1
|
Li Q, Li Y, Zhou T, Zhang Y, Li H, Yuan F, Bi Y. FBXW7 metabolic reprogramming inhibits the development of colon cancer by down-regulating the activity of arginine/mToR pathways. PLoS One 2025; 20:e0317294. [PMID: 39823500 PMCID: PMC11741656 DOI: 10.1371/journal.pone.0317294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025] Open
Abstract
FBXW7 is a tumor suppressor gene that regulates metabolism and is associated with the onset and progression of colorectal cancer (CRC)), however, the precise mechanism whereby FBXW7 participates in the metabolic reprogramming of CRC remains unclear. Here, the research aims to reveal the association between the expression of FBXW7 and clinical variables and to investigate the molecular mechanism by which FBXW7 plays a critical role in the development of CRC. The clinical importance of FBXW7 in CRC was determined by immunohistochemistry. Non-targeted metabolomics was utilized to explore the role of FBXW7 in the metabolic regulation of CRC. Low expression of FBXW7 was associated with poor prognosis in individuals with CRC, both at the mRNA and protein levels. FBXW7 over-expression inhibited CRC cell growth, colony formation, migration, and invasion. Non-targeted metabolomics unveiled that FBXW7 over-expression directly caused the deprivation of arginine which led to downmodulation of mTOR signaling pathway; meanwhile, FBXW7-related metabolites were primarily concentrated in the mTOR signaling pathway. In summary, the research identified a novel mechanism of action of FBXW7 in CRC. The research findings provide a theoretical foundation for the prognostic prediction and therapeutic planning of CRC based on metabolic reprogramming.
Collapse
Affiliation(s)
- Qing Li
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China
| | - Yan Li
- Department of Epidemiology, Academy of Medical Sciences, School of Public Health, Shanxi Medical University, Taiyuan, P. R. China
| | - Tong Zhou
- Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Yong Zhang
- Endoscopic Center of Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, P. R. China
| | - Huiyu Li
- Department of General Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Fajia Yuan
- Shanxi Jinzhong Health School, Jinzhong, P. R. China
| | - Yanghui Bi
- Center of Gene Sequencing, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
2
|
Sun Y, Xu M, Lee Wan H, Ding X, Wong AM, Pu D, Ng KK, Wong N. Spliced exon9 ADRM1 promotes liver oncogenicity via selective degradation of tumor suppressor FBXW7. J Hepatol 2025:S0168-8278(24)02828-9. [PMID: 39788431 DOI: 10.1016/j.jhep.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND & AIMS The ubiquitin receptor ADRM1/Rpn13 governs the specificity of eukaryotic protein degradation. By SMRT sequencing, we first discovered a novel spliced variant of ADRM1 with a skipped exon 9, termed ADRM1-ΔEx9, in human hepatocellular carcinoma (HCC). This study aimed to elucidate this novel ubiquitin receptor's underlying biology and clinical implications in HCC. METHODS The role of ADRM1-ΔEx9 in early liver carcinogenesis was studied using human liver-derived non-tumoral organoids and a murine model with hydrodynamic in vivo transfection. ADRM1-ΔEx9 biology in HCC and its potential as a biomarker for predicting Olaparib response were investigated using patient-derived tumor organoids and xenograft models. The underlying mechanism was delineated using the Proteome Profiler Human Ubiquitin Array. RESULTS ADRM1-ΔEx9, not its full-length counterpart, conferred human liver organoids with pro-survival advantages and a more profound tumor formation in a hydrodynamic transfected murine model. Functional knockdown resulted in spontaneous apoptosis in cell lines and patient-derived organoids, highlighting a pivotal role for ADRM1-ΔEx9 in HCC oncogenicity. Mechanistically, the shortened C-terminus of ADRM1-ΔEx9 signified a specific deubiquitinase partner BAP1 and navigated proteasome specificity. The new exon 8-10 fusion in ADRM1-ΔEx9 created a de novo binding to tumor suppressor protein FBXW7, resulting in its selective proteasome-mediated degradation. The loss of FBXW7 protein in ADRM1-ΔEx9 expressing tumors underscores their sensitivity to PARP inhibitor Olaparib. Notably, findings on ADRM1-ΔEx9 in primary HCC tumors denote its overexpression in a subgroup of patients with inferior survival and a window of therapeutic opportunity through its synthetic lethality association with Olaparib. CONCLUSION ADRM1-ΔEx9 redirects ubiquitin proteasome specificity to degrade the tumor suppressor protein FBXW7 selectively. This promotes HCC tumor formation and provides a synthetic lethal link for PARPi therapy. IMPACT AND IMPLICATIONS Reduced tumor suppressor protein FBXW7 expression is pivotal in HCC pathogenesis and other liver diseases. However, the regulatory mechanism governing FBXW7 protein expression remains elusive. Herein, we unveil a non-canonical spliced isoform of the ubiquitin receptor ADRM1 that selectively degrades FBXW7 protein, thereby promoting the premalignant transformation of hepatic cells and conferring growth advantages to HCC tumors. Furthermore, our results demonstrate that ADRM1-ΔEx9-expressing HCC tumors exhibited sensitivity to Olaparib in a dose-dependent manner, implicating the potential use of Olaparib in targeting ADRM1-ΔEx9-driven HCC growth.
Collapse
Affiliation(s)
- Yanmei Sun
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ho Lee Wan
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Xiaofan Ding
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Alissa M Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Dandan Pu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Kelvin K Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
3
|
Wang W, Liu X, Zhao L, Jiang K, Yu Z, Yang R, Zhou W, Cui J, Liang T. FBXW7 in gastrointestinal cancers: from molecular mechanisms to therapeutic prospects. Front Pharmacol 2024; 15:1505027. [PMID: 39749199 PMCID: PMC11694028 DOI: 10.3389/fphar.2024.1505027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
F-box and WD repeat domain-containing 7 (FBXW7), formerly known as hCdc4, hAGO Fbw7, or SEL10, plays a specific recognition function in SCF-type E3 ubiquitin ligases. FBXW7 is a well-established cancer suppressor gene that specifically controls proteasomal degradation and destruction of many key oncogenic substrates. The FBXW7 gene is frequently abnormal in human malignancies especially in gastrointestinal cancers. Accumulating evidence reveals that mutations and deletions of FBXW7 are participating in the occurrence, progression and treatment resistance of human gastrointestinal cancers. Considering the current therapeutic challenges faced by gastrointestinal cancers, elucidating the biological function and molecular mechanism of FBXW7 can provide new perspectives and references for future personalized treatment strategies. In this review, we elucidate the key molecular mechanisms by which FBXW7 and its substrates are involved in gastrointestinal cancers. Furthermore, we discuss the consequences of FBXW7 loss or dysfunction in tumor progression and underscore its potential as a prognostic and therapeutic biomarker. Lastly, we propose potential therapeutic strategies targeting FBXW7 to guide the precision treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tingting Liang
- Cancer Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
5
|
Qi Y, Rezaeian AH, Wang J, Huang D, Chen H, Inuzuka H, Wei W. Molecular insights and clinical implications for the tumor suppressor role of SCF FBXW7 E3 ubiquitin ligase. Biochim Biophys Acta Rev Cancer 2024; 1879:189140. [PMID: 38909632 PMCID: PMC11390337 DOI: 10.1016/j.bbcan.2024.189140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
FBXW7 is one of the most well-characterized F-box proteins, serving as substrate receptor subunit of SKP1-CUL1-F-box (SCF) E3 ligase complexes. SCFFBXW7 is responsible for the degradation of various oncogenic proteins such as cyclin E, c-MYC, c-JUN, NOTCH, and MCL1. Therefore, FBXW7 functions largely as a major tumor suppressor. In keeping with this notion, FBXW7 gene mutations or downregulations have been found and reported in many types of malignant tumors, such as endometrial, colorectal, lung, and breast cancers, which facilitate the proliferation, invasion, migration, and drug resistance of cancer cells. Therefore, it is critical to review newly identified FBXW7 regulation and tumor suppressor function under physiological and pathological conditions to develop effective strategies for the treatment of FBXW7-altered cancers. Since a growing body of evidence has revealed the tumor-suppressive activity and role of FBXW7, here, we updated FBXW7 upstream and downstream signaling including FBXW7 ubiquitin substrates, the multi-level FBXW7 regulatory mechanisms, and dysregulation of FBXW7 in cancer, and discussed promising cancer therapies targeting FBXW7 regulators and downstream effectors, to provide a comprehensive picture of FBXW7 and facilitate the study in this field.
Collapse
Affiliation(s)
- Yihang Qi
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jingchao Wang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hong Chen
- Vascular Biology Program, Department of Surgery, Harvard Medical School, Boston Children's Hospital, Boston, MA, USA
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
6
|
Marlin R, Loger JS, Joachim C, Ebring C, Robert-Siegwald G, Pennont S, Rose M, Raguette K, Suez-Panama V, Ulric-Gervaise S, Lusbec S, Bera O, Vallard A, Aline-Fardin A, Colomba E, Jean-Laurent M. Copy number signatures and CCNE1 amplification reveal the involvement of replication stress in high-grade endometrial tumors oncogenesis. Cell Oncol (Dordr) 2024; 47:1441-1457. [PMID: 38564163 PMCID: PMC11322381 DOI: 10.1007/s13402-024-00942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Managing high-grade endometrial cancer in Martinique poses significant challenges. The diversity of copy number alterations in high-grade endometrial tumors, often associated with a TP53 mutation, is a key factor complicating treatment. Due to the high incidence of high-grade tumors with poor prognosis, our study aimed to characterize the molecular signature of these tumors within a cohort of 25 high-grade endometrial cases. METHODS We conducted a comprehensive pangenomic analysis to categorize the copy number alterations involved in these tumors. Whole-Exome Sequencing (WES) and Homologous Recombination (HR) analysis were performed. The alterations obtained from the WES were classified into various signatures using the Copy Number Signatures tool available in COSMIC. RESULTS We identified several signatures that correlated with tumor stage and disctinct prognoses. These signatures all seem to be linked to replication stress, with CCNE1 amplification identified as the primary driver of oncogenesis in over 70% of tumors analyzed. CONCLUSION The identification of CCNE1 amplification, which is currently being explored as a therapeutic target in clinical trials, suggests new treatment strategies for high-grade endometrial cancer. This finding holds particular significance for Martinique, where access to care is challenging.
Collapse
Affiliation(s)
- Regine Marlin
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique.
| | - Jean-Samuel Loger
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Clarisse Joachim
- General Cancer Registry of Martinique, University Hospital of Martinique, Fort-de-France, Martinique
| | - Coralie Ebring
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| | - Guillaume Robert-Siegwald
- MitoVasc Unit, SFR ICAT, Mitolab Team, UMR CNRS 6015 INSERM U1083, University of Angers, Angers, France
| | - Sabrina Pennont
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Mickaelle Rose
- Martinique Regional Oncology Platform, University Hospital of Martinique, Fort-de-France, Martinique
| | - Kevin Raguette
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Valerie Suez-Panama
- Biological Resource Center, University Hospital of Martinique, Fort-de-France, Martinique
| | - Sylviane Ulric-Gervaise
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Sylvie Lusbec
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| | - Odile Bera
- Department of Cancer Molecular Genetics, University Hospital of Martinique, Fort-de-France, Martinique
| | - Alexis Vallard
- Department of Oncology Hematology Urology, University Hospital of Martinique, Fort-de-France, Martinique
| | | | - Emeline Colomba
- Department of Cancer Medicine, Institut Gustave Roussy, University of Paris Saclay, Gif-sur-Yvette, France
| | - Mehdi Jean-Laurent
- Department of Gynecological and Breast Surgery, University Hospital of Martinique, Fort-de-France, Martinique
| |
Collapse
|
7
|
Li Y, Zhang X, Liu N, Liu R, Zhang W, Chen L, Chen Y. RNF166 promotes colorectal cancer progression by recognizing and destabilizing poly-ADP-ribosylated angiomotins. Cell Death Dis 2024; 15:211. [PMID: 38480683 PMCID: PMC10937711 DOI: 10.1038/s41419-024-06595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
Activation of the Hippo pathway by angiomotins to limit colorectal cancer progression is prevalent, whereas the regulation of angiomotins remains elusive. In this study, we uncover the involvement of an upregulated E3 ubiquitin ligase called RNF166, which destabilizes angiomotins, activates YAP, and is associated with a poor prognosis in colorectal cancer patients. Mechanistically, RNF166 specifically recognizes PARsylated angiomotin, a modification mediated by tankyrase at specific amino acid residues (D506, E513, E516, and E528). The tankyrase inhibitor XAV939, effectively prevents RNF166-dependent destabilization of angiomotins and subsequent activation of YAP. Additionally, YAP-5SA, a constitutively active form of YAP, rescues colorectal cancer progression following knockdown of RNF166. Importantly, the C-terminus of RNF66, particularly the Di19-ZF domain, is the crucial region responsible for recognizing ADP-ribosylated angiomotins. Together, this work not only sheds light on the regulation of the Hippo pathway in colorectal cancer but also uncovers a novel poly(ADP-ribose)-binding domain, which may serve as a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Yun Li
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiangqian Zhang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Na Liu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruijie Liu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Wuming Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Lin Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
8
|
Hu ML, Pan YR, Yong YY, Liu Y, Yu L, Qin DL, Qiao G, Law BYK, Wu JM, Zhou XG, Wu AG. Poly (ADP-ribose) polymerase 1 and neurodegenerative diseases: Past, present, and future. Ageing Res Rev 2023; 91:102078. [PMID: 37758006 DOI: 10.1016/j.arr.2023.102078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a first responder that recognizes DNA damage and facilitates its repair. Neurodegenerative diseases, characterized by progressive neuron loss driven by various risk factors, including DNA damage, have increasingly shed light on the pivotal involvement of PARP1. During the early phases of neurodegenerative diseases, PARP1 experiences controlled activation to swiftly address mild DNA damage, thereby contributing to maintain brain homeostasis. However, in late stages, exacerbated PARP1 activation precipitated by severe DNA damage exacerbates the disease condition. Consequently, inhibition of PARP1 overactivation emerges as a promising therapeutic approach for neurodegenerative diseases. In this review, we comprehensively synthesize and explore the multifaceted role of PARP1 in neurodegenerative diseases, with a particular emphasis on its over-activation in the aggregation of misfolded proteins, dysfunction of the autophagy-lysosome pathway, mitochondrial dysfunction, neuroinflammation, and blood-brain barrier (BBB) injury. Additionally, we encapsulate the therapeutic applications and limitations intrinsic of PARP1 inhibitors, mainly including limited specificity, intricate pathway dynamics, constrained clinical translation, and the heterogeneity of patient cohorts. We also explore and discuss the potential synergistic implementation of these inhibitors alongside other agents targeting DNA damage cascades within neurodegenerative diseases. Simultaneously, we propose several recommendations for the utilization of PARP1 inhibitors within the realm of neurodegenerative disorders, encompassing factors like the disease-specific roles of PARP1, combinatorial therapeutic strategies, and personalized medical interventions. Lastly, the encompassing review presents a forward-looking perspective along with strategic recommendations that could guide future research endeavors in this field.
Collapse
Affiliation(s)
- Meng-Ling Hu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi-Ru Pan
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yuan-Yuan Yong
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Yi Liu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Da-Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
9
|
Yu J, Zhang Y, Li L, Xiang Y, Yao X, Zhao Y, Cai K, Li M, Li Z, Luo Z. Coordination-driven FBXW7 DNAzyme-Fe nanoassembly enables a binary switch of breast cancer cell cycle checkpoint responses for enhanced ferroptosis-radiotherapy. Acta Biomater 2023; 169:434-450. [PMID: 37516418 DOI: 10.1016/j.actbio.2023.07.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/22/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Radiotherapy is a mainstream modality for breast cancer treatment that employs ionizing radiation (IR) to damage tumor cell DNA and elevate ROS stress, which demonstrates multiple clinically-favorable advantages including localized treatment and low invasiveness. However, breast cancer cells may activate the p53-mediated cell cycle regulation in response to radiotherapy to repair IR-induced cellular damage and facilitate post-treatment survival. F-Box and WD Repeat Domain Containing 7 (FBXW7) is a promoter of p53 degradation and critical nexus of cell proliferation and survival events. Herein, we engineered a cooperative radio-ferroptosis-stimulatory nanomedicine through coordination-driven self-assembly between ferroptosis-inducing Fe2+ ions and FBXW7-inhibiting DNAzymes and further modification of tumor-targeting dopamine-modified hyaluronic acid (HA). The nanoassembly could be selectively internalized by breast cancer cells and disintegrated in lysosomes to release the therapeutic payload. DNAzyme readily abolishes FBXW7 expression and stabilizes phosphorylated p53 to cause irreversible G2 phase arrest for amplifying post-IR tumor cell apoptosis. Meanwhile, the p53 stabilization also inhibits the SLC7A11-cystine-GSH axis, which combines with the IR-upregulated ROS levels to amplify Fe2+-mediated ferroptotic damage. The DNAzyme-Fe-HA nanoassembly could thus systematically boost the tumor cell damaging effects of IR, presenting a simple and effective approach to augment the response of breast cancer to radiotherapy. STATEMENT OF SIGNIFICANCE: To overcome the intrinsic radioresistance in breast cancer, we prepared co-assembly of Fe2+ and FBXW7-targeted DNAzymes and modified surface with dopamine conjugated hyaluronic acid (HA), which enabled tumor-specific FBXW7-targeted gene therapy and ferroptosis therapy in IR-treated breast cancers. The nanoassembly could be activated in acidic condition to release the therapeutic contents. Specifically, the DNAzymes could selectively degrade FBXW7 mRNA in breast cancer cells to simultaneously induce accumulation of p53 and retardation of NHEJ repair, eventually inducing irreversible cell cycle arrest to promote apoptosis. The p53 stabilization would also inhibit the SLC7A11/GSH/GPX4 axis to enhance Fe2+ mediated ferroptosis. These merits could act in a cooperative manner to induce pronounced tumor inhibitory effect, offering new approaches for tumor radiosensitization in the clinics.
Collapse
Affiliation(s)
- Jiawu Yu
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Yuchen Zhang
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Liqi Li
- Department of General Surgery, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Yang Xiang
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Xuemei Yao
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Youbo Zhao
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China.
| | - Zhongjun Li
- Laboratory of Radiation Biology, Department of Blood Transfusion, Laboratory Medicine Centre, The Second Affiliated Hospital, Army Medical University, Chongqing, China.
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
10
|
Beneyton A, Nonfoux L, Gagné JP, Rodrigue A, Kothari C, Atalay N, Hendzel M, Poirier G, Masson JY. The dynamic process of covalent and non-covalent PARylation in the maintenance of genome integrity: a focus on PARP inhibitors. NAR Cancer 2023; 5:zcad043. [PMID: 37609662 PMCID: PMC10440794 DOI: 10.1093/narcan/zcad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/24/2023] Open
Abstract
Poly(ADP-ribosylation) (PARylation) by poly(ADP-ribose) polymerases (PARPs) is a highly regulated process that consists of the covalent addition of polymers of ADP-ribose (PAR) through post-translational modifications of substrate proteins or non-covalent interactions with PAR via PAR binding domains and motifs, thereby reprogramming their functions. This modification is particularly known for its central role in the maintenance of genomic stability. However, how genomic integrity is controlled by an intricate interplay of covalent PARylation and non-covalent PAR binding remains largely unknown. Of importance, PARylation has caught recent attention for providing a mechanistic basis of synthetic lethality involving PARP inhibitors (PARPi), most notably in homologous recombination (HR)-deficient breast and ovarian tumors. The molecular mechanisms responsible for the anti-cancer effect of PARPi are thought to implicate both catalytic inhibition and trapping of PARP enzymes on DNA. However, the relative contribution of each on tumor-specific cytotoxicity is still unclear. It is paramount to understand these PAR-dependent mechanisms, given that resistance to PARPi is a challenge in the clinic. Deciphering the complex interplay between covalent PARylation and non-covalent PAR binding and defining how PARP trapping and non-trapping events contribute to PARPi anti-tumour activity is essential for developing improved therapeutic strategies. With this perspective, we review the current understanding of PARylation biology in the context of the DNA damage response (DDR) and the mechanisms underlying PARPi activity and resistance.
Collapse
Affiliation(s)
- Adèle Beneyton
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Louis Nonfoux
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Philippe Gagné
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Amélie Rodrigue
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| | - Charu Kothari
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Nurgul Atalay
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Michael J Hendzel
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, 11560 University Avenue, Edmonton, AlbertaT6G 1Z2, Canada
| | - Guy G Poirier
- CHU de Québec Research Center, CHUL Pavilion, Oncology Division, Laval University Cancer Research Center, 2705 Boulevard Laurier, Québec City, QC G1V 4G2, Canada
| | - Jean-Yves Masson
- CHU de Québec Research Center, HDQ Pavilion, Oncology Division, Laval University Cancer Research Center, 9 McMahon, Québec City, QC G1R 3S3, Canada
| |
Collapse
|
11
|
Awwad SW, Serrano-Benitez A, Thomas JC, Gupta V, Jackson SP. Revolutionizing DNA repair research and cancer therapy with CRISPR-Cas screens. Nat Rev Mol Cell Biol 2023; 24:477-494. [PMID: 36781955 DOI: 10.1038/s41580-022-00571-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2022] [Indexed: 02/15/2023]
Abstract
All organisms possess molecular mechanisms that govern DNA repair and associated DNA damage response (DDR) processes. Owing to their relevance to human disease, most notably cancer, these mechanisms have been studied extensively, yet new DNA repair and/or DDR factors and functional interactions between them are still being uncovered. The emergence of CRISPR technologies and CRISPR-based genetic screens has enabled genome-scale analyses of gene-gene and gene-drug interactions, thereby providing new insights into cellular processes in distinct DDR-deficiency genetic backgrounds and conditions. In this Review, we discuss the mechanistic basis of CRISPR-Cas genetic screening approaches and describe how they have contributed to our understanding of DNA repair and DDR pathways. We discuss how DNA repair pathways are regulated, and identify and characterize crosstalk between them. We also highlight the impacts of CRISPR-based studies in identifying novel strategies for cancer therapy, and in understanding, overcoming and even exploiting cancer-drug resistance, for example in the contexts of PARP inhibition, homologous recombination deficiencies and/or replication stress. Lastly, we present the DDR CRISPR screen (DDRcs) portal , in which we have collected and reanalysed data from CRISPR screen studies and provide a tool for systematically exploring them.
Collapse
Affiliation(s)
- Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - John C Thomas
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
12
|
Kang HS, Park HY, Lim H, Son IT, Kim MJ, Kim NY, Kim MJ, Nam ES, Cho SJ, Kwon MJ. Different miRNAs Related to FBXW7 Mutations or High Mitotic Indices Contribute to Rectal Neuroendocrine Tumors: A Pilot Study. Int J Mol Sci 2023; 24:ijms24076329. [PMID: 37047300 PMCID: PMC10093831 DOI: 10.3390/ijms24076329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Recent studies suggest that miRNA may be involved in the development of rectal neuroendocrine tumors (NETs). We explored the frequency of clinicopathologically relevant mutations and miRNA expression in rectal NETs to examine molecular profiles related to prognosis and behavior. Twenty-four eligible specimens with endoscopically excised rectal NETs were selected. Next-generation sequencing and an miRNA expression assay were used to evaluate the expression profile relevant to common genetic mutations in rectal NETs. Kyoto Encyclopedia of Genes and Genomes analysis predicted that the possible target signaling pathways were correlated with dysregulated miRNAs. Nineteen rectal NETs harbored more than one mutation in the 24 cancer-related genes. Seven miRNAs (hsa-miR-769-5p, hsa-miR-221-3p, hsa-miR-34a-5p, hsa-miR-181c-5p, hsa-miR-1246, hsa-miR-324-5p, and hsa-miR-361-3p) were significantly down-regulated in tumors harboring the FBWX7 mutation. Unsupervised hierarchical clustering analysis showed that up-regulation of these seven miRNAs may result in high mitotic indices, indicating the role of miRNAs in tumor progression. Among the down-regulated miRNAs, hsa-miR-769-5p was strongly correlated with extracellular matrix–receptor interaction and lysine degradation. Among the clinicopathological factors, up-regulated hsa-miR-3934-5p was linked to an increased mitotic count. No change in miRNA expression was associated with a tumor size >1 cm, lymphovascular invasion, or Ki-67 index. In summary, we identified different miRNA signatures involved in FBXW7 mutations or high mitotic indices in rectal NETs, which may play a critical role in tumor behavior.
Collapse
Affiliation(s)
- Ho Suk Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea
| | - Hyun Lim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Il Tae Son
- Department of Surgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Min-Jeong Kim
- Department of Radiology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea
| | - Min Jeong Kim
- Department of Surgery, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Eun Sook Nam
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Seong Jin Cho
- Department of Pathology, Kangdong Sacred Heart Hospital, Seoul 05355, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
- Correspondence:
| |
Collapse
|
13
|
Yu S, Liang Z, Fan Z, Cao B, Wang N, Wu R, Sun H. A Comprehensive Analysis Revealing FBXW9 as a Potential Prognostic and Immunological Biomarker in Breast Cancer. Int J Mol Sci 2023; 24:5262. [PMID: 36982338 PMCID: PMC10049633 DOI: 10.3390/ijms24065262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
The WD40 repeat-containing F-box proteins (FBXWs) family belongs to three major classes of F-box proteins. Consistent with the function of other F-box proteins, FBXWs are E3 ubiquitin ligases to mediate protease-dependent protein degradation. However, the roles of several FBXWs remain elusive. In the present study, via integrative analysis of transcriptome profiles from The Cancer Genome Atlas (TCGA) datasets, we found that FBXW9 was upregulated in the majority of cancer types, including breast cancer. FBXW expression was correlated with the prognosis of patients with various types of cancers, especially for FBXW4, 5, 9, and 10. Moreover, FBXWs were associated with infiltration of immune cells, and expression of FBXW9 was associated with poor prognosis of patients receiving anti-PD1 therapy. We predicted several substrates of FBXW9, and TP53 was the hub gene in the list. Downregulation of FBXW9 increased the expression of p21, a target of TP53, in breast cancer cells. FBXW9 was also strongly correlated with cancer cell stemness, and genes correlated with FBXW9 were associated with several MYC activities according to gene enrichment analysis in breast cancer. Cell-based assays showed that silencing of FBXW9 inhibited cell proliferation and cell cycle progression in breast cancer cells. Our study highlights the potential role of FBXW9 as a biomarker and promising target for patients with breast cancer.
Collapse
Affiliation(s)
- Shiyi Yu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhengyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Zhehao Fan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Binjie Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Ning Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Rui Wu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| | - Haibo Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (S.Y.); (Z.L.); (Z.F.); (B.C.); (N.W.); (R.W.)
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research Yangzhou, Yangzhou 225001, China
| |
Collapse
|
14
|
Zhang ZY, Sun JH, Liang MJ, Wang XP, Guan J, Zhou ZQ. The E3 ubiquitin ligase SCF (FBXW10)-mediated LATS2 degradation regulates angiogenesis and liver metastasis in colorectal cancer. Int J Biochem Cell Biol 2023; 158:106408. [PMID: 36990424 DOI: 10.1016/j.biocel.2023.106408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
F-box and WD repeat domain containing 10 (FBXW10) is a member of the FBXW subgroup that contains the WD40 domain. FBXW10 has been rarely reported in colorectal cancer (CRC) and its mechanism is unclear. To investigate the role of FBXW10 in CRC, we conducted in vitro and in vivo experiments. Through the database and our clinical samples, we found that FBXW10 expression was up-regulated in CRC, and it was positively correlated with CD31 expression. CRC patients with high FBXW10 expression levels had a poor prognosis. Overexpression of FBXW10 up-regulated cell proliferation, migration and vascular formation, while knockdown of FBXW10 had the opposite effects. Studies on the mechanism of FBXW10 in CRC showed that FBXW10 could ubiquitinate large tumor suppressor kinase 2 (LATS2) and promote its degradation with the Fbox region of FBXW10 played an essential role in this process. In vivo studies demonstrated that knockout of FBXW10 inhibited tumor proliferation and reduced liver metastasis. In conclusion, our study proved that FBXW10 was significantly overexpressed in CRC and was involved in the pathogenesis of CRC by affecting angiogenesis and liver metastasis. Mechanistically, FBXW10 degraded LATS2 through ubiquitination. Therefore, FBXW10-LATS2 can be used as a therapeutic target for CRC in subsequent studies.
Collapse
|
15
|
DNA Double-Strand Break-Related Competitive Endogenous RNA Network of Noncoding RNA in Bovine Cumulus Cells. Genes (Basel) 2023; 14:genes14020290. [PMID: 36833217 PMCID: PMC9956238 DOI: 10.3390/genes14020290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/14/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
(1) Background: DNA double strand breaks (DSBs) are the most serious form of DNA damage that affects oocyte maturation and the physiological state of follicles and ovaries. Non-coding RNAs (ncRNAs) play a crucial role in DNA damage and repair. This study aims to analyze and establish the network of ncRNAs when DSB occurs and provide new ideas for next research on the mechanism of cumulus DSB. (2) Methods: Bovine cumulus cells (CCs) were treated with bleomycin (BLM) to construct a DSB model. We detected the changes of the cell cycle, cell viability, and apoptosis to determine the effect of DSBs on cell biology, and further evaluated the relationship between the transcriptome and competitive endogenous RNA (ceRNA) network and DSBs. (3) Results: BLM increased γH2AX positivity in CCs, disrupted the G1/S phase, and decreased cell viability. Totals of 848 mRNAs, 75 long noncoding RNAs (lncRNAs), 68 circular RNAs (circRNAs), and 71 microRNAs (miRNAs) in 78 groups of lncRNA-miRNA-mRNA regulatory networks, 275 groups of circRNA-miRNA-mRNA regulatory networks, and five groups of lncRNA/circRNA-miRNA-mRNA co-expression regulatory networks were related to DSBs. Most differentially expressed ncRNAs were annotated to cell cycle, p53, PI3K-AKT, and WNT signaling pathways. (4) Conclusions: The ceRNA network helps to understand the effects of DNA DSBs activation and remission on the biological function of CCs.
Collapse
|
16
|
Ghosh R, Biswas P, Das M, Pal S, Dam S. In silico analysis of a Skp1 protein homolog from the human pathogen E. histolytica. J Parasit Dis 2022; 46:998-1010. [PMID: 36457763 PMCID: PMC9606183 DOI: 10.1007/s12639-022-01523-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/03/2022] [Indexed: 10/16/2022] Open
Abstract
SCF complex consisting of Skp1, Cullins, F-box proteins, is the largest family of E3 ubiquitin ligases that promotes ubiquitination of many substrate proteins and controls numerous cellular processes. Skp1 is an adapter protein that binds directly to the F-box proteins. In this study, we have presented the first comprehensive analysis of the presence of peptides or proteins in the human pathogen Entamoeba histolytica having homology to Skp1protein. The occurrence of other protein components of the SCF complex has been identified from protein-protein interaction network of EhSkp1A. Studying the role of Skp1protein in this pathogen would help to understand its unique chromosome segregation and cell division which are different from higher eukaryotes. Further, owing to the development of resistance over several drugs that are currently available, there is a growing need for a novel drug against E. histolytica. Proteins from ubiquitin-proteasome pathway have received attention as potential drug targets in other parasites. We have identified four homologs of Skp1 protein in E. histolytica strain HM-1: IMSS. Molecular docking study between EhSkp1A and an F-box/WD domain-containing protein (EhFBXW) shows that the F-box domain in the N-terminal region of EhFBXW interacts with EhSkp1A. Therefore, the results of the present study shall provide a stable foundation for further research on the cell cycle regulation of E. histolytica and this will help researchers to develop new drugs against this parasite. Supplementary Information The online version contains supplementary material available at 10.1007/s12639-022-01523-0.
Collapse
Affiliation(s)
- Raktim Ghosh
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Pinaki Biswas
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Moubonny Das
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
17
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
18
|
Proto MC, Fiore D, Piscopo C, Laezza C, Bifulco M, Gazzerro P. Modified Adenosines Sensitize Glioblastoma Cells to Temozolomide by Affecting DNA Methyltransferases. Front Pharmacol 2022; 13:815646. [PMID: 35559231 PMCID: PMC9086827 DOI: 10.3389/fphar.2022.815646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, and due to its unique features, its management is certainly one of the most challenging ones among all cancers. N6-isopentenyladenosine (IPA) and its analog N6-benzyladenosine (N6-BA) are modified nucleosides endowed with potent antitumor activity on different types of human cancers, including GBM. Corroborating our previous finding, we demonstrated that IPA and N6-BA affect GBM cell line proliferation by modulating the expression of the F-box WD repeat domain-containing-7 (FBXW7), a tumor suppressor with a crucial role in the turnover of many proteins, such as SREBPs and Mcl1, involved in malignant progression and chemoresistance. Luciferase assay revealed that IPA-mediated upregulation of FBXW7 translates in transcriptional inactivation of its oncogenic substrates (Myc, NFkB, or HIF-1α). Moreover, downregulating MGMT expression, IPA strongly enhances the killing effect of temozolomide (TMZ), producing a favorable sensitizing effect starting from a concentration range much lower than TMZ EC50. Through DNA methyltransferase (DNMT) activity assay, analysis of the global DNA methylation, and the histone modification profiles, we demonstrated that the modified adenosines behave similar to 5-AZA-dC, known DNMT inhibitor. Overall, our results provide new perspectives for the first time, suggesting the modified adenosines as epigenetic tools able to improve chemo- and radiotherapy efficacy in glioblastoma and potentially other cancers.
Collapse
Affiliation(s)
| | - Donatella Fiore
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Piscopo
- Department of Pharmacy, University of Salerno, Fisciano, Italy
| | - Chiara Laezza
- Institute of Endocrinology and Experimental Oncology, IEOS CNR, Naples, Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Naples, Italy
| | | |
Collapse
|
19
|
Fan J, Bellon M, Ju M, Zhao L, Wei M, Fu L, Nicot C. Clinical significance of FBXW7 loss of function in human cancers. Mol Cancer 2022; 21:87. [PMID: 35346215 PMCID: PMC8962602 DOI: 10.1186/s12943-022-01548-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
FBXW7 (F-Box and WD Repeat Domain Containing 7) (also referred to as FBW7 or hCDC4) is a component of the Skp1-Cdc53 / Cullin-F-box-protein complex (SCF/β-TrCP). As a member of the F-box protein family, FBXW7 serves a role in phosphorylation-dependent ubiquitination and proteasome degradation of oncoproteins that play critical role(s) in oncogenesis. FBXW7 affects many regulatory functions involved in cell survival, cell proliferation, tumor invasion, DNA damage repair, genomic instability and telomere biology. This thorough review of current literature details how FBXW7 expression and functions are regulated through multiple mechanisms and how that ultimately drives tumorigenesis in a wide array of cell types. The clinical significance of FBXW7 is highlighted by the fact that FBXW7 is frequently inactivated in human lung, colon, and hematopoietic cancers. The loss of FBXW7 can serve as an independent prognostic marker and is significantly correlated with the resistance of tumor cells to chemotherapeutic agents and poorer disease outcomes. Recent evidence shows that genetic mutation of FBXW7 differentially affects the degradation of specific cellular targets resulting in a distinct and specific pattern of activation/inactivation of cell signaling pathways. The clinical significance of FBXW7 mutations in the context of tumor development, progression, and resistance to therapies as well as opportunities for targeted therapies is discussed.
Collapse
Affiliation(s)
- Jingyi Fan
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.,Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mingyi Ju
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.,Liaoning Province, China Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute; Sun Yat-sen University Cancer Center, Guangzhou, 510060, Guangdong Province, China.
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
20
|
Yang Z, Hu N, Wang W, Hu W, Zhou S, Shi J, Li M, Jing Z, Chen C, Zhang X, Yang R, Fu X, Wang X. Loss of FBXW7 Correlates with Increased IDH1 Expression in Glioma and Enhances IDH1-Mutant Cancer Cell Sensitivity to Radiation. Cancer Res 2022; 82:497-509. [PMID: 34737211 DOI: 10.1158/0008-5472.can-21-0384] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 11/16/2022]
Abstract
F-box and WD repeat domain containing 7 (FBXW7) is a substrate receptor of the ubiquitin ligase SKP1-Cullin1-F-box complex and a potent tumor suppressor that prevents unregulated cell growth and tumorigenesis. However, little is known about FBXW7-mediated control of cell metabolism and related functions in cancer therapy. Here, we report that FBXW7 expression inversely correlates with the expression levels of the key metabolic enzyme isocitrate dehydrogenase 1 (IDH1) in patients with glioma and public glioma datasets. Deletion of FBXW7 significantly increased both wild-type (WT) and mutant IDH1 expression, which was mediated by blocking degradation of sterol regulatory element binding protein 1 (SREBP1). The upregulation of neomorphic mutant IDH1 by FBXW7 deletion stimulated production of the oncometabolite 2-hydroxyglutarate at the expense of increasing pentose phosphate pathway activity and NADPH consumption, limiting the buffering ability against radiation-induced oxidative stress. In addition, FBXW7 knockout and IDH1 mutations induced nonhomologous end joining and homologous recombination defects, respectively. In vitro and in vivo, loss of FBXW7 dramatically enhanced the efficacy of radiation treatment in IDH1-mutant cancer cells. Taken together, this work identifies FBXW7 deficiency as a potential biomarker representing both DNA repair and metabolic vulnerabilities that sensitizes IDH1-mutant cancers to radiotherapy. SIGNIFICANCE: Deficiency of FBXW7 causes defects in DNA repair and disrupts NADPH homeostasis in IDH1-mutant glioma cells, conferring high sensitivity to radiotherapy.
Collapse
Affiliation(s)
- Zhuo Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Nan Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P.R. China
| | - Weihua Hu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Shaolong Zhou
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Jianxiang Shi
- Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, P.R. China
| | - Minghe Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Zhou Jing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Chao Chen
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xuyang Zhang
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Ruyi Yang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xudong Fu
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China.
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, P.R. China
| |
Collapse
|
21
|
Lan H, Sun Y. Tumor Suppressor FBXW7 and Its Regulation of DNA Damage Response and Repair. Front Cell Dev Biol 2021; 9:751574. [PMID: 34760892 PMCID: PMC8573206 DOI: 10.3389/fcell.2021.751574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
The proper DNA damage response (DDR) and repair are the central molecular mechanisms for the maintenance of cellular homeostasis and genomic integrity. The abnormality in this process is frequently observed in human cancers, and is an important contributing factor to cancer development. FBXW7 is an F-box protein serving as the substrate recognition component of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase. By selectively targeting many oncoproteins for proteasome-mediated degradation, FBXW7 acts as a typical tumor suppressor. Recent studies have demonstrated that FBXW7 also plays critical roles in the process of DDR and repair. In this review, we first briefly introduce the processes of protein ubiquitylation by SCFFBXW7 and DDR/repair, then provide an overview of the molecular characteristics of FBXW7. We next discuss how FBXW7 regulates the process of DDR and repair, and its translational implication. Finally, we propose few future perspectives to further elucidate the role of FBXW7 in regulation of a variety of biological processes and tumorigenesis, and to design a number of approaches for FBXW7 reactivation in a subset of human cancers for potential anticancer therapy.
Collapse
Affiliation(s)
- Huiyin Lan
- Department of Thoracic Radiation Oncology, Zhejiang Cancer Hospital, Cancer Hospital of University of Chinese Academy of Sciences, Hangzhou, China.,Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Yi Sun
- Cancer Institute of the Second Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Kliza KW, Liu Q, Roosenboom LWM, Jansen PWTC, Filippov DV, Vermeulen M. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics. Mol Cell 2021; 81:4552-4567.e8. [PMID: 34551281 DOI: 10.1016/j.molcel.2021.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 01/12/2023]
Abstract
ADP-ribose (ADPr) readers are essential components of ADP-ribosylation signaling, which regulates genome maintenance and immunity. The identification and discrimination between monoADPr (MAR) and polyADPr (PAR) readers is difficult because of a lack of suitable affinity-enrichment reagents. We synthesized well-defined ADPr probes and used these for affinity purifications combined with relative and absolute quantitative mass spectrometry to generate proteome-wide MAR and PAR interactomes, including determination of apparent binding affinities. Among the main findings, MAR and PAR readers regulate various common and distinct processes, such as the DNA-damage response, cellular metabolism, RNA trafficking, and transcription. We monitored the dynamics of PAR interactions upon induction of oxidative DNA damage and uncovered the mechanistic connections between ubiquitin signaling and ADP-ribosylation. Taken together, chemical biology enables exploration of MAR and PAR readers using interaction proteomics. Furthermore, the generated MAR and PAR interaction maps significantly expand our current understanding of ADPr signaling.
Collapse
Affiliation(s)
- Katarzyna W Kliza
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| | - Qiang Liu
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands
| | - Laura W M Roosenboom
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands
| | - Dmitri V Filippov
- Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, Netherlands.
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University Nijmegen, 6525 GA Nijmegen, the Netherlands.
| |
Collapse
|
23
|
Stockton JD, Tee L, Whalley C, James J, Dilworth M, Wheat R, Nieto T, Geh I, Barros-Silva JD, Beggs AD. Complete response to neoadjuvant chemoradiotherapy in rectal cancer is associated with RAS/AKT mutations and high tumour mutational burden. Radiat Oncol 2021; 16:129. [PMID: 34256782 PMCID: PMC8278688 DOI: 10.1186/s13014-021-01853-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/04/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pathological complete response (pathCR) in rectal cancer is beneficial, as up to 75% of patients do not experience regrowth of the primary tumour, but it is poorly understood. We hypothesised that the changes seen in the pre-treatment biopsies of pathCR but not seen in residual tumour after chemoradiotherapy were the determinants of responsiveness. METHODS Two groups of patients with either complete response (pathCR group, N = 24) or no response (poor response group, N = 24) were retrieved. Pre-treatment biopsies of cancers from these patients underwent high read depth amplicon sequencing for a targeted panel, exome sequencing, methylation profiling and immunohistochemistry for DNA repair pathway proteins. RESULTS Twenty four patients who underwent pathCR and twenty-four who underwent poor response underwent molecular characterisation. Patients in the pathCR group had significantly higher tumour mutational burden and neoantigen load, frequent copy number alterations but fewer structural variants and enrichment for driver mutations in the PI3K/AKT/mTOR signalling pathway. There were no significant differences in tumour heterogeneity as measured by MATH score. Methylation analysis demonstrated enrichment for hypomethyation in the PI3K/AKT/mTOR signalling pathway. DISCUSSION The phenomenon of pathCR in rectal cancer may be related to immunovisibility caused by a high tumour mutational burden phenotype. Potential therapy resistance mechanisms involve the PI3K/AKT/mTOR signalling pathway, but tumour heterogeneity does not seem to play a role in resistance.
Collapse
Affiliation(s)
- Joanne D. Stockton
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Louise Tee
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Celina Whalley
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Jonathan James
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Mark Dilworth
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Rachel Wheat
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Thomas Nieto
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - S-CORT Consortium
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ian Geh
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - João D. Barros-Silva
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
| | - Andrew D. Beggs
- Surgical Research Laboratory, Institute of Cancer and Genomic Science, University of Birmingham, Vincent Drive, Birmingham, B15 2TT UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
24
|
Khan AQ, Al-Tamimi M, Uddin S, Steinhoff M. F-box proteins in cancer stemness: An emerging prognostic and therapeutic target. Drug Discov Today 2021; 26:2905-2914. [PMID: 34265459 DOI: 10.1016/j.drudis.2021.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/16/2021] [Accepted: 07/05/2021] [Indexed: 01/15/2023]
Abstract
Cancer is a complex heterogenic disease with significant therapeutic challenges. The presence of cancer stem cells (CSCs) in cancer tissue orchestrates tumor growth, progression, and metastasis, the tumor heterogeneity, disease relapse, and therapeutic resistance. Hence, it is imperative to explore how progenitor or cancer-initiating cells acquire stemness features and reprogram different biological mechanisms to maintain their sustained oncogenicity. Interestingly, deregulation of F-box proteins (FBPs) is crucial for cancer stemness features, including drug resistance and disease relapse. In this review, we highlight recent updates on the clinical significance of targeting FBPs in cancer therapy, with emphasis on eliminating CSCs and associated therapeutic challenges. Moreover, we also discuss novel strategies for the selective elimination of CSCs by targeting FBPs.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Maha Al-Tamimi
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Laboratory Animal Center, Qatar University, Doha 2713, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
25
|
Jin X, Cao X, Liu S, Liu B. Functional Roles of Poly(ADP-Ribose) in Stress Granule Formation and Dynamics. Front Cell Dev Biol 2021; 9:671780. [PMID: 33981709 PMCID: PMC8107429 DOI: 10.3389/fcell.2021.671780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Stress granules (SGs) are highly dynamic cytoplasmic foci formed in response to stress. The formation of SGs is reported to be regulated by diverse post-translational protein modifications (PTMs). Among them, ADP-ribosylation is of emerging interest due to its recently identified roles in SG organization. In this review, we summarized the latest advances on the roles of poly(ADP-ribose) (PAR) in the regulation of SG formation and dynamics, including its function in modulating nucleocytoplasmic trafficking and SG recruitment of SG components, as well as its effects on protein phase separation behavior. Moreover, the functional role of PAR chain diversity on dynamic of SG composition is also introduced. Potential future developments on investigating global ADP-ribosylation networks, individual roles of different PARPs, and interactions between ADP-ribosylation and other PTMs in SGs are also discussed.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden.,Faculty of Science, Center for Large-Scale Cell-Based Screening, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
26
|
Surface charge of Merkel cell polyomavirus small T antigen determines cell transformation through allosteric FBW7 WD40 domain targeting. Oncogenesis 2020; 9:53. [PMID: 32427880 PMCID: PMC7237485 DOI: 10.1038/s41389-020-0235-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/20/2022] Open
Abstract
Merkel cell polyomavirus (MCV) small T (sT) is the main oncoprotein in Merkel cell carcinoma (MCC) development. A unique domain of sT, LT stabilization domain (LSD), has been reported to bind and inactivate multiple SCF (Skp1-Cullin-F-box) E3 ligases. These interactions impede the turnover of MCV large T (LT) antigen and cellular oncoproteins such as c-Myc and cyclin E, thereby promoting viral replication and cell transformation. However, it is currently unclear how this LSD region contributes to multiple transforming activities of sT. Structural docking simulation of sT and F-box and WD repeat domain-containing 7 (FBW7) revealed a novel allosteric interaction between sT and FBW7 WD40 domain. This model is supported by experimental evidence confirming that charge engineering in the LSD alters sT-WD40 binding. Specifically, loss of net positive charge in the LSD prevents sT-FBW7 binding by abrogating the electrostatic interaction, thus impeding inhibition of FBW7 by sT. Furthermore, positively charged mutations in the LSD significantly restored the sT function and its ability to transform rodent fibroblast cells. We infer that the surface charge of sT is a major determinant for targeting E3 ligases, which leads to sT-induced cell transformation, an observation that could be used to develop targeted therapeutics for MCC.
Collapse
|
27
|
Yumimoto K, Nakayama KI. Recent insight into the role of FBXW7 as a tumor suppressor. Semin Cancer Biol 2020; 67:1-15. [PMID: 32113998 DOI: 10.1016/j.semcancer.2020.02.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/15/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
FBXW7 (also known as Fbw7, Sel10, hCDC4, or hAgo) is a tumor suppressor and the most frequently mutated member of the F-box protein family in human cancers. FBXW7 functions as the substrate recognition component of an SCF-type E3 ubiquitin ligase. It specifically controls the proteasome-mediated degradation of many oncoproteins such as c-MYC, NOTCH, KLF5, cyclin E, c-JUN, and MCL1. In this review, we summarize the molecular and biological features of FBXW7 and its substrates as well as the impact of mutations of FBXW7 on cancer development. We also address the clinical potential of anticancer therapy targeting FBXW7.
Collapse
Affiliation(s)
- Kanae Yumimoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan.
| |
Collapse
|
28
|
Su D, Feng X, Colic M, Wang Y, Zhang C, Wang C, Tang M, Hart T, Chen J. CRISPR/CAS9-based DNA damage response screens reveal gene-drug interactions. DNA Repair (Amst) 2020; 87:102803. [PMID: 31991288 DOI: 10.1016/j.dnarep.2020.102803] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/01/2023]
Abstract
DNA damage response (DDR) is critically important for cell survival, genome maintenance, and its defect has been exploited therapeutically in cancer treatment. Many DDR-targeting agents have been generated and have entered the clinic and/or clinical trials. In order to provide a global and unbiased view of DDR network, we designed a focused CRISPR library targeting 365 DDR genes and performed CRISPR screens on the responses to several DDR inhibitors and DNA-damaging agents in 293A cells. With these screens, we determined responsive pathways enriched under treatment with different types of small-molecule agents. Additionally, we showed that POLE3/4-deficient cells displayed enhanced sensitivity to an ATR inhibitor, a PARP inhibitor, and camptothecin. Moreover, by performing DDR screens in isogenic TP53 wild-type and TP53 knock-out cell lines, our results suggest that the performance of our CRISPR DDR dropout screens is independent of TP53 status. Collectively, our findings indicate that CRISPR DDR screens can be used to identify potential targets of small-molecule drugs and reveal that TP53 status does not affect the outcome of these screens.
Collapse
Affiliation(s)
- Dan Su
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yunfei Wang
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chunchao Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Yu Y, Jia W, Lyu Y, Su D, Bai M, Shen J, Qiao J, Han T, Liu W, Chen J, Chen W, Ye D, Guo X, Zhu S, Xi J, Zhu R, Wan X, Gao S, Zhu J, Kang J. Pwp1 regulates telomere length by stabilizing shelterin complex and maintaining histone H4K20 trimethylation. Cell Discov 2019; 5:47. [PMID: 31754456 PMCID: PMC6868014 DOI: 10.1038/s41421-019-0116-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 07/24/2019] [Indexed: 01/02/2023] Open
Abstract
Telomere maintenance is critical for chromosome stability. Here we report that periodic tryptophan protein 1 (PWP1) is involved in regulating telomere length homeostasis. Pwp1 appears to be essential for mouse development and embryonic stem cell (ESC) survival, as homozygous Pwp1-knockout mice and ESCs have never been obtained. Heterozygous Pwp1-knockout mice had shorter telomeres and decreased reproductive capacity. Pwp1 depletion induced rapid telomere shortening accompanied by reduced shelterin complex and increased DNA damage in telomeric regions. Mechanistically, PWP1 bound and stabilized the shelterin complex via its WD40 domains and regulated the overall level of H4K20me3. The rescue of telomere length in Pwp1-deficient cells by PWP1 overexpression depended on SUV4-20H2 co-expression and increased H4K20me3. Therefore, our study revealed a novel protein involved in telomere homeostasis in both mouse and human cells. This knowledge will improve our understanding of how chromatin structure and histone modifications are involved in maintaining telomere integrity.
Collapse
Affiliation(s)
- Yangyang Yu
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Wenwen Jia
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China.,2Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123 China
| | - Yao Lyu
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Dingwen Su
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Mingliang Bai
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Junwei Shen
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jing Qiao
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Tong Han
- 3Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204 P. R. China
| | - Wenqiang Liu
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jiayu Chen
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Wen Chen
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Dan Ye
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Xudong Guo
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Songcheng Zhu
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jiajie Xi
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Ruixin Zhu
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Xiaoping Wan
- 3Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 201204 P. R. China
| | - Shaorong Gao
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China
| | - Jiyue Zhu
- 4Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA 99210 USA
| | - Jiuhong Kang
- 1Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science; School of Life Sciences and Technology, Tongji University, Shanghai, 200092 China.,2Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200123 China
| |
Collapse
|