rest of the bacterial phyla. The results presented here can be used to guide the exploration of results in many microbial ecology and evolution research scenarios. Moreover, we provide dedicated scripts and files that can be used to continue the exploration of functional coherence along the bacterial phylogeny employing different parameters or input data (https://git.io/Jec5U).
Collapse
|
47
|
Gilroy R, Ravi A, Getino M, Pursley I, Horton DL, Alikhan NF, Baker D, Gharbi K, Hall N, Watson M, Adriaenssens EM, Foster-Nyarko E, Jarju S, Secka A, Antonio M, Oren A, Chaudhuri RR, La Ragione R, Hildebrand F, Pallen MJ. Extensive microbial diversity within the chicken gut microbiome revealed by metagenomics and culture. PeerJ 2021; 9:e10941. [PMID: 33868800 PMCID: PMC8035907 DOI: 10.7717/peerj.10941] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 01/22/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The chicken is the most abundant food animal in the world. However, despite its importance, the chicken gut microbiome remains largely undefined. Here, we exploit culture-independent and culture-dependent approaches to reveal extensive taxonomic diversity within this complex microbial community. RESULTS We performed metagenomic sequencing of fifty chicken faecal samples from two breeds and analysed these, alongside all (n = 582) relevant publicly available chicken metagenomes, to cluster over 20 million non-redundant genes and to construct over 5,500 metagenome-assembled bacterial genomes. In addition, we recovered nearly 600 bacteriophage genomes. This represents the most comprehensive view of taxonomic diversity within the chicken gut microbiome to date, encompassing hundreds of novel candidate bacterial genera and species. To provide a stable, clear and memorable nomenclature for novel species, we devised a scalable combinatorial system for the creation of hundreds of well-formed Latin binomials. We cultured and genome-sequenced bacterial isolates from chicken faeces, documenting over forty novel species, together with three species from the genus Escherichia, including the newly named species Escherichia whittamii. CONCLUSIONS Our metagenomic and culture-based analyses provide new insights into the bacterial, archaeal and bacteriophage components of the chicken gut microbiome. The resulting datasets expand the known diversity of the chicken gut microbiome and provide a key resource for future high-resolution taxonomic and functional studies on the chicken gut microbiome.
Collapse
Affiliation(s)
| | | | - Maria Getino
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Isabella Pursley
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | - Daniel L. Horton
- School of Veterinary Medicine, University of Surrey, Guildford, UK
| | | | - Dave Baker
- Quadram Institute Bioscience, Norwich, UK
| | - Karim Gharbi
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Neil Hall
- Earlham Institute, Norwich Research Park, Norwich, UK
- University of East Anglia, Norwich, UK
| | - Mick Watson
- Roslin Institute, University of Edinburgh, Edinburgh, UK
| | | | | | - Sheikh Jarju
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Arss Secka
- West Africa Livestock Innovation Centre, Banjul, The Gambia
| | - Martin Antonio
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Banjul, The Gambia
| | - Aharon Oren
- Department of Plant and Environmental Sciences, The Alexander Silberman Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Roy R. Chaudhuri
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | | | - Falk Hildebrand
- Quadram Institute Bioscience, Norwich, UK
- Earlham Institute, Norwich Research Park, Norwich, UK
| | - Mark J. Pallen
- Quadram Institute Bioscience, Norwich, UK
- School of Veterinary Medicine, University of Surrey, Guildford, UK
- University of East Anglia, Norwich, UK
| |
Collapse
|
48
|
Matysiak A, Kabza M, Karolak JA, Jaworska MM, Rydzanicz M, Ploski R, Szaflik JP, Gajecka M. Characterization of Ocular Surface Microbial Profiles Revealed Discrepancies between Conjunctival and Corneal Microbiota. Pathogens 2021; 10:pathogens10040405. [PMID: 33808469 PMCID: PMC8067172 DOI: 10.3390/pathogens10040405] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/19/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
The ocular microbiome composition has only been partially characterized. Here, we used RNA-sequencing (RNA-Seq) data to assess microbial diversity in human corneal tissue. Additionally, conjunctival swab samples were examined to characterize ocular surface microbiota. Short RNA-Seq reads, obtained from a previous transcriptome study of 50 corneal tissues, were mapped to the human reference genome GRCh38 to remove sequences of human origin. The unmapped reads were then used for taxonomic classification by comparing them with known bacterial, archaeal, and viral sequences from public databases. The components of microbial communities were identified and characterized using both conventional microbiology and polymerase chain reaction (PCR) techniques in 36 conjunctival swabs. The majority of ocular samples examined by conventional and molecular techniques showed very similar microbial taxonomic profiles, with most of the microorganisms being classified into Proteobacteria, Firmicutes, and Actinobacteria phyla. Only 50% of conjunctival samples exhibited bacterial growth. The PCR detection provided a broader overview of positive results for conjunctival materials. The RNA-Seq assessment revealed significant variability of the corneal microbial communities, including fastidious bacteria and viruses. The use of the combined techniques allowed for a comprehensive characterization of the eye microbiome's elements, especially in aspects of microbiota diversity.
Collapse
Affiliation(s)
- Anna Matysiak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.M.); (M.K.); (J.A.K.); (M.M.J.)
| | - Michal Kabza
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.M.); (M.K.); (J.A.K.); (M.M.J.)
| | - Justyna A. Karolak
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.M.); (M.K.); (J.A.K.); (M.M.J.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Marcelina M. Jaworska
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.M.); (M.K.); (J.A.K.); (M.M.J.)
| | - Malgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (R.P.)
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, 00-576 Warsaw, Poland;
| | - Marzena Gajecka
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland; (A.M.); (M.K.); (J.A.K.); (M.M.J.)
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
- Correspondence:
| |
Collapse
|
49
|
Zhelyazkova M, Yordanova R, Mihaylov I, Kirov S, Tsonev S, Danko D, Mason C, Vassilev D. Origin Sample Prediction and Spatial Modeling of Antimicrobial Resistance in Metagenomic Sequencing Data. Front Genet 2021; 12:642991. [PMID: 33763122 PMCID: PMC7983949 DOI: 10.3389/fgene.2021.642991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/02/2021] [Indexed: 12/18/2022] Open
Abstract
The steady elaboration of the Metagenomic and Metadesign of Subways and Urban Biomes (MetaSUB) international consortium project raises important new questions about the origin, variation, and antimicrobial resistance of the collected samples. CAMDA (Critical Assessment of Massive Data Analysis, http://camda.info/) forum organizes annual challenges where different bioinformatics and statistical approaches are tested on samples collected around the world for bacterial classification and prediction of geographical origin. This work proposes a method which not only predicts the locations of unknown samples, but also estimates the relative risk of antimicrobial resistance through spatial modeling. We introduce a new component in the standard analysis as we apply a Bayesian spatial convolution model which accounts for spatial structure of the data as defined by the longitude and latitude of the samples and assess the relative risk of antimicrobial resistance taxa across regions which is relevant to public health. We can then use the estimated relative risk as a new measure for antimicrobial resistance. We also compare the performance of several machine learning methods, such as Gradient Boosting Machine, Random Forest, and Neural Network to predict the geographical origin of the mystery samples. All three methods show consistent results with some superiority of Random Forest classifier. In our future work we can consider a broader class of spatial models and incorporate covariates related to the environment and climate profiles of the samples to achieve more reliable estimation of the relative risk related to antimicrobial resistance.
Collapse
Affiliation(s)
- Maya Zhelyazkova
- Faculty of Mathematics and Informatics, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Roumyana Yordanova
- Department of Mathematics, Hokkaido University, Sapporo, Japan.,Bulgarian Academy of Sciences, Institute of Mathematics and Informatics, Sofia, Bulgaria
| | - Iliyan Mihaylov
- Faculty of Mathematics and Informatics, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| | - Stefan Kirov
- Bristol-Myers Squibb, Pennington, NJ, United States
| | - Stefan Tsonev
- Department of Molecular Genetics, AgroBioInstitute, Sofia, Bulgaria
| | - David Danko
- Department of Computational Informatics, Weill Cornell Medical College, New York, NY, United States
| | | | - Dimitar Vassilev
- Faculty of Mathematics and Informatics, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
| |
Collapse
|
50
|
She M, Tang M, Jiang T, Zeng Q. The Roles of the LIM Domain Proteins in Drosophila Cardiac and Hematopoietic Morphogenesis. Front Cardiovasc Med 2021; 8:616851. [PMID: 33681304 PMCID: PMC7928361 DOI: 10.3389/fcvm.2021.616851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022] Open
Abstract
Drosophila melanogaster has been used as a model organism for study on development and pathophysiology of the heart. LIM domain proteins act as adaptors or scaffolds to promote the assembly of multimeric protein complexes. We found a total of 75 proteins encoded by 36 genes have LIM domain in Drosophila melanogaster by the tools of SMART, FLY-FISH, and FlyExpress, and around 41.7% proteins with LIM domain locate in lymph glands, muscles system, and circulatory system. Furthermore, we summarized functions of different LIM domain proteins in the development and physiology of fly heart and hematopoietic systems. It would be attractive to determine whether it exists a probable "LIM code" for the cycle of different cell fates in cardiac and hematopoietic tissues. Next, we aspired to propose a new research direction that the LIM domain proteins may play an important role in fly cardiac and hematopoietic morphogenesis.
Collapse
Affiliation(s)
- Meihua She
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Min Tang
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| | - Tingting Jiang
- Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, College of Hengyang Medical, University of South China, Hengyang, China
| |
Collapse
|