1
|
Zhang Y, Li X, Li K, Wang L, Luo X, Zhang Y, Sun N, Zhu M. DNA binding studies and in-vitro anticancer studies of novel lanthanide complexes. Int J Biol Macromol 2024; 279:135048. [PMID: 39208896 DOI: 10.1016/j.ijbiomac.2024.135048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Pancreatic cancer, is an aggressive type of cancer and the most common malignancy with a poor prognosis regarding metastatic disease (survival < 10 %). The development of Novel chemotherapeutic drugs holds significant prospects for practical applications. Here, this work focuses on the interaction between two lanthanide complexes, Yb-BZA and Er-BZA, with DNA, as well as their anticancer activity against pancreatic cancer. The relationship between complexes and DNA is revealed by fluorescence, absorption spectral titration, cyclic voltammetric (CV) experiments, indicating that the Yb-BZA and Er-BZA interact with FS-DNA by bind groove. Moreover, molecular docking technology was utilized to confirm the binding of Yb-BZA and Er-BZA with 1BNA and 4AV1. The cytotoxic effects of Yb-BZA and Er-BZA on cancer cells BxPC-3 were evaluated, Yb-BZA (IC50 = 6.459 μg/mL) is more effective than oxaliplatin (IC50 = 16.46 μg/mL) evaluated using cytotoxicity assay. Yb-BZA and Er-BZA has the potential to become a chemotherapy drug for pancreatic cancer cells.
Collapse
Affiliation(s)
- Yuehong Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xinshu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Kaisu Li
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ling Wang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xin Luo
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Ying Zhang
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Na Sun
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; School of Materials Science and Engineering, National Institute for Advanced Materials, TKL of Metal and Molecule-based Material Chemistry, Nankai University, Tianjin 300350, China.
| | - Mingchang Zhu
- The Key Laboratory of the Inorganic Molecule-based Chemistry of Liaoning Province and Laboratory of Coordination, College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China; College of Environmental and Safety Engineering, Shenyang University of Chemical Technology, Shenyang, Liaoning 110142, China.
| |
Collapse
|
2
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
3
|
Zebret S, Hadiji M, Romano-deGea J, Bornet A, Ortiz D, Fadaei-Tirani F, Stathopoulos C, Nowak-Sliwinska P, Munier FL, Dyson PJ. New melphalan derivatives for the treatment of retinoblastoma in combination with thermotherapy. RSC Med Chem 2024; 15:2300-2304. [PMID: 39026655 PMCID: PMC11253858 DOI: 10.1039/d4md00211c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Of the different modalities used to treat retinoblastoma, a chemothermotherapeutic regimen combining carboplatin and thermotherapy (also termed focal therapy), and the application of melphalan as a monotherapy, are particularly successful. Some studies indicate that melphalan shows potential when applied in combination with focal therapy, and yet is not applied in this combination. Here we describe a series of synthetically modified melphalan derivatives that display enhanced cytotoxicity relative to melphalan itself, with some displaying further enhancements in cytotoxicity when applied in combination with heat (used as a model for thermotherapy). The synthetic approach, which involves modifying melphalan with perfluorous chains of varying lengths via an ester linker, could lead to a more effective treatment option for retinoblastoma with reduced side-effects, which is a key limitation of melphalan.
Collapse
Affiliation(s)
- Soumaila Zebret
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Mouna Hadiji
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Jan Romano-deGea
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Aurélien Bornet
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Daniel Ortiz
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christina Stathopoulos
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Patrycja Nowak-Sliwinska
- School of Pharmaceutical Sciences, University of Geneva 1211 Geneva Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva 1211 Geneva Switzerland
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne 1004 Lausanne Switzerland
| | - Paul J Dyson
- Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Khan HY, Ansari MF, Tabassum S, Arjmand F. A review on the recent advances of interaction studies of anticancer metal-based drugs with therapeutic targets, DNA and RNAs. Drug Discov Today 2024; 29:104055. [PMID: 38852835 DOI: 10.1016/j.drudis.2024.104055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Metal-based drugs hold promise as potent anticancer agents owing to their unique interactions with cellular targets. This review discusses recent advances in our understanding of the intricate molecular interactions of metal-based anticancer compounds with specific therapeutic targets in cancer cells. Advanced computational and experimental methodologies delineate the binding mechanisms, structural dynamics and functional outcomes of these interactions. In addition, the review sheds light on the precise modes of action of these drugs, their efficacy and the potential avenues for further optimization in cancer-treatment strategies and the development of targeted and effective metal-based therapies for combating various forms of cancer.
Collapse
Affiliation(s)
- Huzaifa Yasir Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | | | - Sartaj Tabassum
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
5
|
Kwon HC, Lee DH, Yoon M, Nayab S, Lee H, Han JH. Novel Cu(II) complexes as DNA-destabilizing agents and their DNA nuclease activity. Dalton Trans 2023; 52:16802-16811. [PMID: 37902974 DOI: 10.1039/d3dt02615a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Here, we report a series of four novel Cu complexes, namely 2-(piperidin-1-ylmethyl)quinoline copper(II) nitrate, [LACu(NO3)2] (Cu1), 4-(quinolin-2-ylmethyl)morpholine copper(II) nitrate, [LBCu(NO3)2] (Cu2), 4-(quinolin-2-ylmethyl)morpholine copper(II) chloride, [LBCuCl2] (Cu3), and 2-(piperidin-1-ylmethyl)pyridine copper(II) chloride, [LCCu(μ-Cl)Cl]2 (Cu4). X-ray diffraction studies revealed that the geometry around the Cu(II) center could be best described as distorted octahedral in Cu1 and Cu2, whereas Cu3 and Cu4 showed distorted tetrahedral and square pyramidal geometries, respectively. DNA binding studies showed that Cu complexes Cu1-3 containing quinoline interacted via minor groove binding, whereas the Cu4 complex containing pyridine interacted via intercalation. All Cu complexes containing quinoline and pyridine caused destabilization of DNA at specific homogeneous G-C regions. The Cu1-3 complexes as groove binders destabilized the DNA structure much more than the Cu4 complex as an intercalator. Regarding groove binders, the Cu2 complex containing quinoline and morpholine caused the highest distortion and destabilization of the DNA structure, leading to high DNA cleavage efficiency.
Collapse
Affiliation(s)
- Hee Chang Kwon
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Da Hyun Lee
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| | - Minyoung Yoon
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Saira Nayab
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
- Department of Chemistry, Shaheed Benazir Bhutto University (SBBU), Sheringal Upper Dir (18050), Khyber Pakhtunkhwa, Islamic Republic of Pakistan
| | - Hyosun Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Republic of Korea.
| | - Ji Hoon Han
- Department of Chemical and Biological Engineering, Andong National University, 1375 Gyeongdong-ro, Andong, Gyeongbuk, Korea, 36729.
| |
Collapse
|
6
|
Gibney A, de Paiva REF, Singh V, Fox R, Thompson D, Hennessy J, Slator C, McKenzie CJ, Johansson P, McKee V, Westerlund F, Kellett A. A Click Chemistry-Based Artificial Metallo-Nuclease. Angew Chem Int Ed Engl 2023; 62:e202305759. [PMID: 37338105 DOI: 10.1002/anie.202305759] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/21/2023]
Abstract
Artificial metallo-nucleases (AMNs) are promising DNA damaging drug candidates. Here, we demonstrate how the 1,2,3-triazole linker produced by the Cu-catalysed azide-alkyne cycloaddition (CuAAC) reaction can be directed to build Cu-binding AMN scaffolds. We selected biologically inert reaction partners tris(azidomethyl)mesitylene and ethynyl-thiophene to develop TC-Thio, a bioactive C3 -symmetric ligand in which three thiophene-triazole moieties are positioned around a central mesitylene core. The ligand was characterised by X-ray crystallography and forms multinuclear CuII and CuI complexes identified by mass spectrometry and rationalised by density functional theory (DFT). Upon Cu coordination, CuII -TC-Thio becomes a potent DNA binding and cleaving agent. Mechanistic studies reveal DNA recognition occurs exclusively at the minor groove with subsequent oxidative damage promoted through a superoxide- and peroxide-dependent pathway. Single molecule imaging of DNA isolated from peripheral blood mononuclear cells shows that the complex has comparable activity to the clinical drug temozolomide, causing DNA damage that is recognised by a combination of base excision repair (BER) enzymes.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Raphael E F de Paiva
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Vandana Singh
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Fox
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Damien Thompson
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, Department of Physics, University of Limerick, Ireland
| | - Joseph Hennessy
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Creina Slator
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| | - Christine J McKenzie
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Pegah Johansson
- Laboratory of Clinical Chemistry, Sahlgrenska University Hospital Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Vickie McKee
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Fredrik Westerlund
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- SSPC, the, Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Dublin, Ireland
| |
Collapse
|
7
|
Komlyagina VI, Romashev NF, Besprozvannykh VK, Arakelyan J, Wu C, Chubarov AS, Bakaev IV, Soh YK, Abramov PA, Cheung KL, Kompan'kov NB, Ryadun AA, Babak MV, Gushchin AL. Effects of Bis(imino)acenaphthene (Bian)-Derived Ligands on the Cytotoxicity, DNA Interactions, and Redox Activity of Palladium(II) Bipyridine Complexes. Inorg Chem 2023. [PMID: 37418540 DOI: 10.1021/acs.inorgchem.3c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2023]
Abstract
A series of heteroleptic bipyridine Pd(II) complexes based on 1,2-bis[(2,6-diisopropylphenyl)imino]acenaphthene (dpp-Bian) or 1,2-bis[(2,4,6-trimethylphenyl)imino]acenaphthene (tmp-Bian) were prepared. All complexes were fully characterized by spectrochemical methods, and their crystal structures were confirmed by X-ray diffraction analysis. The 72 h stability of heteroleptic bipyridine Pd(II) complexes with Bian ligands under physiological conditions was investigated using 1H NMR spectroscopy. The anticancer activity of all complexes was assessed in a panel of cancer cell lines in comparison with uncoordinated ligands and clinically used drugs cisplatin and doxorubicin. The ability of the complexes to bind DNA was investigated using several methods, including EtBr replacement assay, density functional theory calculations, circular dichroism spectroscopy, DNA gel electrophoresis, and TUNEL assay. The electrochemical activity of all complexes and the uncoordinated ligands was studied using cyclic voltammetry, and reactive oxygen species production in cancer cells was investigated using confocal microscopy. Heteroleptic bipyridine PdII-Bian complexes were cytotoxic in a low micromolar concentration range and showed some selectivity toward cancer cells in comparison with noncancerous MRC-5 lung fibroblasts.
Collapse
Affiliation(s)
- Veronika I Komlyagina
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia
| | - Nikolai F Romashev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Victoria K Besprozvannykh
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Jemma Arakelyan
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Chengnan Wu
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Alexey S Chubarov
- Novosibirsk State University, 1 Pirogov Street, Novosibirsk 630090, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences (SB RAS), 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Ivan V Bakaev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Yee Kiat Soh
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Pavel A Abramov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634034, Russian Federation
| | - Kin Leung Cheung
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
- Shun Lee Catholic Secondary School, 7 Shun Chi St, Cha Liu Au, Hong Kong, People's Republic of China
| | - Nikolai B Kompan'kov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Aleksey A Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| | - Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, People's Republic of China
| | - Artem L Gushchin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences (SB RAS), 3 Acad. Lavrentiev Avenue, Novosibirsk 630090, Russia
| |
Collapse
|
8
|
Kumar P, Tomar S, Kumar K, Kumar S. Transition metal complexes as self-activating chemical nucleases: proficient DNA cleavage without any exogenous redox agents. Dalton Trans 2023; 52:6961-6977. [PMID: 37128993 DOI: 10.1039/d3dt00368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Chemical nucleases have found potential applications in the research fields of chemistry, biotechnology and medicine. A variety of metal complexes have been explored as good to outstanding therapeutic agents for DNA cleavage activity most likely via hydrolytic, oxidative or photoinduced cleavage pathways. However, most of these DNA cleaving agents lack their utility in in vivo applications due to their dependence on exogenous oxidants or reductants to achieve successful DNA damage. In view of addressing these issues, the development of metal complexes/organic molecules serving as self-activating chemical nucleases has received growing attention from researchers. In only the last decade, this field has dramatically expanded for the usage of chemical nucleases as therapeutic agents for DNA damage. The present study provides an overview of the opportunities and challenges in the design and development of self-activating chemical nucleases as improved DNA therapeutic candidates in the absence of an external redox agent. The reports on DNA nuclease activity via self-activation, especially with copper, zinc and iron complexes, and their mechanistic investigation have been discussed in this review article.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemistry, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India.
| | - Sunil Tomar
- Department of Zoology, Mahamana Malviya College Khekra (Baghpat), C.C.S. University Meerut, India
| | - Krishan Kumar
- Department of Chemistry, Motilal Nehru College, South Campus University of Delhi, New Delhi, India
| | - Sushil Kumar
- Department of Chemistry, School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun-248007, Uttarakhand, India.
| |
Collapse
|
9
|
van Niekerk A, Blanckenberg A, Kimani S, Chakraborty S, Prince S, Chellan P, Mapolie S. Mechanistic insights into the anti-cancer activity of the PEGylated binuclear palladacycle, BTC2, against triple-negative breast cancer. J Inorg Biochem 2023; 243:112191. [PMID: 36996694 DOI: 10.1016/j.jinorgbio.2023.112191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/28/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023]
Abstract
Triple-negative breast cancer (TNBC) has a low five-year survival rate, especially if the cancer is diagnosed at a late stage and has already metastasized beyond the breast tissue. Current chemotherapeutic options for TNBC rely on traditional platinum-containing drugs like cisplatin, oxaliplatin and carboplatin. Unfortunately, these drugs are indiscriminately toxic, resulting in severe side effects and the development of drug resistance. Palladium compounds have shown to be viable alternatives to platinum complexes since they are less toxic and have displayed selectivity towards the TNBC cell lines. Here we report the design, synthesis, and characterization of a series of binuclear benzylidene palladacycles with varying phosphine bridging ligands. From this series we have identified BTC2 to be more soluble (28.38-56.77 μg/mL) and less toxic than its predecessor, AJ5, while maintaining its anticancer properties (IC50 (MDA-MB-231) = 0.58 ± 0.012 μM). To complement the previous cell death pathway study of BTC2, we investigated the DNA and BSA binding properties of BTC2 through various spectroscopic and electrophoretic techniques, as well as molecular docking studies. We demonstrate that BTC2 displays multimodal DNA binding properties as both a partial intercalator and groove binder, with the latter being the predominant mode of action. BTC2 was also able to quench the fluorescence of BSA, thereby suggesting that the compound could be transported by albumin in mammalian cells. Molecular docking studies revealed that BTC2 is a major groove binder and binds preferentially to subdomain IIB of BSA. This study provides insight into the influence of the ligands on the activity of the binuclear palladacycles and provides much needed information on the mechanisms through which these complexes elicit their potent anticancer activity.
Collapse
Affiliation(s)
- Annick van Niekerk
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Angelique Blanckenberg
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Serah Kimani
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Suparna Chakraborty
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7625, South Africa
| | - Prinessa Chellan
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Selwyn Mapolie
- Department of Chemistry and Polymer Science, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
10
|
Martins DOS, Souza RAC, Freire MCLC, de Moraes Roso Mesquita NC, Santos IA, de Oliveira DM, Junior NN, de Paiva REF, Harris M, Oliveira CG, Oliva G, Jardim ACG. Insights into the role of the cobalt(III)-thiosemicarbazone complex as a potential inhibitor of the Chikungunya virus nsP4. J Biol Inorg Chem 2023; 28:101-115. [PMID: 36484824 PMCID: PMC9735056 DOI: 10.1007/s00775-022-01974-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022]
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever, a disease that can result in disability. Until now, there is no antiviral treatment against CHIKV, demonstrating that there is a need for development of new drugs. Studies have shown that thiosemicarbazones and their metal complexes possess biological activities, and their synthesis is simple, clean, versatile, and results in high yields. Here, we evaluated the mechanism of action (MOA) of a cobalt(III) thiosemicarbazone complex named [CoIII(L1)2]Cl based on its in vitro potent antiviral activity against CHIKV previously evaluated (80% of inhibition on replication). Furthermore, the complex has no toxicity in healthy cells, as confirmed by infecting BHK-21 cells with CHIKV-nanoluciferase in the presence of the compound, showing that [CoIII(L1)2]Cl inhibited CHIKV infection with the selective index of 3.26. [CoIII(L1)2]Cl presented a post-entry effect on viral replication, emphasized by the strong interaction of [CoIII(L1)2]Cl with CHIKV non-structural protein 4 (nsP4) in the microscale thermophoresis assay, suggesting a potential mode of action of this compound against CHIKV. Moreover, in silico analyses by molecular docking demonstrated potential interaction of [CoIII(L1)2]Cl with nsP4 through hydrogen bonds, hydrophobic and electrostatic interactions. The evaluation of ADME-Tox properties showed that [CoIII(L1)2]Cl presents appropriate lipophilicity, good human intestinal absorption, and has no toxicological effect as irritant, mutagenic, reproductive, and tumorigenic side effects.
Collapse
Affiliation(s)
- Daniel Oliveira Silva Martins
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
- São Paulo State University, IBILCE, São José do Rio Preto, SP, Brazil
| | | | | | | | - Igor Andrade Santos
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
| | - Débora Moraes de Oliveira
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil
| | - Nilson Nicolau Junior
- Molecular Modeling Laboratory, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Brazil
| | | | - Mark Harris
- Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Carolina Gonçalves Oliveira
- Bioinorganic Chemistry Group, Institute of Chemistry, Federal University of Uberlândia, Uberlândia, MG, 38408-100, Brazil.
| | - Glaucius Oliva
- Physics Institute of São Carlos, University of São Paulo, São Carlos, SP, Brazil
| | - Ana Carolina Gomes Jardim
- Institute of Biomedical Sciences, Federal University of Uberlândia, Avenida Amazonas, 4C- Room 216, Umuarama, Uberlândia, MG, 38405-302, Brazil.
- São Paulo State University, IBILCE, São José do Rio Preto, SP, Brazil.
| |
Collapse
|
11
|
Synthesis, characterization, antioxidant potential, and cytotoxicity screening of new Cu(II) complexes with 4-(arylchalcogenyl)-1H-pyrazoles ligands. J Inorg Biochem 2022; 237:112013. [PMID: 36183642 DOI: 10.1016/j.jinorgbio.2022.112013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 01/18/2023]
Abstract
Two new Cu(II) complexes based on 4-(arylchalcogenyl)-1H-pyrazoles monodentate bis(ligand) containing selenium or sulfur groups (2a and 2b) have been synthesized and characterized by IR spectroscopy, high-resolution mass spectrometry (HRMS), and by X-ray crystallography. In the effort to propose new applications for the biomedical area, we evaluated the antioxidant activity and cytotoxicity of the newly synthesized complexes. The antioxidant activity of the Cu(II) complexes (2a - 2b) were assessed through their ability to inhibit the formation of reactive species (RS) induced by sodium azide and to scavenge the synthetic radicals 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-azinobis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS+). Both copper complexes containing selenium (2a) and sulfur (2b) presented in vitro antioxidant activity. The (1a - 1b and 2a - 2b) compounds did not show cytotoxicity in V79 cells at low concentrations. Furthermore, the antiproliferative activity of free ligands (1a - 1b) and their complexes (2a - 2b) were tested against two human tumor cell lines: MCF-7 (breast adenocarcinoma) and HepG2 (hepatocarcinoma). Also, 2a was tested against U2OS (osteosarcoma). Our results demonstrated that 1a and 1b show little or no growth inhibition activities on human cell lines.The 2a compound exhibited good cytotoxic activity toward human tumor cell lines. However, 2a showed no selectivity, with a selectivity index of 1.12-1.40. Complex 2b was selective for the MCF-7 human tumor cell lines with IC50 of 59 ± 2 μM. This study demonstrates that the Cu(II) complexes 2a and 2b represent promising antitumoral compounds, and further studies are necessary to understand the molecular mechanisms of these effects.
Collapse
|
12
|
Newly Synthesized Melphalan Analogs Induce DNA Damage and Mitotic Catastrophe in Hematological Malignant Cancer Cells. Int J Mol Sci 2022; 23:ijms232214258. [PMID: 36430734 PMCID: PMC9693175 DOI: 10.3390/ijms232214258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/12/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Myeloablative therapy with highdoses of the cytostatic drug melphalan (MEL) in preparation for hematopoietic cell transplantation is the standard of care for multiple myeloma (MM) patients. Melphalan is a bifunctional alkylating agent that covalently binds to nucleophilic sites in the DNA and effective in the treatment, but unfortunately has limited therapeutic benefit. Therefore, new approaches are urgently needed for patients who are resistant to existing standard treatment with MEL. Regulating the pharmacological activity of drug molecules by modifying their structure is one method for improving their effectiveness. The purpose of this work was to analyze the physicochemical and biological properties of newly synthesized melphalan derivatives (EE-MEL, EM-MEL, EM-MOR-MEL, EM-I-MEL, EM-T-MEL) obtained through the esterification of the carboxyl group and the replacement of the the amino group with an amidine group. Compounds were selected based on our previous studies for their improved anticancer properties in comparison with the original drug. For this, we first evaluated the physicochemical properties using the circular dichroism technique, then analyzed the zeta potential and the hydrodynamic diameters of the particles. Then, the in vitro biological properties of the analogs were tested on multiple myeloma (RPMI8226), acute monocytic leukemia (THP1), and promyelocytic leukemia (HL60) cells as model systems for hematological malignant cells. DNA damage was assessed by immunostaining γH2AX, cell cycle distribution changes by propidium iodide (PI) staining, and cell death by the activation of caspase 2. We proved that the newly synthesized derivatives, in particular EM-MOR-MEL and EM-T-MEL, affected the B-DNA conformation, thus increasing the DNA damage. As a result of the DNA changes, the cell cycle was arrested in the S and G2/M phases. The cell death occurred by activating a mitotic catastrophe. Our investigations suggest that the analogs EM-MOR-MEL and EM-T-MEL have better anti-cancer activity in multiple myeloma cells than the currently used melphalan.
Collapse
|
13
|
Zaki M, Hairat S, Kamaal S, Aljarba NH, AL–Johani NS, Alkahtani S. Synthesis, crystal structure elucidation and DNA/HSA binding profile of Ni(II) complex of Schiff base derived from 3–ethoxy salicylaldehyde and o–phenylenediamine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Tripathi M, Asatkar AK, Antony S, Dash MK, Roymahapatra G, Pande R, Sarkar A, Aldakheel FM, Binshaya AS, Alharthi NS, Alaofi AL, Alqahtani MS, Syed R. Copper(ii) complexes supported by modified azo-based ligands: Nucleic acid binding and molecular docking studies. OPEN CHEM 2022; 20:505-516. [DOI: 10.1515/chem-2022-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2024] Open
Abstract
Abstract
Two new copper(ii) complexes [CuL1] (1) and [CuL2] (2) derived from azo-based ligands 2-hydroxy-5-p-tolylazo-benzaldehyde (HL1) and 1-(2-hydroxy-5-p-tolylazo-phenyl)-ethan-one (HL2) were synthesized. These two ligands and their metal complexes were characterized by elemental analysis, nuclear magnetic resonance (1H and 13C), infrared, and UV/Vis spectroscopic techniques. Spectroscopy and other theoretical studies reveal the geometry of copper complexes, and their binding affinity towards nucleic acids are major groove binding.
Collapse
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , 492010, Chhattisgarh , India
| | - Ashish Kumar Asatkar
- Department of Chemistry, Government Gundadhur P. G. College , Kondagaon , 494226, Chhattisgarh , India
| | - Stalin Antony
- Department of Traditional Chinese Medicine, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University , Hangzhou , 311300 , China
| | - Mrinal Kanti Dash
- Department of Applied Sciences, Haldia Institute of Technology , Haldia , 721657 , India
| | | | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University , Raipur , 492010, Chhattisgarh , India
| | - Avijit Sarkar
- Department of Chemistry, Bhairab Ganguly College , Belghoria , Kolkata, 700056 , India
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University , Riyadh , 11433 , Saudi Arabia
| | - Abdulkarim S. Binshaya
- Department of Medical Laboratory Sciences, College of Medical Sciences, Prince Sattam bin Abdulaziz University (PSAU) , Alkharz , Saudi Arabia
| | - Nahed S. Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University (PSAU) , Alkharj , Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University , P.O Box. 2457 , Riyadh , 11451 , Kingdom of Saudi Arabia
| | - Mohammed S. Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University , P.O Box. 2457 , Riyadh , 11451 , Kingdom of Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University , P.O Box. 2457 , Riyadh , 11451 , Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
16
|
Aliouat H, Peng Y, Waseem Z, Wang S, Zhou W. Pure DNA scaffolded drug delivery systems for cancer therapy. Biomaterials 2022; 285:121532. [DOI: 10.1016/j.biomaterials.2022.121532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
17
|
Joaqui-Joaqui MA, Maxwell Z, Raju MVR, Jiang M, Srivastava K, Shao F, Arriaga EA, Pierre VC. Metallointercalators-DNA Tetrahedron Supramolecular Self-Assemblies with Increased Serum Stability. ACS NANO 2022; 16:2928-2941. [PMID: 35133785 PMCID: PMC8926058 DOI: 10.1021/acsnano.1c10084] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Self-assembly of metallointercalators into DNA nanocages is a rapid and facile approach to synthesize discrete bioinorganic host/guest structures with a high load of metal complexes. Turberfield's DNA tetrahedron can accommodate one intercalator for every two base pairs, which corresponds to 48 metallointercalators per DNA tetrahedron. The affinity of the metallointercalator for the DNA tetrahedron is a function of both the structure of the intercalating ligand and the overall charge of the complex, with a trend in affinity [Ru(bpy)2(dppz)]2+ > [Tb-DOTAm-Phen]3+ ≫ Tb-DOTA-Phen. Intercalation of the metal complex stabilizes the DNA tetrahedron, resulting in an increase of its melting temperature and, importantly, a significant increase in its stability in the presence of serum. [Ru(bpy)2(dppz)]2+, which has a greater affinity for DNA than [Tb-DOTAm-Phen]3+, increases the melting point and decreases degradation in serum to a greater extent than the TbIII complex. In the presence of Lipofectamine, the metallointercalator@DNA nanocage assemblies substantially increase the cell uptake of their respective metal complex. Altogether, the facile incorporation of a large number of metal complexes per assembly, the higher stability in serum, and the increased cell penetration of metallointercalator@DNA make these self-assemblies well-suited as metallodrugs.
Collapse
Affiliation(s)
- M. Andrey Joaqui-Joaqui
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Zoe Maxwell
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States of America
| | | | - Min Jiang
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
| | - Kriti Srivastava
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Fangwei Shao
- Zhejiang University-University of Illinois at Urbana-Champaign Institute, Zhejiang University, Haining, 314400, China
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States of America
| | - Valérie C. Pierre
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, United States of America
| |
Collapse
|
18
|
McStay N, Slator C, Singh V, Gibney A, Westerlund F, Kellett A. Click and Cut: a click chemistry approach to developing oxidative DNA damaging agents. Nucleic Acids Res 2021; 49:10289-10308. [PMID: 34570227 PMCID: PMC8501983 DOI: 10.1093/nar/gkab817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/01/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023] Open
Abstract
Metallodrugs provide important first-line treatment against various forms of human cancer. To overcome chemotherapeutic resistance and widen treatment possibilities, new agents with improved or alternative modes of action are highly sought after. Here, we present a click chemistry strategy for developing DNA damaging metallodrugs. The approach involves the development of a series of polyamine ligands where three primary, secondary or tertiary alkyne-amines were selected and 'clicked' using the copper-catalysed azide-alkyne cycloaddition reaction to a 1,3,5-azide mesitylene core to produce a family of compounds we call the 'Tri-Click' (TC) series. From the isolated library, one dominant ligand (TC1) emerged as a high-affinity copper(II) binding agent with potent DNA recognition and damaging properties. Using a range of in vitro biophysical and molecular techniques-including free radical scavengers, spin trapping antioxidants and base excision repair (BER) enzymes-the oxidative DNA damaging mechanism of copper-bound TC1 was elucidated. This activity was then compared to intracellular results obtained from peripheral blood mononuclear cells exposed to Cu(II)-TC1 where use of BER enzymes and fluorescently modified dNTPs enabled the characterisation and quantification of genomic DNA lesions produced by the complex. The approach can serve as a new avenue for the design of DNA damaging agents with unique activity profiles.
Collapse
Affiliation(s)
- Natasha McStay
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vandana Singh
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Alex Gibney
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
- Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
19
|
Largy E, König A, Ghosh A, Ghosh D, Benabou S, Rosu F, Gabelica V. Mass Spectrometry of Nucleic Acid Noncovalent Complexes. Chem Rev 2021; 122:7720-7839. [PMID: 34587741 DOI: 10.1021/acs.chemrev.1c00386] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nucleic acids have been among the first targets for antitumor drugs and antibiotics. With the unveiling of new biological roles in regulation of gene expression, specific DNA and RNA structures have become very attractive targets, especially when the corresponding proteins are undruggable. Biophysical assays to assess target structure as well as ligand binding stoichiometry, affinity, specificity, and binding modes are part of the drug development process. Mass spectrometry offers unique advantages as a biophysical method owing to its ability to distinguish each stoichiometry present in a mixture. In addition, advanced mass spectrometry approaches (reactive probing, fragmentation techniques, ion mobility spectrometry, ion spectroscopy) provide more detailed information on the complexes. Here, we review the fundamentals of mass spectrometry and all its particularities when studying noncovalent nucleic acid structures, and then review what has been learned thanks to mass spectrometry on nucleic acid structures, self-assemblies (e.g., duplexes or G-quadruplexes), and their complexes with ligands.
Collapse
Affiliation(s)
- Eric Largy
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Alexander König
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Anirban Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Debasmita Ghosh
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Sanae Benabou
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS, INSERM, IECB, UMS 3033, F-33600 Pessac, France
| | - Valérie Gabelica
- Univ. Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, IECB, F-33600 Pessac, France
| |
Collapse
|
20
|
Tripathi M, Syed R, Stalin A, Malik A, Pande R, Asatkar AK. In vitro investigation of biophysical interactions between Ag(I) complexes of bis(methyl)(thia/selena)salen and ct-DNA via multi-spectroscopic, physicochemical and molecular docking methods along with cytotoxicity study. LUMINESCENCE 2021; 36:1277-1284. [PMID: 33834603 DOI: 10.1002/bio.4054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/11/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022]
Abstract
Four silver(I) (Ag(I)) complexes: 1.PF6 , 2.PF6 , 1.ClO4 and 2.ClO4 of bis(methyl)thia salen (1) and bis (methyl)selena salen (2) with two different counter anions (PF6 - and ClO4 - ) have been investigated for DNA binding properties. In vitro interactional association between the Ag(I) complexes and ct-DNA has been examined by performing spectroscopic titrations on absorption spectrophotometer and fluorescence spectrophotometer. A competitive binding study has also been done using a fluorescence spectrophotometer with ethidium bromide as a classical intercalator. The spectroscopic methods revealed a major groove. Viscometry and agarose gel electrophoresis experiments have also been performed as physicochemical methods to confirm the binding of complex molecules with DNA. Molecular docking analysis has been executed to obtain the theoretical insight into the mode of binding. The docking study demonstrated the major groove binding of all four complexes to the DNA with electrostatic metal-phosphate interactions (between the metal and the backbone of DNA) and hydrophobic interactions. Cytotoxicity of the complexes has been studied on the Human Fibroblast foreskin (HFF) cell line. The cytotoxicity results showed positive gesture for moving ahead to the next level of screening; the values were above 10 μM which are appreciated for the normal cell lines.
Collapse
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Rabbani Syed
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Abdul Malik
- Nanobiotechnology Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, 492010, India
| | - Ashish K Asatkar
- Department of Chemistry, Government Gundadhur P.G. College, Kondagaon, Chhattisgarh, India
| |
Collapse
|
21
|
Fantoni NZ, Brown T, Kellett A. DNA-Targeted Metallodrugs: An Untapped Source of Artificial Gene Editing Technology. Chembiochem 2021; 22:2184-2205. [PMID: 33570813 DOI: 10.1002/cbic.202000838] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Indexed: 12/20/2022]
Abstract
DNA binding metal complexes are synonymous with anticancer drug discovery. Given the array of structural and chemical reactivity properties available through careful design, metal complexes have been directed to bind nucleic acid structures through covalent or noncovalent binding modes. Several recognition modes - including crosslinking, intercalation, and oxidation - are central to the clinical success of broad-spectrum anticancer metallodrugs. However, recent progress in nucleic acid click chemistry coupled with advancement in our understanding of metal complex-nucleic acid interactions has opened up new avenues in genetic engineering and targeted therapies. Several of these applications are enabled by the hybridisation of oligonucleotide or polyamine probes to discrete metal complexes, which facilitate site-specific reactivity at the nucleic acid interface under the guidance of the probe. This Review focuses on recent advancements in hybrid design and, by way of an introduction to this topic, we provide a detailed overview of nucleic acid structures and metal complex-nucleic acid interactions. Our aim is to provide readers with an insight on the rational design of metal complexes with DNA recognition properties and an understanding of how the sequence-specific targeting of these interactions can be achieved for gene engineering applications.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Tom Brown
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, United Kingdom
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for, Cellular Biotechnology and Nano Research Facility, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
22
|
Stefanucci A, Amato J, Brancaccio D, Pagano B, Randazzo A, Santoro F, Mayol L, Learte-Aymamí S, Rodriguez J, Mascareñas JL, Novellino E, Carotenuto A, Mollica A. A novel β-hairpin peptide derived from the ARC repressor selectively interacts with the major groove of B-DNA. Bioorg Chem 2021; 112:104836. [PMID: 33812270 DOI: 10.1016/j.bioorg.2021.104836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/04/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
Abstract
Transcription factors (TFs) have a remarkable role in the homeostasis of the organisms and there is a growing interest in how they recognize and interact with specific DNA sequences. TFs recognize DNA using a variety of structural motifs. Among those, the ribbon-helix-helix (RHH) proteins, exemplified by the MetJ and ARC repressors, form dimers that insert antiparallel β-sheets into the major groove of DNA. A great chemical challenge consists of using the principles of DNA recognition by TFs to design minimized peptides that maintain the DNA affinity and specificity characteristics of the natural counterparts. In this context, a peptide mimic of an antiparallel β-sheet is very attractive since it can be obtained by a single peptide chain folding in a β-hairpin structure and can be as short as 14 amino acids or less. Herein, we designed eight linear and two cyclic dodeca-peptides endowed with β-hairpins. Their DNA binding properties have been investigated using fluorescence spectroscopy together with the conformational analysis through circular dichroism and solution NMR. We found that one of our peptides, peptide 6, is able to bind DNA, albeit without sequence selectivity. Notably, it shows a topological selectivity for the major groove of the DNA which is the interaction site of ARC and many other DNA-binding proteins. Moreover, we found that a type I' β-hairpin folding pattern is a favorite peptide structure for interaction with the B-DNA major groove. Peptide 6 is a valuable lead compound for the development of novel analogs with sequence selectivity.
Collapse
Affiliation(s)
- Azzurra Stefanucci
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Laura Mayol
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Soraya Learte-Aymamí
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jessica Rodriguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), and Departamento de Química Orgánica. Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy.
| | - Adriano Mollica
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy.
| |
Collapse
|
23
|
Kato K, Ichimaru Y, Okuno Y, Yamaguchi Y, Jin W, Fujita M, Otsuka M, Imai M, Kurosaki H. DNA-cleavage activity of the iron(II) complex with optically active ligands, meta- and para-xylyl-linked N',N'-dipyridylmethyl-cyclohexane-1,2-diamine. Bioorg Med Chem Lett 2021; 36:127834. [PMID: 33540045 DOI: 10.1016/j.bmcl.2021.127834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 11/18/2022]
Abstract
DNA-cleavage agents such as bleomycin have potential anticancer applications. The development of a DNA-cleavage reagent that recognizes specific sequences allows the development of cancer therapy with reduced side effects. In this study, to develop novel compounds with specific DNA-cleavage activities, we synthesized optically active binuclear ligands, (1R,1'R,2R,2'R)-N1,N1'-(meta/para-phenylenebis(methylene))bis(N2,N2-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine) and their enantiomers. The DNA-cleavage activities of these compounds were investigated in the presence of Fe(II)SO4 and sodium ascorbate. The obtained results indicated that the Fe(II) complexes of those compounds efficiently cleave DNA and that their cleavage was subtle sequence-selective. Therefore, we succeeded in developing compounds that can be used as small-molecule drugs for cancer chemotherapy.
Collapse
Affiliation(s)
- Koichi Kato
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Yoshimi Ichimaru
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Yoshinori Okuno
- Department of Medicinal Chemistry, Yokohama University of Pharmacy, 601 Matano-cho Totsuka-ku, Yokohama 245-0066 Japan.
| | - Yoshihiro Yamaguchi
- Environmental Safety Center, Kumamoto University, 39-1 Kurokami 2-Chome, Chuo-ku, Kumamoto 860-8555, Japan
| | - Wanchun Jin
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Drug Discovery, Science Farm Ltd, 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Masanori Imai
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan
| | - Hiromasa Kurosaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Omori, Moriyamaku, Nagoya, Aichi 463-8521, Japan.
| |
Collapse
|
24
|
Pinho JO, da Silva IV, Amaral JD, Rodrigues CMP, Casini A, Soveral G, Gaspar MM. Therapeutic potential of a copper complex loaded in pH-sensitive long circulating liposomes for colon cancer management. Int J Pharm 2021; 599:120463. [PMID: 33711474 DOI: 10.1016/j.ijpharm.2021.120463] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Colorectal carcinoma is a complex malignancy and current therapies are hampered by systemic toxicity and tumor resistance to treatment. In the field of cancer therapy, copper (Cu) compounds hold great promise, with some reaching clinical trials. However, the anticancer potential of Cu complexes has not yet been fully disclosed due to speciation in biological systems, leading to inactivation and/or potential side effects. This is the case of the widely studied Cu(II) complexes featuring phenanthroline ligands, with potent antiproliferative effects in vitro, but often failing in vivo. Aiming to overcome these limitations and maximize its anticancer effects in vivo, the Cu(II) complex (Cu(1,10-phenanthroline)Cl2) (Cuphen), displaying IC50 values <6 μM against different tumor cell lines, was loaded in long circulating liposomes with pH-sensitive properties (F1, DMPC:CHEMS:DSPE-PEG; F2, DOPE:CHEMS:DMPC:DSPE-PEG). This enabled a pH-dependent Cuphen release, with F1 and F2 releasing 36/78% and 47/94% of Cuphen at pH 6/4.5, respectively. The so formed nanoformulations preserved Cuphen effects towards cancer cell lines, with F2 presenting IC50 of 2.7 μM and 4.9 μM towards colon cancer CT-26 and HCT-116 cells, respectively. Additional in vitro studies confirmed that Cuphen antiproliferative activity towards colon cancer cells does not rely on cell cycle effect. Furthermore, in these cells, Cuphen reduced glycerol permeation and impaired cell migration. At 24 h incubation, wound closure was reduced by Cuphen, with migration values of 29% vs 54% (control) and 45% (1,10-phenanthroline) in CT-26 cells, and 33% vs ~44% (control and 1,10-phenanthroline) in HCT-116 cells. These effects were probably due to inhibition of aquaglyceroporins, membrane water and glycerol channels that are often abnormally expressed in tumors. In a syngeneic murine colon cancer model, F2 significantly reduced tumor progression, compared to the control group and to mice treated with free Cuphen or with the ligand, 1,10-phenanthroline, without eliciting toxic side effects. F2 led to a tumor volume reduction of ca. 50%. This was confirmed by RTV analysis, where F2 reached a value of 1.3 vs 4.4 (Control), 5.8 (Phen) and 3.8 (free Cuphen). These results clearly demonstrated the important role of the Cu(II) for the observed biological activity that was maximized following the association to a lipid-based nanosystem. Overall, this study represents a step forward in the development of pH-sensitive nanotherapeutic strategies of metallodrugs for colon cancer management.
Collapse
Affiliation(s)
- Jacinta O Pinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Inês V da Silva
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Joana D Amaral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Angela Casini
- Department of Chemistry, Technical University of Munich (TUM), Lichtenbergstr. 4, 85748 Garching b. München, Germany.
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - M Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
25
|
Sharma P, Nath H, Frontera A, Barcelo-Oliver M, Verma AK, Hussain S, Bhattacharyya MK. Biologically relevant unusual cooperative assemblies and fascinating infinite crown-like supramolecular nitrate–water hosts involving guest complex cations in bipyridine and phenanthroline-based Cu( ii) coordination compounds: antiproliferative evaluation and theoretical studies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01004b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cytotoxicity in cancer cells with structure activity relationship has been explored in Cu(ii) compounds involving biologically relevant cooperative assemblies and fascinating crown-like nitrate–water hosts with guest complex cations.
Collapse
Affiliation(s)
- Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Hiren Nath
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Miquel Barcelo-Oliver
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati-781001
- India
| | - Sahid Hussain
- Department of Chemistry
- Indian Institute of Technology Patna, Bihta
- Patna-801103
- India
| | | |
Collapse
|
26
|
Ji C, Yin X, Duan H, Liang L. Molecular complexes of calf thymus DNA with various bioactive compounds: Formation and characterization. Int J Biol Macromol 2020; 168:775-783. [PMID: 33227330 DOI: 10.1016/j.ijbiomac.2020.11.135] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
The interaction between biomacromolecules and ligands has attracted great interest because of their biological properties. Calf thymus DNA (ctDNA) can interact with bioactive compounds to form complexes. Here, ctDNA-ligand complexes were studied using fluorescence, absorption, and infrared spectroscopy, circular dichroism, ABTS assay and competitive displacement. The binding constants of bioactive compounds at the intercalative site of ctDNA ranked in order kaempferol > apigenin > quercetin > curcumin > riboflavin, while the binding constants at minor groove sites ranked quercetin > kaempferol > naringenin ~ apigenin > hesperetin > curcumin ~ resveratrol ~ riboflavin > caffeic acid. CtDNA maintained stable B-form with an enhancement of base stacking and a decrease of right-handed helicity in the presence of these bioactive compounds, except for hesperetin and caffeic acid. Bioactive compounds preferentially bound to guanine bases and tended to transfer into a more hydrophobic environment upon complexation with ctDNA. The DNA complexation did not affect the ABTS·+ scavenging capacity of quercetin, kaempferol, resveratrol and apigenin but increased the ones of naringenin, caffeic acid, curcumin, hesperetin and riboflavin. The data gathered here should be useful to understand the binding modes of DNA with ligands for their potential application in pharmaceutical and food industries.
Collapse
Affiliation(s)
- Chuye Ji
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Hongwei Duan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
27
|
Lauria T, Slator C, McKee V, Müller M, Stazzoni S, Crisp AL, Carell T, Kellett A. A Click Chemistry Approach to Developing Molecularly Targeted DNA Scissors. Chemistry 2020; 26:16782-16792. [PMID: 32706904 DOI: 10.1002/chem.202002860] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/21/2022]
Abstract
Nucleic acid click chemistry was used to prepare a family of chemically modified triplex forming oligonucleotides (TFOs) for application as a new gene-targeted technology. Azide-bearing phenanthrene ligands-designed to promote triplex stability and copper binding-were 'clicked' to alkyne-modified parallel TFOs. Using this approach, a library of TFO hybrids was prepared and shown to effectively target purine-rich genetic elements in vitro. Several of the hybrids provide significant stabilisation toward melting in parallel triplexes (>20 °C) and DNA damage can be triggered upon copper binding in the presence of added reductant. Therefore, the TFO and 'clicked' ligands work synergistically to provide sequence-selectivity to the copper cutting unit which, in turn, confers high stabilisation to the DNA triplex. To extend the boundaries of this hybrid system further, a click chemistry-based di-copper binding ligand was developed to accommodate designer ancillary ligands such as DPQ and DPPZ. When this ligand was inserted into a TFO, a dramatic improvement in targeted oxidative cleavage is afforded.
Collapse
Affiliation(s)
- Teresa Lauria
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Markus Müller
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Samuele Stazzoni
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Antony L Crisp
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Thomas Carell
- Department of Chemistry, Ludwig-Maximilians-Universität, Butenandtstrasse 5-13, 81377, Munich, Germany
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,CÚRAM, Centre for Research in Medical Devices, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
28
|
Fantoni NZ, Molphy Z, O'Carroll S, Menounou G, Mitrikas G, Krokidis MG, Chatgilialoglu C, Colleran J, Banasiak A, Clynes M, Roche S, Kelly S, McKee V, Kellett A. Polypyridyl-Based Copper Phenanthrene Complexes: Combining Stability with Enhanced DNA Recognition. Chemistry 2020; 27:971-983. [PMID: 32519773 DOI: 10.1002/chem.202001996] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Indexed: 02/06/2023]
Abstract
We report a series of copper(II) artificial metallo-nucleases (AMNs) and demonstrate their DNA damaging properties and in-vitro cytotoxicity against human-derived pancreatic cancer cells. The compounds combine a tris-chelating polypyridyl ligand, di-(2-pycolyl)amine (DPA), and a DNA intercalating phenanthrene unit. Their general formula is Cu-DPA-N,N' (where N,N'=1,10-phenanthroline (Phen), dipyridoquinoxaline (DPQ) or dipyridophenazine (DPPZ)). Characterisation was achieved by X-ray crystallography and continuous-wave EPR (cw-EPR), hyperfine sublevel correlation (HYSCORE) and Davies electron-nuclear double resonance (ENDOR) spectroscopies. The presence of the DPA ligand enhances solution stability and facilitates enhanced DNA recognition with apparent binding constants (Kapp ) rising from 105 to 107 m-1 with increasing extent of planar phenanthrene. Cu-DPA-DPPZ, the complex with greatest DNA binding and intercalation effects, recognises the minor groove of guanine-cytosine (G-C) rich sequences. Oxidative DNA damage also occurs in the minor groove and can be inhibited by superoxide and hydroxyl radical trapping agents. The complexes, particularly Cu-DPA-DPPZ, display promising anticancer activity against human pancreatic tumour cells with in-vitro results surpassing the clinical platinum(II) drug oxaliplatin.
Collapse
Affiliation(s)
- Nicoló Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular, Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Nicolò Zuin Fantoni-Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular, Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Dublin, 9, Ireland
| | - Sinéad O'Carroll
- School of Chemical Sciences and National Institute for Cellular, Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Georgia Menounou
- Consiglio Nazionale delle Ricerche, ISOF, Via P. Gobetti 101, 40129, Bologna, Italy
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology Demokritos, NCSR "Demokritos", Agia Paraskevi Attikis, 153, 10, Athens, Greece
| | - Marios G Krokidis
- Institute of Nanoscience and Nanotechnology Demokritos, NCSR "Demokritos", Agia Paraskevi Attikis, 153, 10, Athens, Greece
| | | | - John Colleran
- School of Chemical and Pharmaceutical Sciences, TU Dublin, Kevin Street, Dublin 8, Ireland.,Applied Electrochemistry Group, Focas Research Institute, TU Dublin, Camden Row, Dublin 8, Ireland
| | - Anna Banasiak
- Applied Electrochemistry Group, Focas Research Institute, TU Dublin, Camden Row, Dublin 8, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, 9, Ireland
| | - Sandra Roche
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, 9, Ireland
| | - Suainibhe Kelly
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, 9, Ireland
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular, Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular, Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.,SSPC, the SFI Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Dublin, 9, Ireland
| |
Collapse
|
29
|
Krasnovskaya OO, Guk DA, Naumov AE, Nikitina VN, Semkina AS, Vlasova KY, Pokrovsky V, Ryabaya OO, Karshieva SS, Skvortsov DA, Zhirkina IV, Shafikov RR, Gorelkin PV, Vaneev AN, Erofeev AS, Mazur DM, Tafeenko VA, Pergushov VI, Melnikov MY, Soldatov MA, Shapovalov VV, Soldatov AV, Akasov RA, Gerasimov VM, Sakharov DA, Moiseeva AA, Zyk NV, Beloglazkina EK, Majouga AG. Novel Copper-Containing Cytotoxic Agents Based on 2-Thioxoimidazolones. J Med Chem 2020; 63:13031-13063. [PMID: 32985193 DOI: 10.1021/acs.jmedchem.0c01196] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of 73 ligands and 73 of their Cu+2 and Cu+1 copper complexes with different geometries, oxidation states of the metal, and redox activities were synthesized and characterized. The aim of the study was to establish the structure-activity relationship within a series of analogues with different substituents at the N(3) position, which govern the redox potentials of the Cu+2/Cu+1 redox couples, ROS generation ability, and intracellular accumulation. Possible cytotoxicity mechanisms, such as DNA damage, DNA intercalation, telomerase inhibition, and apoptosis induction, have been investigated. ROS formation in MCF-7 cells and three-dimensional (3D) spheroids was proven using the Pt-nanoelectrode. Drug accumulation and ROS formation at 40-60 μm spheroid depths were found to be the key factors for the drug efficacy in the 3D tumor model, governed by the Cu+2/Cu+1 redox potential. A nontoxic in vivo single-dose evaluation for two binuclear mixed-valence Cu+1/Cu+2 redox-active coordination compounds, 72k and 61k, was conducted.
Collapse
Affiliation(s)
- Olga O Krasnovskaya
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Dmitry A Guk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexey E Naumov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vita N Nikitina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alevtina S Semkina
- Department of Medical Nanobiotechnologies, Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia.,Department of Basic and Applied Neurobiology, Serbsky National Medical Research Center for Psychiatry and Narcology, Kropotkinskiy 23, Moscow 119991, Russia
| | - Kseniya Yu Vlasova
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vadim Pokrovsky
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia.,People's Friendship University, Moscow, Russia, Miklukho-Maklaya 6, Moscow 117198, Russia
| | - Oksana O Ryabaya
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia
| | - Saida S Karshieva
- N.N. Blokhin National Medical Research Center of Oncology of the Ministry of Health of the Russian Federation, Kashirskoe Highway 23, Moscow 115478, Russia
| | - Dmitry A Skvortsov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia.,Department of Biology and Biotechnologies, Higher School of Economics, Myasnitskaya 13, Moscow 101000, Russia
| | - Irina V Zhirkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Radik R Shafikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Petr V Gorelkin
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia
| | - Alexander N Vaneev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexander S Erofeev
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia
| | - Dmitrii M Mazur
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Viktor A Tafeenko
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Vladimir I Pergushov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Mikhail Ya Melnikov
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Mikhail A Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Victor V Shapovalov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Alexander V Soldatov
- The Smart Materials Research Institute Southern Federal University Sladkova, 178/24, Rostov-on-Don 344090, Russia
| | - Roman A Akasov
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,I.M. Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia
| | - Vasily M Gerasimov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Dmitry A Sakharov
- Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| | - Anna A Moiseeva
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Nikolay V Zyk
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia
| | - Alexander G Majouga
- Department of Materials Science of Semiconductors and Dielectrics, National University of Science and Technology MISIS, Leninskiy Prospect 4, Moscow 101000, Russia.,Chemistry Department, Lomonosov Moscow State University, Leninskie Gory, 1/3, Moscow 119991, Russia.,Mendeleev University of Chemical Technology of Russia, Miusskaya Sq. 9, Moscow 125047, Russia
| |
Collapse
|
30
|
Zuin Fantoni N, McGorman B, Molphy Z, Singleton D, Walsh S, El-Sagheer AH, McKee V, Brown T, Kellett A. Development of Gene-Targeted Polypyridyl Triplex-Forming Oligonucleotide Hybrids. Chembiochem 2020; 21:3563-3574. [PMID: 32755000 DOI: 10.1002/cbic.202000408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/30/2020] [Indexed: 02/02/2023]
Abstract
In the field of nucleic acid therapy there is major interest in the development of libraries of DNA-reactive small molecules which are tethered to vectors that recognize and bind specific genes. This approach mimics enzymatic gene editors, such as ZFNs, TALENs and CRISPR-Cas, but overcomes the limitations imposed by the delivery of a large protein endonuclease which is required for DNA cleavage. Here, we introduce a chemistry-based DNA-cleavage system comprising an artificial metallo-nuclease (AMN) that oxidatively cuts DNA, and a triplex-forming oligonucleotide (TFO) that sequence-specifically recognises duplex DNA. The AMN-TFO hybrids coordinate CuII ions to form chimeric catalytic complexes that are programmable - based on the TFO sequence employed - to bind and cut specific DNA sequences. Use of the alkyne-azide cycloaddition click reaction allows scalable and high-throughput generation of hybrid libraries that can be tuned for specific reactivity and gene-of-interest knockout. As a first approach, we demonstrate targeted cleavage of purine-rich sequences, optimisation of the hybrid system to enhance stability, and discrimination between target and off-target sequences. Our results highlight the potential of this approach where the cutting unit, which mimics the endonuclease cleavage machinery, is directly bound to a TFO guide by click chemistry.
Collapse
Affiliation(s)
- Nicolò Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Present address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Bríonna McGorman
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| | - Daniel Singleton
- ATDBio Ltd., School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| | - Sarah Walsh
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,ATDBio Ltd., Magdalen Centre, Oxford Science Park, Oxford, OX4 4GA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.,Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez, 43721, Egypt
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.,Synthesis and Solid-State Pharmaceutical Centre, School of Chemical Sciences, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
31
|
Time of In Vitro Anther Culture May Moderate Action of Copper and Silver Ions that Affect the Relationship between DNA Methylation Change and the Yield of Barley Green Regenerants. PLANTS 2020; 9:plants9091064. [PMID: 32825181 PMCID: PMC7570150 DOI: 10.3390/plants9091064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Plant anther culture allows for the regeneration of uniform and homozygous double haploids. However, off-type regenerants may appear as a result of so-called tissue culture-induced variation (TCIV). In addition, the presence of Cu2+ and Ag+ ions in the culture medium might influence the number of green plants. The regenerants were obtained via anther cultures of barley under varying Cu2+ and Ag+ ion concentrations in the induction medium during distinct time conditions. DArTseqMet markers were evaluated based on regenerants and donor plants and delivering data on DNA demethylation (DM) and de novo methylation (DNM) and changes in methylation (Delta). The number of green regenerated plants per 100 anthers (GPs) was evaluated. The Cu2+ and Ag+ ion concentrations moderated relationships between Delta and the number of green plants conditional on time of tissue cultures. Depending on the ions, moderated moderation is valid within the different time of anther culture. When the highest concentration of copper is analyzed, plant regeneration is possible under short ‘Time’ (21 days) of anther culture wherein Delta is negative or under elongated Time when Delta is positive. Under 21 days of culture, the highest concentration of silver ions and when Delta is negative, some regenerants could be evaluated. However, under high Ag+ concentration when Time of culture is long and Delta positive, the highest number of green plants could be obtained.
Collapse
|
32
|
Chen X, He Z, Wu X, Mao D, Feng C, Zhang J, Chen G. Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: From theoretical simulation to structural analysis to functional analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 231:118109. [PMID: 32062512 DOI: 10.1016/j.saa.2020.118109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Puerariae Radix (PR) is a natural herb whose active ingredient is mainly flavonoids. To explore the interaction between PR flavonoids and DNA not only has important biological implications for understanding the mechanism of action, but also helps develop PR products for the design of appropriate dietary interventions to aid cancer treatment. In this work, we comprehensively studied the interaction between six kinds of PR flavonoids and DNA from four different and progressive levels, including molecular docking, multi-spectral analysis, and functional analysis in vitro and in cell. Results show that the DNA binding affinity of six flavonoids is in an order of quercetin > formononetin > daidzein > puerarin > 4'-methoxy puerarin > puerarin 6″-O-xyloside (POS), in which quercetin can significantly inhibit DNA amplification owing to its strongest binding affinity. The binding between quercetin and DNA is further revealed to be intercalated binding, which can cause conformational changes in DNA, thereby exhibiting an activity of cell cycle arrest and anti-proliferative. This property of quercetin can be utilized for the further development of flavonoids with anticancer activity. In addition to the potential application, this work also provides a platform for the comprehensive study of the interaction between micromolecules and DNA.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China; Experimental Center for Life Sciences, Shanghai University, Shanghai, PR China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, PR China.
| |
Collapse
|
33
|
Chen X, Wu X, He Z, Zhang J, Cao Y, Mao D, Feng C, Tian B, Chen G. Molecular docking-assisted design and synthesis of an anti-tumor quercetin–Se( iv) complex. NEW J CHEM 2020. [DOI: 10.1039/c9nj06136c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Design and synthesis of an anti-tumor quercetin–Se(iv) complex under the guidance of molecular docking and visualized DNA binding activity.
Collapse
Affiliation(s)
- Xu Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Xianyong Wu
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Ziyu He
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Juan Zhang
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Ya Cao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Dongsheng Mao
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Bo Tian
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing
- School of Life Sciences
- Shanghai University
- Shanghai
- P. R. China
| |
Collapse
|
34
|
Barrett S, De Franco M, Kellett A, Dempsey E, Marzano C, Erxleben A, Gandin V, Montagner D. Anticancer activity, DNA binding and cell mechanistic studies of estrogen-functionalised Cu(II) complexes. J Biol Inorg Chem 2019; 25:49-60. [DOI: 10.1007/s00775-019-01732-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/08/2019] [Indexed: 12/20/2022]
|
35
|
Pettenuzzo N, Brustolin L, Coltri E, Gambalunga A, Chiara F, Trevisan A, Biondi B, Nardon C, Fregona D. Cu II and Au III Complexes with Glycoconjugated Dithiocarbamato Ligands for Potential Applications in Targeted Chemotherapy. ChemMedChem 2019; 14:1162-1172. [PMID: 31091012 DOI: 10.1002/cmdc.201900226] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/29/2019] [Indexed: 11/07/2022]
Abstract
This work is focused on the synthesis, characterization, and preliminary biological evaluation of bio-conjugated AuIII and CuII complexes with the aim of overcoming the well-known side effects of chemotherapy by improving the selective accumulation of an anticancer metal payload in malignant cells. For this purpose, carbohydrates were chosen as targeting agents, exploiting the Warburg effect that accounts for the overexpression of glucose-transporter proteins (in particular GLUTs) in the phospholipid bilayer of most neoplastic cells. We linked the dithiocarbamato moiety to the C1 position of three different monosaccharides: d-glucose, d-galactose, and d-mannose. Altogether, six complexes with a 1:2 metal-to-ligand stoichiometry were synthesized and in vitro tested as anticancer agents. One of them showed high cytotoxic activity toward the HCT116 colorectal human carcinoma cell line, paving the way to future in vivo studies aimed at evaluating the role of carbohydrates in the selective delivery of whole molecules into cancerous cells.
Collapse
Affiliation(s)
- Nicolò Pettenuzzo
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Leonardo Brustolin
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Surgical, Oncological and Gastroenterological Sciences (DISCOG), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Elisa Coltri
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Alberto Gambalunga
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Federica Chiara
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Andrea Trevisan
- Department of Cardio-Thoraco-Vascular Sciences and Public Health (DCTV), University of Padova, Via Giustiniani 2, 35128, Padova, Italy
| | - Barbara Biondi
- Institute of Biomolecular Chemistry, Padova Unit, CNR, Via Marzolo 1, 35131, Padova, Italy
| | - Chiara Nardon
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Dolores Fregona
- Department of Chemical Sciences (DISC), University of Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
36
|
Kellett A, Molphy Z, Slator C, McKee V, Farrell NP. Molecular methods for assessment of non-covalent metallodrug-DNA interactions. Chem Soc Rev 2019; 48:971-988. [PMID: 30714595 PMCID: PMC6657641 DOI: 10.1039/c8cs00157j] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/31/2022]
Abstract
The binding of small molecule metallodrugs to discrete regions of nucleic acids is an important branch of medicinal chemistry and the nature of these interactions, allied with sequence selectivity, forms part of the backbone of modern medicinal inorganic chemistry research. In this tutorial review we describe a range of molecular methods currently employed within our laboratories to explore novel metallodrug-DNA interactions. At the outset, an introduction to DNA from a structural perspective is provided along with descriptions of non-covalent DNA recognition focusing on intercalation, insertion, and phosphate binding. Molecular methods, described from a non-expert perspective, to identify non-covalent and pre-associative nucleic acid recognition are then demonstrated using a variety of techniques including direct (non-optical) and indirect (optical) methods. Direct methods include: X-ray crystallography; NMR spectroscopy; mass spectrometry; and viscosity while indirect approaches detail: competitive inhibition experiments; fluorescence and absorbance spectroscopy; circular dichroism; and electrophoresis-based techniques. For each method described we provide an overview of the technique, a detailed examination of results obtained and relevant follow-on of advanced biophysical/analytical techniques. To achieve this, a selection of relevant copper(ii) and platinum(ii) complexes developed within our laboratories are discussed and are compared, where possible, to classical DNA binding agents. Applying these molecular methods enables us to determine structure-activity factors important to rational metallodrug design. In many cases, combinations of molecular methods are required to comprehensively elucidate new metallodrug-DNA interactions and, from a drug discovery perspective, coupling this data with cellular responses helps to inform understanding of how metallodrug-DNA binding interactions manifest cytotoxic action.
Collapse
Affiliation(s)
- Andrew Kellett
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Zara Molphy
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Creina Slator
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Vickie McKee
- School of Chemical Sciences and the National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Nicholas P Farrell
- Department of Chemistry, Virginia Commonwealth University, Richmond, VA 23284-2006, USA.
| |
Collapse
|
37
|
Ude Z, Kavanagh K, Twamley B, Pour M, Gathergood N, Kellett A, Marmion CJ. A new class of prophylactic metallo-antibiotic possessing potent anti-cancer and anti-microbial properties. Dalton Trans 2019; 48:8578-8593. [DOI: 10.1039/c9dt00250b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A family of metallo-antibiotics of general formula [Cu(N,N)(CipA)Cl] where N,N is a phenanthrene ligand and CipA is a derivative of the clinically used fluoroquinolone antibiotic ciprofloxacin – targeting immunocompromised cancer patients undergoing chemotherapy.
Collapse
Affiliation(s)
- Ziga Ude
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | | | - Brendan Twamley
- School of Chemistry
- Trinity College Dublin
- University of Dublin College Green
- Dublin 2
- Ireland
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry
- Faculty of Pharmacy
- Charles University
- 500 05 Hradec Kralove
- Czech Republic
| | - Nicholas Gathergood
- ERA Chair of Green Chemistry
- Division of Chemistry
- Department of Chemistry and Biotechnology
- School of Science
- Tallinn University of Technology
| | - Andrew Kellett
- School of Chemical Sciences and the National Institute for Cellular Biotechnology
- Dublin City University
- Dublin 9
- Ireland
| | - Celine J. Marmion
- Centre for Synthesis and Chemical Biology
- Department of Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| |
Collapse
|
38
|
Zuin Fantoni N, Molphy Z, Slator C, Menounou G, Toniolo G, Mitrikas G, McKee V, Chatgilialoglu C, Kellett A. Polypyridyl‐Based Copper Phenanthrene Complexes: A New Type of Stabilized Artificial Chemical Nuclease. Chemistry 2018; 25:221-237. [DOI: 10.1002/chem.201804084] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Nicoló Zuin Fantoni
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Zara Molphy
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Creina Slator
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| | - Georgia Menounou
- ISOF-CNR Area della Ricerca di Bologna Via P. Gobetti 101 40129 Bologna Italy
| | - Gianluca Toniolo
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - George Mitrikas
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - Vickie McKee
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
- Department of Physics, Chemistry and PharmacyUniversity of Southern Denmark Campusvej 55 5230 Odense M Denmark
| | - Chryssostomos Chatgilialoglu
- ISOF-CNR Area della Ricerca di Bologna Via P. Gobetti 101 40129 Bologna Italy
- Institute of Nanoscience and Nanotechnology, N.C.S.R. Demokritos Agia Paraskevi Attikis P.O. Box 60037, 15341 Athens Greece
| | - Andrew Kellett
- School of Chemical Sciences and National Institute for Cellular, BiotechnologyDublin City University 9 Glasnevin, Dublin Ireland
| |
Collapse
|