1
|
Liu L, Shao M, Huang Y, Qian P, Huang H. Unraveling the roles and mechanisms of mitochondrial translation in normal and malignant hematopoiesis. J Hematol Oncol 2024; 17:95. [PMID: 39396039 PMCID: PMC11470598 DOI: 10.1186/s13045-024-01615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/30/2024] [Indexed: 10/14/2024] Open
Abstract
Due to spatial and genomic independence, mitochondria possess a translational mechanism distinct from that of cytoplasmic translation. Several regulators participate in the modulation of mitochondrial translation. Mitochondrial translation is coordinated with cytoplasmic translation through stress responses. Importantly, the inhibition of mitochondrial translation leads to the inhibition of cytoplasmic translation and metabolic disruption. Therefore, defects in mitochondrial translation are closely related to the functions of hematopoietic cells and various immune cells. Finally, the inhibition of mitochondrial translation is a potential therapeutic target for treating multiple hematologic malignancies. Collectively, more in-depth insights into mitochondrial translation not only facilitate our understanding of its functions in hematopoiesis, but also provide a basis for the discovery of new treatments for hematological malignancies and the modulation of immune cell function.
Collapse
Affiliation(s)
- Lianxuan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Mi Shao
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Yue Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| | - He Huang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Gao G, Sun X, Xu J, Yu J, Wang Y. miR-19-3p/GRSF1/COX1 axis attenuates early brain injury via maintaining mitochondrial function after subarachnoid haemorrhage. Stroke Vasc Neurol 2024:svn-2024-003099. [PMID: 39266212 DOI: 10.1136/svn-2024-003099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/30/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein, which is eventually localised to mitochondria and promotes the translation of cytochrome C oxidase 1 (COX1) mRNA. However, the role of the miR-19-3p/GRSF1/COX1 axis has not been investigated in an experimental subarachnoid haemorrhage (SAH) model. Thus, we investigated the role of the miR-19-3p/GRSF1/COX1 axis in a SAH-induced early brain injury (EBI) course. METHODS Primary neurons were treated with oxyhaemoglobin (OxyHb) to simulate in vitro SAH. The rat SAH model was established by injecting autologous arterial blood into the optic chiasma cisterna. The GRSF1 level was downregulated or upregulated by treating the rats and neurons with lentivirus-GRSF1 shRNA (Lenti-GRSF1 shRNA) or lentivirus-GRSF1 (Lenti-GRSF1). RESULTS The miR-19-3p level was upregulated and the protein levels of GRSF1 and COX1 were both downregulated in SAH brain tissue. GRSF1 silence decreased and GRSF1 overexpression increased the protein levels of GRSF1 and COX1 in primary neurons and brain tissue, respectively. Lenti-GRSF1 shRNA aggravated, but Lenti-GRSF1 alleviated, the indicators of neuronal injury and neurological impairment in both in vitro and in vivo SAH conditions. In addition, miR-19-3p mimic reduced the protein levels of GRSF1 and COX1 in cultured neurons while miR-19-3p inhibitor increased them. More importantly, Lenti-GRSF1 significantly relieved mitochondrial damage of neurons exposed to OxyHb or induced by SAH and was beneficial to maintaining mitochondrial integrity. Lenti-GRSF1 shRNA treatment, conversely, aggravated mitochondrial damage in neurons. CONCLUSION The miR-19-3p/GRSF1/COX1 axis may serve as an underlying target for inhibiting SAH-induced EBI by maintaining mitochondrial integrity.
Collapse
Affiliation(s)
- Ge Gao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoyu Sun
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiajia Xu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jian Yu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
3
|
Yang Y, Gao Y, Liu XS, Huang ZM, Zhang Y, Zhang YH, Liu ZY, Chen YX, Pei ZJ. FASTKD1 as a diagnostic and prognostic biomarker for STAD: Insights into m6A modification and immune infiltration. Exp Ther Med 2024; 28:305. [PMID: 38873045 PMCID: PMC11170332 DOI: 10.3892/etm.2024.12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/19/2024] [Indexed: 06/15/2024] Open
Abstract
Fas-activated serine/threonine kinase domain 1 (FASTKD1), a known modulator of mitochondrial-mediated cell death and survival processes, has garnered attention for its potential role in various biological contexts. However, its involvement in gastric cancer remains unclear. Thus, the present study aimed to investigate the relationship between FASTKD1 expression and key factors, including clinicopathological characteristics, immune infiltration and m6A modification in stomach adenocarcinoma (STAD). The expression of FASTKD1 was analyzed in STAD and normal adjacent tissues to assess its association with clinicopathological characteristics and survival prognosis. Data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were used in this study. Additionally, the findings were validated through immunohistochemical staining. Co-expression analysis of FASTKD1 was performed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (GO/KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and LinkedOmics database analysis. An in-depth analysis was conducted using databases, such as Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interactive Analysis (GEPIA), GEO and TCGA to explore the potential correlation between FASTKD1 expression and immune infiltration and m6A modification in STAD. The results revealed that FASTKD1 was significantly upregulated across different tumor types, including STAD. Notably, FASTKD1 was able to distinguish between tumor and normal tissue samples with accuracy. Furthermore, the expression levels of FASTKD1 were significantly associated with clinical stage and survival. Through GO/KEGG enrichment analysis and GSEA, it was revealed that the genes co-expressed with FASTKD1 were active in a variety of biological processes. Within the TIMER, GEPIA and TCGA databases, a notable inverse correlation was observed between FASTKD1 expression and the abundance of immune cell subsets. Notably, significant correlations were established between FASTKD1 and m6A modification genes, YTHDF1 and LRPPRC, in both TCGA and GEO datasets. In conclusion, FASTKD1 may serve a significant role in m6A modification and immune infiltration processes, making it a potentially valuable diagnostic and prognostic biomarker in STAD.
Collapse
Affiliation(s)
- Yi Yang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yan Gao
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Xu-Sheng Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhong-Min Huang
- Department of Medical Ultrasound, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yao-Hua Zhang
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zi-Yue Liu
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Yu-Xuan Chen
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Zhi-Jun Pei
- Department of Nuclear Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
- Hubei Provincial Clinical Research Center for Precision Diagnosis and Treatment of Liver Cancer, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| |
Collapse
|
4
|
Vučković A, Freyer C, Wredenberg A, Hillen HS. The molecular machinery for maturation of primary mtDNA transcripts. Hum Mol Genet 2024; 33:R19-R25. [PMID: 38779769 PMCID: PMC11112384 DOI: 10.1093/hmg/ddae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 05/25/2024] Open
Abstract
Human mitochondria harbour a circular, polyploid genome (mtDNA) encoding 11 messenger RNAs (mRNAs), two ribosomal RNAs (rRNAs) and 22 transfer RNAs (tRNAs). Mitochondrial transcription produces long, polycistronic transcripts that span almost the entire length of the genome, and hence contain all three types of RNAs. The primary transcripts then undergo a number of processing and maturation steps, which constitute key regulatory points of mitochondrial gene expression. The first step of mitochondrial RNA processing consists of the separation of primary transcripts into individual, functional RNA molecules and can occur by two distinct pathways. Both are carried out by dedicated molecular machineries that substantially differ from RNA processing enzymes found elsewhere. As a result, the underlying molecular mechanisms remain poorly understood. Over the last years, genetic, biochemical and structural studies have identified key players involved in both RNA processing pathways and provided the first insights into the underlying mechanisms. Here, we review our current understanding of RNA processing in mammalian mitochondria and provide an outlook on open questions in the field.
Collapse
MESH Headings
- Humans
- DNA, Mitochondrial/genetics
- RNA Processing, Post-Transcriptional
- Mitochondria/genetics
- Mitochondria/metabolism
- RNA, Mitochondrial/genetics
- RNA, Mitochondrial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Animals
- Transcription, Genetic
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
Collapse
Affiliation(s)
- Ana Vučković
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solnavägen 9, 171 65 Solna, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Anna Steckséns gata 47, 171 64 Solna, Sweden
| | - Hauke S Hillen
- Department of Cellular Biochemistry, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Robert-Koch-Straße 40, 37073 Göttingen, Germany
- Research Group Structure and Function of Molecular Machines, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen 37077, Germany
| |
Collapse
|
5
|
Ramasubramanian A, Ramani P, Kannan B, Arumugam P. High expression of novel biomarker TBRG4 promotes the progression and invasion of oral squamous cell carcinoma. J Oral Pathol Med 2023; 52:738-745. [PMID: 37537882 DOI: 10.1111/jop.13470] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Transforming growth factor β regulator 4 (TBRG4) is a potential prognostic indicator in various cancers, especially squamous cell carcinomas, and is associated with disease amelioration and poor outcomes. The study aimed to assess the expression pattern of TBRG4 in patients with operable oral squamous cell carcinoma (OSCC) to understand its role in tumour progression using indicators of disease outcome like tumour stage, grade, nodal metastasis, and pattern of invasion. METHODS TBRG4 expression was assessed by analyzing 51 cancer and adjacent non-cancerous tissues of OSCC patients using quantitative real-time PCR, and Western blot. TBRG4 expression was also analysed in The Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma (TCGA-HNSC) dataset using the UALCAN tool (http://ualcan.path.uab.edu/). The relationship between TBRG4 expression and the patient's prognosis was analysed using Kaplan-Meier plotter. RESULTS Both mRNA and protein levels of TBRG4 were significantly increased in OSCC tissues. The TBGR4 expression was significantly associated with advanced stages (III and IV) and the worst pattern of invasion (WPOI-4 and 5). High TBRG4 expression was also significantly associated with reduced overall survival (p = 0.011). In addition, the analysis of TBRG4 gene expression and clinical data from TCGA, identified that TBRG4 was highly expressed in HPV negative OSCC patients and positively correlated with worst overall survival. CONCLUSION The present study suggests that the high expression of TBRG4 might serve as a novel prognostic biomarker for HPV-negative OSCC, which can be validated by future additional investigations in larger cohorts along with functional studies.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Balachander Kannan
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Paramasivam Arumugam
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| |
Collapse
|
6
|
Marshall KD, Klutho PJ, Song L, Roy R, Krenz M, Baines CP. Cardiac Myocyte-Specific Overexpression of FASTKD1 Prevents Ventricular Rupture After Myocardial Infarction. J Am Heart Assoc 2023; 12:e025867. [PMID: 36789858 PMCID: PMC10111501 DOI: 10.1161/jaha.122.025867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Background The mitochondrial mRNA-binding protein FASTKD1 (Fas-activated serine/threonine [FAST] kinase domain-containing protein 1) protects myocytes from oxidative stress in vitro. However, the role of FASTKD1 in the myocardium in vivo is unknown. Therefore, we developed cardiac-specific FASTKD1 transgenic mice to test the effects of this protein on experimental myocardial infarction (MI). Methods and Results Transgenic mouse lines with cardiac myocyte-specific overexpression of FASTKD1 to varying degrees were generated. These mice displayed normal cardiac morphological features and function at the gross and microscopic levels. Isolated cardiac mitochondria from all transgenic mouse lines showed normal mitochondrial function, ATP levels, and permeability transition pore activity. Male nontransgenic and transgenic mice from the highest-expressing line were subjected to 8 weeks of permanent coronary ligation. Of nontransgenic mice, 40% underwent left ventricular free wall rupture within 7 days of MI compared with 0% of FASTKD1-overexpressing mice. At 3 days after MI, FASTKD1 overexpression did not alter infarct size. However, increased FASTKD1 resulted in decreased neutrophil and increased macrophage infiltration, elevated levels of the extracellular matrix component periostin, and enhanced antioxidant capacity compared with control mice. In contrast, markers of mitochondrial fusion/fission and apoptosis remained unaltered. Instead, transcriptomic analyses indicated activation of the integrated stress response in the FASTKD1 transgenic hearts. Conclusions Cardiac-specific overexpression of FASTKD1 results in viable mice displaying normal cardiac morphological features and function. However, these mice are resistant to MI-induced cardiac rupture and display altered inflammatory, extracellular matrix, and antioxidant responses following MI. Moreover, these protective effects were associated with enhanced activation of the integrated stress response.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Sciences University of Missouri Columbia MO
| | - Paula J Klutho
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Lihui Song
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Rajika Roy
- Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Maike Krenz
- Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| | - Christopher P Baines
- Department of Biomedical Sciences University of Missouri Columbia MO.,Department of Medical Pharmacology and Physiology University of Missouri Columbia MO.,Dalton Cardiovascular Research Center University of Missouri Columbia MO
| |
Collapse
|
7
|
Ismail M, Zhang X, Taha R, Elhafiz M, Zhang Q, Yousef BA, Huang X, Jiang Z, Zhang L, Sun L. Expression profiles of lncRNAs and their possible regulatory role in monocrotaline-induced HSOS in rats. Front Genet 2023; 14:1041266. [PMID: 36777738 PMCID: PMC9909345 DOI: 10.3389/fgene.2023.1041266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Aims: Long non-coding RNAs (lncRNAs) contribute to the regulation of vital physiological processes and play a role in the pathogenesis of many diseases. Monocrotaline (MCT) can cause large-scale outbreaks of toxic liver disease in humans and animals in the form of hepatic sinusoidal obstruction syndrome (HSOS). Although many experiments have been carried out to explain the pathogenesis of Monocrotaline-induced hepatic sinusoidal obstruction syndrome and to develop treatments for it, no studies have examined the role of Long non-coding RNAs in this condition. This study aimed to investigate the Long non-coding RNAs-mRNA regulation network in Monocrotaline-induced hepatic sinusoidal obstruction syndrome in rats. Main methods: We established a model for MCT-induced hepatic sinusoidal obstruction syndrome, and then carried out microarray for liver tissues of SD rats in a model of early hepatic sinusoidal obstruction syndrome (12 h Monocrotaline treatment vs. control group) to investigate the differentially expressed Long non-coding RNAs and mRNAs in early hepatotoxicity. This was followed by RT-PCR analysis of selected Long non-coding RNAs, which were markedly altered. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome analyses were also conducted. Key findings: 176 Long non-coding RNAs (63 downregulated and 113 upregulated) and 4,221 mRNAs (2,385 downregulated and 1836 upregulated) were differentially expressed in the Monocrotaline-treated group compared to the control group. The biological processes identified in GO enrichment analysis as playing a role in hepatotoxicity were positive regulation of guanosine triphosphate phosphohydrolase, liver development, and the oxidation-reduction process. Pathway analysis revealed that the metabolism pathways, gap junction, and ribosome biogenesis in eukaryotes were closely related to Monocrotaline-induced hepatotoxicity. According to these analyses, LOC102552718 might play an essential role in hepatotoxicity mechanisms by regulating the expression of inositol 1,4,5-trisphosphate receptor-1 (Itpr-1). Significance: This study provides a basis for further research on the molecular mechanisms underlying Monocrotaline-induced hepatotoxicity and its treatment, especially in the early stage, when successful treatment is critical before irreversible liver damage occurs.
Collapse
Affiliation(s)
- Mohammed Ismail
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China,Department of Pharmacology, Faculty of Medicine and health science, Dongola University, Dongola, Sudan
| | - Xi Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Reham Taha
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Muhanad Elhafiz
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Qianwen Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Bashir A. Yousef
- Department of Pharmacology, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Xin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Zhenzhou Jiang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China
| | - Luyong Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China,Centre for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, China,*Correspondence: Luyong Zhang, ; Lixin Sun,
| | - Lixin Sun
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing, China,*Correspondence: Luyong Zhang, ; Lixin Sun,
| |
Collapse
|
8
|
ANGEL2 phosphatase activity is required for non-canonical mitochondrial RNA processing. Nat Commun 2022; 13:5750. [PMID: 36180430 PMCID: PMC9525292 DOI: 10.1038/s41467-022-33368-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
Canonical RNA processing in mammalian mitochondria is defined by tRNAs acting as recognition sites for nucleases to release flanking transcripts. The relevant factors, their structures, and mechanism are well described, but not all mitochondrial transcripts are punctuated by tRNAs, and their mode of processing has remained unsolved. Using Drosophila and mouse models, we demonstrate that non-canonical processing results in the formation of 3′ phosphates, and that phosphatase activity by the carbon catabolite repressor 4 domain-containing family member ANGEL2 is required for their hydrolysis. Furthermore, our data suggest that members of the FAST kinase domain-containing protein family are responsible for these 3′ phosphates. Our results therefore propose a mechanism for non-canonical RNA processing in metazoan mitochondria, by identifying the role of ANGEL2. A subset of mitochondrial transcripts is not flanked by tRNAs and thus does not conform to the canonical mode of processing. Here, Clemente et al. demonstrate that phosphatase activity of ANGEL2 is required for correct processing of these transcripts.
Collapse
|
9
|
Carbajosa G, Ali AT, Hodgkinson A. Identification of human mitochondrial RNA cleavage sites and candidate RNA processing factors. BMC Biol 2022; 20:168. [PMID: 35869520 PMCID: PMC9308231 DOI: 10.1186/s12915-022-01373-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The human mitochondrial genome is transcribed as long strands of RNA containing multiple genes, which require post-transcriptional cleavage and processing to release functional gene products that play vital roles in cellular energy production. Despite knowledge implicating mitochondrial post-transcriptional processes in pathologies such as cancer, cardiovascular disease and diabetes, very little is known about the way their function varies on a human population level and what drives changes in these processes to ultimately influence disease risk. Here, we develop a method to detect and quantify mitochondrial RNA cleavage events from standard RNA sequencing data and apply this approach to human whole blood data from > 1000 samples across independent cohorts. RESULTS We detect 54 putative mitochondrial RNA cleavage sites that not only map to known gene boundaries, short RNA ends and RNA modification sites, but also occur at internal gene positions, suggesting novel mitochondrial RNA cleavage junctions. Inferred RNA cleavage rates correlate with mitochondrial-encoded gene expression across individuals, suggesting an impact on downstream processes. Furthermore, by comparing inferred cleavage rates to nuclear genetic variation and gene expression, we implicate multiple genes in modulating mitochondrial RNA cleavage (e.g. MRPP3, TBRG4 and FASTKD5), including a potentially novel role for RPS19 in influencing cleavage rates at a site near to the MTATP6-COX3 junction that we validate using shRNA knock down data. CONCLUSIONS We identify novel cleavage junctions associated with mitochondrial RNA processing, as well as genes newly implicated in these processes, and detect the potential impact of variation in cleavage rates on downstream phenotypes and disease processes. These results highlight the complexity of the mitochondrial transcriptome and point to novel mechanisms through which nuclear-encoded genes can potentially influence key mitochondrial processes.
Collapse
Affiliation(s)
- Guillermo Carbajosa
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Aminah T Ali
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
| | - Alan Hodgkinson
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK.
| |
Collapse
|
10
|
Wu T, Mao L, Chen C, Yin F, Peng J. A novel homozygous missense mutation in the FASTKD2 gene leads to Lennox-Gastaut syndrome. J Hum Genet 2022; 67:589-594. [PMID: 35729327 DOI: 10.1038/s10038-022-01056-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 11/09/2022]
Abstract
FASTKD2 encodes an RNA-binding protein, which is a key post-transcriptional regulator of mitochondrial gene expression. Mutations in FASTKD2 have recently been found in mitochondrial encephalomyopathy, which is characterized by a deficiency in mitochondrial function. To date, seven patients have been reported. Six patients were identified with nonsense or frameshift mutations in the FASTKD2 gene, and only one patient harbored a missense mutation and a nonsense mutation. Here, we identified a novel FASTKD2 homozygous mutation, c.911 T > C, in a patient diagnosed with Lennox-Gastaut syndrome. We observed that the expression of FASTKD2 and the levels of mitochondrial 16 S rRNA were lower in the patient than in the unaffected controls. In conclusion, the missense mutation c.911 T > C caused loss of function in FASTKD2, which was associated with a new phenotype, Lennox-Gastaut syndrome.
Collapse
Affiliation(s)
- Tenghui Wu
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, 410008, China.,Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Leilei Mao
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, 410008, China.,Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, 410008, China.,Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, 410008, China.,Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, Changsha, 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital Central South University, Changsha, 410008, China. .,Hunan Children's Mental Disorders Research Center, XiangYa Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
11
|
How RNases Shape Mitochondrial Transcriptomes. Int J Mol Sci 2022; 23:ijms23116141. [PMID: 35682820 PMCID: PMC9181182 DOI: 10.3390/ijms23116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are the power houses of eukaryote cells. These endosymbiotic organelles of prokaryote origin are considered as semi-autonomous since they have retained a genome and fully functional gene expression mechanisms. These pathways are particularly interesting because they combine features inherited from the bacterial ancestor of mitochondria with characteristics that appeared during eukaryote evolution. RNA biology is thus particularly diverse in mitochondria. It involves an unexpectedly vast array of factors, some of which being universal to all mitochondria and others being specific from specific eukaryote clades. Among them, ribonucleases are particularly prominent. They play pivotal functions such as the maturation of transcript ends, RNA degradation and surveillance functions that are required to attain the pool of mature RNAs required to synthesize essential mitochondrial proteins such as respiratory chain proteins. Beyond these functions, mitochondrial ribonucleases are also involved in the maintenance and replication of mitochondrial DNA, and even possibly in the biogenesis of mitochondrial ribosomes. The diversity of mitochondrial RNases is reviewed here, showing for instance how in some cases a bacterial-type enzyme was kept in some eukaryotes, while in other clades, eukaryote specific enzymes were recruited for the same function.
Collapse
|
12
|
Ramasubramanian A, Paramasivam A, Ramani P. FASTK family of genes linked to cancer. Bioinformation 2022; 18:206-213. [PMID: 36518140 PMCID: PMC9722426 DOI: 10.6026/97320630018206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/25/2022] [Accepted: 03/31/2022] [Indexed: 02/05/2024] Open
Abstract
Fas Activated Serine/Threonine Kinase (FASTK) family is a protein family encoded in the nuclear genome that spans the mitochondria and executes numerous functions, and consists of FASTK, the founding member along with 5 homologous proteins FASTKD1-5. Up regulation of FASTK family members have not only been implicated in tumour progression and invasion but also in increased resistance to chemotherapy proven by their knockdown leading to increased sensitivity to drugs. Thus, this review reports the implication of FASTK proteins in cancer and hence provides a scope to emphasise the role of these proteins in Oral Cancer.
Collapse
Affiliation(s)
- Abilasha Ramasubramanian
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| | - A Paramasivam
- Department of Dental Research Cell- Blue Lab, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| | - Pratibha Ramani
- Department of Oral Pathology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Poonamallee High Road, Chennai, Tamilnadu - 600077, India
| |
Collapse
|
13
|
Hollin T, Abel S, Falla A, Pasaje CFA, Bhatia A, Hur M, Kirkwood JS, Saraf A, Prudhomme J, De Souza A, Florens L, Niles JC, Le Roch KG. Functional genomics of RAP proteins and their role in mitoribosome regulation in Plasmodium falciparum. Nat Commun 2022; 13:1275. [PMID: 35277503 PMCID: PMC8917122 DOI: 10.1038/s41467-022-28981-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/14/2022] [Indexed: 12/31/2022] Open
Abstract
The RAP (RNA-binding domain abundant in Apicomplexans) protein family has been identified in various organisms. Despite expansion of this protein family in apicomplexan parasites, their main biological functions remain unknown. In this study, we use inducible knockdown studies in the human malaria parasite, Plasmodium falciparum, to show that two RAP proteins, PF3D7_0105200 (PfRAP01) and PF3D7_1470600 (PfRAP21), are essential for parasite survival and localize to the mitochondrion. Using transcriptomics, metabolomics, and proteomics profiling experiments, we further demonstrate that these RAP proteins are involved in mitochondrial RNA metabolism. Using high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (eCLIP-seq), we validate that PfRAP01 and PfRAP21 are true RNA-binding proteins and interact specifically with mitochondrial rRNAs. Finally, mitochondrial enrichment experiments followed by deep sequencing of small RNAs demonstrate that PfRAP21 controls mitochondrial rRNA expression. Collectively, our results establish the role of these RAP proteins in mitoribosome activity and contribute to further understanding this protein family in malaria parasites.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Steven Abel
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Alejandra Falla
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Anil Bhatia
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Manhoi Hur
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Jay S Kirkwood
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Anita Saraf
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA
| | - Amancio De Souza
- Metabolomics Core Facility, University of California, Riverside, CA, 92521, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, 1000 E. 50th Street, Kansas City, MO, 64110, USA
| | - Jacquin C Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
14
|
Zhang J, He P, Wang X, Wei S, Ma L, Zhao J. A Novel Model of Tumor-Infiltrating B Lymphocyte Specific RNA-Binding Protein-Related Genes With Potential Prognostic Value and Therapeutic Targets in Multiple Myeloma. Front Genet 2021; 12:778715. [PMID: 34976013 PMCID: PMC8719635 DOI: 10.3389/fgene.2021.778715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/16/2021] [Indexed: 11/28/2022] Open
Abstract
Background: RNA-binding proteins (RBPs) act as important regulators in the progression of tumors. However, their role in the tumorigenesis and prognostic assessment in multiple myeloma (MM), a B-cell hematological cancer, remains elusive. Thus, the current study was designed to explore a novel prognostic B-cell-specific RBP signature and the underlying molecular mechanisms. Methods: Data used in the current study were obtained from the Gene Expression Omnibus (GEO) database. Significantly upregulated RBPs in B cells were defined as B cell-specific RBPs. The biological functions of B-cell-specific RBPs were analyzed by the cluster Profiler package. Univariate and multivariate regressions were performed to identify robust prognostic B-cell specific RBP signatures, followed by the construction of the risk classification model. Gene set enrichment analysis (GSEA)-identified pathways were enriched in stratified groups. The microenvironment of the low- and high-risk groups was analyzed by single-sample GSEA (ssGSEA). Moreover, the correlations among the risk score and differentially expressed immune checkpoints or differentially distributed immune cells were calculated. The drug sensitivity of the low- and high-risk groups was assessed via Genomics of Drug Sensitivity in Cancer by the pRRophetic algorithm. In addition, we utilized a GEO dataset involving patients with MM receiving bortezomib therapy to estimate the treatment response between different groups. Results: A total of 56 B-cell-specific RBPs were identified, which were mainly enriched in ribonucleoprotein complex biogenesis and the ribosome pathway. ADAR, FASTKD1 and SNRPD3 were identified as prognostic B-cell specific RBP signatures in MM. The risk model was constructed based on ADAR, FASTKD1 and SNRPD3. Receiver operating characteristic (ROC) curves revealed the good predictive capacity of the risk model. A nomogram based on the risk score and other independent prognostic factors exhibited excellent performance in predicting the overall survival of MM patients. GSEA showed enrichment of the Notch signaling pathway and mRNA cis-splicing via spliceosomes in the high-risk group. Moreover, we found that the infiltration of diverse immune cell subtypes and the expression of CD274, CD276, CTLA4 and VTCN1 were significantly different between the two groups. In addition, the IC50 values of 11 drugs were higher in the low-risk group. Patients in the low-risk group exhibited a higher complete response rate to bortezomib therapy. Conclusion: Our study identified novel prognostic B-cell-specific RBP biomarkers in MM and constructed a unique risk model for predicting MM outcomes. Moreover, we explored the immune-related mechanisms of B cell-specific RBPs in regulating MM. Our findings could pave the way for developing novel therapeutic strategies to improve the prognosis of MM patients.
Collapse
Affiliation(s)
- JingJing Zhang
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Pengcheng He
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoning Wang
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Le Ma
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jing Zhao
- Department of Hematology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Jing Zhao,
| |
Collapse
|
15
|
Criscuolo D, Avolio R, Matassa DS, Esposito F. Targeting Mitochondrial Protein Expression as a Future Approach for Cancer Therapy. Front Oncol 2021; 11:797265. [PMID: 34888254 PMCID: PMC8650000 DOI: 10.3389/fonc.2021.797265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/03/2021] [Indexed: 12/20/2022] Open
Abstract
Extensive metabolic remodeling is a fundamental feature of cancer cells. Although early reports attributed such remodeling to a loss of mitochondrial functions, it is now clear that mitochondria play central roles in cancer development and progression, from energy production to synthesis of macromolecules, from redox modulation to regulation of cell death. Biosynthetic pathways are also heavily affected by the metabolic rewiring, with protein synthesis dysregulation at the hearth of cellular transformation. Accumulating evidence in multiple organisms shows that the metabolic functions of mitochondria are tightly connected to protein synthesis, being assembly and activity of respiratory complexes highly dependent on de novo synthesis of their components. In turn, protein synthesis within the organelle is tightly connected with the cytosolic process. This implies an entire network of interactions and fine-tuned regulations that build up a completely under-estimated level of complexity. We are now only preliminarily beginning to reconstitute such regulatory level in human cells, and to perceive its role in diseases. Indeed, disruption or alterations of these connections trigger conditions of proteotoxic and energetic stress that could be potentially exploited for therapeutic purposes. In this review, we summarize the available literature on the coordinated regulation of mitochondrial and cytosolic mRNA translation, and their effects on the integrity of the mitochondrial proteome and functions. Finally, we highlight the potential held by this topic for future research directions and for the development of innovative therapeutic approaches.
Collapse
Affiliation(s)
- Daniela Criscuolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Rosario Avolio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Danilo Swann Matassa
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| |
Collapse
|
16
|
Gutierrez A, Demond H, Brebi P, Ili CG. Novel Methylation Biomarkers for Colorectal Cancer Prognosis. Biomolecules 2021; 11:1722. [PMID: 34827720 PMCID: PMC8615818 DOI: 10.3390/biom11111722] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) comprises the third most common cancer worldwide and the second regarding number of deaths. In order to make a correct and early diagnosis to predict metastasis formation, biomarkers are an important tool. Although there are multiple signaling pathways associated with cancer progression, the most recognized are the MAPK pathway, p53 pathway, and TGF-β pathway. These pathways regulate many important functions in the cell, such as cell cycle regulation, proliferation, differentiation, and metastasis formation, among others. Changes in expression in genes belonging to these pathways are drivers of carcinogenesis. Often these expression changes are caused by mutations; however, epigenetic changes, such as DNA methylation, are increasingly acknowledged to play a role in the deregulation of oncogenic genes. This makes DNA methylation changes an interesting biomarkers in cancer. Among the newly identified biomarkers for CRC metastasis INHBB, SMOC2, BDNF, and TBRG4 are included, all of which are highly deregulated by methylation and closely associated with metastasis. The identification of such biomarkers in metastasis of CRC may allow a better treatment and early identification of cancer formation in order to perform better diagnostics and improve the life expectancy.
Collapse
Affiliation(s)
| | | | - Priscilla Brebi
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| | - Carmen Gloria Ili
- Millennium Institute on Immunology and Immunotherapy, Laboratory of Integrative Biology (LIBi), Centro de Excelencia en Medicina Traslacional (CEMT), Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4810296, Chile; (A.G.); (H.D.)
| |
Collapse
|
17
|
Ohkubo A, Van Haute L, Rudler DL, Stentenbach M, Steiner FA, Rackham O, Minczuk M, Filipovska A, Martinou JC. The FASTK family proteins fine-tune mitochondrial RNA processing. PLoS Genet 2021; 17:e1009873. [PMID: 34748562 PMCID: PMC8601606 DOI: 10.1371/journal.pgen.1009873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/18/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022] Open
Abstract
Transcription of the human mitochondrial genome and correct processing of the two long polycistronic transcripts are crucial for oxidative phosphorylation. According to the tRNA punctuation model, nucleolytic processing of these large precursor transcripts occurs mainly through the excision of the tRNAs that flank most rRNAs and mRNAs. However, some mRNAs are not punctuated by tRNAs, and it remains largely unknown how these non-canonical junctions are resolved. The FASTK family proteins are emerging as key players in non-canonical RNA processing. Here, we have generated human cell lines carrying single or combined knockouts of several FASTK family members to investigate their roles in non-canonical RNA processing. The most striking phenotypes were obtained with loss of FASTKD4 and FASTKD5 and with their combined double knockout. Comprehensive mitochondrial transcriptome analyses of these cell lines revealed a defect in processing at several canonical and non-canonical RNA junctions, accompanied by an increase in specific antisense transcripts. Loss of FASTKD5 led to the most severe phenotype with marked defects in mitochondrial translation of key components of the electron transport chain complexes and in oxidative phosphorylation. We reveal that the FASTK protein family members are crucial regulators of non-canonical junction and non-coding mitochondrial RNA processing. As a legacy of their bacterial origin, mitochondria have retained their own genome with a unique gene expression system. All mitochondrially encoded proteins are essential components of the respiratory chain. Therefore, the mitochondrial gene expression is crucial for their iconic role as the ‘powerhouse of the cell’–ATP synthesis through oxidative phosphorylation. Consistently, defects in enzymes involved in this gene expression system are a common source of incurable inherited metabolic disorders, called mitochondrial diseases. The human mitochondrial transcription generates long polycistronic transcripts that carry information for multiple genes, so that the expression level of each gene is mainly regulated through post-transcriptional events. The polycistronic transcript first undergoes RNA processing, where individual mRNA, rRNA, and tRNA are cleaved off. However, its entire molecular mechanism remains unclear, and in particular, ‘non-canonical’ RNA processing has been poorly understood. To address this question, we studied the FASTK family proteins, emerging key mitochondrial post-transcriptional regulators. We generated different human cell lines carrying single or combined disruption of FASTKD3, FASTKD4, and FASTKD5 genes, and analyzed them using biochemical and genetic approaches. We show that the FASTK family members fine-tune the processing of both ‘canonical’ and ‘non-canonical’ mitochondrial RNA junctions.
Collapse
Affiliation(s)
- Akira Ohkubo
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
| | - Lindsey Van Haute
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Danielle L. Rudler
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
| | - Florian A. Steiner
- Department of Molecular Biology, University of Geneva, Geneva, Switzerland
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
| | - Michal Minczuk
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre, Perth, Australia
- ARC Centre of Excellence in Synthetic Biology, Queen Elizabeth II Medical Centre, Perth, Australia
- Centre for Medical Research, The University of Western Australia, Queen Elizabeth II Medical Centre, Perth, Australia
- Telethon Kids Institute, Perth Children’s Hospital, Perth, Australia
- School of Molecular Sciences, The University of Western Australia, Perth, Australia
- * E-mail: (AF); (J-CM)
| | - Jean-Claude Martinou
- Department of Cell Biology, University of Geneva, Geneva, Switzerland
- * E-mail: (AF); (J-CM)
| |
Collapse
|
18
|
Xavier VJ, Martinou JC. RNA Granules in the Mitochondria and Their Organization under Mitochondrial Stresses. Int J Mol Sci 2021; 22:9502. [PMID: 34502411 PMCID: PMC8431320 DOI: 10.3390/ijms22179502] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022] Open
Abstract
The human mitochondrial genome (mtDNA) regulates its transcription products in specialised and distinct ways as compared to nuclear transcription. Thanks to its mtDNA mitochondria possess their own set of tRNAs, rRNAs and mRNAs that encode a subset of the protein subunits of the electron transport chain complexes. The RNA regulation within mitochondria is organised within specialised, membraneless, compartments of RNA-protein complexes, called the Mitochondrial RNA Granules (MRGs). MRGs were first identified to contain nascent mRNA, complexed with many proteins involved in RNA processing and maturation and ribosome assembly. Most recently, double-stranded RNA (dsRNA) species, a hybrid of the two complementary mRNA strands, were found to form granules in the matrix of mitochondria. These RNA granules are therefore components of the mitochondrial post-transcriptional pathway and as such play an essential role in mitochondrial gene expression. Mitochondrial dysfunctions in the form of, for example, RNA processing or RNA quality control defects, or inhibition of mitochondrial fission, can cause the loss or the aberrant accumulation of these RNA granules. These findings underline the important link between mitochondrial maintenance and the efficient expression of its genome.
Collapse
Affiliation(s)
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland;
| |
Collapse
|
19
|
Human Mitochondrial RNA Processing and Modifications: Overview. Int J Mol Sci 2021; 22:ijms22157999. [PMID: 34360765 PMCID: PMC8348895 DOI: 10.3390/ijms22157999] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondria, often referred to as the powerhouses of cells, are vital organelles that are present in almost all eukaryotic organisms, including humans. They are the key energy suppliers as the site of adenosine triphosphate production, and are involved in apoptosis, calcium homeostasis, and regulation of the innate immune response. Abnormalities occurring in mitochondria, such as mitochondrial DNA (mtDNA) mutations and disturbances at any stage of mitochondrial RNA (mtRNA) processing and translation, usually lead to severe mitochondrial diseases. A fundamental line of investigation is to understand the processes that occur in these organelles and their physiological consequences. Despite substantial progress that has been made in the field of mtRNA processing and its regulation, many unknowns and controversies remain. The present review discusses the current state of knowledge of RNA processing in human mitochondria and sheds some light on the unresolved issues.
Collapse
|
20
|
Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Kühne F, Chassot AA, Chaboissier MC, Dermitzakis ET, Nef S. Single-cell transcriptomics reveal temporal dynamics of critical regulators of germ cell fate during mouse sex determination. FASEB J 2021; 35:e21452. [PMID: 33749946 DOI: 10.1096/fj.202002420r] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022]
Abstract
Despite the importance of germ cell (GC) differentiation for sexual reproduction, the gene networks underlying their fate remain unclear. Here, we comprehensively characterize the gene expression dynamics during sex determination based on single-cell RNA sequencing of 14 914 XX and XY mouse GCs between embryonic days (E) 9.0 and 16.5. We found that XX and XY GCs diverge transcriptionally as early as E11.5 with upregulation of genes downstream of the bone morphogenic protein (BMP) and nodal/Activin pathways in XY and XX GCs, respectively. We also identified a sex-specific upregulation of genes associated with negative regulation of mRNA processing and an increase in intron retention consistent with a reduction in mRNA splicing in XY testicular GCs by E13.5. Using computational gene regulation network inference analysis, we identified sex-specific, sequential waves of putative key regulator genes during GC differentiation and revealed that the meiotic genes are regulated by positive and negative master modules acting in an antagonistic fashion. Finally, we found that rare adrenal GCs enter meiosis similarly to ovarian GCs but display altered expression of master genes controlling the female and male genetic programs, indicating that the somatic environment is important for GC function. Our data are available on a web platform and provide a molecular roadmap of GC sex determination at single-cell resolution, which will serve as a valuable resource for future studies of gonad development, function, and disease.
Collapse
Affiliation(s)
- Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,CNRS, Inserm, iBV, Université Côte d'Azur, Nice, France
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Françoise Kühne
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland
| | | | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
Hollin T, Jaroszewski L, Stajich JE, Godzik A, Le Roch KG. Identification and phylogenetic analysis of RNA binding domain abundant in apicomplexans or RAP proteins. Microb Genom 2021; 7. [PMID: 33656416 PMCID: PMC8190603 DOI: 10.1099/mgen.0.000541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The RNA binding domain abundant in apicomplexans (RAP) is a protein domain identified in a diverse group of proteins, called RAP proteins, many of which have been shown to be involved in RNA binding. To understand the expansion and potential function of the RAP proteins, we conducted a hidden Markov model based screen among the proteomes of 54 eukaryotes, 17 bacteria and 12 archaea. We demonstrated that the domain is present in closely and distantly related organisms with particular expansions in Alveolata and Chlorophyta, and are not unique to Apicomplexa as previously believed. All RAP proteins identified can be decomposed into two parts. In the N-terminal region, the presence of variable helical repeats seems to participate in the specific targeting of diverse RNAs, while the RAP domain is mostly identified in the C-terminal region and is highly conserved across the different phylogenetic groups studied. Several conserved residues defining the signature motif could be crucial to ensure the function(s) of the RAP proteins. Modelling of RAP domains in apicomplexan parasites confirmed an ⍺/β structure of a restriction endonuclease-like fold. The phylogenetic trees generated from multiple alignment of RAP domains and full-length proteins from various distantly related eukaryotes indicated a complex evolutionary history of this family. We further discuss these results to assess the potential function of this protein family in apicomplexan parasites.
Collapse
Affiliation(s)
- Thomas Hollin
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Lukasz Jaroszewski
- Department of Biomedical Sciences, University of California Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, Institute for Integrative Genome Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Adam Godzik
- Department of Biomedical Sciences, University of California Riverside School of Medicine, 900 University Avenue, Riverside, CA 92521, USA
| | - Karine G. Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, 900 University Avenue, Riverside, CA 92521, USA
- *Correspondence: Karine G. Le Roch,
| |
Collapse
|
22
|
Mechanisms and regulation of protein synthesis in mitochondria. Nat Rev Mol Cell Biol 2021; 22:307-325. [PMID: 33594280 DOI: 10.1038/s41580-021-00332-2] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Mitochondria are cellular organelles responsible for generation of chemical energy in the process called oxidative phosphorylation. They originate from a bacterial ancestor and maintain their own genome, which is expressed by designated, mitochondrial transcription and translation machineries that differ from those operating for nuclear gene expression. In particular, the mitochondrial protein synthesis machinery is structurally and functionally very different from that governing eukaryotic, cytosolic translation. Despite harbouring their own genetic information, mitochondria are far from being independent of the rest of the cell and, conversely, cellular fitness is closely linked to mitochondrial function. Mitochondria depend heavily on the import of nuclear-encoded proteins for gene expression and function, and hence engage in extensive inter-compartmental crosstalk to regulate their proteome. This connectivity allows mitochondria to adapt to changes in cellular conditions and also mediates responses to stress and mitochondrial dysfunction. With a focus on mammals and yeast, we review fundamental insights that have been made into the biogenesis, architecture and mechanisms of the mitochondrial translation apparatus in the past years owing to the emergence of numerous near-atomic structures and a considerable amount of biochemical work. Moreover, we discuss how cellular mitochondrial protein expression is regulated, including aspects of mRNA and tRNA maturation and stability, roles of auxiliary factors, such as translation regulators, that adapt mitochondrial translation rates, and the importance of inter-compartmental crosstalk with nuclear gene expression and cytosolic translation and how it enables integration of mitochondrial translation into the cellular context.
Collapse
|
23
|
The search for RNA-binding proteins: a technical and interdisciplinary challenge. Biochem Soc Trans 2021; 49:393-403. [PMID: 33492363 PMCID: PMC7925008 DOI: 10.1042/bst20200688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022]
Abstract
RNA-binding proteins are customarily regarded as important facilitators of gene expression. In recent years, RNA–protein interactions have also emerged as a pervasive force in the regulation of homeostasis. The compendium of proteins with provable RNA-binding function has swelled from the hundreds to the thousands astride the partnership of mass spectrometry-based proteomics and RNA sequencing. At the foundation of these advances is the adaptation of RNA-centric capture methods that can extract bound protein that has been cross-linked in its native environment. These methods reveal snapshots in time displaying an extensive network of regulation and a wealth of data that can be used for both the discovery of RNA-binding function and the molecular interfaces at which these interactions occur. This review will focus on the impact of these developments on our broader perception of post-transcriptional regulation, and how the technical features of current capture methods, as applied in mammalian systems, create a challenging medium for interpretation by systems biologists and target validation by experimental researchers.
Collapse
|
24
|
Honarmand S, Shoubridge EA. Poly (A) tail length of human mitochondrial mRNAs is tissue-specific and a mutation in LRPPRC results in transcript-specific patterns of deadenylation. Mol Genet Metab Rep 2020; 25:100687. [PMID: 33312877 PMCID: PMC7719955 DOI: 10.1016/j.ymgmr.2020.100687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 11/24/2022] Open
Abstract
Mutations in LRPPRC cause Leigh Syndrome French Canadian (LSFC), an early onset neurodegenerative disease, with differential tissue involvement. The molecular basis for tissue specificity in this disease remains unknown. LRPPRC, an RNA binding protein, forms a stable complex with SLIRP, which binds to, and stabilizes mitochondrial mRNAs. In cell culture and animal models, loss of LRPPRC function results in transcript-specific alterations in the steady-state levels of mitochondrial mRNAs and poly (A) tail length, the mechanisms for which are not understood. The poly (A) tail length of mitochondrial mRNAs has not been investigated in human tissues from heathy subjects or LSFC patients. Here we have mapped the 3′-termini of mature mitochondrial mRNAs in three tissues (skeletal muscle, heart, and liver) from a healthy individual and an LSFC patient. We show that the poly (A) tail length of mitochondrial mRNAs varies amongst tissues, and that the missense mutation in LRPPRC that causes LSFC results in tissue- and transcript-specific deadenylation of a subset of mitochondrial mRNAs, likely contributing the nature and severity of the biochemical phenotype in different tissues. We also found a relatively large fraction of short transcripts lacking a stop codon, some with short poly (A) tails, in patient tissue, suggesting that mutations in LRPPRC may also impair proper 3′ end processing of some mRNAs.
Collapse
Affiliation(s)
- Shamisa Honarmand
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
25
|
Huang F, Liao F, Ma G, Hu Y, Zhang C, Xu P, Xu T, Chang J. TBRG4 Knockdown Suppresses Proliferation and Growth of Human Osteosarcoma Cell Lines MG63 Through PI3K/Akt Pathway. Onco Targets Ther 2020; 13:7271-7281. [PMID: 32801755 PMCID: PMC7394601 DOI: 10.2147/ott.s249477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
Background The transforming growth factor β regulator 4 (TBRG4) has been proved to be involved in various types of tumor. However, its contribution in human osteosarcoma (OS) is still unclear. Patients and Methods In the present study, immunohistochemistry and quantitative real-time PCR were performed to investigate the expression of TBRG4 in OS tissues obtained from patients and three types of cell lines. The effect of TBRG4 knockdown using lentivirus on tumorigenesis was detected by CCK8, high-content screening analysis, colony formation assay and flow cytometric analysis. Bioinformatics analysis was operated to investigate related signaling pathways following TBRG4 knockdown. Results The results showed that the expression of TBRG4 increased significantly in OS tissues and MG63 cell line. TBRG4 knockdown inhibited cell proliferation, colony and tumor formation, while activating cell apoptosis. Ingenuity Pathway Analysis and Western blot assay further indicated that TBRG4 knockdown may regulate the proliferation of human MG63 cells through PI3K/Akt signaling pathway. Conclusion Our results suggest that TBRG4 may become a promising therapeutic target for the treatment of human OS.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Faxue Liao
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Guangwen Ma
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Chi Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Pengfei Xu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Tangbing Xu
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Jun Chang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
26
|
Abstract
Ever since its discovery, the double-stranded DNA contained in the mitochondria of eukaryotes has fascinated researchers because of its bacterial endosymbiotic origin, crucial role in encoding subunits of the respiratory complexes, compact nature, and specific inheritance mechanisms. In the last few years, high-throughput sequencing techniques have accelerated the sequencing of mitochondrial genomes (mitogenomes) and uncovered the great diversity of organizations, gene contents, and modes of replication and transcription found in living eukaryotes. Some early divergent lineages of unicellular eukaryotes retain certain synteny and gene content resembling those observed in the genomes of alphaproteobacteria (the inferred closest living group of mitochondria), whereas others adapted to anaerobic environments have drastically reduced or even lost the mitogenome. In the three main multicellular lineages of eukaryotes, mitogenomes have pursued diverse evolutionary trajectories in which different types of molecules (circular versus linear and single versus multipartite), gene structures (with or without self-splicing introns), gene contents, gene orders, genetic codes, and transfer RNA editing mechanisms have been selected. Whereas animals have evolved a rather compact mitochondrial genome between 11 and 50 Kb in length with a highly conserved gene content in bilaterians, plants exhibit large mitochondrial genomes of 66 Kb to 11.3 Mb with large intergenic repetitions prone to recombination, and fungal mitogenomes have intermediate sizes of 12 to 236 Kb.
Collapse
Affiliation(s)
- Rafael Zardoya
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
| |
Collapse
|
27
|
Huang F, Zhou P, Wang Z, Zhang XL, Liao FX, Hu Y, Chang J. Knockdown of TBRG4 suppresses proliferation, invasion and promotes apoptosis of osteosarcoma cells by downregulating TGF-β1 expression and PI3K/AKT signaling pathway. Arch Biochem Biophys 2020; 686:108351. [PMID: 32240636 DOI: 10.1016/j.abb.2020.108351] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/10/2020] [Accepted: 03/25/2020] [Indexed: 12/28/2022]
Abstract
Transforming growth factor beta regulator 4 (TBRG4) is a novel regulator in tumorigenic progression of several tumors. However, so far, the expression and functions of TBRG4 in osteosarcoma are unknown. The aim of this study was to investigate the potential biological functions of TBRG4 in osteosarcoma. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of TBRG4 in osteosarcoma tissues and cell lines. The levels of TBRG4 protein in osteosarcoma tissues were assessed by immunohistochemistry. Lentivirus-mediated short hairpin (sh) RNA was employed to knock down TBRG4 in osteosarcoma cells, and the expressions of TBRG4 mRNA and protein were determined by qRT-PCR and Western blot assay, respectively. Subsequently, the proliferation, clonogenic ability, apoptosis and invasion of osteosarcoma cells were measured using high content screening analysis and CCK8 assay, tumor sphere formation assay, flow cytometry and Transwell invasion assays, respectively. Furthermore, the osteosarcoma cells growth and metastasis in vivo were detected, and the effect of TBRG4 on the transforming growth factor β1 (TGF-β1) and PI3K/AKT signaling pathway was explored by qRT-PCR and Western blot assay, respectively. The results showed the levels of TBRG4 were overexpressed in osteosarcoma tissues and cell lines, confirming that the high TBRG4 expression was related to advanced tumor stages, large tumor size, and lymph node metastasis. Functional assays showed knockdown of TBRG4 could inhibit proliferation, invasion and induce apoptosis of osteosarcoma cells in vitro, and could also suppress osteosarcoma growth and metastasis in vivo. By examining the expression levels of TGF-β1, p-PI3K, PI3K, p-AKT and AKT, it showed that the suppression of TBRG4 would reduce TGF-β1 expression and inactivate the PI3K/AKT signaling pathway. These results showed for the first time that TBRG4 knockdown could suppress osteosarcoma progression, suggesting TBRG4 might be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Fei Huang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ping Zhou
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiang-Lu Zhang
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fa-Xue Liao
- Department of Orthopaedics, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Hu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Chang
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
28
|
Marshall KD, Klutho PJ, Song L, Krenz M, Baines CP. The novel cyclophilin-D-interacting protein FASTKD1 protects cells against oxidative stress-induced cell death. Am J Physiol Cell Physiol 2019; 317:C584-C599. [PMID: 31268778 DOI: 10.1152/ajpcell.00471.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Opening of the mitochondrial permeability transition (MPT) pore leads to necrotic cell death. Excluding cyclophilin D (CypD), the makeup of the MPT pore remains conjecture. The purpose of these experiments was to identify novel MPT modulators by analyzing proteins that associate with CypD. We identified Fas-activated serine/threonine phosphoprotein kinase domain-containing protein 1 (FASTKD1) as a novel CypD interactor. Overexpression of FASTKD1 protected mouse embryonic fibroblasts (MEFs) against oxidative stress-induced reactive oxygen species (ROS) production and cell death, whereas depletion of FASTKD1 sensitized them. However, manipulation of FASTKD1 levels had no effect on MPT responsiveness, Ca2+-induced cell death, or antioxidant capacity. Moreover, elevated FASTKD1 levels still protected against oxidative stress in CypD-deficient MEFs. FASTKD1 overexpression decreased Complex-I-dependent respiration and ΔΨm in MEFs, effects that were abrogated in CypD-null cells. Additionally, overexpression of FASTKD1 in MEFs induced mitochondrial fragmentation independent of CypD, activation of Drp1, and inhibition of autophagy/mitophagy, whereas knockdown of FASTKD1 had the opposite effect. Manipulation of FASTKD1 expression also modified oxidative stress-induced caspase-3 cleavage yet did not alter apoptotic death. Finally, the effects of FASTKD1 overexpression on oxidative stress-induced cell death and mitochondrial morphology were recapitulated in cultured cardiac myocytes. Together, these data indicate that FASTKD1 supports mitochondrial homeostasis and plays a critical protective role against oxidant-induced death.
Collapse
Affiliation(s)
- Kurt D Marshall
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Paula J Klutho
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Lihui Song
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Maike Krenz
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Christopher P Baines
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| |
Collapse
|
29
|
Hillebrand A, Matz JM, Almendinger M, Müller K, Matuschewski K, Schmitz-Linneweber C. Identification of clustered organellar short (cos) RNAs and of a conserved family of organellar RNA-binding proteins, the heptatricopeptide repeat proteins, in the malaria parasite. Nucleic Acids Res 2019; 46:10417-10431. [PMID: 30102371 PMCID: PMC6212722 DOI: 10.1093/nar/gky710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
Gene expression in mitochondria of Plasmodium falciparum is essential for parasite survival. The molecular mechanisms of Plasmodium organellar gene expression remain poorly understood. This includes the enigmatic assembly of the mitochondrial ribosome from highly fragmented rRNAs. Here, we present the identification of clustered organellar short RNA fragments (cosRNAs) that are possible footprints of RNA-binding proteins (RBPs) in Plasmodium organelles. In plants, RBPs of the pentatricopeptide repeat (PPR) class produce footprints as a consequence of their function in processing organellar RNAs. Intriguingly, many of the Plasmodium cosRNAs overlap with 5'-ends of rRNA fragments. We hypothesize that these are footprints of RBPs involved in assembling the rRNA fragments into a functioning ribosome. A bioinformatics search of the Plasmodium nuclear genome identified a hitherto unrecognized organellar helical-hairpin-repeat protein family that we term heptatricopeptide repeat (HPR) proteins. We demonstrate that selected HPR proteins are targeted to mitochondria in P. berghei and that one of them, PbHPR1, associates with RNA, but not DNA in vitro. A phylogenetic search identified HPR proteins in a wide variety of eukaryotes. We hypothesize that HPR proteins are required for processing and stabilizing RNAs in Apicomplexa and other taxa.
Collapse
Affiliation(s)
- Arne Hillebrand
- Humboldt University Berlin, Molecular Genetics, Berlin, Germany
| | - Joachim M Matz
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | | - Katja Müller
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | - Kai Matuschewski
- Humboldt University, Department of Molecular Parasitology, Berlin, Germany
| | | |
Collapse
|
30
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
31
|
Ali AT, Boehme L, Carbajosa G, Seitan VC, Small KS, Hodgkinson A. Nuclear genetic regulation of the human mitochondrial transcriptome. eLife 2019; 8:e41927. [PMID: 30775970 PMCID: PMC6420317 DOI: 10.7554/elife.41927] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/14/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondria play important roles in cellular processes and disease, yet little is known about how the transcriptional regime of the mitochondrial genome varies across individuals and tissues. By analyzing >11,000 RNA-sequencing libraries across 36 tissue/cell types, we find considerable variation in mitochondrial-encoded gene expression along the mitochondrial transcriptome, across tissues and between individuals, highlighting the importance of cell-type specific and post-transcriptional processes in shaping mitochondrial-encoded RNA levels. Using whole-genome genetic data we identify 64 nuclear loci associated with expression levels of 14 genes encoded in the mitochondrial genome, including missense variants within genes involved in mitochondrial function (TBRG4, MTPAP and LONP1), implicating genetic mechanisms that act in trans across the two genomes. We replicate ~21% of associations with independent tissue-matched datasets and find genetic variants linked to these nuclear loci that are associated with cardio-metabolic phenotypes and Vitiligo, supporting a potential role for variable mitochondrial-encoded gene expression in complex disease.
Collapse
Affiliation(s)
- Aminah T Ali
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Lena Boehme
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Guillermo Carbajosa
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Vlad C Seitan
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, School of Life Course SciencesKing’s College LondonLondonUnited Kingdom
| | - Alan Hodgkinson
- Department of Medical and Molecular Genetics, School of Basic and Medical BiosciencesKing’s College LondonLondonUnited Kingdom
| |
Collapse
|
32
|
García Del Río A, Delmiro A, Martín MA, Cantalapiedra R, Carretero R, Durántez C, Menegotto F, Morán M, Serrano-Lorenzo P, De la Fuente MA, Orduña A, Simarro M. The Mitochondrial Isoform of FASTK Modulates Nonopsonic Phagocytosis of Bacteria by Macrophages via Regulation of Respiratory Complex I. THE JOURNAL OF IMMUNOLOGY 2018; 201:2977-2985. [PMID: 30322967 DOI: 10.4049/jimmunol.1701075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Phagocytosis is a pivotal process by which innate immune cells eliminate bacteria. In this study, we explore novel regulatory mechanisms of phagocytosis driven by the mitochondria. Fas-activated serine/threonine kinase (FASTK) is an RNA-binding protein with two isoforms, one localized to the mitochondria (mitoFASTK) and the other isoform to cytosol and nucleus. The mitoFASTK isoform has been reported to be necessary for the biogenesis of the mitochondrial ND6 mRNA, which encodes an essential subunit of mitochondrial respiratory complex I (CI, NADH:ubiquinone oxidoreductase). This study investigates the role and the mechanisms of action of FASTK in phagocytosis. Macrophages from FASTK─/─ mice exhibited a marked increase in nonopsonic phagocytosis of bacteria. As expected, CI activity was specifically reduced by almost 50% in those cells. To explore if decreased CI activity could underlie the phagocytic phenotype, we tested the effect of CI inhibition on phagocytosis. Indeed, treatment with CI inhibitor rotenone or short hairpin RNAs against two CI subunits (NDUFS3 and NDUFS4) resulted in a marked increase in nonopsonic phagocytosis of bacteria. Importantly, re-expression of mitoFASTK in FASTK-depleted macrophages was sufficient to rescue the phagocytic phenotype. In addition, we also report that the decrease in CI activity in FASTK─/─ macrophages is associated with an increase in phosphorylation of the energy sensor AMP-activated protein kinase (AMPK) and that its inhibition using Compound C reverted the phagocytosis phenotype. Taken together, our results clearly demonstrate for the first time, to our knowledge, that mitoFASTK plays a negative regulatory role on nonopsonic phagocytosis of bacteria in macrophages through its action on CI activity.
Collapse
Affiliation(s)
| | - Aitor Delmiro
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación del Hospital 12 de Octubre, 28041 Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases, U723, 28029 Madrid, Spain
| | - Miguel Angel Martín
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación del Hospital 12 de Octubre, 28041 Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases, U723, 28029 Madrid, Spain
| | | | - Raquel Carretero
- Department of Microbiology, University of Valladolid, Valladolid, Spain
| | - Carlos Durántez
- Department of Microbiology, University of Valladolid, Valladolid, Spain
| | - Fabiola Menegotto
- Department of Microbiology, University of Valladolid, Valladolid, Spain
| | - María Morán
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación del Hospital 12 de Octubre, 28041 Madrid, Spain.,Spanish Network for Biomedical Research in Rare Diseases, U723, 28029 Madrid, Spain
| | - Pablo Serrano-Lorenzo
- Laboratorio de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación del Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Miguel Angel De la Fuente
- Department of Cell Biology, Histology and Pharmacology, University of Valladolid, 47005 Valladolid, Spain; .,Institute of Biology and Molecular Genetics, 47003 Valladolid, Spain
| | - Antonio Orduña
- Department of Microbiology, University of Valladolid, Valladolid, Spain.,Departamento de Microbiología e Inmunología, Hospital Clínico Universitario, 47003 Valladolid, Spain; and
| | - María Simarro
- Department of Nursing, University of Valladolid, 47005 Valladolid, Spain
| |
Collapse
|
33
|
Is mitochondrial gene expression coordinated or stochastic? Biochem Soc Trans 2018; 46:1239-1246. [PMID: 30301847 DOI: 10.1042/bst20180174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/25/2022]
Abstract
Mitochondrial biogenesis is intimately dependent on the coordinated expression of the nuclear and mitochondrial genomes that is necessary for the assembly and function of the respiratory complexes to produce most of the energy required by cells. Although highly compacted in animals, the mitochondrial genome and its expression are essential for survival, development, and optimal energy production. The machinery that regulates gene expression within mitochondria is localised within the same compartment and, like in their ancestors, the bacteria, this machinery does not use membrane-based compartmentalisation to order the gene expression pathway. Therefore, the lifecycle of mitochondrial RNAs from transcription through processing, maturation, translation to turnover is mediated by a gamut of RNA-binding proteins (RBPs), all contained within the mitochondrial matrix milieu. Recent discoveries indicate that multiple processes regulating RNA metabolism occur at once but since mitochondria have a new complement of RBPs, many evolved de novo from nuclear genes, we are left wondering how co-ordinated are these processes? Here, we review recently identified examples of the co-ordinated and stochastic processes that govern the mitochondrial transcriptome. These new discoveries reveal the complexity of mitochondrial gene expression and the need for its in-depth exploration to understand how these organelles can respond to the energy demands of the cell.
Collapse
|
34
|
Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62:309-320. [PMID: 30030363 PMCID: PMC6056719 DOI: 10.1042/ebc20170102] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.
Collapse
|
35
|
Singh K, Sripada L, Lipatova A, Roy M, Prajapati P, Gohel D, Bhatelia K, Chumakov PM, Singh R. NLRX1 resides in mitochondrial RNA granules and regulates mitochondrial RNA processing and bioenergetic adaptation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1260-1276. [PMID: 29932989 DOI: 10.1016/j.bbamcr.2018.06.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/10/2018] [Accepted: 06/17/2018] [Indexed: 12/26/2022]
Abstract
The role of mitochondria is emerging in regulation of innate immunity, inflammation and cell death beyond its primary role in energy metabolism. Mitochondria act as molecular platform for immune adaptor protein complexes, which participate in innate immune signaling. The mitochondrial localized immune adaptors are widely expressed in non-immune cells, however their role in regulation of mitochondrial function and metabolic adaption is not well understood. NLRX1, a member of NOD family receptor proteins, localizes to mitochondria and is a negative regulator of anti-viral signaling. However, the submitochondrial localization of NLRX1 and its implication in regulation of mitochondrial functions remains elusive. Here, we confirm that NLRX1 translocates to mitochondrial matrix and associates with mitochondrial FASTKD5 (Fas-activated serine-threonine kinase family protein-5), a bonafide component of mitochondrial RNA granules (MRGs). The association of NLRX1 with FASTKD5 negatively regulates the processing of mitochondrial genome encoded transcripts for key components of complex-I and complex-IV, to modulate its activity and supercomplexes formation. The evidences, here, suggest an important role of NLRX1 in regulating the post-transcriptional processing of mitochondrial RNA, which may have an important implication in bioenergetic adaptation during metabolic stress, oncogenic transformation and innate immunity.
Collapse
Affiliation(s)
- Kritarth Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Lakshmi Sripada
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Anastasia Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia
| | - Milton Roy
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Paresh Prajapati
- SCoBIRC Department of Neuroscience, University of Kentucky, 741S.Limestone, BBSRB, Lexington, KY 40536, USA
| | - Dhruv Gohel
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Khyati Bhatelia
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia; Chumakov Institute of Poliomyelitis and Viral Encephalitides, Federal Scientific Center on Research and Development of Immunobiology Products, Russian Academy of Sciences, 142782 Moscow, Russia
| | - Rajesh Singh
- Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, 390002, Gujarat, India.
| |
Collapse
|
36
|
Asencio C, Chatterjee A, Hentze MW. Silica-based solid-phase extraction of cross-linked nucleic acid-bound proteins. Life Sci Alliance 2018; 1:e201800088. [PMID: 30035255 PMCID: PMC6054301 DOI: 10.26508/lsa.201800088] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The 2C method allows the rapid and straightforward isolation of nucleic acid–protein complexes, greatly simplifying downstream applications for the study of DNA– and RNA–protein interactions. Proteins interact with nucleic acids to regulate cellular functions. The study of these regulatory interactions is often hampered by the limited efficiency of current protocols to isolate the relevant nucleic acid–protein complexes. In this report, we describe a rapid and simple procedure to highly enrich cross-linked nucleic acid–bound proteins, referred to as “2C” for “complex capture.” This method is based on the observation that silica matrix–based columns used for nucleic acid purification also effectively retain UV cross-linked nucleic acid–protein complexes. As a proof of principle, 2C was used to isolate RNA-bound proteins from yeast and mammalian Huh7 cells. The 2C method makes RNA labelling redundant, and specific RNA–protein interactions can be observed and validated by Western blotting. RNA–protein complexes isolated by 2C can subsequently be immunoprecipitated, showing that 2C is in principle compatible with sensitive downstream applications. We suggest that 2C can dramatically simplify the study of nucleic acid–protein interactions and benefit researchers in the fields of DNA and RNA biology.
Collapse
Affiliation(s)
- Claudio Asencio
- European Molecular Biology Laboratory, Heidelberg, Germany.,Centro Andaluz de Biología del Desarrollo, Universidad Pablo Olavide, Sevilla, Spain
| | | | | |
Collapse
|
37
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
38
|
Salinas-Giegé T, Cavaiuolo M, Cognat V, Ubrig E, Remacle C, Duchêne AM, Vallon O, Maréchal-Drouard L. Polycytidylation of mitochondrial mRNAs in Chlamydomonas reinhardtii. Nucleic Acids Res 2018; 45:12963-12973. [PMID: 29244187 PMCID: PMC5727444 DOI: 10.1093/nar/gkx903] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/25/2017] [Indexed: 02/02/2023] Open
Abstract
The unicellular photosynthetic organism, Chlamydomonas reinhardtii, represents a powerful model to study mitochondrial gene expression. Here, we show that the 5′- and 3′-extremities of the eight Chlamydomonas mitochondrial mRNAs present two unusual characteristics. First, all mRNAs start primarily at the AUG initiation codon of the coding sequence which is often marked by a cluster of small RNAs. Second, unusual tails are added post-transcriptionally at the 3′-extremity of all mRNAs. The nucleotide composition of the tails is distinct from that described in any other systems and can be partitioned between A/U-rich tails, predominantly composed of Adenosine and Uridine, and C-rich tails composed mostly of Cytidine. Based on 3′ RACE experiments, 22% of mRNAs present C-rich tails, some of them composed of up to 20 consecutive Cs. Polycytidylation is specific to mitochondria and occurs primarily on mRNAs. This unprecedented post-transcriptional modification seems to be a specific feature of the Chlorophyceae class of green algae and points out the existence of novel strategies in mitochondrial gene expression.
Collapse
Affiliation(s)
- Thalia Salinas-Giegé
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Marina Cavaiuolo
- UMR 7141, CNRS, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Valérie Cognat
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Elodie Ubrig
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Claire Remacle
- Génétique et Physiologie des microalgues, Department of Life Sciences, Institute of Botany, B22, University of Liege, B-4000 Liege, Belgium
| | - Anne-Marie Duchêne
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| | - Olivier Vallon
- UMR 7141, CNRS, Université Pierre et Marie Curie, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Laurence Maréchal-Drouard
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67084 Strasbourg, France
| |
Collapse
|
39
|
Jourdain AA, Popow J, de la Fuente MA, Martinou JC, Anderson P, Simarro M. The FASTK family of proteins: emerging regulators of mitochondrial RNA biology. Nucleic Acids Res 2017; 45:10941-10947. [PMID: 29036396 PMCID: PMC5737537 DOI: 10.1093/nar/gkx772] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/14/2017] [Indexed: 12/22/2022] Open
Abstract
The FASTK family proteins have recently emerged as key post-transcriptional regulators of mitochondrial gene expression. FASTK, the founding member and its homologs FASTKD1-5 are architecturally related RNA-binding proteins, each having a different function in the regulation of mitochondrial RNA biology, from mRNA processing and maturation to ribosome assembly and translation. In this review, we outline the structure, evolution and function of these FASTK proteins and discuss the individual role that each has in mitochondrial RNA biology. In addition, we highlight the aspects of FASTK research that still require more attention.
Collapse
Affiliation(s)
- Alexis A Jourdain
- Department of Cell Biology, University of Geneva, 1211 Geneva 4, Switzerland
| | - Johannes Popow
- Department of Cancer Cell Signalling, Boehringer-Ingelheim Regional Center Vienna, 1121 Vienna, Austria
| | - Miguel A de la Fuente
- Departamento de Biología, Histología y Farmacología, Universidad de Valladolid, Instituto de Biología y Genética Molecular, Valladolid 47003, Spain
| | | | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Maria Simarro
- Departamento de Enfermería, Universidad de Valladolid, Instituto de Biología y Genética Molecular, Valladolid 47003, Spain
| |
Collapse
|
40
|
Srivastava S, Syed SB, Kumar V, Islam A, Ahmad F, Hassan MI. Fas-activated serine/threonine kinase: Structure and function. GENE REPORTS 2017. [DOI: 10.1016/j.genrep.2017.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|