1
|
Oleksiewicz U, Kuciak M, Jaworska A, Adamczak D, Bisok A, Mierzejewska J, Sadowska J, Czerwinska P, Mackiewicz AA. The Roles of H3K9me3 Writers, Readers, and Erasers in Cancer Immunotherapy. Int J Mol Sci 2024; 25:11466. [PMID: 39519018 PMCID: PMC11546771 DOI: 10.3390/ijms252111466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The interplay between cancer and the immune system has captivated researchers for a long time. Recent developments in cancer immunotherapy have substantiated this interest with a significant benefit to cancer patients. Tumor and immune cells are regulated via a wide range of molecular mechanisms involving intricate transcriptional and epigenetic networks. Epigenetic processes influence chromatin structure and accessibility, thus governing gene expression, replication, and DNA damage repair. However, aberrations within epigenetic signatures are frequently observed in cancer. One of the key epigenetic marks is the trimethylation of histone 3 at lysine 9 (H3K9me3), confined mainly within constitutive heterochromatin to suppress DNA accessibility. It is deposited at repetitive elements, centromeric and telomeric loci, as well as at the promoters of various genes. Dysregulated H3K9me3 deposition disrupts multiple pathways, including immune signaling. Consequently, altered H3K9me3 dynamics may modify the efficacy of immunotherapy. Indeed, growing evidence highlights the pivotal roles of various proteins mediating H3K9me3 deposition (SETDB1/2, SUV39H1/2), erasure (KDM3, KDM4 families, KDM7B, LSD1) and interpretation (HP1 proteins, KAP1, CHD4, CDYL, UHRF1) in modulating immunotherapy effectiveness. Here, we review the existing literature to synthesize the available information on the influence of these H3K9me3 writers, erasers, and readers on the response to immunotherapy.
Collapse
Affiliation(s)
- Urszula Oleksiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Monika Kuciak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Anna Jaworska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Dominika Adamczak
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Anna Bisok
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Julia Mierzejewska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Justyna Sadowska
- Department of Health Sciences, The Jacob of Paradies University, 66-400 Gorzow Wielkopolski, Poland
| | - Patrycja Czerwinska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| | - Andrzej A. Mackiewicz
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 61-866 Poznan, Poland
| |
Collapse
|
2
|
Wu W, Fan Z, Fu H, Ma X, Wang D, Liu H, Zhang C, Zheng H, Yang Y, Wu H, Miao X, An R, Gong Y, Tang TS, Guo C. VGLL3 modulates chemosensitivity through promoting DNA double-strand break repair. SCIENCE ADVANCES 2024; 10:eadr2643. [PMID: 39383226 PMCID: PMC11463272 DOI: 10.1126/sciadv.adr2643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Transcription cofactor vestigial-like 3 (VGLL3), as a master regulator of female-biased autoimmunity, also functions in tumor development, while the underlying mechanisms remain largely elusive. Here, we report that VGLL3 plays an important role in DNA damage response (DDR). VGLL3 can be recruited to damage sites in a PARylation-dependent manner. VGLL3 depletion impairs the accumulation of RNF8 and RAD51 at sites of DNA damage, leading to reduced homologous recombination efficiency and increased cellular sensitivity to chemotherapeutic drugs. Mechanistically, VGLL3 can prevent CtIP from KLHL15-mediated ubiquitination and degradation through competitive binding with KLHL15 and, meanwhile, stabilize MDC1 by limiting TRIP12-MDC1 but promoting USP7-MDC1 associations for optimal RNF8 signaling initiation. Consistently, VGLL3 depletion delays tumor development and sensitizes the xenografts to etoposide treatment. Overall, our results reveal an unexpected role of VGLL3 in DDR, which is distinct from its transcriptional cofactor function and not conserved among VGLL family members.
Collapse
Affiliation(s)
- Wei Wu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenzhen Fan
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Fu
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolu Ma
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Dongzhou Wang
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Liu
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Chuanchao Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zheng
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yeran Yang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Honglin Wu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xiuxiu Miao
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiyuan An
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifei Gong
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tie-Shan Tang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Organ Regeneration and Reconstruction’State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Caixia Guo
- China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Meng H, Miao H, Zhang Y, Chen T, Yuan L, Wan Y, Jiang Y, Zhang L, Cheng W. YBX1 promotes homologous recombination and resistance to platinum-induced stress in ovarian cancer by recognizing m5C modification. Cancer Lett 2024; 597:217064. [PMID: 38880223 DOI: 10.1016/j.canlet.2024.217064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Platinum-based chemotherapy causes genetic damage and induces apoptosis in ovarian cancer cells. Enhancing the ability to resist platinum drug-induced DNA damage and apoptotic stress is critical for tumor cells to acquire drug resistance. Here, we found that Y-box binding protein 1 (YBX1) was highly expressed in cisplatin-resistant patient-derived organoids (PDOs) and was a crucial gene for alleviating platinum-induced stress and maintaining drug resistance characteristics in ovarian cancer cells. Mechanistically, YBX1 recognized m5C modifications in CHD3 mRNA and maintained mRNA stability by recruiting PABPC1 protein. This regulatory process enhanced chromatin accessibility and improved the efficiency of homologous recombination (HR) repair, facilitating tumor cells to withstand platinum-induced apoptotic stress. In addition, SU056, an inhibitor of YBX1, exhibited the potential to reverse platinum resistance in subcutaneous and PDO orthotopic xenograft models. In conclusion, YBX1 is critical for ovarian cancer cells to alleviate the platinum-induced stress and may be a potential target for reversing drug-resistant therapies.
Collapse
Affiliation(s)
- Huangyang Meng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huixian Miao
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yashuang Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Chen
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Yuan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yicong Wan
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Yi Jiang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China
| | - Lin Zhang
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Wenjun Cheng
- Department of Gynecology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China; Branch Of National Clinical Research Center For Gynecology and Obstetrics, China; Maternal and Child Center Laboratory, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
Liu Z, Ajit K, Wu Y, Zhu WG, Gullerova M. The GATAD2B-NuRD complex drives DNA:RNA hybrid-dependent chromatin boundary formation upon DNA damage. EMBO J 2024; 43:2453-2485. [PMID: 38719994 PMCID: PMC11183058 DOI: 10.1038/s44318-024-00111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/19/2024] Open
Abstract
Double-strand breaks (DSBs) are the most lethal form of DNA damage. Transcriptional activity at DSBs, as well as transcriptional repression around DSBs, are both required for efficient DNA repair. The chromatin landscape defines and coordinates these two opposing events. However, how the open and condensed chromatin architecture is regulated remains unclear. Here, we show that the GATAD2B-NuRD complex associates with DSBs in a transcription- and DNA:RNA hybrid-dependent manner, to promote histone deacetylation and chromatin condensation. This activity establishes a spatio-temporal boundary between open and closed chromatin, which is necessary for the correct termination of DNA end resection. The lack of the GATAD2B-NuRD complex leads to chromatin hyperrelaxation and extended DNA end resection, resulting in homologous recombination (HR) repair failure. Our results suggest that the GATAD2B-NuRD complex is a key coordinator of the dynamic interplay between transcription and the chromatin landscape, underscoring its biological significance in the RNA-dependent DNA damage response.
Collapse
Affiliation(s)
- Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Kamal Ajit
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | - Yupei Wu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518055, Shenzhen, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Shenzhen University International Cancer Center, Marshall Laboratory of Biomedical Engineering, Department of Biochemistry and Molecular Biology, Shenzhen University School of Medicine, 518055, Shenzhen, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, United Kingdom.
| |
Collapse
|
5
|
Geyer F, Geyer M, Reuning U, Klapproth S, Wolff KD, Nieberler M. CHD4 acts as a prognostic factor and drives radioresistance in HPV negative HNSCC. Sci Rep 2024; 14:8286. [PMID: 38594331 PMCID: PMC11003975 DOI: 10.1038/s41598-024-58958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Despite great efforts in improving existing therapies, the outcome of patients with advanced radioresistant HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. The chromatin remodeler Chromodomain helicase DNA binding protein 4 (CHD4) is involved in different DNA-repair mechanisms, but the role and potential in HNSCC has not been explored yet. In the present study, we evaluated the prognostic significance of CHD4 expression using in silico analysis of the pan-cancer dataset. Furthermore, we established a monoclonal HNSCC CHD4 knockdown cell clone utilizing the CRISPR/Cas9 system. Effects of lower CHD4 expression on radiosensitivity after increasing doses of ionizing radiation were characterized using clonogenic assays and cell numbers. The in silico analysis revealed that high CHD4 expression is associated with significant poorer overall survival of HPV-negative HNSCC patients. Additionally, the knockdown of CHD4 significantly increased the radiosensitivity of HNSCC cells. Therefore, CHD4 might be involved in promoting radioresistance in hard-to-treat HPV-negative HNSCC entities. We conclude that CHD4 could serve as a prognostic factor in HPV-negative HNSCC tumors and is a potential target protein overcoming radioresistance in HNSCC. Our results and the newly established cell clone laid the foundation to further characterize the underlying mechanisms and ultimately use CHD4 in HNSCC therapies.
Collapse
Affiliation(s)
- Fabian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.
| | - Maximilian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, 81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| |
Collapse
|
6
|
Zhang M, Wu K, Zhang W, Lin X, Cao Q, Zhang L, Chen K. The therapeutic potential of targeting the CHD protein family in cancer. Pharmacol Ther 2024; 256:108610. [PMID: 38367868 PMCID: PMC10942663 DOI: 10.1016/j.pharmthera.2024.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/06/2024] [Accepted: 02/02/2024] [Indexed: 02/19/2024]
Abstract
Accumulating evidence indicates that epigenetic events undergo deregulation in various cancer types, playing crucial roles in tumor development. Among the epigenetic factors involved in the epigenetic remodeling of chromatin, the chromodomain helicase DNA-binding protein (CHD) family frequently exhibits gain- or loss-of-function mutations in distinct cancer types. Therefore, targeting CHD remodelers holds the potential for antitumor treatment. In this review, we discuss epigenetic regulations of cancer development. We emphasize proteins in the CHD family, delving deeply into the intricate mechanisms governing their functions. Additionally, we provide an overview of current therapeutic strategies targeting CHD family members in preclinical trials. We further discuss the promising approaches that have demonstrated early signs of success in cancer treatment.
Collapse
Affiliation(s)
- Min Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Kaiyuan Wu
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Weijie Zhang
- Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China; Department of Orthopaedic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xia Lin
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Qi Cao
- Department of Urology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lili Zhang
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA
| | - Kaifu Chen
- Basic and Translational Research Division, Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Prostate Cancer Program, Dana-Farber and Harvard Cancer Center, Harvard University, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Pinto Jurado E, Smith R, Bigot N, Chapuis C, Timinszky G, Huet S. The recruitment of ACF1 and SMARCA5 to DNA lesions relies on ADP-ribosylation dependent chromatin unfolding. Mol Biol Cell 2024; 35:br7. [PMID: 38170578 PMCID: PMC10916859 DOI: 10.1091/mbc.e23-07-0281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
ADP-ribosylation signaling orchestrates the recruitment of various repair actors and chromatin remodeling processes promoting access to lesions during the early stages of the DNA damage response. The chromatin remodeler complex ACF, composed of the ATPase subunit SMARCA5/SNF2H and the cofactor ACF1/BAZ1A, is among the factors that accumulate at DNA lesions in an ADP-ribosylation dependent manner. In this work, we show that each subunit of the ACF complex accumulates to DNA breaks independently from its partner. Furthermore, we demonstrate that the recruitment of SMARCA5 and ACF1 to sites of damage is not due to direct binding to the ADP-ribose moieties but due to facilitated DNA binding at relaxed ADP-ribosylated chromatin. Therefore, our work provides new insights regarding the mechanisms underlying the timely accumulation of ACF1 and SMARCA5 to DNA lesions, where they contribute to efficient DNA damage resolution.
Collapse
Affiliation(s)
- Eva Pinto Jurado
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, 6720 Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Nicolas Bigot
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6726 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), F-35000 Rennes, France
- Institut Universitaire de France, F-75000 Paris, France
| |
Collapse
|
8
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
9
|
Graca Marques J, Pavlovic B, Ngo QA, Pedot G, Roemmele M, Volken L, Kisele S, Perbet R, Wachtel M, Schäfer BW. The Chromatin Remodeler CHD4 Sustains Ewing Sarcoma Cell Survival by Controlling Global Chromatin Architecture. Cancer Res 2024; 84:241-257. [PMID: 37963210 DOI: 10.1158/0008-5472.can-22-3950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 08/30/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
Ewing sarcoma is an aggressive cancer with a defective response to DNA damage leading to an enhanced sensitivity to genotoxic agents. Mechanistically, Ewing sarcoma is driven by the fusion transcription factor EWS-FLI1, which reprograms the tumor cell epigenome. The nucleosome remodeling and deacetylase (NuRD) complex is an important regulator of chromatin function, controlling both gene expression and DNA damage repair, and has been associated with EWS-FLI1 activity. Here, a NuRD-focused CRISPR/Cas9 inactivation screen identified the helicase CHD4 as essential for Ewing sarcoma cell proliferation. CHD4 silencing induced tumor cell death by apoptosis and abolished colony formation. Although CHD4 and NuRD colocalized with EWS-FLI1 at enhancers and super-enhancers, CHD4 promoted Ewing sarcoma cell survival not by modulating EWS-FLI1 activity and its oncogenic gene expression program but by regulating chromatin structure. CHD4 depletion led to a global increase in DNA accessibility and induction of spontaneous DNA damage, resulting in an increased susceptibility to DNA-damaging agents. CHD4 loss delayed tumor growth in vivo, increased overall survival, and combination with PARP inhibition by olaparib treatment further suppressed tumor growth. Collectively, these findings highlight the NuRD subunit CHD4 as a therapeutic target in Ewing sarcoma that can potentiate the antitumor activity of genotoxic agents. SIGNIFICANCE CRISPR/Cas9 screening in Ewing sarcoma identifies a dependency on CHD4, which is crucial for the maintenance of chromatin architecture to suppress DNA damage and a promising therapeutic target for DNA damage repair-deficient malignancies.
Collapse
Affiliation(s)
- Joana Graca Marques
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Blaz Pavlovic
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Quy A Ngo
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Gloria Pedot
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Michaela Roemmele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Larissa Volken
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Romain Perbet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Marco Wachtel
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Beat W Schäfer
- Department of Oncology and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Smith R, Zentout S, Rother M, Bigot N, Chapuis C, Mihuț A, Zobel FF, Ahel I, van Attikum H, Timinszky G, Huet S. HPF1-dependent histone ADP-ribosylation triggers chromatin relaxation to promote the recruitment of repair factors at sites of DNA damage. Nat Struct Mol Biol 2023; 30:678-691. [PMID: 37106138 DOI: 10.1038/s41594-023-00977-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/28/2023] [Indexed: 04/29/2023]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) activity is regulated by its co-factor histone poly(ADP-ribosylation) factor 1 (HPF1). The complex formed by HPF1 and PARP1 catalyzes ADP-ribosylation of serine residues of proteins near DNA breaks, mainly PARP1 and histones. However, the effect of HPF1 on DNA repair regulated by PARP1 remains unclear. Here, we show that HPF1 controls prolonged histone ADP-ribosylation in the vicinity of the DNA breaks by regulating both the number and length of ADP-ribose chains. Furthermore, we demonstrate that HPF1-dependent histone ADP-ribosylation triggers the rapid unfolding of chromatin, facilitating access to DNA at sites of damage. This process promotes the assembly of both the homologous recombination and non-homologous end joining repair machineries. Altogether, our data highlight the key roles played by the PARP1/HPF1 complex in regulating ADP-ribosylation signaling as well as the conformation of damaged chromatin at early stages of the DNA damage response.
Collapse
Affiliation(s)
- Rebecca Smith
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France.
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| | - Siham Zentout
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Magdalena Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicolas Bigot
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Catherine Chapuis
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France
| | - Alexandra Mihuț
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary.
| | - Sébastien Huet
- University of Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSIT - UMS3480, Rennes, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
11
|
Wang J, Zhong F, Li J, Yue H, Li W, Lu X. The epigenetic factor CHD4 contributes to metastasis by regulating the EZH2/β-catenin axis and acts as a therapeutic target in ovarian cancer. J Transl Med 2023; 21:38. [PMID: 36681835 PMCID: PMC9862813 DOI: 10.1186/s12967-022-03854-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/26/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The overall survival rate of patients with advanced ovarian cancer (OC) has remained static for several decades. Advanced ovarian cancer is known for its poor prognosis due to extensive metastasis. Epigenetic alterations contribute to tumour progression and therefore are of interest for potential therapeutic strategies. METHODS Following our previous study, we identified that CHD4, a chromatin remodelling factor, plays a strong role in ovarian cancer cell metastasis. We investigated the clinical significance of CHD4 through TCGA and GEO database analyses and explored the effect of CHD4 expression modulation and romidepsin treatment on the biological behaviour of ovarian cancer through CCK-8 and transwell assays. Bioluminescence imaging of tumours in xenografted mice was applied to determine the therapeutic effect of romidepsin. GSEA and western blotting were used to screen the regulatory mechanism of CHD4. RESULTS In ovarian cancer patient specimens, high CHD4 expression was associated with a poor prognosis. Loss of function of CHD4 in ovarian cancer cells induced suppression of migration and invasion. Mechanistically, CHD4 knockdown suppressed the expression of EZH2 and the nuclear accumulation of β-catenin. CHD4 also suppressed the metastasis of ovarian cancer cells and prevented disease progression in a mouse model. To inhibit the functions of CHD4 that are mediated by histone deacetylase, we evaluated the effect of the HDAC1/2 selective inhibitor romidepsin. Our findings indicated that treatment with romidepsin suppressed the progression of metastases in vitro and in vivo. CONCLUSIONS Collectively, our results uncovered an oncogenic function of CHD4 in ovarian cancer and provide a rationale for clinical trials of romidepsin in ovarian cancer patients.
Collapse
Affiliation(s)
- Jieyu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China
| | - Fangfang Zhong
- Department of Pathology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Huiran Yue
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
| | - Wenzhi Li
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200090, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, 200090, China.
| |
Collapse
|
12
|
Awwad SW, Darawshe MM, Machour FE, Arman I, Ayoub N. Recruitment of RBM6 to DNA Double-Strand Breaks Fosters Homologous Recombination Repair. Mol Cell Biol 2023; 43:130-142. [PMID: 36941773 PMCID: PMC10038030 DOI: 10.1080/10985549.2023.2187105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 12/20/2022] [Accepted: 02/01/2023] [Indexed: 03/23/2023] Open
Abstract
DNA double-strand breaks (DSBs) are highly toxic lesions that threaten genome integrity and cell survival. To avoid harmful repercussions of DSBs, a wide variety of DNA repair factors are recruited to execute DSB repair. Previously, we demonstrated that RBM6 splicing factor facilitates homologous recombination (HR) of DSB by regulating alternative splicing-coupled nonstop-decay of the HR protein APBB1/Fe65. Here, we describe a splicing-independent function of RBM6 in promoting HR repair of DSBs. We show that RBM6 is recruited to DSB sites and PARP1 activity indirectly regulates RBM6 recruitment to DNA breakage sites. Deletion mapping analysis revealed a region containing five glycine residues within the G-patch domain that regulates RBM6 accumulation at DNA damage sites. We further ascertain that RBM6 interacts with Rad51, and this interaction is attenuated in RBM6 mutant lacking the G-patch domain (RBM6del(G-patch)). Consequently, RBM6del(G-patch) cells exhibit reduced levels of Rad51 foci after ionizing radiation. In addition, while RBM6 deletion mutant lacking the G-patch domain has no detectable effect on the expression levels of its splicing targets Fe65 and Eya2, it fails to restore the integrity of HR. Altogether, our results suggest that RBM6 recruitment to DSB promotes HR repair, irrespective of its splicing activity.HIGHLIGHTSPARP1 activity indirectly regulates RBM6 recruitment to DNA damage sites.Five glycine residues within the G-patch domain of RBM6 are critical for its recruitment to DNA damage sites, but dispensable for its splicing activity.RBM6 G-patch domain fosters its interaction with Rad51 and promotes Rad51 foci formation following irradiation.RBM6 recruitment to DSB sites underpins HR repair.
Collapse
Affiliation(s)
- Samah W. Awwad
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Malak M. Darawshe
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Feras E. Machour
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Inbar Arman
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion – Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
13
|
Chang SJ, Bin PJ, Luo CW, Chai CY. CHD4 plays a critical role in arsenite-induced oxidative damage in human urothelial carcinoma. Pathol Res Pract 2022; 240:154173. [DOI: 10.1016/j.prp.2022.154173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 11/15/2022]
|
14
|
Alemasova EE, Lavrik OI. A sePARate phase? Poly(ADP-ribose) versus RNA in the organization of biomolecular condensates. Nucleic Acids Res 2022; 50:10817-10838. [PMID: 36243979 PMCID: PMC9638928 DOI: 10.1093/nar/gkac866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/14/2022] [Accepted: 10/09/2022] [Indexed: 11/13/2022] Open
Abstract
Condensates are biomolecular assemblies that concentrate biomolecules without the help of membranes. They are morphologically highly versatile and may emerge via distinct mechanisms. Nucleic acids-DNA, RNA and poly(ADP-ribose) (PAR) play special roles in the process of condensate organization. These polymeric scaffolds provide multiple specific and nonspecific interactions during nucleation and 'development' of macromolecular assemblages. In this review, we focus on condensates formed with PAR. We discuss to what extent the literature supports the phase separation origin of these structures. Special attention is paid to similarities and differences between PAR and RNA in the process of dynamic restructuring of condensates during their functioning.
Collapse
Affiliation(s)
- Elizaveta E Alemasova
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
| | - Olga I Lavrik
- Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk 630090, Russia
- Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
15
|
Yuan S, Huang T, Bao Z, Wang S, Wu X, Liu J, Liu H, Chen ZJ. The histone modification reader ZCWPW1 promotes double-strand break repair by regulating cross-talk of histone modifications and chromatin accessibility at meiotic hotspots. Genome Biol 2022; 23:187. [PMID: 36068616 PMCID: PMC9446545 DOI: 10.1186/s13059-022-02758-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The PRDM9-dependent histone methylation H3K4me3 and H3K36me3 function in assuring accurate homologous recombination at recombination hotspots in mammals. Beyond histone methylation, H3 lysine 9 acetylation (H3K9ac) is also greatly enriched at recombination hotspots. Previous work has indicated the potential cross-talk between H3K4me3 and H3K9ac at recombination hotspots, but it is still unknown what molecular mechanisms mediate the cross-talk between the two histone modifications at hotspots or how the cross-talk regulates homologous recombination in meiosis. RESULTS Here, we find that the histone methylation reader ZCWPW1 is essential for maintaining H3K9ac by antagonizing HDAC proteins' deacetylation activity and further promotes chromatin openness at recombination hotspots thus preparing the way for homologous recombination during meiotic double-strand break repair. Interestingly, ectopic expression of the germ-cell-specific protein ZCWPW1 in human somatic cells enhances double-strand break repair via homologous recombination. CONCLUSIONS Taken together, our findings provide new insights into how histone modifications and their associated regulatory proteins collectively regulate meiotic homologous recombination.
Collapse
Affiliation(s)
- Shenli Yuan
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, China National Center for Bioinformation, and Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
| | - Ziyou Bao
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Shiyu Wang
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Xinyue Wu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
| | - Jiang Liu
- CAS Key Laboratory of Genome Sciences and Information, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, China National Center for Bioinformation, and Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200135, China.
| |
Collapse
|
16
|
Caldecott KW. DNA single-strand break repair and human genetic disease. Trends Cell Biol 2022; 32:733-745. [PMID: 35643889 DOI: 10.1016/j.tcb.2022.04.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
Abstract
DNA single-strand breaks (SSBs) are amongst the commonest DNA lesions arising in cells, with many tens of thousands induced in each cell each day. SSBs arise not only from exposure to intracellular and environmental genotoxins but also as intermediates of normal DNA metabolic processes, such as the removal of torsional stress in DNA by topoisomerase enzymes and the epigenetic regulation of gene expression by DNA base excision repair (BER). If not rapidly detected and repaired, SSBs can result in RNA polymerase stalling, DNA replication fork collapse, and hyperactivation of the SSB sensor protein poly(ADP-ribose) polymerase 1 (PARP1). The potential impact of unrepaired SSBs is illustrated by the existence of genetic diseases in which proteins involved in SSB repair (SSBR) are mutated, and which are typified by hereditary neurodevelopmental and/or neurodegenerative disease. Here, I review our current understanding of SSBR and its impact on human neurological disease, with a focus on recent developments and concepts.
Collapse
Affiliation(s)
- Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, Science Park Road, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|
17
|
Blessing C, Apelt K, van den Heuvel D, Gonzalez-Leal C, Rother MB, van der Woude M, González-Prieto R, Yifrach A, Parnas A, Shah RG, Kuo TT, Boer DEC, Cai J, Kragten A, Kim HS, Schärer OD, Vertegaal ACO, Shah GM, Adar S, Lans H, van Attikum H, Ladurner AG, Luijsterburg MS. XPC-PARP complexes engage the chromatin remodeler ALC1 to catalyze global genome DNA damage repair. Nat Commun 2022; 13:4762. [PMID: 35963869 PMCID: PMC9376112 DOI: 10.1038/s41467-022-31820-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/29/2022] [Indexed: 11/24/2022] Open
Abstract
Cells employ global genome nucleotide excision repair (GGR) to eliminate a broad spectrum of DNA lesions, including those induced by UV light. The lesion-recognition factor XPC initiates repair of helix-destabilizing DNA lesions, but binds poorly to lesions such as CPDs that do not destabilize DNA. How difficult-to-repair lesions are detected in chromatin is unknown. Here, we identify the poly-(ADP-ribose) polymerases PARP1 and PARP2 as constitutive interactors of XPC. Their interaction results in the XPC-stimulated synthesis of poly-(ADP-ribose) (PAR) by PARP1 at UV lesions, which in turn enables the recruitment and activation of the PAR-regulated chromatin remodeler ALC1. PARP2, on the other hand, modulates the retention of ALC1 at DNA damage sites. Notably, ALC1 mediates chromatin expansion at UV-induced DNA lesions, leading to the timely clearing of CPD lesions. Thus, we reveal how chromatin containing difficult-to-repair DNA lesions is primed for repair, providing insight into mechanisms of chromatin plasticity during GGR. Cells employ global genome nucleotide excision repair to repair a broad spectrum of genomic DNA lesions. Here, the authors reveal how chromatin is primed for repair, providing insight into mechanisms of chromatin plasticity during DNA repair.
Collapse
Affiliation(s)
- Charlotte Blessing
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Katja Apelt
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Diana van den Heuvel
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Claudia Gonzalez-Leal
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Román González-Prieto
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands.,Genome Proteomics Laboratory, Andalusian Center For Molecular Biology and Regenerative Medicine (CABIMER), University of Seville, Seville, Spain.,Department of Cell Biology, University of Seville, Seville, Spain
| | - Adi Yifrach
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avital Parnas
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of Quebec (CHUL site), Quebec City, Canada
| | - Tia Tyrsett Kuo
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Daphne E C Boer
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jin Cai
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany.,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany
| | - Angela Kragten
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Hyun-Suk Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU-Q: Laval University Hospital Research Centre of Quebec (CHUL site), Quebec City, Canada
| | - Sheera Adar
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research Israel-Canada, The Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Andreas G Ladurner
- Biomedical Center (BMC), Physiological Chemistry, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany. .,International Max Planck Research School (IMPRS) for Molecular Life Sciences, Planegg-Martinsried, Germany. .,Eisbach Bio GmbH, Planegg-Martinsried, Germany.
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center (LUMC), Leiden, The Netherlands.
| |
Collapse
|
18
|
Longarini EJ, Matic I. The fast-growing business of Serine ADP-ribosylation. DNA Repair (Amst) 2022; 118:103382. [DOI: 10.1016/j.dnarep.2022.103382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
|
19
|
Huang D, Kraus WL. The expanding universe of PARP1-mediated molecular and therapeutic mechanisms. Mol Cell 2022; 82:2315-2334. [PMID: 35271815 DOI: 10.1016/j.molcel.2022.02.021] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022]
Abstract
ADP-ribosylation (ADPRylation) is a post-translational modification of proteins catalyzed by ADP-ribosyl transferase (ART) enzymes, including nuclear PARPs (e.g., PARP1 and PARP2). Historically, studies of ADPRylation and PARPs have focused on DNA damage responses in cancers, but more recent studies elucidate diverse roles in a broader array of biological processes. Here, we summarize the expanding array of molecular mechanisms underlying the biological functions of nuclear PARPs with a focus on PARP1, the founding member of the family. This includes roles in DNA repair, chromatin regulation, gene expression, ribosome biogenesis, and RNA biology. We also present new concepts in PARP1-dependent regulation, including PAR-dependent post-translational modifications, "ADPR spray," and PAR-mediated biomolecular condensate formation. Moreover, we review advances in the therapeutic mechanisms of PARP inhibitors (PARPi) as well as the progress on the mechanisms of PARPi resistance. Collectively, the recent progress in the field has yielded new insights into the expanding universe of PARP1-mediated molecular and therapeutic mechanisms in a variety of biological processes.
Collapse
Affiliation(s)
- Dan Huang
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China.
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
20
|
Karl LA, Peritore M, Galanti L, Pfander B. DNA Double Strand Break Repair and Its Control by Nucleosome Remodeling. Front Genet 2022; 12:821543. [PMID: 35096025 PMCID: PMC8790285 DOI: 10.3389/fgene.2021.821543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
DNA double strand breaks (DSBs) are repaired in eukaryotes by one of several cellular mechanisms. The decision-making process controlling DSB repair takes place at the step of DNA end resection, the nucleolytic processing of DNA ends, which generates single-stranded DNA overhangs. Dependent on the length of the overhang, a corresponding DSB repair mechanism is engaged. Interestingly, nucleosomes-the fundamental unit of chromatin-influence the activity of resection nucleases and nucleosome remodelers have emerged as key regulators of DSB repair. Nucleosome remodelers share a common enzymatic mechanism, but for global genome organization specific remodelers have been shown to exert distinct activities. Specifically, different remodelers have been found to slide and evict, position or edit nucleosomes. It is an open question whether the same remodelers exert the same function also in the context of DSBs. Here, we will review recent advances in our understanding of nucleosome remodelers at DSBs: to what extent nucleosome sliding, eviction, positioning and editing can be observed at DSBs and how these activities affect the DSB repair decision.
Collapse
Affiliation(s)
- Leonhard Andreas Karl
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Martina Peritore
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Lorenzo Galanti
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- Resarch Group DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
21
|
Hagman JR, Arends T, Laborda C, Knapp JR, Harmacek L, O'Connor BP. Chromodomain helicase DNA-binding 4 (CHD4) regulates early B cell identity and V(D)J recombination. Immunol Rev 2021; 305:29-42. [PMID: 34927255 DOI: 10.1111/imr.13054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/22/2021] [Accepted: 12/02/2021] [Indexed: 12/20/2022]
Abstract
B lymphocytes develop from uncommitted precursors into immunoglobulin (antibody)-producing B cells, a major arm of adaptive immunity. Progression of early progenitors to antibody-expressing cells in the bone marrow is orchestrated by the temporal regulation of different gene programs at discrete developmental stages. A major question concerns how B cells control the accessibility of these genes to transcription factors. Research has implicated nucleosome remodeling ATPases as mediators of chromatin accessibility. Here, we describe studies of chromodomain helicase DNA-binding 4 (CHD4; also known as Mi-2β) in early B cell development. CHD4 comprises multiple domains that function in nucleosome mobilization and histone binding. CHD4 is a key component of Nucleosome Remodeling and Deacetylase, or NuRD (Mi-2) complexes, which assemble with other proteins that mediate transcriptional repression. We review data demonstrating that CHD4 is necessary for B lineage identity: early B lineage progression, proliferation in response to interleukin-7, responses to DNA damage, and cell survival in vivo. CHD4-NuRD is also required for the Ig heavy-chain repertoire by promoting utilization of distal variable (VH ) gene segments in V(D)J recombination. In conclusion, the regulation of chromatin accessibility by CHD4 is essential for production of antibodies by B cells, which in turn mediate humoral immune responses to pathogens and disease.
Collapse
Affiliation(s)
- James R Hagman
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tessa Arends
- Program in Molecular Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Curtis Laborda
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| | - Brian P O'Connor
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, Colorado, USA.,Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.,Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado, USA
| |
Collapse
|
22
|
Mohapatra J, Tashiro K, Beckner RL, Sierra J, Kilgore JA, Williams NS, Liszczak G. Serine ADP-ribosylation marks nucleosomes for ALC1-dependent chromatin remodeling. eLife 2021; 10:71502. [PMID: 34874266 PMCID: PMC8683085 DOI: 10.7554/elife.71502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/20/2021] [Indexed: 12/27/2022] Open
Abstract
Serine ADP-ribosylation (ADPr) is a DNA damage-induced post-translational modification catalyzed by the PARP1/2:HPF1 complex. As the list of PARP1/2:HPF1 substrates continues to expand, there is a need for technologies to prepare mono- and poly-ADP-ribosylated proteins for biochemical interrogation. Here, we investigate the unique peptide ADPr activities catalyzed by PARP1 in the absence and presence of HPF1. We then exploit these activities to develop a method that facilitates installation of ADP-ribose polymers onto peptides with precise control over chain length and modification site. Importantly, the enzymatically mono- and poly-ADP-ribosylated peptides are fully compatible with protein ligation technologies. This chemoenzymatic protein synthesis strategy was employed to assemble a series of full-length, ADP-ribosylated histones and show that ADPr at histone H2B serine 6 or histone H3 serine 10 converts nucleosomes into robust substrates for the chromatin remodeler ALC1. We found ALC1 preferentially remodels 'activated' substrates within heterogeneous mononucleosome populations and asymmetrically ADP-ribosylated dinucleosome substrates, and that nucleosome serine ADPr is sufficient to stimulate ALC1 activity in nuclear extracts. Our study identifies a biochemical function for nucleosome serine ADPr and describes a new, highly modular approach to explore the impact that site-specific serine mono- and poly-ADPr have on protein function.
Collapse
Affiliation(s)
- Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Kyuto Tashiro
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Ryan L Beckner
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jorge Sierra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| | - Jessica A Kilgore
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States.,Preclinical Pharmacology Core, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Noelle S Williams
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States.,Preclinical Pharmacology Core, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
23
|
Adamowicz M, Hailstone R, Demin AA, Komulainen E, Hanzlikova H, Brazina J, Gautam A, Wells SE, Caldecott KW. XRCC1 protects transcription from toxic PARP1 activity during DNA base excision repair. Nat Cell Biol 2021; 23:1287-1298. [PMID: 34811483 PMCID: PMC8683375 DOI: 10.1038/s41556-021-00792-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022]
Abstract
Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1−/− mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1−/− cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease. Adamowicz et al. report that toxic PARP1 activity, induced by ataxia-associated mutations in XRCC1, impairs the recovery of global transcription during DNA base excision repair by promoting aberrant recruitment and activity of the histone ubiquitin protease USP3.
Collapse
Affiliation(s)
- Marek Adamowicz
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Richard Hailstone
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Annie A Demin
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Emilia Komulainen
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Hana Hanzlikova
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK.,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic
| | - Jan Brazina
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Amit Gautam
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Sophie E Wells
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Keith W Caldecott
- Genome Damage and Stability Centre and Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, UK. .,Department of Genome Dynamics, Institute of Molecular Genetics of the Czech Academy of Science, Prague, Czech Republic.
| |
Collapse
|
24
|
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D’Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun 2021; 12:6560. [PMID: 34772923 PMCID: PMC8589989 DOI: 10.1038/s41467-021-26691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.
Collapse
Affiliation(s)
- Jenny Kaur Singh
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Smith
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France
| | - Magdalena B. Rother
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J. L. de Groot
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter W. Wiegant
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ostiane D’Augustin
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.457349.80000 0004 0623 0579Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, F-92265 Fontenay-aux-Roses, France
| | - Robbert Q. Kim
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Haibin Qian
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Przemek M. Krawczyk
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Román González-Prieto
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alfred C. O. Vertegaal
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Meindert Lamers
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sébastien Huet
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, F-75000 Paris, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
25
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
26
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
27
|
Oyama Y, Shigeta S, Tokunaga H, Tsuji K, Ishibashi M, Shibuya Y, Shimada M, Yasuda J, Yaegashi N. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One 2021; 16:e0251079. [PMID: 34161330 PMCID: PMC8221472 DOI: 10.1371/journal.pone.0251079] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Platinum sensitivity is an important prognostic factor in patients with ovarian cancer. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core member of the nucleosome remodeling and deacetylase complex, which functions as a chromatin remodeler. Emerging evidence indicates that CHD4 could be a potential therapeutic target for cancer therapy. The purpose of this study was to clarify the role of CHD4 in ovarian cancer and investigate its therapeutic potential focusing on platinum sensitivity. In an analysis of the Cancer Genome Atlas ovarian cancer dataset, CHD4 gene amplification was associated with worse overall survival. CHD4 mRNA expression was significantly higher in platinum-resistant samples in a subsequent clinical sample analysis, suggesting that CHD4 overexpression conferred platinum resistance to ovarian cancer cells, resulting in poor patient survival. In concordance with these findings, CHD4 knockdown enhanced the induction of apoptosis mediated by cisplatin in ovarian cancer cells TOV21G and increased cisplatin sensitivity in multiple ovarian cancer cells derived from different subtypes. However, CHD4 knockdown did not affect the expression of RAD51 or p21, the known targets of CHD4 in other cancer types that can modulate platinum sensitivity. Knockdown and overexpression assays revealed that CHD4 positively regulated the expression of multi-drug transporter MDR1 and its coding protein p-glycoprotein. In addition, a first-in-class CHD4/SMARCA5 inhibitor ED2-AD101 showed synergistic interactions with cisplatin. Our findings suggest that CHD4 mediates platinum sensitivity by modulating MDR1 expression in ovarian cancer. Further, CHD4 suppression has a potential to be a novel therapeutic strategy in combination with platinum agents.
Collapse
Affiliation(s)
- Yoshiko Oyama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Keita Tsuji
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shibuya
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
28
|
McMahon KA, Stroud DA, Gambin Y, Tillu V, Bastiani M, Sierecki E, Polinkovsky ME, Hall TE, Gomez GA, Wu Y, Parat MO, Martel N, Lo HP, Khanna KK, Alexandrov K, Daly R, Yap A, Ryan MT, Parton RG. Cavin3 released from caveolae interacts with BRCA1 to regulate the cellular stress response. eLife 2021; 10:61407. [PMID: 34142659 PMCID: PMC8279762 DOI: 10.7554/elife.61407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 06/11/2021] [Indexed: 12/13/2022] Open
Abstract
Caveolae-associated protein 3 (cavin3) is inactivated in most cancers. We characterized how cavin3 affects the cellular proteome using genome-edited cells together with label-free quantitative proteomics. These studies revealed a prominent role for cavin3 in DNA repair, with BRCA1 and BRCA1 A-complex components being downregulated on cavin3 deletion. Cellular and cell-free expression assays revealed a direct interaction between BRCA1 and cavin3 that occurs when cavin3 is released from caveolae that are disassembled in response to UV and mechanical stress. Overexpression and RNAi-depletion revealed that cavin3 sensitized various cancer cells to UV-induced apoptosis. Supporting a role in DNA repair, cavin3-deficient cells were sensitive to PARP inhibition, where concomitant depletion of 53BP1 restored BRCA1-dependent sensitivity to PARP inhibition. We conclude that cavin3 functions together with BRCA1 in multiple cancer-related pathways. The loss of cavin3 function may provide tumor cell survival by attenuating apoptotic sensitivity and hindering DNA repair under chronic stress conditions.
Collapse
Affiliation(s)
- Kerrie-Ann McMahon
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - David A Stroud
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Yann Gambin
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Vikas Tillu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Michele Bastiani
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Emma Sierecki
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Mark E Polinkovsky
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Thomas E Hall
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Guillermo A Gomez
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Yeping Wu
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Marie-Odile Parat
- School of Pharmacy, The University of Queensland, Woolloongabba, Australia
| | - Nick Martel
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Harriet P Lo
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Kirill Alexandrov
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Roger Daly
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Alpha Yap
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia
| | - Michael T Ryan
- Monash Biomedicine Discovery Institute, Department of Biochemistry & Molecular Biology, Monash University, Melbourne, Australia
| | - Robert G Parton
- Institute for Molecular Bioscience, The University of Queensland, Queensland, Australia.,Centre for Microscopy and Microanalysis, The University of Queensland, Queensland, Australia
| |
Collapse
|
29
|
Control of the chromatin response to DNA damage: Histone proteins pull the strings. Semin Cell Dev Biol 2021; 113:75-87. [DOI: 10.1016/j.semcdb.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
|
30
|
Pfeiffer A, Herzog LK, Luijsterburg MS, Shah RG, Rother MB, Stoy H, Kühbacher U, van Attikum H, Shah GM, Dantuma NP. Poly(ADP-ribosyl)ation temporally confines SUMO-dependent ataxin-3 recruitment to control DNA double-strand break repair. J Cell Sci 2021; 134:jcs.247809. [PMID: 33408245 DOI: 10.1242/jcs.247809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 12/17/2020] [Indexed: 12/16/2022] Open
Abstract
DNA damage-induced SUMOylation serves as a signal for two antagonizing proteins that both stimulate repair of DNA double-strand breaks (DSBs). Here, we demonstrate that the SUMO-dependent recruitment of the deubiquitylating enzyme ataxin-3 to DSBs, unlike recruitment of the ubiquitin ligase RNF4, additionally depends on poly [ADP-ribose] polymerase 1 (PARP1)-mediated poly(ADP-ribosyl)ation (PARylation). The co-dependence of ataxin-3 recruitment on PARylation and SUMOylation temporally confines ataxin-3 to DSBs immediately after occurrence of DNA damage. We propose that this mechanism ensures that ataxin-3 prevents the premature removal of DNA repair proteins only during the early phase of the DSB response and does not interfere with the subsequent timely displacement of DNA repair proteins by RNF4. Thus, our data show that PARylation differentially regulates SUMO-dependent recruitment of ataxin-3 and RNF4 to DSBs, explaining how both proteins can play a stimulatory role at DSBs despite their opposing activities.
Collapse
Affiliation(s)
- Annika Pfeiffer
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Laura K Herzog
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Rashmi G Shah
- Laboratory for Skin Cancer Research, CHU-Q: University Hospital Research Centre of Quebec (CHUL site) and Laval University, Quebec City (QC) G1V 4G2, Canada
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Henriette Stoy
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Ulrike Kühbacher
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Girish M Shah
- Laboratory for Skin Cancer Research, CHU-Q: University Hospital Research Centre of Quebec (CHUL site) and Laval University, Quebec City (QC) G1V 4G2, Canada
| | - Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, 17165 Stockholm, Sweden
| |
Collapse
|
31
|
Verma P, Zhou Y, Cao Z, Deraska PV, Deb M, Arai E, Li W, Shao Y, Puentes L, Li Y, Patankar S, Mach RH, Faryabi RB, Shi J, Greenberg RA. ALC1 links chromatin accessibility to PARP inhibitor response in homologous recombination-deficient cells. Nat Cell Biol 2021; 23:160-171. [PMID: 33462394 PMCID: PMC7880902 DOI: 10.1038/s41556-020-00624-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023]
Abstract
The response to poly(ADP-ribose) polymerase inhibitors (PARPi) is dictated by homologous recombination (HR) DNA repair and the abundance of lesions that trap PARP enzymes. It remains unclear, however, if the established role of PARP in promoting chromatin accessibility impacts viability in these settings. Using a CRISPR-based screen, we identified the PAR-binding chromatin remodeller ALC1/CHD1L as a key determinant of PARPi toxicity in HR-deficient cells. ALC1 loss reduced viability of breast cancer gene (BRCA)-mutant cells and enhanced sensitivity to PARPi by up to 250-fold, while overcoming several resistance mechanisms. ALC1 deficiency reduced chromatin accessibility concomitant with a decrease in the association of base damage repair factors. This resulted in an accumulation of replication-associated DNA damage, increased PARP trapping and a reliance on HR. These findings establish PAR-dependent chromatin remodelling as a mechanistically distinct aspect of PARPi responses and therapeutic target in HR-deficient cancers.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yeqiao Zhou
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Zhendong Cao
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peter V. Deraska
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Moniher Deb
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Eri Arai
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Weihua Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yue Shao
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Laura Puentes
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Yiwen Li
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Sonali Patankar
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Robert B. Faryabi
- Departments of Pathology and Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junwei Shi
- Department of Cancer Biology, Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| | - Roger A. Greenberg
- Department of Cancer Biology, Penn Center for Genome Integrity, Basser Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA,Address correspondence to: ;
| |
Collapse
|
32
|
Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. ACTA ACUST UNITED AC 2021; 2:233-244. [PMID: 34223192 DOI: 10.1038/s43018-020-00169-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cell-line screens create expansive datasets for learning predictive markers of drug response, but these models do not readily translate to the clinic with its diverse contexts and limited data. In the present study, we apply a recently developed technique, few-shot machine learning, to train a versatile neural network model in cell lines that can be tuned to new contexts using few additional samples. The model quickly adapts when switching among different tissue types and in moving from cell-line models to clinical contexts, including patient-derived tumor cells and patient-derived xenografts. It can also be interpreted to identify the molecular features most important to a drug response, highlighting critical roles for RB1 and SMAD4 in the response to CDK inhibition and RNF8 and CHD4 in the response to ATM inhibition. The few-shot learning framework provides a bridge from the many samples surveyed in high-throughput screens (n-of-many) to the distinctive contexts of individual patients (n-of-one).
Collapse
|
33
|
Lehmann LC, Bacic L, Hewitt G, Brackmann K, Sabantsev A, Gaullier G, Pytharopoulou S, Degliesposti G, Okkenhaug H, Tan S, Costa A, Skehel JM, Boulton SJ, Deindl S. Mechanistic Insights into Regulation of the ALC1 Remodeler by the Nucleosome Acidic Patch. Cell Rep 2020; 33:108529. [PMID: 33357431 PMCID: PMC7116876 DOI: 10.1016/j.celrep.2020.108529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/08/2020] [Accepted: 11/24/2020] [Indexed: 01/09/2023] Open
Abstract
Upon DNA damage, the ALC1/CHD1L nucleosome remodeling enzyme (remodeler) is activated by binding to poly(ADP-ribose). How activated ALC1 recognizes the nucleosome, as well as how this recognition is coupled to remodeling, is unknown. Here, we show that remodeling by ALC1 requires a wild-type acidic patch on the entry side of the nucleosome. The cryo-electron microscopy structure of a nucleosome-ALC1 linker complex reveals a regulatory linker segment that binds to the acidic patch. Mutations within this interface alter the dynamics of ALC1 recruitment to DNA damage and impede the ATPase and remodeling activities of ALC1. Full activation requires acidic patch-linker segment interactions that tether the remodeler to the nucleosome and couple ATP hydrolysis to nucleosome mobilization. Upon DNA damage, such a requirement may be used to modulate ALC1 activity via changes in the nucleosome acidic patches.
Collapse
Affiliation(s)
- Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Graeme Hewitt
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Sofia Pytharopoulou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden
| | - Gianluca Degliesposti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Song Tan
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alessandro Costa
- Macromolecular Machines Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124 Uppsala, Sweden.
| |
Collapse
|
34
|
Kaufmann T, Herbert S, Hackl B, Besold JM, Schramek C, Gotzmann J, Elsayad K, Slade D. Direct measurement of protein-protein interactions by FLIM-FRET at UV laser-induced DNA damage sites in living cells. Nucleic Acids Res 2020; 48:e122. [PMID: 33053171 PMCID: PMC7708043 DOI: 10.1093/nar/gkaa859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/22/2020] [Indexed: 01/27/2023] Open
Abstract
Protein-protein interactions are essential to ensure timely and precise recruitment of chromatin remodellers and repair factors to DNA damage sites. Conventional analyses of protein-protein interactions at a population level may mask the complexity of interaction dynamics, highlighting the need for a method that enables quantification of DNA damage-dependent interactions at a single-cell level. To this end, we integrated a pulsed UV laser on a confocal fluorescence lifetime imaging (FLIM) microscope to induce localized DNA damage. To quantify protein-protein interactions in live cells, we measured Förster resonance energy transfer (FRET) between mEGFP- and mCherry-tagged proteins, based on the fluorescence lifetime reduction of the mEGFP donor protein. The UV-FLIM-FRET system offers a unique combination of real-time and single-cell quantification of DNA damage-dependent interactions, and can distinguish between direct protein-protein interactions, as opposed to those mediated by chromatin proximity. Using the UV-FLIM-FRET system, we show the dynamic changes in the interaction between poly(ADP-ribose) polymerase 1, amplified in liver cancer 1, X-ray repair cross-complementing protein 1 and tripartite motif containing 33 after DNA damage. This new set-up complements the toolset for studying DNA damage response by providing single-cell quantitative and dynamic information about protein-protein interactions at DNA damage sites.
Collapse
Affiliation(s)
- Tanja Kaufmann
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Sébastien Herbert
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Benjamin Hackl
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Johanna Maria Besold
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Christopher Schramek
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| | - Josef Gotzmann
- Department of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Kareem Elsayad
- VBCF Advanced Microscopy Facility, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, 1030 Vienna, Austria
| | - Dea Slade
- Department of Biochemistry, Max Perutz Labs, University of Vienna, Vienna Biocenter (VBC), Dr Bohr-Gasse 9, 1030 Vienna, Austria
| |
Collapse
|
35
|
Juhász S, Smith R, Schauer T, Spekhardt D, Mamar H, Zentout S, Chapuis C, Huet S, Timinszky G. The chromatin remodeler ALC1 underlies resistance to PARP inhibitor treatment. SCIENCE ADVANCES 2020; 6:eabb8626. [PMID: 33355125 PMCID: PMC11206534 DOI: 10.1126/sciadv.abb8626] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 09/28/2020] [Indexed: 05/13/2023]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors are used in the treatment of BRCA-deficient cancers, with treatments currently extending toward other homologous recombination defective tumors. In a genome-wide CRISPR knockout screen with olaparib, we identify ALC1 (Amplified in Liver Cancer 1)-a cancer-relevant poly(ADP-ribose)-regulated chromatin remodeling enzyme-as a key modulator of sensitivity to PARP inhibitor. We found that ALC1 can remove inactive PARP1 indirectly through binding to PARylated chromatin. Consequently, ALC1 deficiency enhances trapping of inhibited PARP1, which then impairs the binding of both nonhomologous end-joining and homologous recombination repair factors to DNA lesions. We also establish that ALC1 overexpression, a common feature in multiple tumor types, reduces the sensitivity of BRCA-deficient cells to PARP inhibitors. Together, we conclude that ALC1-dependent PARP1 mobilization is a key step underlying PARP inhibitor resistance.
Collapse
Affiliation(s)
- Szilvia Juhász
- MTA SZBK Lendület DNA Damage and Nuclear Dynamics Research Group, Institute of Genetics, Biological Research Centre, 6276 Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, BIOSIT, UMS 3480, F-35000 Rennes, France
| | - Tamás Schauer
- Biomedical Center, Bioinformatics Unit, Ludwig Maximilian University of Munich, 82152 Planegg-Martinsried, Germany
| | - Dóra Spekhardt
- MTA SZBK Lendület DNA Damage and Nuclear Dynamics Research Group, Institute of Genetics, Biological Research Centre, 6276 Szeged, Hungary
| | - Hasan Mamar
- MTA SZBK Lendület DNA Damage and Nuclear Dynamics Research Group, Institute of Genetics, Biological Research Centre, 6276 Szeged, Hungary
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, BIOSIT, UMS 3480, F-35000 Rennes, France
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, BIOSIT, UMS 3480, F-35000 Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, BIOSIT, UMS 3480, F-35000 Rennes, France.
- Institut Universitaire de France, Paris France
| | - Gyula Timinszky
- MTA SZBK Lendület DNA Damage and Nuclear Dynamics Research Group, Institute of Genetics, Biological Research Centre, 6276 Szeged, Hungary.
| |
Collapse
|
36
|
Rother MB, Pellegrino S, Smith R, Gatti M, Meisenberg C, Wiegant WW, Luijsterburg MS, Imhof R, Downs JA, Vertegaal ACO, Huet S, Altmeyer M, van Attikum H. CHD7 and 53BP1 regulate distinct pathways for the re-ligation of DNA double-strand breaks. Nat Commun 2020; 11:5775. [PMID: 33188175 PMCID: PMC7666215 DOI: 10.1038/s41467-020-19502-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/15/2020] [Indexed: 01/16/2023] Open
Abstract
Chromatin structure is dynamically reorganized at multiple levels in response to DNA double-strand breaks (DSBs). Yet, how the different steps of chromatin reorganization are coordinated in space and time to differentially regulate DNA repair pathways is insufficiently understood. Here, we identify the Chromodomain Helicase DNA Binding Protein 7 (CHD7), which is frequently mutated in CHARGE syndrome, as an integral component of the non-homologous end-joining (NHEJ) DSB repair pathway. Upon recruitment via PARP1-triggered chromatin remodeling, CHD7 stimulates further chromatin relaxation around DNA break sites and brings in HDAC1/2 for localized chromatin de-acetylation. This counteracts the CHD7-induced chromatin expansion, thereby ensuring temporally and spatially controlled 'chromatin breathing' upon DNA damage, which we demonstrate fosters efficient and accurate DSB repair by controlling Ku and LIG4/XRCC4 activities. Loss of CHD7-HDAC1/2-dependent cNHEJ reinforces 53BP1 assembly at the damaged chromatin and shifts DSB repair to mutagenic NHEJ, revealing a backup function of 53BP1 when cNHEJ fails.
Collapse
Grants
- 25715 Cancer Research UK
- 714326 European Research Council
- MR/N02155X/2 Medical Research Council
- MR/N02155X/1 Medical Research Council
- This research was financially supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-StG 714326 to M.A.; ERC-StG 310913 to A.C.O.V.; ERC-CoG 50364 to H.v.A), the Swiss National Science Foundation (grants 150690 and 179057 to M.A.), grants from the Danish Research Council (DFF 1333-00037B and 1331-00732B to M.A.), NWO-VENI (863.11.007) and NWO-VIDI (016.161.320) grants to M.S.L., People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/ 2007-2013) under REA grant agreement [(PCOFUND-GA-2013-609102), through the PRESTIGE program coordinated by Campus France (PRESTIGE-2017-2-0042), the Université Bretagne-Loire and the Fondation ARC pour la recherche sur le cancer (PDF20181208405) to R.S., the Ligue contre le Cancer du Grand-Ouest (committees 22 and 35), the Fondation ARC pour la recherche sur le cancer (20161204883), the Agence Nationale de la Recherche (PRC-2018 REPAIRCHROM) and the Institut Universitaire de France to S.H., and the Medical Research Council (MR/N02155X/1) to C.M. and J.A.D..
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Stefania Pellegrino
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
| | - Marco Gatti
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | | | - Wouter W Wiegant
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Jessica A Downs
- The Institute of Cancer Research, Royal Cancer Hospital, London, UK
| | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)-UMR 6290, BIOSIT-UMS3480, F-35000, Rennes, France
- Institut Universitaire de France, Paris, France
| | - Matthias Altmeyer
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
37
|
Smith R, Lebeaupin T, Juhász S, Chapuis C, D'Augustin O, Dutertre S, Burkovics P, Biertümpfel C, Timinszky G, Huet S. Poly(ADP-ribose)-dependent chromatin unfolding facilitates the association of DNA-binding proteins with DNA at sites of damage. Nucleic Acids Res 2020; 47:11250-11267. [PMID: 31566235 PMCID: PMC6868358 DOI: 10.1093/nar/gkz820] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 09/01/2019] [Accepted: 09/26/2019] [Indexed: 12/19/2022] Open
Abstract
The addition of poly(ADP-ribose) (PAR) chains along the chromatin fiber due to PARP1 activity regulates the recruitment of multiple factors to sites of DNA damage. In this manuscript, we investigated how, besides direct binding to PAR, early chromatin unfolding events controlled by PAR signaling contribute to recruitment to DNA lesions. We observed that different DNA-binding, but not histone-binding, domains accumulate at damaged chromatin in a PAR-dependent manner, and that this recruitment correlates with their affinity for DNA. Our findings indicate that this recruitment is promoted by early PAR-dependent chromatin remodeling rather than direct interaction with PAR. Moreover, recruitment is not the consequence of reduced molecular crowding at unfolded damaged chromatin but instead originates from facilitated binding to more exposed DNA. These findings are further substantiated by the observation that PAR-dependent chromatin remodeling at DNA lesions underlies increased DNAse hypersensitivity. Finally, the relevance of this new mode of PAR-dependent recruitment to DNA lesions is demonstrated by the observation that reducing the affinity for DNA of both CHD4 and HP1α, two proteins shown to be involved in the DNA-damage response, strongly impairs their recruitment to DNA lesions.
Collapse
Affiliation(s)
- Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Théo Lebeaupin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Szilvia Juhász
- MTA SZBK Lendület DNA damage and nuclear dynamics research group, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Catherine Chapuis
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Ostiane D'Augustin
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| | - Stéphanie Dutertre
- Univ Rennes, CNRS, Inserm, BIOSIT (Biologie, Santé, Innovation Technologique de Rennes) - UMS 3480, US 018, F-35000 Rennes, France
| | - Peter Burkovics
- Laboratory of Replication and Genome Stability, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Christian Biertümpfel
- Department of Structural Cell Biology, Molecular Mechanisms of DNA Repair, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gyula Timinszky
- MTA SZBK Lendület DNA damage and nuclear dynamics research group, Institute of Genetics, Biological Research Center, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F- 35000 Rennes, France
| |
Collapse
|
38
|
Karakaidos P, Karagiannis D, Rampias T. Resolving DNA Damage: Epigenetic Regulation of DNA Repair. Molecules 2020; 25:molecules25112496. [PMID: 32471288 PMCID: PMC7321228 DOI: 10.3390/molecules25112496] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/18/2022] Open
Abstract
Epigenetic research has rapidly evolved into a dynamic field of genome biology. Chromatin regulation has been proved to be an essential aspect for all genomic processes, including DNA repair. Chromatin structure is modified by enzymes and factors that deposit, erase, and interact with epigenetic marks such as DNA and histone modifications, as well as by complexes that remodel nucleosomes. In this review we discuss recent advances on how the chromatin state is modulated during this multi-step process of damage recognition, signaling, and repair. Moreover, we examine how chromatin is regulated when different pathways of DNA repair are utilized. Furthermore, we review additional modes of regulation of DNA repair, such as through the role of global and localized chromatin states in maintaining expression of DNA repair genes, as well as through the activity of epigenetic enzymes on non-nucleosome substrates. Finally, we discuss current and future applications of the mechanistic interplays between chromatin regulation and DNA repair in the context cancer treatment.
Collapse
Affiliation(s)
| | - Dimitris Karagiannis
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA;
| | - Theodoros Rampias
- Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece;
- Correspondence: ; Tel.: +30-210-659-7469
| |
Collapse
|
39
|
Upregulation of Phosphatase 1 Nuclear-Targeting Subunit (PNUTS) Is an Independent Predictor of Poor Prognosis in Prostate Cancer. DISEASE MARKERS 2020; 2020:7050146. [PMID: 32377272 PMCID: PMC7196962 DOI: 10.1155/2020/7050146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/07/2023]
Abstract
Protein phosphatase 1 nuclear-targeting subunit (PNUTS) is ubiquitously expressed and associates with PTEN and protein phosphatase 1 (PP1) to control its activity. The role of PNUTS overexpression has hardly been studied in cancer. In this study, we used immunohistochemistry to quantitate PNUTS expression on a tissue microarray containing 17,747 clinical prostate cancer specimens. As compared to normal prostate epithelium, PNUTS expression was often higher in cancer. Among 12,235 interpretable tumors, PNUTS staining was negative in 21%, weak in 34%, moderate in 35%, and strong in 10% of cases. High PNUTS expression was associated with higher tumor stage, classical and quantitative Gleason grade, nodal stage, surgical margin, Ki67 labeling index, and early biochemical recurrence (p < 0.0001 each). PNUTS expression proved to be a moderate prognostic parameter with a maximal univariable Cox proportional hazard for PSA recurrence-free survival of 2.21 compared with 5.91 for Gleason grading. It was independent from established prognostic parameters in multivariable analysis. Comparison with molecular data available from earlier studies using the same TMA identified associations between high PNUTS expression and elevated androgen receptor expression (p < 0.0001), presence of TMPRSS2:ERG fusion (p < 0.0001), and 8 of 11 chromosomal deletions (3p13, 5q21, 8p21, 10q23, 12p13, 13q14, 16q24, and 17p13; p < 0.05 each). Particularly strong associations with PTEN and 12p13 deletions (p < 0.0001 each) may indicate a functional relationship, which has already been established for PNUTS and PTEN. PNUTS had no additional role on outcome in PTEN-deleted cancers. In conclusion, the results of our study identify high PNUTS protein levels as a predictor of poor prognosis possibly linked to increased levels of genomic instability. PNUTS measurement, either alone or in combination, might be of clinical utility in prostate cancers.
Collapse
|
40
|
Vítor AC, Huertas P, Legube G, de Almeida SF. Studying DNA Double-Strand Break Repair: An Ever-Growing Toolbox. Front Mol Biosci 2020; 7:24. [PMID: 32154266 PMCID: PMC7047327 DOI: 10.3389/fmolb.2020.00024] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
To ward off against the catastrophic consequences of persistent DNA double-strand breaks (DSBs), eukaryotic cells have developed a set of complex signaling networks that detect these DNA lesions, orchestrate cell cycle checkpoints and ultimately lead to their repair. Collectively, these signaling networks comprise the DNA damage response (DDR). The current knowledge of the molecular determinants and mechanistic details of the DDR owes greatly to the continuous development of ground-breaking experimental tools that couple the controlled induction of DSBs at distinct genomic positions with assays and reporters to investigate DNA repair pathways, their impact on other DNA-templated processes and the specific contribution of the chromatin environment. In this review, we present these tools, discuss their pros and cons and illustrate their contribution to our current understanding of the DDR.
Collapse
Affiliation(s)
- Alexandra C Vítor
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Pablo Huertas
- Department of Genetics, University of Seville, Seville, Spain.,Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, Toulouse, France
| | - Sérgio F de Almeida
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
41
|
Arends T, Dege C, Bortnick A, Danhorn T, Knapp JR, Jia H, Harmacek L, Fleenor CJ, Straign D, Walton K, Leach SM, Feeney AJ, Murre C, O'Connor BP, Hagman JR. CHD4 is essential for transcriptional repression and lineage progression in B lymphopoiesis. Proc Natl Acad Sci U S A 2019; 116:10927-10936. [PMID: 31085655 PMCID: PMC6561196 DOI: 10.1073/pnas.1821301116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cell lineage specification is a tightly regulated process that is dependent on appropriate expression of lineage and developmental stage-specific transcriptional programs. Here, we show that Chromodomain Helicase DNA-binding protein 4 (CHD4), a major ATPase/helicase subunit of Nucleosome Remodeling and Deacetylase Complexes (NuRD) in lymphocytes, is essential for specification of the early B cell lineage transcriptional program. In the absence of CHD4 in B cell progenitors in vivo, development of these cells is arrested at an early pro-B-like stage that is unresponsive to IL-7 receptor signaling and unable to efficiently complete V(D)J rearrangements at Igh loci. Our studies confirm that chromatin accessibility and transcription of thousands of gene loci are controlled dynamically by CHD4 during early B cell development. Strikingly, CHD4-deficient pro-B cells express transcripts of many non-B cell lineage genes, including genes that are characteristic of other hematopoietic lineages, neuronal cells, and the CNS, lung, pancreas, and other cell types. We conclude that CHD4 inhibits inappropriate transcription in pro-B cells. Together, our data demonstrate the importance of CHD4 in establishing and maintaining an appropriate transcriptome in early B lymphopoiesis via chromatin accessibility.
Collapse
Affiliation(s)
- Tessa Arends
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045
| | - Carissa Dege
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
| | - Alexandra Bortnick
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Thomas Danhorn
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Jennifer R Knapp
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Haiqun Jia
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Laura Harmacek
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Courtney J Fleenor
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Desiree Straign
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Kendra Walton
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
| | - Sonia M Leach
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Ann J Feeney
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Cornelis Murre
- Section of Molecular Biology, University of California, San Diego, La Jolla, CA 92093
| | - Brian P O'Connor
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO 80206
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - James R Hagman
- Program in Molecular Biology, University of Colorado Denver, Aurora, CO 80045;
- Department of Immunology and Microbiology, University of Colorado Denver, Aurora, CO 80045
- Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
42
|
Clouaire T, Legube G. A Snapshot on the Cis Chromatin Response to DNA Double-Strand Breaks. Trends Genet 2019; 35:330-345. [PMID: 30898334 DOI: 10.1016/j.tig.2019.02.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 12/11/2022]
Abstract
In eukaryotes, detection and repair of DNA double-strand breaks (DSBs) operate within chromatin, an incredibly complex structure that tightly packages and regulates DNA metabolism. Chromatin participates in the repair of these lesions at multiple steps, from detection to genomic sequence recovery and chromatin is itself extensively modified during the repair process. In recent years, new methodologies and dedicated techniques have expanded the experimental toolbox, opening up a new era granting the high-resolution analysis of chromatin modifications at annotated DSBs in a genome-wide manner. A complex picture is starting to emerge whereby chromatin is altered at various scales around DSBs, in a manner that relates to the repair pathway used, hence defining a 'repair histone code'. Here, we review the recent advances regarding our knowledge of the chromatin landscape induced in cis around DSBs, with an emphasis on histone post-translational modifications and histone variants.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Integrative (CBI), CNRS, Université de Toulouse, UT3, Toulouse, France.
| |
Collapse
|
43
|
Zhang J, Shih DJ, Lin SY. The Tale of CHD4 in DNA Damage Response and Chemotherapeutic Response. JOURNAL OF CANCER RESEARCH AND CELLULAR THERAPEUTICS 2019; 3:052. [PMID: 32577620 PMCID: PMC7310990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The chromatin remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex. Due to its important role in DNA damage repair, CHD4 has been identified as a key determinant in cancer progression, stem cell differentiation, and T cell and B cell development. Accumulating evidence has revealed that CHD4 can function in NuRD dependent and independent manner in response to DNA damage. Mutations of CHD4 have been shown to diminish its functions, which indicates that interpretation of its mutations may provide tangible benefit for patients. The expression of CHD4 play a dual role in sensitizing cancer cells to chemotherapeutic agents, which provides new insights into the contribution of CHD4 to tumor biology and new therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David J.H. Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Corresponding Author: Shiaw-Yih Lin, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|
44
|
Jimeno S, Mejías-Navarro F, Prados-Carvajal R, Huertas P. Controlling the balance between chromosome break repair pathways. DNA Repair (Amst) 2019; 115:95-134. [DOI: 10.1016/bs.apcsb.2018.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|