1
|
Rea Hernández PA, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sanchez-Alonso P, Cobos-Justo ME, Zenteno E, Negrete-Abascal E. Epinephrine and norepinephrine regulate the expression of virulence factors in Gallibacterium anatis. Microb Pathog 2024; 196:106987. [PMID: 39374885 DOI: 10.1016/j.micpath.2024.106987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
Gallibacterium anatis is a member of the Pasteurellaceae family and is an opportunistic pathogen that causes gallibacteriosis in chickens. Stress plays a relevant role in promoting the development of pathogenicity in G. anatis. Epinephrine (E) and norepinephrine (NE) are relevant to stress; however, their effects on G. anatis have not been elucidated. In this work, we evaluated the effects of E and NE on the growth, biofilm formation, expression of adhesins, and proteases of two G. anatis strains, namely, the hemolytic 12656-12 and the nonhemolytic F149T biovars. E (10 μM/mL) and NE (30 and 50 μM/mL) increased the growth of G. anatis 12656-12 by 20 % and 25 %, respectively. E did not affect the growth of F149T, whereas 40 μM/mL NE decreased bacterial growth by 25 %. E and NE at a dose of 30-50 μM/mL upregulated five fibrinogen adhesins in the 12565-12 strain, whereas no effect was observed in the F149T strain. NE increased proteolytic activity in both strains, whereas E diminished proteolytic activity in the 12656-12 strain. E and NE reduced biofilm formation (30 %) and increased Congo red binding (15 %) in both strains. QseBC is the E and NE two-component detection system most common in bacteria. The qseC gene, which is the E and NE receptor in bacteria, was identified in the genomic DNA of the 12565-12 and F149TG. anatis strains via PCR amplification. Our results suggest that QseC can detect host changes in E and NE concentrations and that catecholamines can modulate the expression of several virulence factors in G. anatis.
Collapse
Affiliation(s)
- Pablo A Rea Hernández
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Gerardo A Ramírez-Paz-Y-Puente
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, UNAM, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
2
|
Dsouza N, C SK. Predicting the changes in neutralizing antibody interaction with G protein derived from Bangladesh isolates of Nipah virus: molecular dynamics based approach. J Biomol Struct Dyn 2024; 42:9388-9398. [PMID: 37643003 DOI: 10.1080/07391102.2023.2252084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023]
Abstract
The infectious Nipah virus (NiV) is categorized into NiV-M (Malaysia) and NiV-B (Bangladesh) groups based on its genome comparison, pathogenicity, and mortality rate. The development of therapeutic molecules has used NiV-M-derived data in multiple studies than NiV-B. In continuation with this, the protein level investigation is also less explored to understand the interaction with therapeutic neutralizing antibodies for NiV-B. So, this study focuses on understanding the impact of NiV-B-specific mutations on the interaction of therapeutic neutralizing antibodies with the G protein. The population-based comparative analysis of NiV-B G protein sequences with NiV-M sequence identified twenty-six mutations. These predominantly polar mutations were then used to model the mutant protein (G_MT). In a comparative study, the G protein G_MT and reference protein G_WT (Malaysian origin) were subjected to a protein docking with neutralizing human monoclonal antibody HENV26. The binding affinity and the free binding energy of the glycoprotein in complex with G-WT and G_MT were calculated using PRODIGY and MM/PBSA tools respectively. Based on the PRODIGY report, G-WT showed stronger binding (-13.8 kcal/mol) compared to that of the G_MT (-9.0 kcal/mol) with the HENV26 antibody. The stability of the complexes was evaluated using MM/PBSA which showed higher binding energy with HENV26 for G_WT (-75.11 kcal/mol) in contrast to G_MT (-41.66 kcal/mol). The results indicate that the mutant G protein has a reduced ability to bind to neutralizing antibodies, resulting in a decreased effectiveness against strains carrying these mutations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Norine Dsouza
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India
- Department of Biotechnology, St. Xavier's College, Mumbai, India
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India
| |
Collapse
|
3
|
Duo H, Chhabra R, Muthusamy V, Dutta S, Katral A, Sarma GR, Chand G, Mishra SJ, Zunjare RU, Hossain F. Allelic Diversity and Development of Breeder-Friendly Marker Specific to floury2 Gene Regulating the Accumulation of α-Zeins and Essential Amino Acids in Maize Kernel. Biochem Genet 2024:10.1007/s10528-024-10935-x. [PMID: 39369369 DOI: 10.1007/s10528-024-10935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/23/2024] [Indexed: 10/07/2024]
Abstract
Maize zeins lack essential amino acids, such as methionine, lysine, and tryptophan. The floury2 (fl2) mutation reduces zein synthesis and increases methionine and lysine content in kernels. In this study, fl2 gene (1612 bp) was sequenced in eight wild-type and two mutant inbreds and detected 218 SNPs and 18 InDels. Transversion of C to T at 343 bp position caused the substitution of alanine by valine in the fl2 mutant. A PCR-based marker (FL-SNP-CT) was developed, which distinguished the favorable mutant fl2 allele (T) from the wild-type (C) Fl2 allele. Gene-based diversity analysis using seven gene-based InDel markers grouped 48 inbred lines into three major clusters, with an average genetic dissimilarity coefficient of 0.534. The average major allele frequency, gene diversity, heterozygosity, and polymorphism information content of the InDel markers were 0.701, 0.392, 0.039, and 0.318, respectively. Haplotype analysis revealed 29 haplotypes of fl2 gene among these 48 inbreds. Amino acid substitution (Ala-Val) at the signal peptide cleavage site produced unprocessed 24-kDa mutant protein instead of 22-kDa zein found in normal genotype. Eight paralogues of fl2 detected in the study showed variation in exon lengths (616-1170 bp) and translation lengths (135-267 amino acids). Orthologue analysis among 15 accessions of Sorghum bicolor and two accessions of Saccharum spontaneum revealed a single exon in fl2 gene, ranging from 267 to 810 bp. The study elucidated the molecular basis of fl2 mutation and reported a breeder-friendly marker for molecular breeding programs. This is the first study to characterize fl2 gene in a set of subtropically adapted inbreds.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Suman Dutta
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Gulab Chand
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Subhra J Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
4
|
Duo H, Chhabra R, Muthusamy V, Mishra SJ, Gopinath I, Sharma G, Madhavan J, Neeraja CN, Zunjare RU, Hossain F. Molecular characterization, haplotype analysis and development of markers specific to dzs18 gene regulating methionine accumulation in kernels of subtropical maize. 3 Biotech 2024; 14:241. [PMID: 39315003 PMCID: PMC11416445 DOI: 10.1007/s13205-024-04088-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Maize kernel protein is deficient in sulfur-containing essential amino acid such as methionine. The dzs18 gene encodes methionine-rich 18-kDa δ-zein in maize kernels. In this study, we sequenced full-length of dzs18 gene (820 bp) among 10 maize inbreds, revealing 43 SNPs and 22 InDels (average length-7.58 bp). Three InDels (4 bp at 113th, 15 bp at 463rd and 3 bp at 615th position) distinguished the wild-type (functional) from the mutant (non-functional) allele of dzs18. The 4 bp (TTAT) insertion caused a frameshift mutation, resulting in truncated DZS18 protein. The 15 bp insertion (ATG-TCT-TCG-ATG-ATA) added methionine-serine-serine-methionine-isoleucine, while the 3 bp deletion (CAA) led to loss of a glutamine residue in the mutant allele. Three gene-based PCR markers were developed for diversity analysis of dzs18 gene among 48 inbreds, which had an average methionine content of 0.136 %. (range: 0.031-0.340 %). Eight haplotypes were identified with methionine content varying from 0.066 % (Hap7) to 0.262 % (Hap3). Haplotypes with 4 bp deletion accumulated more methionine (0.174 %) than haplotypes with 4 bp insertion (0.082 %). The average methionine in 15 bp deletion and insertion haplotypes was 0.106 % and 0.150 %, respectively. The 3 bp insertion had 0.140 % methionine, while the deletion possessed 0.117 % methionine. Protein-protein association analysis predicted that DZS18 protein interacts with 19-kDa α-zein, 27- and 16-kDa γ-zeins, WAXY and O2 protein. A paralogue of dzs18 gene with 74 % sequence identity was identified. The functional markers reported here could facilitate the development of high methionine maize cultivars, which holds great significance to combat malnutrition, especially in developing countries. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04088-2.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vignesh Muthusamy
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Subhra J. Mishra
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Ikkurti Gopinath
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Gaurav Sharma
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Jayanthi Madhavan
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
5
|
Benyamini P. The Comparative Characterization of a Hypervirulent Acinetobacter baumannii Bacteremia Clinical Isolate Reveals a Novel Mechanism of Pathogenesis. Int J Mol Sci 2024; 25:9780. [PMID: 39337268 PMCID: PMC11432228 DOI: 10.3390/ijms25189780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic Gram-negative pathogen with exquisite survival capabilities under various environmental conditions and displays widespread resistance to common antibiotics. A. baumannii is a leading cause of nosocomial infections that result in high morbidity and mortality rates. Accordingly, when multidrug resistance rates surpass threshold levels, the percentage of A. baumannii clinical isolates surges. Research into A. baumannii has increased in the past decade, and multiple mechanisms of pathogenesis have been identified, including mechanisms underlying biofilm development, quorum sensing, exotoxin production, secretion system utilization, and more. To date, the two gold-standard strains used to investigate different aspects of A. baumannii pathogenesis include ATCC 17978 and ATCC 19606. Here, we report a comparative characterization study of three additional A. baumannii clinical isolates obtained from different infection types and derived from different anatomical regions of infected patients. The comparison of three clinical isolates in addition to the ATCC strains revealed that the hypervirulent bacteremia clinical isolate, known as HUMC1, employs a completely different mechanism of pathogenesis when compared to all its counterparts. In stark contrast to the other genetic variants, the hypervirulent HUMC1 isolate does not form biofilms, is antibiotic-susceptible, and has the capacity to reach higher levels of quorum compared to the other clinically relevant strains. Our data also reveal that HUMC1 does not shed endotoxin into the extracellular milieu, rather secretes the evolutionarily conserved, host-mimicking, Zonula occludens toxin (Zot). Taken together, our hypothesis that HUMC1 cells have the ability to reach higher levels of quorum and lack biofilm production and endotoxin shedding, accompanied by the substantial elaboration of Zot, suggests a novel mechanism of pathogenesis that appears to afford the hypervirulent pathogen with stealth-like capabilities when disseminating through the circulatory system in a state of bacteremia.
Collapse
Affiliation(s)
- Payam Benyamini
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| |
Collapse
|
6
|
Li J, Zhan Z, Li Y, Sun Y, Zhou T, Xu K. Chromosome-level genome assembly of a deep-sea Venus flytrap sea anemone sheds light upon adaptations to an extremely oligotrophic environment. Mol Ecol 2024; 33:e17504. [PMID: 39166453 DOI: 10.1111/mec.17504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/29/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024]
Abstract
The Venus flytrap sea anemone Actinoscyphia liui inhabits the nutrient-limited deep ocean in the tropical western Pacific. Compared with most other sea anemones, it has undergone a distinct modification of body shape similar to that of the botanic flytrap. However, the molecular mechanism by which such a peculiar sea anemone adapts to a deep-sea oligotrophic environment is unknown. Here, we report the chromosomal-level genome of A. liui constructed from PacBio and Hi-C data. The assembled genome is 522 Mb in size and exhibits a continuous scaffold N50 of 58.4 Mb. Different from most other sea anemones, which typically possess 14-18 chromosomes per haplotype, A. liui has only 11. The reduced number of chromosomes is associated with chromosome fusion, which likely represents an adaptive strategy to economize energy in oligotrophic deep-sea environments. Comparative analysis with other deep-sea sea anemones revealed adaptive evolution in genes related to cellular autophagy (TMBIM6, SESN1, SCOCB and RPTOR) and mitochondrial energy metabolism (MDH1B and KAD2), which may aid in A. liui coping with severe food scarcity. Meanwhile, the genome has undergone at least two rounds of expansion in gene families associated with fast synaptic transmission, facilitating rapid responses to water currents and prey. Positive selection was detected on putative phosphorylation sites of muscle contraction-related proteins, possibly further improving feeding efficiency. Overall, the present study provides insights into the molecular adaptation to deep-sea oligotrophic environments and sheds light upon potential effects of a novel morphology on the evolution of Cnidaria.
Collapse
Affiliation(s)
- Junyuan Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Agriculture and Bioengineering, Taizhou Vocational College of Science and Technology, Taizhou, China
| | - Zifeng Zhan
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yang Li
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Yanan Sun
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Tong Zhou
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Kuidong Xu
- Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
7
|
Bezpalaya EY, Matyuta IO, Vorobyeva NN, Kurilova SA, Oreshkov SD, Minyaev ME, Boyko KM, Rodina EV. The crystal structure of yeast mitochondrial type pyrophosphatase provides a model to study pathological mutations in its human ortholog. Biochem Biophys Res Commun 2024; 738:150563. [PMID: 39178581 DOI: 10.1016/j.bbrc.2024.150563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
Mutations in human ppa2 gene encoding mitochondrial inorganic pyrophosphatase (PPA2) result in the mitochondria malfunction in heart and brain and lead to early death. In comparison with its cytosolic counterpart, PPA2 of any species is a poorly characterized enzyme with a previously unknown 3D structure. We report here the crystal structure of PPA2 from yeast Ogataea parapolymorpha (OpPPA2), as well as its biochemical characterization. OpPPA2 is a dimer, demonstrating the fold typical for other eukaryotic Family I pyrophosphatases, including the human cytosolic enzyme. Cofactor Mg2+ ions found in OpPPA2 structure have similar coordination to most known Family I pyrophosphatases. Most of the residues associated with the pathological mutations in human PPA2 are conserved in OpPPA2, and their structural context suggests possible explanations for the effects of the mutations on the human enzyme. In this work, the mutant variant of OpPPA2, Met52Val, corresponding to the natural pathogenic variant Met94Val of human PPA2, is characterized. The obtained structural and biochemical data provide a step to understanding the structural basis of PPA2-associated pathologies.
Collapse
Affiliation(s)
| | - Ilya O Matyuta
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia; Landau Phystech School of Physics and Research, Moscow Institute of Physics and Technology, Institutsky Lane, 9, Dolgoprudny, 141700, Moscow, Russia
| | - Natalia N Vorobyeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Svetlana A Kurilova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119899, Moscow, Russia
| | - Sergey D Oreshkov
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia
| | - Mikhail E Minyaev
- N.D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 119071, Moscow, Russia
| | - Konstantin M Boyko
- A.N. Bach Institute of Biochemistry, Federal Research Centre of Biotechnology of the Russian Academy of Sciences, 119071, Moscow, Russia.
| | - Elena V Rodina
- Lomonosov Moscow State University, Chemistry Department, 119991, Moscow, Russia.
| |
Collapse
|
8
|
Benyamini P. Phylogenetic Tracing of Evolutionarily Conserved Zonula Occludens Toxin Reveals a "High Value" Vaccine Candidate Specific for Treating Multi-Strain Pseudomonas aeruginosa Infections. Toxins (Basel) 2024; 16:271. [PMID: 38922165 PMCID: PMC11209546 DOI: 10.3390/toxins16060271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Extensively drug-resistant Pseudomonas aeruginosa infections are emerging as a significant threat associated with adverse patient outcomes. Due to this organism's inherent properties of developing antibiotic resistance, we sought to investigate alternative strategies such as identifying "high value" antigens for immunotherapy-based purposes. Through extensive database mining, we discovered that numerous Gram-negative bacterial (GNB) genomes, many of which are known multidrug-resistant (MDR) pathogens, including P. aeruginosa, horizontally acquired the evolutionarily conserved gene encoding Zonula occludens toxin (Zot) with a substantial degree of homology. The toxin's genomic footprint among so many different GNB stresses its evolutionary importance. By employing in silico techniques such as proteomic-based phylogenetic tracing, in conjunction with comparative structural modeling, we discovered a highly conserved intermembrane associated stretch of 70 amino acids shared among all the GNB strains analyzed. The characterization of our newly identified antigen reveals it to be a "high value" vaccine candidate specific for P. aeruginosa. This newly identified antigen harbors multiple non-overlapping B- and T-cell epitopes exhibiting very high binding affinities and can adopt identical tertiary structures among the least genetically homologous P. aeruginosa strains. Taken together, using proteomic-driven reverse vaccinology techniques, we identified multiple "high value" vaccine candidates capable of eliciting a polarized immune response against all the P. aeruginosa genetic variants tested.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
9
|
Madeira F, Madhusoodanan N, Lee J, Eusebi A, Niewielska A, Tivey ARN, Meacham S, Lopez R, Butcher S. Using EMBL-EBI Services via Web Interface and Programmatically via Web Services. Curr Protoc 2024; 4:e1065. [PMID: 38857087 DOI: 10.1002/cpz1.1065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The European Bioinformatics Institute (EMBL-EBI)'s Job Dispatcher framework provides access to a wide range of core databases and analysis tools that are of key importance in bioinformatics. As well as providing web interfaces to these resources, web services are available using REST and SOAP protocols that enable programmatic access and allow their integration into other applications and analytical workflows and pipelines. This article describes the various options available to researchers and bioinformaticians who would like to use our resources via the web interface employing RESTful web services clients provided in Perl, Python, and Java or who would like to use Docker containers to integrate the resources into analysis pipelines and workflows. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Retrieving data from EMBL-EBI using Dbfetch via the web interface Alternate Protocol 1: Retrieving data from EMBL-EBI using WSDbfetch via the REST interface Alternate Protocol 2: Retrieving data from EMBL-EBI using Dbfetch via RESTful web services with Python client Support Protocol 1: Installing Python REST web services clients Basic Protocol 2: Sequence similarity search using FASTA search via the web interface Alternate Protocol 3: Sequence similarity search using FASTA via RESTful web services with Perl client Support Protocol 2: Installing Perl REST web services clients Basic Protocol 3: Sequence similarity search using NCBI BLAST+ RESTful web services with Python client Basic Protocol 4: Sequence similarity search using HMMER3 phmmer REST web services with Perl client and Docker Support Protocol 3: Installing Docker and running the EMBL-EBI client container Basic Protocol 5: Protein functional analysis using InterProScan 5 RESTful web services with the Python client and Docker Alternate Protocol 4: Protein functional analysis using InterProScan 5 RESTful web services with the Java client Support Protocol 4: Installing Java web services clients Basic Protocol 6: Multiple sequence alignment using Clustal Omega via web interface Alternate Protocol 5: Multiple sequence alignment using Clustal Omega with Perl client and Docker Support Protocol 5: Exploring the RESTful API with OpenAPI User Inferface.
Collapse
Affiliation(s)
- Fábio Madeira
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Nandana Madhusoodanan
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Joonheung Lee
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Alberto Eusebi
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ania Niewielska
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Adrian R N Tivey
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Stuart Meacham
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rodrigo Lopez
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sarah Butcher
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
10
|
O'Reilly ME, Ho S, Coronel J, Zhu L, Liu W, Xue C, Kim E, Cynn E, Matias CV, Soni RK, Wang C, Ionita-Laza I, Bauer RC, Ross L, Zhang Y, Corvera S, Fried SK, Reilly MP. linc-ADAIN, a human adipose lincRNA, regulates adipogenesis by modulating KLF5 and IL-8 mRNA stability. Cell Rep 2024; 43:114240. [PMID: 38753486 PMCID: PMC11334222 DOI: 10.1016/j.celrep.2024.114240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Adipose tissue remodeling and dysfunction, characterized by elevated inflammation and insulin resistance, play a central role in obesity-related development of type 2 diabetes (T2D) and cardiovascular diseases. Long intergenic non-coding RNAs (lincRNAs) are important regulators of cellular functions. Here, we describe the functions of linc-ADAIN (adipose anti-inflammatory), an adipose lincRNA that is downregulated in white adipose tissue of obese humans. We demonstrate that linc-ADAIN knockdown (KD) increases KLF5 and interleukin-8 (IL-8) mRNA stability and translation by interacting with IGF2BP2. Upregulation of KLF5 and IL-8, via linc-ADAIN KD, leads to an enhanced adipogenic program and adipose tissue inflammation, mirroring the obese state, in vitro and in vivo. KD of linc-ADAIN in human adipose stromal cell (ASC) hTERT adipocytes implanted into mice increases adipocyte size and macrophage infiltration compared to implanted control adipocytes, mimicking hallmark features of obesity-induced adipose tissue remodeling. linc-ADAIN is an anti-inflammatory lincRNA that limits adipose tissue expansion and lipid storage.
Collapse
Affiliation(s)
- Marcella E O'Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Sebastian Ho
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Johana Coronel
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Lucie Zhu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Wen Liu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Chenyi Xue
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Eunyoung Kim
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Esther Cynn
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Caio V Matias
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, USA
| | - Chen Wang
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Iuliana Ionita-Laza
- Department of Statistics, Mailman School of Public Health, Columbia University Medical Center, New York, NY, USA
| | - Robert C Bauer
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Leila Ross
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Yiying Zhang
- Division of Molecular Genetics, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Muredach P Reilly
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Medical Center, New York, NY, USA; Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
11
|
Kao MR, Parker J, Oehme D, Chang SC, Cheng LC, Wang D, Srivastava V, Wagner JM, Harris PJ, Hsieh YSY. Substrate Specificities of Variants of Barley (1,3)- and (1,3;1,4)-β-d-Glucanases Resulting from Mutagenesis and Segment Hybridization. Biochemistry 2024; 63:1194-1205. [PMID: 38598309 PMCID: PMC11080057 DOI: 10.1021/acs.biochem.3c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/17/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024]
Abstract
Barley (1,3;1,4)-β-d-glucanase is believed to have evolved from an ancestral monocotyledon (1,3)-β-d-glucanase, enabling the hydrolysis of (1,3;1,4)-β-d-glucans in the cell walls of leaves and germinating grains. In the present study, we investigated the substrate specificities of variants of the barley enzymes (1,3;1,4)-β-d-glucan endohydrolase [(1,3;1,4)-β-d-glucanase] isoenzyme EII (HvEII) and (1,3)-β-d-glucan endohydrolase [(1,3)-β-d-glucanase] isoenzyme GII (HvGII) obtained by protein segment hybridization and site-directed mutagenesis. Using protein segment hybridization, we obtained three variants of HvEII in which the substrate specificity was that of a (1,3)-β-d-glucanase and one variant that hydrolyzed both (1,3)-β-d-glucans and (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3;1,4)-β-d-glucans. Using substitutions of specific amino acid residues, we obtained one variant of HvEII that hydrolyzed both substrates. However, neither protein segment hybridization nor substitutions of specific amino acid residues gave variants of HvGII that could hydrolyze (1,3;1,4)-β-d-glucans; the wild-type enzyme hydrolyzed only (1,3)-β-d-glucans. Other HvEII and HvGII variants showed changes in specific activity and their ability to degrade the (1,3;1,4)-β-d-glucans or (1,3)-β-d-glucans to larger oligosaccharides. We also used molecular dynamics simulations to identify amino-acid residues or structural regions of wild-type HvEII and HvGII that interact with (1,3;1,4)-β-d-glucans and (1,3)-β-d-glucans, respectively, and may be responsible for the substrate specificities of the two enzymes.
Collapse
Affiliation(s)
- Mu-Rong Kao
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Jake Parker
- School
of Agriculture, Food and Wine, University
of Adelaide, Waite Campus, Glen Osmond SA 5064, Australia
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Daniel Oehme
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Shu-Chieh Chang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - Lin-Chen Cheng
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| | - Damao Wang
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- College
of Food Science, Southwest University, Chongqing 400715, China
| | - Vaibhav Srivastava
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
| | - John M. Wagner
- IBM
Research Collaboratory for Life Sciences, Melbourne, Victoria 3010, Australia
| | - Philip J. Harris
- School of
Biological Sciences, The University of Auckland,
Auckland Mail Centre, Private Bag 92019, Auckland 1142, New Zealand
| | - Yves S. Y. Hsieh
- Division
of Glycoscience, Department of Chemistry, School of Engineering Sciences
in Chemistry, Biotechnology and Health, Royal Institute of Technology (KTH), AlbaNova University Centre, Stockholm SE-10691, Sweden
- School
of Pharmacy, College of Pharmacy, Taipei
Medical University, 250 Wuxing Street, Taipei 11031, Taiwan
| |
Collapse
|
12
|
Comas-Ghierra R, Alshaheeb A, McReynolds MR, Shepherd JN, Salinas G. A Minimal Kynurenine Pathway Was Preserved for Rhodoquinone but Not for De Novo NAD + Biosynthesis in Parasitic Worms: The Essential Role of NAD + Rescue Pathways. Antioxid Redox Signal 2024; 40:737-750. [PMID: 37639366 DOI: 10.1089/ars.2023.0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Aims: To determine the role of the kynurenine (KYN) pathway in rhodoquinone (RQ) and de novo NAD+ biosynthesis and whether NAD+ rescue pathways are essential in parasitic worms (helminths). Results: We demonstrate that RQ, the key electron transporter used by helminths under hypoxia, derives from the tryptophan (Trp) catabolism even in the presence of a minimal KYN pathway. We show that of the KYN pathway genes only the kynureninase and tryptophan/indoleamine dioxygenases are essential for RQ biosynthesis. Metabolic labeling with Trp revealed that the lack of the formamidase and kynurenine monooxygenase genes did not preclude RQ biosynthesis in the flatworm Mesocestoides corti. In contrast, a minimal KYN pathway prevented de novo NAD+ biosynthesis, as revealed by metabolic labeling in M. corti, which also lacks the 3-hydroxyanthranilate 3,4-dioxygenase gene. Our results indicate that most helminths depend solely on NAD+ rescue pathways, and some lineages rely exclusively on the nicotinamide salvage pathway. Importantly, the inhibition of the NAD+ recycling enzyme nicotinamide phosphoribosyltransferase with FK866 led cultured M. corti to death. Innovation: We use comparative genomics of more than 100 hundred helminth genomes, metabolic labeling, HPLC-mass spectrometry targeted metabolomics, and enzyme inhibitors to define pathways that lead to RQ and NAD+ biosynthesis in helminths. We identified the essential enzymes of these pathways in helminth lineages, revealing new potential pharmacological targets for helminthiasis. Conclusion: Our results demonstrate that a minimal KYN pathway was evolutionary maintained for RQ and not for de novo NAD+ biosynthesis in helminths and shed light on the essentiality of NAD+ rescue pathways in helminths.
Collapse
Affiliation(s)
- Rosina Comas-Ghierra
- Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| | - Abdulkareem Alshaheeb
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania, USA
- The Pennsylvania State University-Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, Hershey, Pennsylvania, USA
- The Pennsylvania State University-Huck Institutes of the Life Sciences, University Park, Pennsylvania, USA
| | - Jennifer N Shepherd
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington, USA
| | - Gustavo Salinas
- Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica Clínica, Facultad de Química, Universidad de la Republica, Montevideo, Uruguay
| |
Collapse
|
13
|
Duo H, Chhabra R, Muthusamy V, Zunjare RU, Hossain F. Assessing sequence variation, haplotype analysis and molecular characterisation of aspartate kinase2 (ask2) gene regulating methionine biosynthesis in diverse maize inbreds. Mol Genet Genomics 2024; 299:7. [PMID: 38349549 DOI: 10.1007/s00438-024-02096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 11/02/2023] [Indexed: 02/15/2024]
Abstract
Traditional maize grain is deficient in methionine, an essential amino acid required for proper growth and development in humans and poultry birds. Thus, development of high methionine maize (HMM) assumes great significance in alleviating malnutrition through sustainable and cost-effective approach. Of various genetic loci, aspartate kinase2 (ask2) gene plays a pivotal role in regulating methionine accumulation in maize. Here, we sequenced the entire ask2 gene of 5394 bp with 13 exons in five wild and five mutant maize inbreds to understand variation at nucleotide level. Sequence analysis revealed that an SNP in exon-13 caused thymine to adenine transversion giving rise to a favourable mutant allele associated with leucine to glutamine substitution in mutant ASK2 protein. Gene-based diversity analysis with 11 InDel markers grouped 48 diverse inbreds into three major clusters with an average genetic dissimilarity of 0.570 (range, 0.0-0.9). The average major allele frequency, gene diversity and PIC are 0.693, 0.408 and 0.341, respectively. A total of 45 haplotypes of the ask2 gene were identified among the maize inbreds. Evolutionary relationship analysis performed among 22 orthologues grouped them into five major clusters. The number of exons varied from 7 to 17, with length varying from 12 to 495 bp among orthologues. ASK2 protein with 565 amino acids was predicted to be in homo-dimeric state with lysine and tartaric acid as binding ligands. Amino acid kinase and ACT domains were found to be conserved in maize and orthologues. The study depicted the presence of enough genetic diversity in ask2 gene in maize, and development of HMM can be accelerated through introgression of favourable allele of ask2 into the parental lines of elite hybrids using molecular breeding.
Collapse
Affiliation(s)
- Hriipulou Duo
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Chhabra
- ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | | | - Firoz Hossain
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
14
|
Hinke DM, Anderson AM, Katta K, Laursen MF, Tesfaye DY, Werninghaus IC, Angeletti D, Grødeland G, Bogen B, Braathen R. Applying valency-based immuno-selection to generate broadly cross-reactive antibodies against influenza hemagglutinins. Nat Commun 2024; 15:850. [PMID: 38346952 PMCID: PMC10861589 DOI: 10.1038/s41467-024-44889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2024] [Indexed: 02/15/2024] Open
Abstract
Conserved epitopes shared between virus subtypes are often subdominant, making it difficult to induce broadly reactive antibodies by immunization. Here, we generate a plasmid DNA mix vaccine that encodes protein heterodimers with sixteen different influenza A virus hemagglutinins (HA) representing all HA subtypes except H1 (group 1) and H7 (group 2). Each single heterodimer expresses two different HA subtypes and is targeted to MHC class II on antigen presenting cells (APC). Female mice immunized with the plasmid mix produce antibodies not only against the 16 HA subtypes, but also against non-included H1 and H7. We demonstrate that individual antibody molecules cross-react between different HAs. Furthermore, the mix vaccine induces T cell responses to conserved HA epitopes. Immunized mice are partially protected against H1 viruses. The results show that application of valency-based immuno-selection to diversified antigens can be used to direct antibody responses towards conserved (subdominant) epitopes on viral antigens.
Collapse
Affiliation(s)
- Daniëla Maria Hinke
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ane Marie Anderson
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kirankumar Katta
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Demo Yemane Tesfaye
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Gunnveig Grødeland
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Ranveig Braathen
- K.G. Jebsen Centre for Influenza Vaccine Research, University of Oslo, Oslo, Norway.
- Institute of Immunology (IMM), University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
15
|
Asha S, Kattupalli D, Vijayanathan M, Soniya EV. Identification of nitric oxide mediated defense signaling and its microRNA mediated regulation during Phytophthora capsici infection in black pepper. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:33-47. [PMID: 38435849 PMCID: PMC10901764 DOI: 10.1007/s12298-024-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024]
Abstract
Nitric oxide plays a significant role in the defense signaling during pathogen interaction in plants. Quick wilt disease is a devastating disease of black pepper, and leads to sudden mortality of pepper vines in plantations. In this study, the role of nitric oxide was studied during Phytophthora capsici infection in black pepper variety Panniyur-1. Nitric oxide was detected from the different histological sections of P. capsici infected leaves. Furthermore, the genome-wide transcriptome analysis characterized typical domain architect and structural features of nitrate reductase (NR) and nitric oxide associated 1 (NOA1) gene that are involved in nitric oxide biosynthesis in black pepper. Despite the upregulation of nitrate reductase (Pn1_NR), a reduced expression of Pn1_NOA1 was detected in the P. capsici infected black pepper leaf. Subsequent sRNAome-assisted in silico analysis revealed possible microRNA mediated regulation of Pn1_NOA mRNAs. Furthermore, sRNA/miRNA mediated cleavage on Pn1_NOA1 mRNA was validated through modified 5' RLM RACE experiments. Several hormone-responsive cis-regulatory elements involved in stress response was detected from the promoter regions of Pn_NOA1, Pn_NR1 and Pn_NR2 genes. Our results revealed the role of nitric oxide during stress response of P. capsici infection in black pepper, and key genes involved in nitric oxide biosynthesis and their post-transcriptional regulatory mechanisms. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01414-z.
Collapse
Affiliation(s)
- Srinivasan Asha
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Molecular Biology and Biotechnology, College of Agriculture, Vellayani, Kerala Agricultural University, Thiruvananthapuram, India
| | - Divya Kattupalli
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
- Present Address: Department of Plant and Environmental Sciences, University of Copenhagen, Capital Region, Denmark
| | - E. V. Soniya
- Transdisciplinary Biology, Plant Disease Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala India
| |
Collapse
|
16
|
Marx D, Alnouri MW, Clemens S, Gedschold R, Riedel Y, Al Hamwi G, Pillaiyar T, Hockemeyer J, Namasivayam V, Müller CE. Discovery of Potent Agonists for the Predominant Variant of the Orphan MAS-Related G Protein-Coupled Receptor X4 (MRGPRX4). J Med Chem 2023; 66:15674-15698. [PMID: 37967029 DOI: 10.1021/acs.jmedchem.3c01013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The MAS-related Gq protein-coupled receptor X4 (MRGPRX4) is poorly investigated. MRGPRX4 has been proposed to be involved in pain transmission, itch, inflammation, wound healing, and cancer. However, so far only a few moderately potent, nonselective MRGPRX4 agonists have been described, most of which appear to preferably activate the minor receptor variant MRGPRX4-83L but not the main variant 83S. In the present study, we discovered a xanthine derivative bearing a phosphate substituent that activates the main variant of MRGPRX4. Optimization resulted in analogs with high potency and metabolic stability. The best compounds of the present series include 8-(m-methoxyphenethyl)-1-propargylxanthine substituted with a butyl linker in the 3-position containing a terminal phosphonate (30d, PSB-22034, EC50 Ca2+ assay/β-arrestin assay, 11.2 nM/32.0 nM) and its N7-methyl derivative 31d (PSB-22040, EC50, 19.2/30.0 nM) showing high selectivity versus all other MRGPRX subtypes. They present promising tool compounds for exploring the potential of MRGPRX4 as a future drug target.
Collapse
Affiliation(s)
- Daniel Marx
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Mohamed Wessam Alnouri
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Sophie Clemens
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Robin Gedschold
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Yvonne Riedel
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Ghazl Al Hamwi
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Thanigaimalai Pillaiyar
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Jörg Hockemeyer
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| | - Christa E Müller
- Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Brühler Straße 7, D-53121 Bonn, Germany
| |
Collapse
|
17
|
Loret S, Habib B, Romain P, Roba A, Reboul A. Prevention of horizontal transfer of laboratory plasmids to environmental bacteria: comparison of the effectiveness of a few disinfection approaches to degrade DNA. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89369-89380. [PMID: 37450185 DOI: 10.1007/s11356-023-28733-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
The routine work of any molecular biology laboratory includes the daily use of microorganisms, including strains of E. coli, transformed with a variety of plasmids expressing at least one antibiotic resistance gene (ARG). Therefore, to avoid the accidental release of ARGs into environmental water, methods for disinfection of liquid laboratory waste must be effective in destroying nucleic acids. In support of this recommendation, the origin of replication of Enterobacteriaceae plasmids has been detected in strains of non-Enterobacteriaceae bacteria isolated from wastewater from laboratories and research institutes, suggesting that interspecific transfer of laboratory plasmids had occurred. Using quantitative polymerase chain reaction, we determined the decimal reduction value (D value, expressed as concentration of disinfectant or length of physical treatment) of several decontamination methods for their DNA degradation effect on cultures of E. coli Top10 transformed with a kanamycin resistant plasmid (pET28A + or pEGFP-C2). The estimated D values were 0.7 M for sulfuric acid, 6.3% for a commercial P3 disinfectant, 25 min for steam sterilization at 121 °C, and 49 min for disinfection by UVC. A 20-min treatment of bacteria cultures with a final concentration of 1-10% sodium hypochlorite was found to be ineffective in completely destroying a bacteria plasmid gene marker (coding for the pBR322 origin of replication). Residual DNA from NaClO-treated cells was 60%, while it decreased under 10% using the commercial disinfectant P3 diluted at 5%. As the degradation was incomplete in both cases, we recommend avoiding discharge of disinfected liquid waste to wastewater (even after chemical neutralization) without additional plasmid destruction treatment, to prevent horizontal transfer of laboratory ARGs to environmental bacteria.
Collapse
Affiliation(s)
- Suzanne Loret
- Health and Safety Department, Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Biosafety Office, Rue de Bruxelles 61, B 5000, Namur, Belgium.
| | - Boutaina Habib
- Science Faculty, University Mohammed V, Avenue Ibn Batouta, BP 1014, Rabat, Morocco
| | - Pierre Romain
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| | - Agnès Roba
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| | - Angéline Reboul
- Research Unit in Biology of Microorganisms (URBM), Namur Research Institute for Life Science (NARILIS), University of Namur (UNamur), Rue de Bruxelles 61, B 5000 , Namur, Belgium
| |
Collapse
|
18
|
Steadman K, You S, Srinivas DV, Mouakkad L, Yan Y, Kim M, Venugopal SV, Tanaka H, Freeman MR. Autonomous action and cooperativity between the ONECUT2 transcription factor and its 3' untranslated region. Front Cell Dev Biol 2023; 11:1206259. [PMID: 37484909 PMCID: PMC10356556 DOI: 10.3389/fcell.2023.1206259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 05/16/2023] [Indexed: 07/25/2023] Open
Abstract
The transcription factor ONECUT2 (OC2) is a master transcriptional regulator operating in metastatic castration-resistant prostate cancer that suppresses androgen receptor activity and promotes neural differentiation and tumor cell survival. OC2 mRNA possesses an unusually long (14,575 nt), evolutionarily conserved 3' untranslated region (3' UTR) with many microRNA binding sites, including up to 26 miR-9 sites. This is notable because miR-9 targets many of the same genes regulated by the OC2 protein. Paradoxically, OC2 expression is high in tissues with high miR-9 expression. The length and complex secondary structure of OC2 mRNA suggests that it is a potent master competing endogenous RNA (ceRNA) capable of sequestering miRNAs. Here, we describe a novel role for OC2 3' UTR in lethal prostate cancer consistent with a function as a ceRNA. A plausible ceRNA network in OC2-driven tumors was constructed computationally and then confirmed in prostate cancer cell lines. Genes regulated by OC2 3' UTR exhibited high overlap (up to 45%) with genes driven by the overexpression of the OC2 protein in the absence of 3' UTR, indicating a cooperative functional relationship between the OC2 protein and its 3' UTR. These overlapping networks suggest an evolutionarily conserved mechanism to reinforce OC2 transcription by protection of OC2-regulated mRNAs from miRNA suppression. Both the protein and 3' UTR showed increased polycomb-repressive complex activity. The expression of OC2 3' UTR mRNA alone (without protein) dramatically increased the metastatic potential by in vitro assays. Additionally, OC2 3' UTR increased the expression of Aldo-Keto reductase and UDP-glucuronyl transferase family genes responsible for altering the androgen synthesis pathway. ONECUT2 represents the first-described dual-modality transcript that operates as both a key transcription factor driving castration-resistant prostate cancer and a master ceRNA that promotes and protects the same transcriptional network.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Michael R. Freeman
- Division of Cancer Biology and Therapeutics, Biomedical Sciences and Pathology and Laboratory Medicine, Department of Urology, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, United States
| |
Collapse
|
19
|
Rahman MT, Koski MK, Panecka-Hofman J, Schmitz W, Kastaniotis AJ, Wade RC, Wierenga RK, Hiltunen JK, Autio KJ. An engineered variant of MECR reductase reveals indispensability of long-chain acyl-ACPs for mitochondrial respiration. Nat Commun 2023; 14:619. [PMID: 36739436 PMCID: PMC9899272 DOI: 10.1038/s41467-023-36358-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/25/2023] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial fatty acid synthesis (mtFAS) is essential for respiratory function. MtFAS generates the octanoic acid precursor for lipoic acid synthesis, but the role of longer fatty acid products has remained unclear. The structurally well-characterized component of mtFAS, human 2E-enoyl-ACP reductase (MECR) rescues respiratory growth and lipoylation defects of a Saccharomyces cerevisiae Δetr1 strain lacking native mtFAS enoyl reductase. To address the role of longer products of mtFAS, we employed in silico molecular simulations to design a MECR variant with a shortened substrate binding cavity. Our in vitro and in vivo analyses indicate that the MECR G165Q variant allows synthesis of octanoyl groups but not long chain fatty acids, confirming the validity of our computational approach to engineer substrate length specificity. Furthermore, our data imply that restoring lipoylation in mtFAS deficient yeast strains is not sufficient to support respiration and that long chain acyl-ACPs generated by mtFAS are required for mitochondrial function.
Collapse
Affiliation(s)
- M Tanvir Rahman
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Joanna Panecka-Hofman
- Faculty of Physics, University of Warsaw, Warsaw, Poland
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Werner Schmitz
- Faculty of Biochemistry and Molecular Biology, University of Würzburg, Würzburg, Germany
| | | | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
- Zentrum für Molekulare Biologie (ZMBH), DKFZ-ZMBH Alliance and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Rik K Wierenga
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - J Kalervo Hiltunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kaija J Autio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
20
|
Pallares-Rusiñol A, Moura SL, Martí M, Pividori MI. Electrochemical Genosensing of Overexpressed GAPDH Transcripts in Breast Cancer Exosomes. Anal Chem 2023; 95:2487-2495. [PMID: 36683335 PMCID: PMC9893220 DOI: 10.1021/acs.analchem.2c04773] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023]
Abstract
Exosomes are receiving highlighted attention as new biomarkers for the detection of cancer since they are profusely released by tumor cells in different biological fluids. In this paper, the exosomes are preconcentrated from the serum by immunomagnetic separation (IMS) based on a CD326 receptor as a specific epithelial cancer-related biomarker and detected by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) transcripts. Following the lysis of the captured exosomes, the released GAPDH transcripts are amplified by reverse transcription polymerase chain reaction (RT-PCR) with a double-tagging set of primers on poly(dT)-modified-MPs to increase the sensitivity. The double-tagged amplicon is then quantified by electrochemical genosensing. The IMS/double-tagging RT-PCR/electrochemical genosensing approach is first demonstrated for the sensitive detection of exosomes derived from MCF7 breast cancer cells and compared with CTCs in terms of the analytical performance, showing an LOD of 4 × 102 exosomes μL-1. The genosensor was applied to human samples by immunocapturing the exosomes directly from serum from breast cancer patients and showed a higher electrochemical signal (3.3-fold, p < 0.05), when compared with healthy controls, suggesting an overexpression of GAPDH on serum-derived exosomes from breast cancer patients. The detection of GAPDH transcripts is performed from only 1.0 mL of human serum using specific magnetic particles, improving the analytical simplification and avoiding ultracentrifugation steps, demonstrating to be a promising strategy for minimal invasive liquid biopsy.
Collapse
Affiliation(s)
- Arnau Pallares-Rusiñol
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Silio Lima Moura
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Mercè Martí
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Maria Isabel Pividori
- Grup
de Sensors i Biosensors, Departament de Química, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
- Biosensing
and Bioanalysis Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
21
|
Pessanha TS, Herrera HM, Jansen AM, Iñiguez AM. "Mi Casa, Tu Casa": the coati nest as a hub of Trypanosoma cruzi transmission in the southern Pantanal biome revealed by molecular blood meal source identification in triatomines. Parasit Vectors 2023; 16:26. [PMID: 36691054 PMCID: PMC9872340 DOI: 10.1186/s13071-022-05616-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The study of the ecology of Trypanosoma cruzi is challenging due to its extreme adaptive plasticity, resulting in the parasitism of hundreds of mammal species and dozens of triatomine species. The genetic analysis of blood meal sources (BMS) from the triatomine vector is an accurate and practical approach for gathering information on which wild mammal species participate in a local transmission network. South American coatis, Nasua nasua, act as important reservoir host species of T. cruzi in the Pantanal biome because of their high rate of infection and elevated parasitemia, with the main discrete typing unit (DTU) lineages (TcI and TcII). Moreover, the carnivore coati is the only mammal species to build high arboreal nests for breeding and resting that can be shared by various vertebrate and invertebrate species. Herein, we applied the sensitive and specific methodology of DNA barcoding and molecular cloning to study triatomines found in a coati nest to access the diversity of mammal species that explore this structure, and therefore, may be involved in the parasite transmission network. METHODS Twenty-three Triatoma sordida were collected in one coati's nest in the subregion of Nhecolândia, Pantanal. The DNA isolated from the gut of insects was subjected to BMS detection by PCR using universal primers that flank variable regions of the cytochrome b (cytb) and 12S rDNA mitochondrial genes from vertebrates. The Trypanosoma spp. diagnosis and DTU genotyping were based on an 18S rDNA molecular marker and also using new cytb gene primers designed in this study. Phylogenetic analyses and chord diagrams were constructed to visualize BMS haplotypes, DTU lineages detected on vectors, and their interconnections. RESULTS Twenty of 23 triatomines analyzed were PCR-positive (86.95%) showing lineages T. cruzi DTU TcI (n = 2), TcII (n = 6), and a predominance of TcI/TcII (n = 12) mixed infection. Intra-DTU diversity was observed mainly from different TcI haplotypes. Genetic analyses revealed that the southern anteater, Tamandua tetradactyla, was the unique species detected as the BMS of triatomines collected from the coati's nest. At least three different individuals of T. tetradactyla served as BMS of 21/23 bugs studied, as indicated by the cytb and 12S rDNA haplotypes identified. CONCLUSIONS The identification of multiple BMS, and importantly, different individuals of the same species, was achieved by the methodology applied. The study demonstrated that the southern anteaters can occupy the South American coati's nest, serving as the BMS of T. sordida specimens. Since anteaters have an individualist nonsocial behavior, the three individuals detected as BMS stayed at the coati's nest at different times, which added a temporal character to BMS detection. The TcI and TcII infection, and significantly, a predominance of TcI/TcII mixed infection profile with different TcI and TcII haplotypes was observed, due to the discriminatory capacity of the methodology applied. Tamandua tetradactyla, a host which has been little studied, may have an important role in the T. cruzi transmission in that Pantanal subregion. The data from the present study indicate the sharing of coatis' nests by other mammal species, expanding the possibilities for T. cruzi transmission in the canopy strata. We propose that coatis' nests can act as the true hubs of the T. cruzi transmission web in Pantanal, instead of the coatis themselves, as previously suggested.
Collapse
Affiliation(s)
- Thaíla Santos Pessanha
- grid.418068.30000 0001 0723 0931Laboratório de Biologia em Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro Brasil
| | - Heitor Miraglia Herrera
- grid.442132.20000 0001 2111 5825Laboratório de Biologia Parasitária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso Do Sul Brasil
| | - Ana Maria Jansen
- grid.418068.30000 0001 0723 0931Laboratório de Biologia em Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro Brasil
| | - Alena Mayo Iñiguez
- grid.418068.30000 0001 0723 0931Laboratório de Biologia em Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro Brasil
| |
Collapse
|
22
|
Reddy S. V. V, Mudnakudu-Nagaraju KK. Screening of B-cell epitopes of Der-p1 and Der-p2 major aeroallergens by computational approach for designing immunotherapeutics. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i5.2126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction and Aim: Allergic diseases are IgE-mediated hypersensitivity reactions affecting approximately 30% of the general population globally. Dermatophagoides pteronyssinus (Der-p) is the most prevalent house dust mite (HDM) species consisting of 23 mite allergen groups. Among these, group 1 and 2 are major allergenic proteins, which causes allergic asthma in 80% of sensitized individuals, with elevated IgE titres in the serum. This study involves in silico analysis of potential B-cell epitopes of group 1 and group 2 of Der-p, which can be utilized in designing immunotherapeutic vaccines.
Materials and Methods: Allergen sequences obtained from the database- International Union of Immunological Societies (IUIS), for predicting of B-cell epitopes. The physiochemical properties and secondary structures of the obtained sequence were evaluated. The sequences were further subjected to determining antigenicity, surface accessibility, and prediction of linear and discontinuous B-cell epitope by utilizing IEDB tools.
Results: The linear and discontinuous B-cell epitopes of Der-p1 and Der-p2 aeroallergen were predicted. Further, Der-p1 and Der-p2 showed 6 linear epitopes each respectively. Conformational epitopes predicted were 123 of Der-p1 and 72 of Der-p2 respectively, by the ElliPro tool. Based on the structure, antigenicity, and surface accessibility, only 10% of Der-p1 and Der-p2 which binds to B-cell epitopes are linear and the majority are discontinuous.
Conclusion: The linear and conformational epitopes of Der-p1 and Der-p2 are predicted using in silico tools. These identified epitopes might be useful for developing epitope-based immunotherapeutics for HDM allergy.
Collapse
|
23
|
Astashkin R, Kovalev K, Bukhdruker S, Vaganova S, Kuzmin A, Alekseev A, Balandin T, Zabelskii D, Gushchin I, Royant A, Volkov D, Bourenkov G, Koonin E, Engelhard M, Bamberg E, Gordeliy V. Structural insights into light-driven anion pumping in cyanobacteria. Nat Commun 2022; 13:6460. [PMID: 36309497 PMCID: PMC9617919 DOI: 10.1038/s41467-022-34019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Transmembrane ion transport is a key process in living cells. Active transport of ions is carried out by various ion transporters including microbial rhodopsins (MRs). MRs perform diverse functions such as active and passive ion transport, photo-sensing, and others. In particular, MRs can pump various monovalent ions like Na+, K+, Cl-, I-, NO3-. The only characterized MR proposed to pump sulfate in addition to halides belongs to the cyanobacterium Synechocystis sp. PCC 7509 and is named Synechocystis halorhodopsin (SyHR). The structural study of SyHR may help to understand what makes an MR pump divalent ions. Here we present the crystal structure of SyHR in the ground state, the structure of its sulfate-bound form as well as two photoreaction intermediates, the K and O states. These data reveal the molecular origin of the unique properties of the protein (exceptionally strong chloride binding and proposed pumping of divalent anions) and sheds light on the mechanism of anion release and uptake in cyanobacterial halorhodopsins. The unique properties of SyHR highlight its potential as an optogenetics tool and may help engineer different types of anion pumps with applications in optogenetics.
Collapse
Affiliation(s)
- R Astashkin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - K Kovalev
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - S Bukhdruker
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - S Vaganova
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - A Kuzmin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Alekseev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - T Balandin
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | | | - I Gushchin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - A Royant
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- European Synchrotron Radiation Facility Grenoble, Grenoble, France
| | - D Volkov
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - G Bourenkov
- European Molecular Biology Laboratory, Hamburg unit c/o DESY, Hamburg, Germany
| | - E Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - M Engelhard
- Department Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - E Bamberg
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - V Gordeliy
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.
- JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
24
|
Kale SM, Schulthess AW, Padmarasu S, Boeven PHG, Schacht J, Himmelbach A, Steuernagel B, Wulff BBH, Reif JC, Stein N, Mascher M. A catalogue of resistance gene homologs and a chromosome-scale reference sequence support resistance gene mapping in winter wheat. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1730-1742. [PMID: 35562859 PMCID: PMC9398310 DOI: 10.1111/pbi.13843] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
A resistance gene atlas is an integral component of the breeder's arsenal in the fight against evolving pathogens. Thanks to high-throughput sequencing, catalogues of resistance genes can be assembled even in crop species with large and polyploid genomes. Here, we report on capture sequencing and assembly of resistance gene homologs in a diversity panel of 907 winter wheat genotypes comprising ex situ genebank accessions and current elite cultivars. In addition, we use accurate long-read sequencing and chromosome conformation capture sequencing to construct a chromosome-scale genome sequence assembly of cv. Attraktion, an elite variety representative of European winter wheat. We illustrate the value of our resource for breeders and geneticists by (i) comparing the resistance gene complements in plant genetic resources and elite varieties and (ii) conducting genome-wide associations scans (GWAS) for the fungal diseases yellow rust and leaf rust using reference-based and reference-free GWAS approaches. The gene content under GWAS peaks was scrutinized in the assembly of cv. Attraktion.
Collapse
Affiliation(s)
- Sandip M. Kale
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Albert W. Schulthess
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | | | | | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | | | - Brande B. H. Wulff
- John Innes CentreNorwich Research ParkNorwichUK
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalSaudi Arabia
| | - Jochen C. Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
- Center for Integrated Breeding Research (CiBreed)Georg‐August‐University GöttingenGöttingenGermany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| |
Collapse
|
25
|
Du X, McManus DP, Fogarty CE, Jones MK, You H. Schistosoma mansoni Fibroblast Growth Factor Receptor A Orchestrates Multiple Functions in Schistosome Biology and in the Host-Parasite Interplay. Front Immunol 2022; 13:868077. [PMID: 35812433 PMCID: PMC9257043 DOI: 10.3389/fimmu.2022.868077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Stem cells play significant roles in driving the complex life cycle of Schistosoma mansoni. Fibroblast growth factor (FGF) receptor A (SmFGFRA) is essential for maintaining the integrity of schistosome stem cells. Using immunolocalization, we demonstrated that SmFGFRA was distributed abundantly in germinal/stem cells of different S. mansoni life stages including eggs, miracidia, cercariae, schistosomula and adult worms. Indeed, SmFGFRA was also localized amply in embryonic cells and in the perinuclear region of immature eggs; von Lichtenberg's layer and the neural mass of mature eggs; the ciliated surface and neural mass of miracidia; the tegument cytosol of cercariae, schistosomula and adult worms; and was present in abundance in the testis and vitellaria of adult worms of S. mansoni. The distribution pattern of SmFGFRA illustrates the importance of this molecule in maintaining stem cells, development of the nervous and reproductive system of schistosomes, and in the host-parasite interplay. We showed SmFGFRA can bind human FGFs, activating the mitogen activated protein kinase (MAPK) pathway of adult worms in vitro. Inhibition of FGF signaling by the specific tyrosine kinase inhibitor BIBF 1120 significantly reduced egg hatching ability and affected the behavior of miracidia hatched from the treated eggs, emphasizing the importance of FGF signaling in driving the life cycle of S. mansoni. Our findings provide increased understanding of the complex schistosome life cycle and host-parasite interactions, indicating components of the FGF signaling pathway may represent promising targets for developing new interventions against schistosomiasis.
Collapse
Affiliation(s)
- Xiaofeng Du
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Donald P. McManus
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Conor E. Fogarty
- Genecology Research Centre, University of the Sunshine Coast, Brisbane, QLD, Australia
| | - Malcolm K. Jones
- School of Veterinary Science, The University of Queensland, Gatton, QLD, Australia
| | - Hong You
- Infection and Inflammation Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
26
|
Wińska P, Widło Ł, Senkara E, Koronkiewicz M, Cieśla JM, Krzyśko A, Skierka K, Cieśla J. Inhibition of Protein Kinase CK2 Affects Thymidylate Synthesis Cycle Enzyme Level and Distribution in Human Cancer Cells. Front Mol Biosci 2022; 9:847829. [PMID: 35281258 PMCID: PMC8914513 DOI: 10.3389/fmolb.2022.847829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT) constitute the thymidylate synthesis cycle providing thymidylate for DNA synthesis and repair. Our previous studies indicated that TS and DHFR are the substrates of protein kinase CK2. This work has been aimed at the elucidation of the effect of CK2 activity on cell cycle progression, thymidylate synthesis enzyme expression and localization, and the role of CK2-mediated TS phosphorylation in in vitro di- and trimolecular complex formation. The results were obtained by means of western blot, confocal microscopy, flow cytometry, quantitative polymerase chain reaction (QPCR), quartz crystal microbalance with dissipation monitoring (QCM-D), and microthermophoresis (MST). Our research indicates that CK2 inhibition does not change the levels of the transcripts; however, it affects the protein levels of DHFR and TS in both tested cell lines, i.e., A549 and CCRF-CEM, and the level of SHMT1 in CCRF-CEM cells. Moreover, we show that CK2-mediated phosphorylation of TS enables the protein (pTS) interaction with SHMT1 and leads to the stability of the tri-complex containing SHMT1, DHFR, and pTS. Our results suggest an important regulatory role of CK2-mediated phosphorylation for inter- and intracellular protein level of enzymes involved in the thymidylate biosynthesis cycle.
Collapse
Affiliation(s)
- Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| | - Łukasz Widło
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Elżbieta Senkara
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | | | - Jarosław M. Cieśla
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Alicja Krzyśko
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Katarzyna Skierka
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
- *Correspondence: Patrycja Wińska, ; Joanna Cieśla,
| |
Collapse
|
27
|
Steger G. Predicting the Structure of a Viroid : Structure, Structure Distribution, Consensus Structure, and Structure Drawing. Methods Mol Biol 2022; 2316:331-371. [PMID: 34845705 DOI: 10.1007/978-1-0716-1464-8_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Viroids are small non-coding RNAs that require a special sequence and structure to be replicated and transported by the host machinery. Many of these features can be predicted and later experimentally verified. Here, we will present workflows to predict viroid structures and draw the predicted structures in a pleasing and descriptive way using recently developed software.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
28
|
Halabi MH, Oladokun JO, Nath PD. Rapid detection of Potato leafroll virus and Potato virus Y by reverse transcription loop-mediated isothermal amplification method in north-east India. J Virol Methods 2021; 300:114363. [PMID: 34843825 DOI: 10.1016/j.jviromet.2021.114363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 11/24/2022]
Abstract
Potato leafroll virus (PLRV) and Potato virus Y (PVY) are two important viruses causing serious potato yield losses in the North-east region and other planting areas in India. As a consequence, it is urgent to develop an efficient and quick method for the identification and diagnosis in the field. The results presented here showed that the reverse transcription loop-mediated isothermal amplification (RT-LAMP) method was efficient and sensitive than reverse transcription-polymerase chain reaction (RT-PCR) for the detection of PLRV and PVY. The RT-LAMP primers specifically targeted PLRV and PVY (including PVYO, PVYN, and PVYNTN strains) and resulted in typical sigmoidal amplification curves. Ten-fold serial dilutions of PLRV and PVY total RNA indicated that RT-LAMP is faster and at least a hundred times more sensitive than RT-PCR in detecting both the viruses. Additionally, samples that RT-PCR could not detect at a diluted concentration of 10-3 and 10-4 ng/μl were identified by RT-LAMP. Thus, RT-LAMP offers many advantages over RT-PCR such as low cost and high accuracy, sensitivity, and specificity for the rapid diagnosis of plant virus diseases. In conclusion, the results highlighted the efficacy of the RT-LAMP method in quickly detecting PLRV and PVY in infected plants.
Collapse
Affiliation(s)
- Mohamad H Halabi
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, 785013, India.
| | - John O Oladokun
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Palash D Nath
- Department of Plant Pathology, Assam Agricultural University, Jorhat, Assam, 785013, India
| |
Collapse
|
29
|
Mondal R, Biswas S, Srivastava A, Basu S, Trivedi M, Singh SK, Mishra Y. In silico analysis and expression profiling of S-domain receptor-like kinases (SD-RLKs) under different abiotic stresses in Arabidopsis thaliana. BMC Genomics 2021; 22:817. [PMID: 34772363 PMCID: PMC8590313 DOI: 10.1186/s12864-021-08133-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 10/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND S-domain receptor-like kinases (SD-RLKs) are an important and multi-gene subfamily of plant receptor-like/pelle kinases (RLKs), which are known to play a significant role in the development and immune responses of Arabidopsis thaliana. The conserved cysteine residues in the extracellular domain of SD-RLKs make them interesting candidates for sensing reactive oxygen species (ROS), assisting oxidative stress mitigation and associated signaling pathways during abiotic stresses. However, how closely SD-RLKs are interrelated to abiotic stress mitigation and signaling remains unknown in A. thaliana. RESULTS This study was initiated by examining the chromosomal localization, phylogeny, sequence and differential expression analyses of 37 SD-RLK genes using publicly accessible microarray datasets under cold, osmotic stress, genotoxic stress, drought, salt, UV-B, heat and wounding. Out of 37 SD-RLKs, 12 genes displayed differential expression patterns in both the root and the shoot tissues. Promoter structure analysis suggested that these 12 SD-RLK genes harbour several potential cis-regulatory elements (CREs), which are involved in regulating multiple abiotic stress responses. Based on these observations, we investigated the expression patterns of 12 selected SD-RLKs under ozone, wounding, oxidative (methyl viologen), UV-B, cold, and light stress at different time points using semi-qRT-PCR. Of these 12 SD-SRKs, the genes At1g61360, At1g61460, At1g61380, and At4g27300 emerged as potential candidates that maintain their expression in most of the stress treatments till exposure for 12 h. Expression patterns of these four genes were further verified under similar stress treatments using qRT-PCR. The expression analysis indicated that the gene At1g61360, At1g61380, and At1g61460 were mostly up-regulated, whereas the expression of At4g27300 either up- or down-regulated in these conditions. CONCLUSIONS To summarize, the computational analysis and differential transcript accumulation of SD-RLKs under various abiotic stresses suggested their association with abiotic stress tolerance and related signaling in A. thaliana. We believe that a further detailed study will decipher the specific role of these representative SD-RLKs in abiotic stress mitigation vis-a-vis signaling pathways in A. thaliana.
Collapse
Affiliation(s)
- Raju Mondal
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.,Current address: Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Center, Central Silk Board-Ministry of Textiles (GoI), Hosur, Tamil Nadu, 635109, India
| | - Subhankar Biswas
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Akanksha Srivastava
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Suvajit Basu
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Maitri Trivedi
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Sunil Kumar Singh
- Plant Cell and Molecular Biology Lab, Department of Botany, Faculty of Science, The MS University of Baroda, Vadodara, Gujarat, 390 002, India
| | - Yogesh Mishra
- Department of Botany, Centre of Advanced Study in Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
30
|
Miao Z, Zhang T, Xie B, Qi Y, Ma C. Evolutionary implications of the RNA N6-methyladenosine methylome in plants. Mol Biol Evol 2021; 39:6388042. [PMID: 34633447 PMCID: PMC8763109 DOI: 10.1093/molbev/msab299] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Epigenetic modifications play important roles in genome evolution and innovation. However, most analyses have focused on the evolutionary role of DNA modifications, and little is understood about the influence of post-transcriptional RNA modifications on genome evolution. To explore the evolutionary significance of RNA modifications, we generated transcriptome-wide profiles of N6-methyladenosine (m6A), the most prevalent internal modification of mRNA, for 13 representative plant species spanning over half a billion years of evolution. These data reveal the evolutionary conservation and divergence of m6A methylomes in plants, uncover the preference of m6A modifications on ancient orthologous genes, and demonstrate less m6A divergence between orthologous gene pairs with earlier evolutionary origins. Further investigation revealed that the evolutionary divergence of m6A modifications is related to sequence variation between homologs from whole genome duplication and gene family expansion from local genome duplication. Unexpectedly, a significant negative correlation was found between the retention ratio of m6A modifications and the number of family members. Moreover, the divergence of m6A modifications is accompanied by variation in the expression level and translation efficiency of duplicated genes from whole and local genome duplication. Our work reveals new insights into evolutionary patterns of m6A methylomes in plant species and their implications, and provides a resource of plant m6A profiles for further studies of m6A regulation and function in an evolutionary context.
Collapse
Affiliation(s)
- Zhenyan Miao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Ting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Bin Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Yuhong Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China
| | - Chuang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Shaanxi, Yangling, 712100, China.,Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Shaanxi, Yangling, 712100, China
| |
Collapse
|
31
|
Nicolas HA, Hua K, Quigley H, Ivare J, Tesson F, Akimenko MA. A CRISPR/Cas9 zebrafish lamin A/C mutant model of muscular laminopathy. Dev Dyn 2021; 251:645-661. [PMID: 34599606 DOI: 10.1002/dvdy.427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 08/13/2021] [Accepted: 09/16/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Lamin A/C gene (LMNA) mutations frequently cause cardiac and/or skeletal muscle diseases called striated muscle laminopathies. We created a zebrafish muscular laminopathy model using CRISPR/Cas9 technology to target the zebrafish lmna gene. RESULTS Heterozygous and homozygous lmna mutants present skeletal muscle damage at 1 day post-fertilization (dpf), and mobility impairment at 4 to 7 dpf. Cardiac structure and function analyses between 1 and 7 dpf show mild and transient defects in the lmna mutants compared to wild type (WT). Quantitative RT-PCR analysis of genes implicated in striated muscle laminopathies show a decrease in jun and nfκb2 expression in 7 dpf homozygous lmna mutants compared to WT. Homozygous lmna mutants have a 1.26-fold protein increase in activated Erk 1/2, kinases associated with striated muscle laminopathies, compared to WT at 7 dpf. Activated Protein Kinase C alpha (Pkc α), a kinase that interacts with lamin A/C and Erk 1/2, is also upregulated in 7 dpf homozygous lmna mutants compared to WT. CONCLUSIONS This study presents an animal model of skeletal muscle laminopathy where heterozygous and homozygous lmna mutants exhibit prominent skeletal muscle abnormalities during the first week of development. Furthermore, this is the first animal model that potentially implicates Pkc α in muscular laminopathies.
Collapse
Affiliation(s)
- Hannah A Nicolas
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Khang Hua
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Hailey Quigley
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Joshua Ivare
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Frédérique Tesson
- Interdisciplinary School of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Marie-Andrée Akimenko
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
32
|
Tria FDK, Martin WF. Gene Duplications Are At Least 50 Times Less Frequent than Gene Transfers in Prokaryotic Genomes. Genome Biol Evol 2021; 13:6380140. [PMID: 34599337 PMCID: PMC8536544 DOI: 10.1093/gbe/evab224] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
The contribution of gene duplications to the evolution of eukaryotic genomes is well studied. By contrast, studies of gene duplications in prokaryotes are scarce and generally limited to a handful of genes or careful analysis of a few prokaryotic lineages. Systematic broad-scale studies of prokaryotic genomes that sample available data are lacking, leaving gaps in our understanding of the contribution of gene duplications as a source of genetic novelty in the prokaryotic world. Here, we report conservative and robust estimates for the frequency of recent gene duplications within prokaryotic genomes relative to recent lateral gene transfer (LGT), as mechanisms to generate multiple copies of related sequences in the same genome. We obtain our estimates by focusing on evolutionarily recent events among 5,655 prokaryotic genomes, thereby avoiding vagaries of deep phylogenetic inference and confounding effects of ancient events and differential loss. We find that recent, genome-specific gene duplications are at least 50 times less frequent and probably 100 times less frequent than recent, genome-specific, gene acquisitions via LGT. The frequency of gene duplications varies across lineages and functional categories. The findings improve our understanding of genome evolution in prokaryotes and have far-reaching implications for evolutionary models that entail LGT to gene duplications ratio as a parameter.
Collapse
Affiliation(s)
- Fernando D K Tria
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - William F Martin
- Department of Biology, Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
33
|
Kubick N, Klimovich P, Bieńkowska I, Poznanski P, Łazarczyk M, Sacharczuk M, Mickael ME. Investigation of Evolutionary History and Origin of the Tre1 Family Suggests a Role in Regulating Hemocytes Cells Infiltration of the Blood-Brain Barrier. INSECTS 2021; 12:insects12100882. [PMID: 34680651 PMCID: PMC8540695 DOI: 10.3390/insects12100882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Understanding the evolutionary association between immune cells and the blood–brain barrier (BBB) is vital to develop therapeutic approaches. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. It is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. The drosophila genome lacks both genes. The Tre1 family (Tre1, moody, and Dmel_CG4313) contribute to regulating transepithelial migration in Drosophila. However, its evolutionary history is not known. We performed phylogenetic analysis to reconstruct the evolutionary history of the Tre1 family. We found Dmel_CG4313 only in insects. Tre1 exists only in invertebrates and is highly conserved. moody evolutionary history is more spread as it appears from Cnidaria up to mammals and is less conserved. The Tre1 family origin seems to be related to opsins. We have identified an SH3 motif in Tre1, moody, and Dmel_CG4313. SH3 regulates actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila. Thus, targeting the Tre1 family could help us regulate access to the brain. Abstract Understanding the evolutionary relationship between immune cells and the blood–brain barrier (BBB) is important to devise therapeutic strategies. In vertebrates, immune cells follow either a paracellular or a transcellular pathway to infiltrate the BBB. In Drosophila, glial cells form the BBB that regulates the access of hemocytes to the brain. However, it is still not known which diapedesis route hemocytes cells follow. In vertebrates, paracellular migration is dependent on PECAM1, while transcellular migration is dependent on the expression of CAV1. Interestingly Drosophila genome lacks both genes. Tre1 family (Tre1, moody, and Dmel_CG4313) play a diverse role in regulating transepithelial migration in Drosophila. However, its evolutionary history and origin are not yet known. We performed phylogenetic analysis, together with HH search, positive selection, and ancestral reconstruction to investigate the Tre1 family. We found that Tre1 exists in Mollusca, Arthropoda, Ambulacraria, and Scalidophora. moody is shown to be a more ancient protein and it has existed since Cnidaria emergence and has a homolog (e.g., GPCR84) in mammals. The third family member (Dmel_CG4313) seems to only exist in insects. The origin of the family seems to be related to the rhodopsin-like family and in particular family α. We found that opsin is the nearest receptor to have a common ancestor with the Tre1 family that has diverged in sponges. We investigated the positive selection of the Tre1 family using PAML. Tre1 seems to have evolved under negative selection, whereas moody has evolved during positive selection. The sites that we found under positive selection are likely to play a role in the speciation of function in the case of moody. We have identified an SH3 motif, in Tre1 and, moody and Dmel_CG4313. SH3 is known to play a fundamental role in regulating actin movement in a Rho-dependent manner in PECAM1. Our results suggest that the Tre1 family could be playing an important role in paracellular diapedesis in Drosophila.
Collapse
Affiliation(s)
- Norwin Kubick
- Department of Biochemistry and Molecular Cell Biology (IBMZ), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany;
| | - Pavel Klimovich
- Department of Immunology, PM Forskningscentreum, 17854 Ekerö, Sweden;
| | - Irmina Bieńkowska
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Piotr Poznanski
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Marzena Łazarczyk
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Mariusz Sacharczuk
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
| | - Michel-Edwar Mickael
- Department of Immunology, PM Forskningscentreum, 17854 Ekerö, Sweden;
- Department of Experimental Genomics, Institute of Animal Biotechnology and Genetics, Polish Academy of Science, Postępu 36A, 05-552 Subcarpathia, Poland; (I.B.); (P.P.); (M.Ł.); (M.S.)
- Correspondence:
| |
Collapse
|
34
|
Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, Ruslinda AR, Voon CH, Uda MNA, Uda MNA, Nadzirah S, Rejali Z, Afzan A, Zakaria II. Designing DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles. Biotechnol Appl Biochem 2021; 69:1966-1983. [PMID: 34554606 DOI: 10.1002/bab.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
Collapse
Affiliation(s)
- F Nadhirah Jaapar
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N Hamidah A Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - F Syakirah Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - A Rahim Ruslinda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute (MGI), National Institute of Biotechnology (NIBM), Kajang, Selangor, Malaysia
| |
Collapse
|
35
|
König KMK, Jahun AS, Nayak K, Drumright LN, Zilbauer M, Goodfellow I, Hosmillo M. Design, development, and validation of a strand-specific RT-qPCR assay for GI and GII human Noroviruses. Wellcome Open Res 2021; 6:245. [PMID: 34708158 PMCID: PMC8506223 DOI: 10.12688/wellcomeopenres.17078.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (HuNoV) are the major cause of viral gastroenteritis worldwide. Similar to other positive-sense single-stranded RNA viruses, norovirus RNA replication requires the formation of a negative strand RNA intermediate. Methods for detecting and quantifying the viral positive or negative sense RNA in infected cells and tissues can be used as important tools in dissecting virus replication. In this study, we have established a sensitive and strand-specific Taqman-based quantitative polymerase chain reaction (qPCR) assay for both genogroups GI and GII HuNoV. This assay shows good reproducibility, has a broad dynamic range and is able to detect a diverse range of isolates. We used tagged primers containing a non-viral sequence for the reverse transcription (RT) reaction and targeted this tag in the succeeding qPCR reaction to achieve strand specificity. The specificity of the assay was confirmed by the detection of specific viral RNA strands in the presence of high levels of the opposing strands, in both RT and qPCR reactions. Finally, we further validated the assay in norovirus replicon-bearing cell lines and norovirus-infected human small intestinal organoids, in the presence or absence of small-molecule inhibitors. Overall, we have established a strand-specific qPCR assay that can be used as a reliable method to understand the molecular details of the human norovirus life cycle.
Collapse
Affiliation(s)
- Katja Marie Kjara König
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
- Insitute of Chemistry and Metabolomics, Center for Structural and Cell Biology in Medicine (CSCM), University of Lübeck, Lübeck, Germany
| | - Aminu S. Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Komal Nayak
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Lydia N. Drumright
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | | | - Ian Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Myra Hosmillo
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
36
|
Borg C, Jahun AS, Thorne L, Sorgeloos F, Bailey D, Goodfellow IG. Murine norovirus virulence factor 1 (VF1) protein contributes to viral fitness during persistent infection. J Gen Virol 2021; 102. [PMID: 34491891 PMCID: PMC8567427 DOI: 10.1099/jgv.0.001651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Murine norovirus (MNV) is widely used as a model for studying norovirus biology. While MNV isolates vary in their pathogenesis, infection of immunocompetent mice mostly results in persistent infection. The ability of a virus to establish a persistent infection is dependent on its ability to subvert or avoid the host immune response. Previously, we described the identification and characterization of virulence factor 1 (VF1) in MNV, and demonstrated its role as an innate immune antagonist. Here, we explore the role of VF1 during persistent MNV infection in an immunocompetent host. Using reverse genetics, we generated MNV-3 viruses carrying a single or a triple termination codon inserted in the VF1 ORF. VF1-deleted MNV-3 replicated to comparable levels to the wildtype virus in tissue culture. Comparative studies between MNV-3 and an acute MNV-1 strain show that MNV-3 VF1 exerts the same functions as MNV-1 VF1, but with reduced potency. C57BL/6 mice infected with VF1-deleted MNV-3 showed significantly reduced replication kinetics during the acute phase of the infection, but viral loads rapidly reached the levels seen in mice infected with wildtype virus after phenotypic restoration of VF1 expression. Infection with an MNV-3 mutant that had three termination codons inserted into VF1, in which reversion was suppressed, resulted in consistently lower replication throughout a 3 month persistent infection in mice, suggesting a role for VF1 in viral fitness in vivo. Our results indicate that VF1 expressed by a persistent strain of MNV also functions to antagonize the innate response to infection. We found that VF1 is not essential for viral persistence, but instead contributes to viral fitness in mice. These data fit with the hypothesis that noroviruses utilize multiple mechanisms to avoid and/or control the host response to infection and that VF1 is just one component of this.
Collapse
Affiliation(s)
- Constantina Borg
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Aminu S Jahun
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| | - Lucy Thorne
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK.,Division of Infection and Immunity, University College London, London, WC1E 6BT, UK
| | - Frédéric Sorgeloos
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK.,Université catholique de Louvain, de Duve Institute, MIPA-VIRO 74-49, 74 Avenue Hippocrate, B-1200 Brussels, Belgium
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| | - Ian G Goodfellow
- Division of Virology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital Level 5, Hills Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
37
|
Atkinson LE, Liu Y, McKay F, Vandewyer E, Viau C, Irvine A, Rosa BA, Li Z, Liang Q, Marks NJ, Maule AG, Mitreva M, Beets I, Li L, Mousley A. Ascaris suum Informs Extrasynaptic Volume Transmission in Nematodes. ACS Chem Neurosci 2021; 12:3176-3188. [PMID: 34347433 DOI: 10.1021/acschemneuro.1c00281] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Neural circuit synaptic connectivities (the connectome) provide the anatomical foundation for our understanding of nematode nervous system function. However, other nonsynaptic routes of communication are known in invertebrates including extrasynaptic volume transmission (EVT), which enables short- and/or long-range communication in the absence of synaptic connections. Although EVT has been highlighted as a facet of Caenorhabditis elegans neurosignaling, no experimental evidence identifies body cavity fluid (pseudocoelomic fluid; PCF) as a vehicle for either neuropeptide or biogenic amine transmission. In the parasitic nematode Ascaris suum, FMRFamide-like peptides encoded on flp-18 potently stimulate female reproductive organs but are expressed in cells that are anatomically distant from the reproductive organ, with no known synaptic connections to this tissue. Here we investigate nonsynaptic neuropeptide signaling in nematodes mediated by the body cavity fluid. Our data show that (i) A. suum PCF (As-PCF) contains a catalog of neuropeptides including FMRFamide-like peptides and neuropeptide-like proteins, (ii) the A. suum FMRFamide-like peptide As-FLP-18A dominates the As-PCF peptidome, (iii) As-PCF potently modulates nematode reproductive muscle function ex vivo, mirroring the effects of synthetic FLP-18 peptides, (iv) As-PCF activates the C. elegans FLP-18 receptors NPR-4 and -5, (v) As-PCF alters C. elegans behavior, and (vi) FLP-18 and FLP-18 receptors display pan-phylum distribution in nematodes. This study provides the first direct experimental evidence to support an extrasynaptic volume route for neuropeptide transmission in nematodes. These data indicate nonsynaptic signaling within the nematode functional connectome and are particularly pertinent to receptor deorphanization approaches underpinning drug discovery programs for nematode pathogens.
Collapse
Affiliation(s)
- Louise E Atkinson
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Yang Liu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Fiona McKay
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Elke Vandewyer
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Charles Viau
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Allister Irvine
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Bruce A Rosa
- McDonnell Genome Institute, and Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Zihui Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Qingxiao Liang
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Nikki J Marks
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Aaron G Maule
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| | - Makedonka Mitreva
- McDonnell Genome Institute, and Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63108, United States
| | - Isabel Beets
- Department of Biology, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Angela Mousley
- Microbes and Pathogen Biology, The Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5DL, U.K
| |
Collapse
|
38
|
Walsh AD, Johnson LJ, Harvey AJ, Kilpatrick TJ, Binder MD. Identification and Characterisation of cis-Regulatory Elements Upstream of the Human Receptor Tyrosine Kinase Gene MERTK. Brain Plast 2021; 7:3-16. [PMID: 34631417 PMCID: PMC8461731 DOI: 10.3233/bpl-200102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND: MERTK encodes a receptor tyrosine kinase that regulates immune homeostasis via phagocytosis of apoptotic cells and cytokine-mediated immunosuppression. MERTK is highly expressed in the central nervous system (CNS), specifically in myeloid derived innate immune cells and its dysregulation is implicated in CNS pathologies including the autoimmune disease multiple sclerosis (MS). OBJECTIVE: While the cell types and tissues that express MERTK have been well described, the genetic elements that define the gene’s promoter and regulate specific transcription domains remain unknown. The primary objective of this study was to define and characterise the human MERTK promoter region. METHODS: We cloned and characterized the 5’ upstream region of MERTK to identify cis-acting DNA elements that promote gene transcription in luciferase reporter assays. In addition, promoter regions were tested for sensitivity to the anti-inflammatory glucocorticoid dexamethasone. RESULTS: This study identified identified both proximal and distal-acting DNA elements that promote transcription. The strongest promoter activity was identified in an ∼850 bp region situated 3 kb upstream of the MERTK transcription start site. Serial deletions of this putative enhancer revealed that the entire region is essential for expression activity. Using in silico analysis, we identified several candidate transcription factor binding sites. Despite a well-established upregulation of MERTK in response to anti-inflammatory glucocorticoids, no DNA region within the 5 kb putative promoter was found to directly respond to dexamethasone treatment. CONCLUSIONS: Elucidating the genetic mechanisms that regulate MERTK expression gives insights into gene regulation during homeostasis and disease, providing potential targets for therapeutic modulation of MERTK transcription.
Collapse
Affiliation(s)
- Alexander D. Walsh
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Laura J. Johnson
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
| | - Alexandra J. Harvey
- School of BioSciences, University of Melbourne, Parkville, Melbourne, Australia
| | - Trevor J. Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- The Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Melbourne, Australia
| | - Michele D. Binder
- The Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Melbourne, Australia
| |
Collapse
|
39
|
Campbell CR, Tiley GP, Poelstra JW, Hunnicutt KE, Larsen PA, Lee HJ, Thorne JL, Dos Reis M, Yoder AD. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity (Edinb) 2021; 127:233-244. [PMID: 34272504 PMCID: PMC8322134 DOI: 10.1038/s41437-021-00446-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations are the raw material on which evolution acts, and knowledge of their frequency and genomic distribution is crucial for understanding how evolution operates at both long and short timescales. At present, the rate and spectrum of de novo mutations have been directly characterized in relatively few lineages. Our study provides the first direct mutation-rate estimate for a strepsirrhine (i.e., the lemurs and lorises), which comprises nearly half of the primate clade. Using high-coverage linked-read sequencing for a focal quartet of gray mouse lemurs (Microcebus murinus), we estimated the mutation rate to be among the highest calculated for a mammal at 1.52 × 10-8 (95% credible interval: 1.28 × 10-8-1.78 × 10-8) mutations/site/generation. Further, we found an unexpectedly low count of paternal mutations, and only a modest overrepresentation of mutations at CpG sites. Despite the surprising nature of these results, we found both the rate and spectrum to be robust to the manipulation of a wide range of computational filtering criteria. We also sequenced a technical replicate to estimate a false-negative and false-positive rate for our data and show that any point estimate of a de novo mutation rate should be considered with a large degree of uncertainty. For validation, we conducted an independent analysis of context-dependent substitution types for gray mouse lemur and five additional primate species for which de novo mutation rates have also been estimated. These comparisons revealed general consistency of the mutation spectrum between the pedigree-based and the substitution-rate analyses for all species compared.
Collapse
Affiliation(s)
- C Ryan Campbell
- Department of Biology, Duke University, Durham, NC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | | | | | - Kelsie E Hunnicutt
- Department of Biology, Duke University, Durham, NC, USA
- Department of Biological Sciences, University of Denver, Denver, CO, USA
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC, USA
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | - Hui-Jie Lee
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Jeffrey L Thorne
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Mario Dos Reis
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
40
|
Leo F, Schwarz FM, Schuchmann K, Müller V. Capture of carbon dioxide and hydrogen by engineered Escherichia coli: hydrogen-dependent CO 2 reduction to formate. Appl Microbiol Biotechnol 2021; 105:5861-5872. [PMID: 34331557 PMCID: PMC8390402 DOI: 10.1007/s00253-021-11463-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
In times of global climate change and the fear of dwindling resources, we are facing different considerable challenges such as the replacement of fossil fuel-based energy carriers with the coincident maintenance of the increasing energy supply of our growing world population. Therefore, CO2 capturing and H2 storing solutions are urgently needed. In this study, we demonstrate the production of a functional and biotechnological interesting enzyme complex from acetogenic bacteria, the hydrogen-dependent CO2 reductase (HDCR), in the well-known model organism Escherichia coli. We identified the metabolic bottlenecks of the host organisms for the production of the HDCR enzyme complex. Here we show that the recombinant expression of a heterologous enzyme complex transforms E. coli into a whole-cell biocatalyst for hydrogen-driven CO2 reduction to formate without the need of any external co-factors or endogenous enzymes in the reaction process. This shifts the industrial platform organism E. coli more and more into the focus as biocatalyst for CO2-capturing and H2-storage. KEY POINTS: • A functional HDCR enzyme complex was heterologously produced in E. coli. • The metabolic bottlenecks for HDCR production were identified. • HDCR enabled E. coli cell to capture and store H2 and CO2 in the form of formate.
Collapse
Affiliation(s)
- Felix Leo
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Fabian M Schwarz
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Kai Schuchmann
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue-Str. 9, 60439, Frankfurt am Main, Germany.
| |
Collapse
|
41
|
He AL, Li HR, Li HP, Gou JY, Chen J, Zhao Q, Zhang JL. Taxonomic description of Pseudomonas rhizovicinus sp. nov., isolated from the rhizosphere of a desert shrub Haloxylon ammodendron. Antonie van Leeuwenhoek 2021; 114:1443-1452. [PMID: 34272636 DOI: 10.1007/s10482-021-01612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
A Gram-negative aerobic bacterium, strain M30-35 T, was isolated from the rhizosphere of Haloxylon ammodendron in Tengger desert, Gansu province, northwest China. Our previous research indicated that strain M30-35 T can promote the growth of ryegrass (Lolium perenne L.). In this study, strain M30-35 T was subjected to a polyphasic taxonomic study. Phylogenetic analysis of the 16S rRNA gene and two other housekeeping genes (gyrB, rpoD) showed that strain M30-35 T is a member of Pseudomonas anguilliseptica group. The average nucleotide identity (ANI) scores for strains KMM 3042 T and FR1439T were 76.5% and 83.7%, respectively, and DNA-DNA hybridization (DDH) were 21.6% and 26.6%, respectively, and the rates were less than the threshold range for species determination. The dominant cellular fatty acids of strain M30-35 T were C16:0 (22.7%), summed feature 3 (C16:1ω7c and/or C16:1ω6c; 18.5%), summed feature 8 (C18:1ω7c and/or C18:1ω6c; 23.1%). The major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phospholipid and aminophospholipid and the predominant respiratory quinone was ubiquinone (Q9). On the basis of above data, it can be concluded that strain M30-35 T represents a novel species in the genus Pseudomonas, for which the name Pseudomonas rhizovicinus sp. nov. is proposed. The type strain is M30-35 T (= MCCC 1K03247T = KCTC 52664 T).
Collapse
Affiliation(s)
- Ao-Lei He
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui-Ru Li
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hui-Ping Li
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jing-Yi Gou
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jia Chen
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qi Zhao
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Jin-Lin Zhang
- Center for Grassland Microbiome, State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
42
|
Dietrich HM, Kremp F, Öppinger C, Ribaric L, Müller V. Biochemistry of methanol-dependent acetogenesis in Eubacterium callanderi KIST612. Environ Microbiol 2021; 23:4505-4517. [PMID: 34125457 DOI: 10.1111/1462-2920.15643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/13/2021] [Indexed: 11/26/2022]
Abstract
Methanol is the simplest of all alcohols, is universally distributed in anoxic sediments as a result of plant material decomposition and is constantly attracting attention as an interesting substrate for anaerobes like acetogens that can convert bio-renewable methanol into value-added chemicals. A major drawback in the development of environmentally friendly but economically attractive biotechnological processes is the present lack of information on biochemistry and bioenergetics during methanol conversion in these bacteria. The mesophilic acetogen Eubacterium callanderi KIST612 is naturally able to consume methanol and produce acetate as well as butyrate. To grasp the full potential of methanol-based production of chemicals, we analysed the genes and enzymes involved in methanol conversion to acetate and identified the redox carriers involved. We will display a complete model for methanol-derived acetogenesis and butyrogenesis in Eubacterium callanderi KIST612, tracing the electron transfer routes and shed light on the bioenergetics during the process.
Collapse
Affiliation(s)
- Helge M Dietrich
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Florian Kremp
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Christian Öppinger
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Luna Ribaric
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University, Max-von-Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
43
|
Reigada I, San-Martin-Galindo P, Gilbert-Girard S, Chiaro J, Cerullo V, Savijoki K, Nyman TA, Fallarero A, Miettinen I. Surfaceome and Exoproteome Dynamics in Dual-Species Pseudomonas aeruginosa and Staphylococcus aureus Biofilms. Front Microbiol 2021; 12:672975. [PMID: 34248881 PMCID: PMC8267900 DOI: 10.3389/fmicb.2021.672975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/21/2021] [Indexed: 01/12/2023] Open
Abstract
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms. In this study, we investigated the interaction between two clinically relevant bacterial pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) by label-free quantitative proteomics focusing on proteins associated with the bacterial cell surfaces (surfaceome) and proteins exported/released to the extracellular space (exoproteome). The changes observed in the surfaceome and exoproteome of P. aeruginosa pointed toward higher motility and lower pigment production when co-cultured with S. aureus. In S. aureus, lower abundances of proteins related to cell wall biosynthesis and cell division, suggesting increased persistence, were observed in the dual-species biofilm. Complementary phenotypic analyses confirmed the higher motility and the lower pigment production in P. aeruginosa when co-cultured with S. aureus. Higher antimicrobial tolerance associated with the co-culture setting was additionally observed in both species. To the best of our knowledge, this study is among the first systematic explorations providing insights into the dynamics of both the surfaceome and exoproteome of S. aureus and P. aeruginosa dual-species biofilms.
Collapse
Affiliation(s)
- Inés Reigada
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paola San-Martin-Galindo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Shella Gilbert-Girard
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jacopo Chiaro
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Vincenzo Cerullo
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Kirsi Savijoki
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Adyary Fallarero
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilkka Miettinen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
44
|
Kao MR, Yu SM, Ho THUD. Improvements of the productivity and saccharification efficiency of the cellulolytic β-glucosidase D2-BGL in Pichia pastoris via directed evolution. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:126. [PMID: 34059121 PMCID: PMC8166090 DOI: 10.1186/s13068-021-01973-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/17/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND β-Glucosidases are essential for cellulose hydrolysis by catalyzing the final cellulolytic degradation of cello-oligomers and cellobiose to glucose. D2-BGL is a fungal glycoside hydrolase family 3 (GH3) β-glucosidase isolated from Chaetomella raphigera with high substrate affinity, and is an efficient β-glucosidase supplement to Trichoderma reesei cellulase mixtures for the saccharification of lignocellulosic biomass. RESULTS We have carried out error-prone PCR to further increase catalytic efficiency of wild-type (WT) D2-BGL. Three mutants, each with substitution of two amino acids on D2-BGL, exhibited increased activity in a preliminary mutant screening in Saccharomyces cerevisiae. Effects of single amino acid replacements on catalysis efficiency and enzyme production have been investigated by subsequent expression in Pichia pastoris. Substitution F256M resulted in enhancing the tolerance to substrate inhibition and specific activity, and substitution D224G resulted in increasing the production of recombinant enzyme. The best D2-BGL mutant generated, Mut M, was constructed by combining beneficial mutations D224G, F256M and Y260D. Expression of Mut M in Pichia pastoris resulted in 2.7-fold higher production of recombinant protein, higher Vmax and greater substrate inhibition tolerance towards cellobiose relative to wild-type enzyme. Surprisingly, Mut M overexpression induced the ER unfolded protein response to a level lower than that with WT D2 overexpression in P. pastoris. When combined with the T. reesei cellulase preparation Celluclast 1.5L, Mut M hydrolyzed acid-pretreated sugarcane bagasse more efficiently than WT D2. CONCLUSIONS D2-BGL mutant Mut M was generated successfully by following directed evolution approach. Mut M carries three mutations that are not reported in other directed evolution studies of GH3 β-glucosidases, and this mutant exhibited greater tolerance to substrate inhibition and higher Vmax than wild-type enzyme. Besides the enhanced specific activity, Mut M also exhibited a higher protein titer than WT D2 when it was overexpressed in P. pastoris. Our study demonstrates that both catalytic efficiency and productivity of a cellulolytic enzyme can be enhanced via protein engineering.
Collapse
Affiliation(s)
- Mu-Rong Kao
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, 115 Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, 115 Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung, 402 Taiwan
- Department of Life Sciences, National Chung Hsing University, Taichung, 402 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
| | - Tuan-H ua David Ho
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115 Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung, 402 Taiwan
| |
Collapse
|
45
|
Tuazon FB, Wang X, Andrade JL, Umulis D, Mullins MC. Proteolytic Restriction of Chordin Range Underlies BMP Gradient Formation. Cell Rep 2021; 32:108039. [PMID: 32814043 PMCID: PMC7731995 DOI: 10.1016/j.celrep.2020.108039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/22/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
A fundamental question in developmental biology is how morphogens, such as bone morphogenetic protein (BMP), form precise signaling gradients to impart positional and functional identity to the cells of the early embryo. We combine rigorous mutant analyses with quantitative immunofluorescence to determine that the proteases Bmp1a and Tolloid spatially restrict the BMP antagonist Chordin in dorsoventral (DV) axial patterning of the early zebrafish gastrula. We show that maternally deposited Bmp1a plays an unexpected and non-redundant role in establishing the BMP signaling gradient, while the Bmp1a/Tolloid antagonist Sizzled is surprisingly dispensable. Combining computational modeling and in vivo analyses with an immobile Chordin construct, we demonstrate that long-range Chordin diffusion is not necessary for BMP gradient formation and DV patterning. Our data do not support a counter-gradient of Chordin and instead favor a Chordin sink, established by Bmp1a and Tolloid, as the primary mechanism that drives BMP gradient formation. The BMP morphogen generates a precise signaling gradient during axial patterning. In the zebrafish embryo, Tuazon et al. find that proteases Bmp1a/Tolloid are key to this process, preventing the long-range diffusion of the BMP antagonist, Chordin. By regionally restricting Chordin, Bmp1a/Tolloid establish the signaling sink that drives BMP gradient formation.
Collapse
Affiliation(s)
- Francesca B Tuazon
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Xu Wang
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Jonathan Lee Andrade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David Umulis
- Department of Agriculture and Biological Engineering, Purdue University, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| | - Mary C Mullins
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
46
|
Emamalizadeh B, Daneshmandpour Y, Kazeminasb S, Aghaei Moghadam E, Bahmanpour Z, Alehabib E, Alinaghi S, Doozandeh A, Atakhorrami M, Darvish H. Mutational analysis of CYP1B1 gene in Iranian pedigrees with glaucoma reveals known and novel mutations. Int Ophthalmol 2021; 41:3269-3276. [PMID: 34019190 DOI: 10.1007/s10792-021-01888-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/12/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE Primary congenital glaucoma (PCG) (OMIM#231,300) can be caused by pathogenic sequence variations in CYP1B1, LTBP2, MYOC and PXDN genes. The purpose of this study was to investigate mutations in the CYP1B1 gene in families affected with primary congenital glaucoma (PCG) using linkage analysis and Sanger sequencing. METHODS A total number of four families with nine affected PCG patients during six months were included in this study. The mutations were identified by homozygosity mapping to find the linked loci and then direct sequencing of all coding exons, the exon-intron boundaries and the 5' untranslated region of CYP1B1 using genomic DNA obtained from affected family members and their parents. Moreover, bioinformatic tools were applied to study mutation effect on protein structure and function. RESULTS A total of four mutations were identified, and three of these were novel. Two were missense mutations: One was truncating mutation, and the other was an in-frame deletion. Mutations in CYP1B1 could fully explain the PCG phenotype in all of the patients. Also, the bioinformatic study of the mutations showed the structure of the protein is affected, and it is well conserved among similar species. CONCLUSION In this study, we identified 4 CYP1B1 mutations, 3 of which were novel. In silico analysis of identified mutations confirmed their molecular pathogenicity. A similar analysis will help understand the biological role of CYP1B1 and the effect of mutations on the regulatory and enzymatic functions of CYP1B1 that result in PCG. CLINICAL TRIALS REGISTRATION Not relevant.
Collapse
Affiliation(s)
- Babak Emamalizadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Daneshmandpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somayeh Kazeminasb
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Aghaei Moghadam
- Department of Pediatrics, School of Medicine, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Bahmanpour
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Alehabib
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Alinaghi
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Doozandeh
- Department of Ophthalmology, Torfeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Minoo Atakhorrami
- Department of Biology, Faculty of Basic Sciences, East Tehran Branch (Ghiamdasht), Islamic Azad University, Tehran, Iran.
| | - Hossein Darvish
- Department of Medical Genetics, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran. .,Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
47
|
Taliercio E, Loveless T. Identification of epitopes in the α and β subunits of soybean β-conglycinin immunogenic in chickens. FOOD AGR IMMUNOL 2021. [DOI: 10.1080/09540105.2021.1911960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
48
|
Robinson RA, Griffiths SC, van de Haar LL, Malinauskas T, van Battum EY, Zelina P, Schwab RA, Karia D, Malinauskaite L, Brignani S, van den Munkhof MH, Düdükcü Ö, De Ruiter AA, Van den Heuvel DMA, Bishop B, Elegheert J, Aricescu AR, Pasterkamp RJ, Siebold C. Simultaneous binding of Guidance Cues NET1 and RGM blocks extracellular NEO1 signaling. Cell 2021; 184:2103-2120.e31. [PMID: 33740419 PMCID: PMC8063088 DOI: 10.1016/j.cell.2021.02.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 01/15/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.
Collapse
Affiliation(s)
- Ross A Robinson
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Samuel C Griffiths
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Eljo Y van Battum
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Rebekka A Schwab
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Lina Malinauskaite
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Sara Brignani
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Marleen H van den Munkhof
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Özge Düdükcü
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Anna A De Ruiter
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Dianne M A Van den Heuvel
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands
| | - Benjamin Bishop
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Jonathan Elegheert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - A Radu Aricescu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, Universiteitsweg 100, 3584 CG Utrecht, the Netherlands.
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK.
| |
Collapse
|
49
|
Strange DS, Gaffin SS, Holloway WB, Kinsella MD, Wisotsky JN, McFeeters H, McFeeters RL. Natural Product Inhibition and Enzyme Kinetics Related to Phylogenetic Characterization for Bacterial Peptidyl-tRNA Hydrolase 1. Molecules 2021; 26:molecules26082281. [PMID: 33920799 PMCID: PMC8071115 DOI: 10.3390/molecules26082281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Abstract
With the relentless development of drug resistance and re-emergence of many pathogenic bacteria, the need for new antibiotics and new antibiotic targets is urgent and growing. Bacterial peptidyl-tRNA hydrolase, Pth1, is emerging as a promising new target for antibiotic development. From the conserved core and high degree of structural similarity, broad-spectrum inhibition is postulated. However, Pth1 small-molecule inhibition is still in the earliest stages. Focusing on pathogenic bacteria, herein we report the phylogenetic classification of Pth1 and natural product inhibition spanning phylogenetic space. While broad-spectrum inhibition is found, narrow-spectrum and even potentially clade-specific inhibition is more frequently observed. Additionally reported are enzyme kinetics and general in vitro Pth1 solubility that follow phylogenetic boundaries along with identification of key residues in the gate loop region that appear to govern both. The studies presented here demonstrate the sizeable potential for small-molecule inhibition of Pth1, improve understanding of Pth enzymes, and advance Pth1 as a much-needed novel antibiotic target.
Collapse
Affiliation(s)
- D. Scott Strange
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (D.S.S.); (W.B.H.); (H.M.)
| | - Steven S. Gaffin
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.S.G.); (M.D.K.); (J.N.W.)
| | - W. Blake Holloway
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (D.S.S.); (W.B.H.); (H.M.)
| | - Meredyth D. Kinsella
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.S.G.); (M.D.K.); (J.N.W.)
| | - Jacob N. Wisotsky
- Department of Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (S.S.G.); (M.D.K.); (J.N.W.)
| | - Hana McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (D.S.S.); (W.B.H.); (H.M.)
| | - Robert L. McFeeters
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA; (D.S.S.); (W.B.H.); (H.M.)
- Correspondence: ; Tel.: +1-256-824-6023
| |
Collapse
|
50
|
Zhang G, Ding Q, Wei B. Genome-wide identification of superoxide dismutase gene families and their expression patterns under low-temperature, salt and osmotic stresses in watermelon and melon. 3 Biotech 2021; 11:194. [PMID: 33927985 DOI: 10.1007/s13205-021-02726-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/10/2021] [Indexed: 12/01/2022] Open
Abstract
The growth and development of watermelon and melon are affected by abiotic stresses such as cold, salinity and drought. Plant superoxide dismutase (SOD) proteins exerted great effects on plant growth, development and response to abiotic stresses. However, little is known about the characteristics of watermelon and melon SOD gene families and their expression patterns under abiotic stresses. In this study, the genome-wide identification of SOD genes and their expression patterns under abiotic stresses has been done in watermelon and melon. Seven SODs were identified in watermelon and melon, respectively. Chromosome location indicated that the SODs were dispersedly distributed on 4-6 chromosomes. Almost all the SOD proteins contained 300 amino acids or less and the intron numbers of SODs ranged from 5 to 7. On the basis of phylogenetic analysis, the SODs were classified into six sub-groups which was also verified by similar motif composition, gene structure and sub-cellular location. Gene ontology analysis displayed that many SOD proteins participated in binding, catalytic, antioxidant activity and stimulus-response. Cis-regulatory elements related to stresses and hormones were found in the promoters of the SODs. Based on the quantitative real-time PCR, most of CmSOD and ClSOD genes showed obvious up-regulation under low-temperature, NaCl and PEG6000 treatments. The abiotic stress-responsive SOD genes were identified to improve watermelon and melon tolerance against abiotic stresses. This was a preliminary study to describe the genome-wide analysis of SOD gene family in watermelon and melon, and the results would facilitate further study of gene cloning and functional verification of SOD genes response to abiotic stresses in watermelon and melon. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02726-7.
Collapse
Affiliation(s)
- Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| | - Qian Ding
- College of Floriculture, Weifang Engineering Vocational College, Qingzhou, 262500 Shandong China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 Gansu China
| |
Collapse
|