1
|
Yang S, Deng C, Pu C, Bai X, Tian C, Chang M, Feng M. Single-Cell RNA Sequencing and Its Applications in Pituitary Research. Neuroendocrinology 2024; 114:875-893. [PMID: 39053437 PMCID: PMC11460981 DOI: 10.1159/000540352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Mounting evidence underscores the significance of cellular diversity within the endocrine system and the intricate interplay between different cell types and tissues, essential for preserving physiological balance and influencing disease trajectories. The pituitary gland, a central player in the endocrine orchestra, exemplifies this complexity with its assortment of hormone-secreting and nonsecreting cells. SUMMARY The pituitary gland houses several types of cells responsible for hormone production, alongside nonsecretory cells like fibroblasts and endothelial cells, each playing a crucial role in the gland's function and regulatory mechanisms. Despite the acknowledged importance of these cellular interactions, the detailed mechanisms by which they contribute to pituitary gland physiology and pathology remain largely uncharted. The last decade has seen the emergence of groundbreaking technologies such as single-cell RNA sequencing, offering unprecedented insights into cellular heterogeneity and interactions. However, the application of this advanced tool in exploring the pituitary gland's complexities has been scant. This review provides an overview of this methodology, highlighting its strengths and limitations, and discusses future possibilities for employing it to deepen our understanding of the pituitary gland and its dysfunction in disease states. KEY MESSAGE Single-cell RNA sequencing technology offers an unprecedented means to study the heterogeneity and interactions of pituitary cells, though its application has been limited thus far. Further utilization of this tool will help uncover the complex physiological and pathological mechanisms of the pituitary, advancing research and treatment of pituitary diseases.
Collapse
Affiliation(s)
- Shuangjian Yang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Congcong Deng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Changqin Pu
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xuexue Bai
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chenxin Tian
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengqi Chang
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Ming Feng
- Department of Neurosurgery, China Pituitary Disease Registry Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Hattori Y, Tahara S, Ozawa H, Morita A, Ishii H. Transcriptomic Profiling of Lactotroph Pituitary Neuroendocrine Tumors via RNA Sequencing and Ingenuity Pathway Analysis. Neuroendocrinology 2024; 114:670-680. [PMID: 38643763 DOI: 10.1159/000539017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION Lactotroph pituitary neuroendocrine tumors (PitNETs) are common pituitary tumors, but their underlying molecular mechanisms remain unclear. This study aimed to investigate the transcriptomic landscape of lactotroph PitNETs and identify potential molecular mechanisms and therapeutic targets through RNA sequencing and ingenuity pathway analysis (IPA). METHODS Lactotroph PitNET tissues from five surgical cases without dopamine agonist treatment underwent RNA sequencing. Normal pituitary tissues from 3 patients served as controls. Differentially expressed genes (DEGs) were identified, and the functional pathways and gene networks were explored by IPA. RESULTS Transcriptome analysis revealed that lactotroph PitNETs had gene expression patterns that were distinct from normal pituitary tissues. We identified 1,172 upregulated DEGs, including nine long intergenic noncoding RNAs (lincRNAs) belonging to the top 30 DEGs. IPA of the upregulated DEGs showed that the estrogen receptor signaling, oxidative phosphorylation signaling, and EIF signaling were activated. In gene network analysis, key upstream regulators, such as EGR1, PRKACA, PITX2, CREB1, and JUND, may play critical roles in lactotroph PitNETs. CONCLUSION This study provides a comprehensive transcriptomic profile of lactotroph PitNETs and highlights the potential involvement of lincRNAs and specific signaling pathways in tumor pathogenesis. The identified upstream regulators may be potential therapeutic targets for future investigations.
Collapse
Affiliation(s)
- Yujiro Hattori
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Shigeyuki Tahara
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hitoshi Ozawa
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akio Morita
- Department of Neurological Surgery, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirotaka Ishii
- Department of Anatomy and Neurobiology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
3
|
Swilley C, Lin Y, Zheng Y, Xu X, Liu M, Zimmerman K, Xie H. Sex-Linked Growth Disorder and Aberrant Pituitary Gene Expression in Nestin-Cre-Mediated Egr1 Conditional Knockout Mice. BIOLOGY 2023; 12:966. [PMID: 37508396 PMCID: PMC10376842 DOI: 10.3390/biology12070966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
Genes that regulate hormone release are essential for maintaining metabolism and energy balance. Egr1 encodes a transcription factor that regulates hormone production and release, and a decreased in growth hormones has been reported in Egr1 knockout mice. A reduction in growth hormones has also been observed in Nestin-Cre mice, a model frequently used to study the nervous system. Currently, it is unknown how Egr1 loss or the Nestin-Cre driver disrupt pituitary gene expression. Here, we compared the growth curves and pituitary gene expression profiles of Nestin-Cre-mediated Egr1 conditional knockout (Egr1cKO) mice with those of their controls. Reduced body weight was observed in both the Nestin-Cre and Egr1cKO mice, and the loss of Egr1 had a slightly more severe impact on female mice than on male mice. RNA-seq data analyses revealed that the sex-related differences were amplified in the Nestin-Cre-mediated Egr1 conditional knockout mice. Additionally, in the male mice, the influence of Egr1cKO on pituitary gene expression may be overridden by the Nestin-Cre driver. Differentially expressed genes associated with the Nestin-Cre driver were significantly enriched for genes related to growth factor activity and binding. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in the neuronal cell lineage have distinct impacts on pituitary gene expression in a sex-specific manner.
Collapse
Affiliation(s)
- Cody Swilley
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yu Lin
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yuze Zheng
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
| | - Xiguang Xu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Min Liu
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Kurt Zimmerman
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Hehuang Xie
- Epigenomics and Computational Biology Lab, Fralin Life Sciences Institute of Virginia Tech, Blacksburg, VA 24061, USA
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
- Genetics, Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA
- Translational Biology, Medicine and Health Program, Virginia Tech, Blacksburg, VA 24061, USA
- School of Neuroscience, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Pohl ST, Prada ML, Espinet E, Jurkowska R. Practical Considerations for Complex Tissue Dissociation for Single-Cell Transcriptomics. Methods Mol Biol 2022; 2584:371-387. [PMID: 36495461 DOI: 10.1007/978-1-0716-2756-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-cell and single-nucleus RNA sequencing have revolutionized biomedical research, allowing analysis of complex tissues, identification of novel cell types, and mapping of development as well as disease states. Successful application of this technology critically relies on the dissociation of solid organs and tissues into high-quality single-cell (or nuclei) suspensions.In this chapter, we examine several key aspects of the tissue handling workflow that need to be considered when establishing an efficient tissue processing protocol for single-cell RNA sequencing (scRNA-seq). These include tissue collection, transport, and storage, as well as the choice of the dissociation conditions. We emphasize the importance of the tissue quality check and discuss the advantages (and potential limitations) of tissue cryopreservation. We provide practical tips and considerations on each of the steps of the processing workflow, and comment on how to maximize cell viability and integrity, which are critical for obtaining high-quality single-cell transcriptomic data.
Collapse
Affiliation(s)
- Stephanie T Pohl
- Division of Biomedicine, School of Biosciences, Cardiff University, Cardiff, UK
| | - Maria Llamazares Prada
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ) and Translational Lung Research Center, Heidelberg, Germany
| | - Elisa Espinet
- Anatomy Unit, Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
| | | |
Collapse
|
5
|
Gu X. A Simple Evolutionary Model of Genetic Robustness After Gene Duplication. J Mol Evol 2022; 90:352-361. [PMID: 35913597 DOI: 10.1007/s00239-022-10065-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/23/2022] [Indexed: 10/16/2022]
Abstract
When a dispensable gene is duplicated (referred to the ancestral dispensability denoted by O+), genetic buffering and duplicate compensation together maintain the duplicate redundancy, whereas duplicate compensation is the only mechanism when an essential gene is duplicated (referred to the ancestral essentiality denoted by O-). To investigate these evolutionary scenarios of genetic robustness, I formulated a simple mixture model for analyzing duplicate pairs with one of the following states: double dispensable (DD), semi-dispensable (one dispensable one essential, DE), or double essential (EE). This model was applied to the yeast duplicate pairs from a whole-genome duplication (WGD) occurred about 100 million years ago (mya), and the mouse duplicate pairs from a WGD occurred about more than 500 mya. Both case studies revealed that the proportion of essentiality for those duplicates with ancestral essentiality [PE(O-)] was much higher than that for those with ancestral dispensability [PE(O+)]. While it was negligible in the yeast duplicate pairs, PE(O+) (about 20%) was shown statistically significant in the mouse duplicate pairs. These findings, together, support the hypothesis that both sub-functionalization and neo-functionalization may play some roles after gene duplication, though the former may be much faster than the later.
Collapse
Affiliation(s)
- Xun Gu
- The Laurence H. Baker Center in Bioinformatics on Biological Statistics, Department of Genetics, Development and Cell Biology, Program of Ecological and Evolutionary Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
6
|
Ruf-Zamojski F, Zhang Z, Zamojski M, Smith GR, Mendelev N, Liu H, Nudelman G, Moriwaki M, Pincas H, Castanon RG, Nair VD, Seenarine N, Amper MAS, Zhou X, Ongaro L, Toufaily C, Schang G, Nery JR, Bartlett A, Aldridge A, Jain N, Childs GV, Troyanskaya OG, Ecker JR, Turgeon JL, Welt CK, Bernard DJ, Sealfon SC. Single nucleus multi-omics regulatory landscape of the murine pituitary. Nat Commun 2021; 12:2677. [PMID: 33976139 PMCID: PMC8113460 DOI: 10.1038/s41467-021-22859-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/16/2021] [Indexed: 11/12/2022] Open
Abstract
To provide a multi-omics resource and investigate transcriptional regulatory mechanisms, we profile the transcriptome, chromatin accessibility, and methylation status of over 70,000 single nuclei (sn) from adult mouse pituitaries. Paired snRNAseq and snATACseq datasets from individual animals highlight a continuum between developmental epigenetically-encoded cell types and transcriptionally-determined transient cell states. Co-accessibility analysis-based identification of a putative Fshb cis-regulatory domain that overlaps the fertility-linked rs11031006 human polymorphism, followed by experimental validation illustrate the use of this resource for hypothesis generation. We also identify transcriptional and chromatin accessibility programs distinguishing each major cell type. Regulons, which are co-regulated gene sets sharing binding sites for a common transcription factor driver, recapitulate cell type clustering. We identify both cell type-specific and sex-specific regulons that are highly correlated with promoter accessibility, but not with methylation state, supporting the centrality of chromatin accessibility in shaping cell-defining transcriptional programs. The sn multi-omics atlas is accessible at snpituitaryatlas.princeton.edu.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| | - Zidong Zhang
- Lewis-Sigler Institute for Integrative Genomics, and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
| | - Michel Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gregory R Smith
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Natalia Mendelev
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mika Moriwaki
- Division of Endocrinology and Metabolism, University of Utah, Salt Lake City, UT, USA
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Rosa Gomez Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Nitish Seenarine
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Mary Anne S Amper
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Xiang Zhou
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Luisina Ongaro
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Chirine Toufaily
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Gauthier Schang
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Nimisha Jain
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA
| | - Gwen V Childs
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Olga G Troyanskaya
- Lewis-Sigler Institute for Integrative Genomics, and Graduate Program in Quantitative and Computational Biology, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Flatiron Institute, Simons Foundation, New York, NY, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Judith L Turgeon
- Department of Internal Medicine, University of California, Davis, CA, USA
| | - Corrine K Welt
- Division of Endocrinology and Metabolism, University of Utah, Salt Lake City, UT, USA
| | - Daniel J Bernard
- Dept. of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai (ISMMS), New York, NY, USA.
| |
Collapse
|
7
|
Morsey B, Niu M, Dyavar SR, Fletcher CV, Lamberty BG, Emanuel K, Fangmeier A, Fox HS. Cryopreservation of microglia enables single-cell RNA sequencing with minimal effects on disease-related gene expression patterns. iScience 2021; 24:102357. [PMID: 33870145 PMCID: PMC8044433 DOI: 10.1016/j.isci.2021.102357] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/27/2021] [Accepted: 03/22/2021] [Indexed: 12/31/2022] Open
Abstract
Microglia play a key role in brain development, normal homeostasis, and neurodegenerative disorders. Single-cell technologies have led to important findings about microglia, with many animal model studies using single-cell RNA sequencing (scRNA-seq), whereas most human specimen studies using archived frozen brains for single-nucleus RNA sequencing (snRNA-seq). However, microglia compose a small proportion of the total brain tissue; snRNAseq depletes expression of microglia activation genes that characterize many diseases. Here we examine the use of purified, cryopreserved microglia for scRNA-seq. Comparison of scRNA-seq on paired fresh and cryopreserved microglia from rhesus monkeys revealed a high level of correlation of gene expression between the two conditions. Disease-related genes were relatively unaffected, but an increase in immediate-early gene expression was present in cryopreserved cells. Regardless, changes in immediate-early gene expression are still detectable. Cryopreservation of microglia is a suitable procedure for prospectively archiving samples.
Collapse
Affiliation(s)
- Brenda Morsey
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Meng Niu
- Department of Genetics, Cell Biology and Anatomy; and Bioinformatics and Systems Biology Core, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shetty Ravi Dyavar
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Courtney V. Fletcher
- Antiviral Pharmacology Laboratory, UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Benjamin G. Lamberty
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Katy Emanuel
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Anna Fangmeier
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Howard S. Fox
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
8
|
Llamazares-Prada M, Espinet E, Mijošek V, Schwartz U, Lutsik P, Tamas R, Richter M, Behrendt A, Pohl ST, Benz NP, Muley T, Warth A, Heußel CP, Winter H, Landry JJM, Herth FJ, Mertens TC, Karmouty-Quintana H, Koch I, Benes V, Korbel JO, Waszak SM, Trumpp A, Wyatt DM, Stahl HF, Plass C, Jurkowska RZ. Versatile workflow for cell type-resolved transcriptional and epigenetic profiles from cryopreserved human lung. JCI Insight 2021; 6:140443. [PMID: 33630765 PMCID: PMC8026197 DOI: 10.1172/jci.insight.140443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Complexity of lung microenvironment and changes in cellular composition during disease make it exceptionally hard to understand molecular mechanisms driving development of chronic lung diseases. Although recent advances in cell type-resolved approaches hold great promise for studying complex diseases, their implementation relies on local access to fresh tissue, as traditional tissue storage methods do not allow viable cell isolation. To overcome these hurdles, we developed a versatile workflow that allows storage of lung tissue with high viability, permits thorough sample quality check before cell isolation, and befits sequencing-based profiling. We demonstrate that cryopreservation enables isolation of multiple cell types from both healthy and diseased lungs. Basal cells from cryopreserved airways retain their differentiation ability, indicating that cellular identity is not altered by cryopreservation. Importantly, using RNA sequencing and EPIC Array, we show that gene expression and DNA methylation signatures are preserved upon cryopreservation, emphasizing the suitability of our workflow for omics profiling of lung cells. Moreover, we obtained high-quality single-cell RNA-sequencing data of cells from cryopreserved human lungs, demonstrating that cryopreservation empowers single-cell approaches. Overall, thanks to its simplicity, our workflow is well suited for prospective tissue collection by academic collaborators and biobanks, opening worldwide access to viable human tissue.
Collapse
Affiliation(s)
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | | | - Pavlo Lutsik
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | | | | | | | | | | | - Thomas Muley
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
| | - Arne Warth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Peter Heußel
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Hauke Winter
- Translational Lung Research Center, Member of the DZL, Heidelberg, Germany
- Department of Surgery, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Felix J.F. Herth
- Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
- Department of Pneumology and Critical Care Medicine and Translational Research Unit, Thoraxklinik, University Hospital Heidelberg, Heidelberg, Germany
| | - Tinne C.J. Mertens
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Harry Karmouty-Quintana
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA
| | - Ina Koch
- Asklepios Biobank for Lung Diseases, Department of Thoracic Surgery, Asklepios Fachkliniken München-Gauting, DZL, Gauting, Germany
| | | | | | | | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | | | - Heiko F. Stahl
- Immunology and Respiratory Disease Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, DKFZ, Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Renata Z. Jurkowska
- BioMed X Institute, Heidelberg, Germany
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Wilbrey-Clark A, Roberts K, Teichmann SA. Cell Atlas technologies and insights into tissue architecture. Biochem J 2020; 477:1427-1442. [PMID: 32339226 PMCID: PMC7200628 DOI: 10.1042/bcj20190341] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 12/17/2022]
Abstract
Since Robert Hooke first described the existence of 'cells' in 1665, scientists have sought to identify and further characterise these fundamental units of life. While our understanding of cell location, morphology and function has expanded greatly; our understanding of cell types and states at the molecular level, and how these function within tissue architecture, is still limited. A greater understanding of our cells could revolutionise basic biology and medicine. Atlasing initiatives like the Human Cell Atlas aim to identify all cell types at the molecular level, including their physical locations, and to make this reference data openly available to the scientific community. This is made possible by a recent technology revolution: both in single-cell molecular profiling, particularly single-cell RNA sequencing, and in spatially resolved methods for assessing gene and protein expression. Here, we review available and upcoming atlasing technologies, the biological insights gained to date and the promise of this field for the future.
Collapse
|
10
|
Rojo-Ruiz J, Navas-Navarro P, Nuñez L, García-Sancho J, Alonso MT. Imaging of Endoplasmic Reticulum Ca 2+ in the Intact Pituitary Gland of Transgenic Mice Expressing a Low Affinity Ca 2+ Indicator. Front Endocrinol (Lausanne) 2020; 11:615777. [PMID: 33664709 PMCID: PMC7921146 DOI: 10.3389/fendo.2020.615777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/15/2020] [Indexed: 11/13/2022] Open
Abstract
The adenohypophysis contains five secretory cell types (somatotrophs, lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs), each secreting a different hormone, and controlled by different hypothalamic releasing hormones (HRHs). Exocytic secretion is regulated by cytosolic Ca2+ signals ([Ca2+]C), which can be generated either by Ca2+ entry through the plasma membrane and/or by Ca2+ release from the endoplasmic reticulum (ER). In addition, Ca2+ entry signals can eventually be amplified by ER release via calcium-induced calcium release (CICR). We have investigated the contribution of ER Ca2+ release to the action of physiological agonists in pituitary gland. Changes of [Ca2+] in the ER ([Ca2+]ER) were measured with the genetically encoded low-affinity Ca2+ sensor GAP3 targeted to the ER. We used a transgenic mouse strain that expressed erGAP3 driven by a ubiquitous promoter. Virtually all the pituitary cells were positive for the sensor. In order to mimick the physiological environment, intact pituitary glands or acute slices from the transgenic mouse were used to image [Ca2+]ER. [Ca2+]C was measured simultaneously with Rhod-2. Luteinizing hormone-releasing hormone (LHRH) or thyrotropin releasing hormone (TRH), two agonists known to elicit intracellular Ca2+ mobilization, provoked robust decreases of [Ca2+]ER and concomitant rises of [Ca2+]C. A smaller fraction of cells responded to thyrotropin releasing hormone (TRH). By contrast, depolarization with high K+ triggered a rise of [Ca2+]C without a decrease of [Ca2+]ER, indicating that the calcium-induced calcium-release (CICR) via ryanodine receptor amplification mechanism is not present in these cells. Our results show the potential of transgenic ER Ca2+ indicators as novel tools to explore intraorganellar Ca2+ dynamics in pituitary gland in situ.
Collapse
|
11
|
Madissoon E, Wilbrey-Clark A, Miragaia RJ, Saeb-Parsy K, Mahbubani KT, Georgakopoulos N, Harding P, Polanski K, Huang N, Nowicki-Osuch K, Fitzgerald RC, Loudon KW, Ferdinand JR, Clatworthy MR, Tsingene A, van Dongen S, Dabrowska M, Patel M, Stubbington MJT, Teichmann SA, Stegle O, Meyer KB. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol 2019; 21:1. [PMID: 31892341 PMCID: PMC6937944 DOI: 10.1186/s13059-019-1906-x] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/28/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND The Human Cell Atlas is a large international collaborative effort to map all cell types of the human body. Single-cell RNA sequencing can generate high-quality data for the delivery of such an atlas. However, delays between fresh sample collection and processing may lead to poor data and difficulties in experimental design. RESULTS This study assesses the effect of cold storage on fresh healthy spleen, esophagus, and lung from ≥ 5 donors over 72 h. We collect 240,000 high-quality single-cell transcriptomes with detailed cell type annotations and whole genome sequences of donors, enabling future eQTL studies. Our data provide a valuable resource for the study of these 3 organs and will allow cross-organ comparison of cell types. We see little effect of cold ischemic time on cell yield, total number of reads per cell, and other quality control metrics in any of the tissues within the first 24 h. However, we observe a decrease in the proportions of lung T cells at 72 h, higher percentage of mitochondrial reads, and increased contamination by background ambient RNA reads in the 72-h samples in the spleen, which is cell type specific. CONCLUSIONS In conclusion, we present robust protocols for tissue preservation for up to 24 h prior to scRNA-seq analysis. This greatly facilitates the logistics of sample collection for Human Cell Atlas or clinical studies since it increases the time frames for sample processing.
Collapse
Affiliation(s)
- E. Madissoon
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD UK
| | - A. Wilbrey-Clark
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - R. J. Miragaia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - K. Saeb-Parsy
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ UK
| | - K. T. Mahbubani
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ UK
| | - N. Georgakopoulos
- Department of Surgery, University of Cambridge and NIHR Cambridge Biomedical Research Centre, Cambridge, CB2 0QQ UK
| | - P. Harding
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - K. Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - N. Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - K. Nowicki-Osuch
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ UK
| | - R. C. Fitzgerald
- MRC Cancer Unit, Hutchison-MRC Research Centre, University of Cambridge, Cambridge, CB2 0XZ UK
| | - K. W. Loudon
- Molecular Immunology Unit, Department of Medicine, Cambridge, CB2 0QQ UK
| | - J. R. Ferdinand
- Molecular Immunology Unit, Department of Medicine, Cambridge, CB2 0QQ UK
| | - M. R. Clatworthy
- Molecular Immunology Unit, Department of Medicine, Cambridge, CB2 0QQ UK
| | - A. Tsingene
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - S. van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - M. Dabrowska
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - M. Patel
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - M. J. T. Stubbington
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
- 10x Genomics Inc., 6230 Stoneridge Mall Road, Pleasanton, CA 94588 USA
| | - S. A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| | - O. Stegle
- European Molecular Biology Laboratory - European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD UK
| | - K. B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA UK
| |
Collapse
|
12
|
Ku C, Sebé-Pedrós A. Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190098. [PMID: 31587645 PMCID: PMC6792447 DOI: 10.1098/rstb.2019.0098] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2019] [Indexed: 12/13/2022] Open
Abstract
Understanding the diversity and evolution of eukaryotic microorganisms remains one of the major challenges of modern biology. In recent years, we have advanced in the discovery and phylogenetic placement of new eukaryotic species and lineages, which in turn completely transformed our view on the eukaryotic tree of life. But we remain ignorant of the life cycles, physiology and cellular states of most of these microbial eukaryotes, as well as of their interactions with other organisms. Here, we discuss how high-throughput genome-wide gene expression analysis of eukaryotic single cells can shed light on protist biology. First, we review different single-cell transcriptomics methodologies with particular focus on microbial eukaryote applications. Then, we discuss single-cell gene expression analysis of protists in culture and what can be learnt from these approaches. Finally, we envision the application of single-cell transcriptomics to protist communities to interrogate not only community components, but also the gene expression signatures of distinct cellular and physiological states, as well as the transcriptional dynamics of interspecific interactions. Overall, we argue that single-cell transcriptomics can significantly contribute to our understanding of the biology of microbial eukaryotes. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Chuan Ku
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
13
|
Fletcher PA, Smiljanic K, Maso Prévide R, Iben JR, Li T, Rokic MB, Sherman A, Coon SL, Stojilkovic SS. Cell Type- and Sex-Dependent Transcriptome Profiles of Rat Anterior Pituitary Cells. Front Endocrinol (Lausanne) 2019; 10:623. [PMID: 31620083 PMCID: PMC6760010 DOI: 10.3389/fendo.2019.00623] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/28/2019] [Indexed: 01/14/2023] Open
Abstract
Understanding the physiology and pathology of an organ composed of a variety of cell populations depends critically on genome-wide information on each cell type. Here, we report single-cell transcriptome profiling of over 6,800 freshly dispersed anterior pituitary cells from postpubertal male and female rats. Six pituitary-specific cell types were identified based on known marker genes and characterized: folliculostellate cells and hormone-producing corticotrophs, gonadotrophs, thyrotrophs, somatotrophs, and lactotrophs. Also identified were endothelial and blood cells from the pituitary capillary network. The expression of numerous developmental and neuroendocrine marker genes in both folliculostellate and hormone-producing cells supports that they have a common origin. For several genes, the validity of transcriptome analysis was confirmed by qRT-PCR and single cell immunocytochemistry. Folliculostellate cells exhibit impressive transcriptome diversity, indicating their major roles in production of endogenous ligands and detoxification enzymes, and organization of extracellular matrix. Transcriptome profiles of hormone-producing cells also indicate contributions toward those functions, while also clearly demonstrating their endocrine function. This survey highlights many novel genetic markers contributing to pituitary cell type identity, sexual dimorphism, and function, and points to relationships between hormone-producing and folliculostellate cells.
Collapse
Affiliation(s)
- Patrick A. Fletcher
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kosara Smiljanic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rafael Maso Prévide
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - James R. Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Milos B. Rokic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Arthur Sherman
- Laboratory of Biological Modeling, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Steven L. Coon
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Stanko S. Stojilkovic
- Section on Cellular Signaling, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
14
|
Bousfield GR, Harvey DJ. Follicle-Stimulating Hormone Glycobiology. Endocrinology 2019; 160:1515-1535. [PMID: 31127275 PMCID: PMC6534497 DOI: 10.1210/en.2019-00001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/16/2019] [Indexed: 01/13/2023]
Abstract
FSH glycosylation varies in two functionally important aspects: microheterogeneity, resulting from oligosaccharide structure variation, and macroheterogeneity, arising from partial FSHβ subunit glycosylation. Although advances in mass spectrometry permit extensive characterization of FSH glycan populations, microheterogeneity remains difficult to illustrate, and comparisons between different studies are challenging because no standard format exists for rendering oligosaccharide structures. FSH microheterogeneity is illustrated using a consistent glycan diagram format to illustrate the large array of structures associated with one hormone. This is extended to commercially available recombinant FSH preparations, which exhibit greatly reduced microheterogeneity at three of four glycosylation sites. Macroheterogeneity is demonstrated by electrophoretic mobility shifts due to the absence of FSHβ glycans that can be assessed by Western blotting of immunopurified FSH. Initially, macroheterogeneity was hoped to matter more than microheterogeneity. However, it now appears that both forms of carbohydrate heterogeneity have to be taken into consideration. FSH glycosylation can reduce its apparent affinity for its cognate receptor by delaying initial interaction with the receptor and limiting access to all of the available binding sites. This is followed by impaired cellular signaling responses that may be related to reduced receptor occupancy or biased signaling. To resolve these alternatives, well-characterized FSH glycoform preparations are necessary.
Collapse
Affiliation(s)
- George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| | - David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
- Correspondence: George R. Bousfield, PhD, Department of Biological Sciences, Wichita State University, 1845 Fairmount Street, Wichita, Kansas 67260. E-mail: ; or David J. Harvey, DSc, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford. Roosevelt Drive, Oxford OX3 7FZ, United Kingdom. E-mail:
| |
Collapse
|
15
|
Ruf-Zamojski F, Ge Y, Pincas H, Shan J, Song Y, Hines N, Kelley K, Montagna C, Nair P, Toufaily C, Bernard DJ, Mellon PL, Nair V, Turgeon JL, Sealfon SC. Cytogenetic, Genomic, and Functional Characterization of Pituitary Gonadotrope Cell Lines. J Endocr Soc 2019; 3:902-920. [PMID: 31020055 PMCID: PMC6469952 DOI: 10.1210/js.2019-00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/08/2019] [Indexed: 01/01/2023] Open
Abstract
LβT2 and αT3-1 are important, widely studied cell line models for the pituitary gonadotropes that were generated by targeted tumorigenesis in transgenic mice. LβT2 cells are more mature gonadotrope precursors than αT3-1 cells. Microsatellite authentication patterns, chromosomal characteristics, and their intercellular variation have not been reported. We performed microsatellite and cytogenetic analysis of both cell types at early passage numbers. Short tandem repeat (STR) profiling was consistent with a mixed C57BL/6J × BALB/cJ genetic background, with distinct patterns for each cell type. Spectral karyotyping in αT3-1 cells revealed cell-to-cell variation in chromosome composition and pseudodiploidy. In LβT2 cells, chromosome counting and karyotyping demonstrated pseudotriploidy and high chromosomal variation among cells. Chromosome copy number variation was confirmed by single-cell DNA sequencing. Chromosomal compositions were consistent with a male sex for αT3-1 and a female sex for LβT2 cells. Among LβT2 stocks used in multiple laboratories, we detected two genetically similar but distinguishable lines via STR authentication, LβT2a and LβT2b. The two lines differed in morphological appearance, with LβT2a having significantly smaller cell and nucleus areas. Analysis of immediate early gene and gonadotropin subunit gene expression revealed variations in basal expression and responses to continuous and pulsatile GnRH stimulation. LβT2a showed higher basal levels of Egr1, Fos, and Lhb but lower Fos induction. Fshb induction reached significance only in LβT2b cells. Our study highlights the heterogeneity in gonadotrope cell line genomes and provides reference STR authentication patterns that can be monitored to improve experimental reproducibility and facilitate comparisons of results within and across laboratories.
Collapse
Affiliation(s)
- Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yongchao Ge
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hanna Pincas
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jidong Shan
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Yinghui Song
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Nika Hines
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kevin Kelley
- Mouse Genetics and Gene Targeting CoRE, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cristina Montagna
- Molecular Cytogenetic Core, Albert Einstein College of Medicine, New York, New York
| | - Pranav Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Pamela L Mellon
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, California
| | - Venugopalan Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Judith L Turgeon
- Department of Internal Medicine, University of California Davis, Davis, California
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|