1
|
Ruchi R, Raman GM, Kumar V, Bahal R. Evolution of antisense oligonucleotides: navigating nucleic acid chemistry and delivery challenges. Expert Opin Drug Discov 2024:1-18. [PMID: 39653607 DOI: 10.1080/17460441.2024.2440095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Antisense oligonucleotide (ASO) was established as a viable therapeutic option for genetic disorders. ASOs can target RNAs implicated in various diseases, including upregulated mRNA and pre-mRNA undergoing abnormal alternative splicing events. Therapeutic applications of ASOs have been proven with the Food and Drug Administration approval of several drugs in recent years. Earlier enzymatic stability and delivery remains a big challenge for ASOs. Introducing new chemical modifications and new formulations resolving the issues related to the nuclease stability and delivery of the ASOs. Excitingly, ASOs-based bioconjugates that target the hepatocyte have gained much attraction. Efforts are ongoing to increase the therapeutic application of the ASOs to the extrahepatic tissue as well. AREA COVERED We have briefly discussed the mechanism of ASOs, the development of new chemistries, and delivery strategies for ASO-based drug discovery and development. The discussion focuses more on the already approved ASOs and those in the clinical development stage. EXPERT OPINION To expand the clinical application of ASOs, continuous effort is required to develop precise delivery strategies for targeting extrahepatic tissue to minimize the off-target effects.
Collapse
Affiliation(s)
- Ruchi Ruchi
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Govind Mukesh Raman
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
- Farmington High School, Farmington, CT, USA
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| | - Raman Bahal
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
2
|
Bauer IA, Dmitrienko EV. Amphiphilic Oligonucleotide Derivatives-Promising Tools for Therapeutics. Pharmaceutics 2024; 16:1447. [PMID: 39598570 PMCID: PMC11597563 DOI: 10.3390/pharmaceutics16111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
Recent advances in genetics and nucleic acid chemistry have created fundamentally new tools, both for practical applications in therapy and diagnostics and for fundamental genome editing tasks. Nucleic acid-based therapeutic agents offer a distinct advantage of selectively targeting the underlying cause of the disease. Nevertheless, despite the success achieved thus far, there remain unresolved issues regarding the improvement of the pharmacokinetic properties of therapeutic nucleic acids while preserving their biological activity. In order to address these challenges, there is a growing focus on the study of safe and effective delivery methods utilising modified nucleic acid analogues and their lipid bioconjugates. The present review article provides an overview of the current state of the art in the use of chemically modified nucleic acid derivatives for therapeutic applications, with a particular focus on oligonucleotides conjugated to lipid moieties. A systematic analysis has been conducted to investigate the ability of amphiphilic oligonucleotides to self-assemble into micelle-like structures, as well as the influence of non-covalent interactions of such derivatives with serum albumin on their biodistribution and therapeutic effects.
Collapse
Affiliation(s)
| | - Elena V. Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia;
| |
Collapse
|
3
|
Bortolin RH, Nawar F, Park C, Trembley MA, Prondzynski M, Sweat ME, Wang P, Chen J, Lu F, Liou C, Berkson P, Keating EM, Yoshinaga D, Pavlaki N, Samenuk T, Cavazzoni CB, Sage PT, Ma Q, Whitehill RD, Abrams DJ, Carreon CK, Putra J, Alexandrescu S, Guo S, Tsai WC, Rubart M, Kubli DA, Mullick AE, Bezzerides VJ, Pu WT. Antisense Oligonucleotide Therapy for Calmodulinopathy. Circulation 2024; 150:1199-1210. [PMID: 39155863 DOI: 10.1161/circulationaha.123.068111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/16/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Calmodulinopathies are rare inherited arrhythmia syndromes caused by dominant heterozygous variants in CALM1, CALM2, or CALM3, which each encode the identical CaM (calmodulin) protein. We hypothesized that antisense oligonucleotide (ASO)-mediated depletion of an affected calmodulin gene would ameliorate disease manifestations, whereas the other 2 calmodulin genes would preserve CaM level and function. METHODS We tested this hypothesis using human induced pluripotent stem cell-derived cardiomyocyte and mouse models of CALM1 pathogenic variants. RESULTS Human CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes exhibited prolonged action potentials, modeling congenital long QT syndrome. CALM1 knockout or CALM1-depleting ASOs did not alter CaM protein level and normalized repolarization duration of CALM1F142L/+ induced pluripotent stem cell-derived cardiomyocytes. Similarly, an ASO targeting murine Calm1 depleted Calm1 transcript without affecting CaM protein level. This ASO alleviated drug-induced bidirectional ventricular tachycardia in Calm1N98S/+ mice without a deleterious effect on cardiac electrical or contractile function. CONCLUSIONS These results provide proof of concept that ASOs targeting individual calmodulin genes are potentially effective and safe therapies for calmodulinopathies.
Collapse
Affiliation(s)
- Raul H Bortolin
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Farina Nawar
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Chaehyoung Park
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Michael A Trembley
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Maksymilian Prondzynski
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Mason E Sweat
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Peizhe Wang
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Jiehui Chen
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Fujian Lu
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Carter Liou
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Paul Berkson
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Erin M Keating
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Daisuke Yoshinaga
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Nikoleta Pavlaki
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Thomas Samenuk
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Cecilia B Cavazzoni
- Boston Children's Hospital, MA. Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.B.C., P.T.S.)
| | - Peter T Sage
- Boston Children's Hospital, MA. Transplantation Research Center, Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (C.B.C., P.T.S.)
| | - Qing Ma
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
| | - Robert D Whitehill
- Department of Pediatrics, Division of Cardiology, Emory University School of Medicine, Children's Healthcare of Atlanta, GA (R.D.W.)
| | - Dominic J Abrams
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
- Center for Cardiovascular Genetics (D.J.A., V.J.B., W.T.P.), Boston Children's Hospital and Harvard Medical School, MA
| | - Chrystalle Katte Carreon
- Cardiac Registry, Departments of Cardiology, Pathology, and Cardiac Surgery (C.K.C.)
- Department of Pathology (C.K.C., J.P., S.A.), Boston Children's Hospital and Harvard Medical School, MA
| | - Juan Putra
- Department of Pathology (C.K.C., J.P., S.A.), Boston Children's Hospital and Harvard Medical School, MA
| | - Sanda Alexandrescu
- Department of Pathology (C.K.C., J.P., S.A.), Boston Children's Hospital and Harvard Medical School, MA
| | - Shuai Guo
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis (S.G., W.-C.T., M.R.)
| | - Wen-Chin Tsai
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis (S.G., W.-C.T., M.R.)
| | - Michael Rubart
- Wells Centre for Pediatric Research, Indiana University School of Medicine, Indianapolis (S.G., W.-C.T., M.R.)
| | | | | | - Vassilios J Bezzerides
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
- Center for Cardiovascular Genetics (D.J.A., V.J.B., W.T.P.), Boston Children's Hospital and Harvard Medical School, MA
| | - William T Pu
- Department of Cardiology (R.H.B., F.N., C.P., M.A.T., M.P., M.E.S., P.W., J.C., F.L., C.L., P.B., E.M.K., D.Y., N.P., T.S., Q.M., D.J.A., V.J.B., W.T.P.)
- Center for Cardiovascular Genetics (D.J.A., V.J.B., W.T.P.), Boston Children's Hospital and Harvard Medical School, MA
- Harvard Stem Cell Institute, Cambridge, MA (W.T.P.)
| |
Collapse
|
4
|
Malinowska AL, Huynh HL, Bose S. Peptide-Oligonucleotide Conjugation: Chemistry and Therapeutic Applications. Curr Issues Mol Biol 2024; 46:11031-11047. [PMID: 39451535 PMCID: PMC11506717 DOI: 10.3390/cimb46100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Oligonucleotides have been identified as powerful therapeutics for treating genetic disorders and diseases related to epigenetic factors such as metabolic and immunological dysfunctions. However, they face certain obstacles in terms of limited delivery to tissues and poor cellular uptake due to their large size and often highly charged nature. Peptide-oligonucleotide conjugation is an extensively utilized approach for addressing the challenges associated with oligonucleotide-based therapeutics by improving their delivery, cellular uptake and bioavailability, consequently enhancing their overall therapeutic efficiency. In this review, we present an overview of the conjugation of oligonucleotides to peptides, covering the different strategies associated with the synthesis of peptide-oligonucleotide conjugates (POC), the commonly used peptides employed to generate POCs, with the aim to develop oligonucleotides with favourable pharmacokinetic (PK) or pharmacodynamic (PD) properties for therapeutic applications. The advantages and drawbacks of the synthetic methods and applications of POCs are also described.
Collapse
Affiliation(s)
| | | | - Sritama Bose
- Medical Research Council, Nucleic Acid Therapy Accelerator (UKRI), Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, UK
| |
Collapse
|
5
|
Blitek M, Phongsavanh X, Goyenvalle A. The bench to bedside journey of tricyclo-DNA antisense oligonucleotides for the treatment of Duchenne muscular dystrophy. RSC Med Chem 2024; 15:3017-3025. [PMID: 39309360 PMCID: PMC11411614 DOI: 10.1039/d4md00394b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
The development of antisense oligonucleotide (ASO)-based therapeutics has made tremendous progress over the past few years, in particular for the treatment of neuromuscular disorders such as Duchenne muscular dystrophy and spinal muscular atrophy. Several ASO drugs have now reached market approval for these diseases and many more are currently under clinical evaluation. Among them, ASOs made of the tricyclo-DNA originally developed by Christian Leumann have shown particularly interesting properties and demonstrated promise for the treatment of Duchenne muscular dystrophy. In this review, we examine the bench to bedside journey of tricyclo-DNA-ASOs from their early preclinical evaluation as fully phosphorotiated-ASOs to the latest generation of lipid-conjugated-ASOs. Finally we discuss the remaining challenges of ASO-mediated exon-skipping therapy for DMD and future perspectives for this promising chemistry of ASOs.
Collapse
Affiliation(s)
- Mathilde Blitek
- UVSQ, Inserm, END-ICAP, Université Paris-Saclay 78000 Versailles France +33 170429432
| | | | - Aurélie Goyenvalle
- UVSQ, Inserm, END-ICAP, Université Paris-Saclay 78000 Versailles France +33 170429432
- LIA BAHN, CSM-UVSQ Monaco Principality of Monaco
| |
Collapse
|
6
|
Bubenik JL, Scotti MM, Swanson MS. Therapeutic targeting of RNA for neurological and neuromuscular disease. Genes Dev 2024; 38:698-717. [PMID: 39142832 PMCID: PMC11444190 DOI: 10.1101/gad.351612.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Neurological and neuromuscular diseases resulting from familial, sporadic, or de novo mutations have devasting personal, familial, and societal impacts. As the initial product of DNA transcription, RNA transcripts and their associated ribonucleoprotein complexes provide attractive targets for modulation by increasing wild-type or blocking mutant allele expression, thus relieving downstream pathological consequences. Therefore, it is unsurprising that many existing and under-development therapeutics have focused on targeting disease-associated RNA transcripts as a frontline drug strategy for these genetic disorders. This review focuses on the current range of RNA targeting modalities using examples of both dominant and recessive neurological and neuromuscular diseases.
Collapse
Affiliation(s)
- Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Marina M Scotti
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics, the Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
7
|
Malinowska AL, Huynh HL, Correa-Sánchez AF, Bose S. Thiol-Specific Linkers for the Synthesis of Oligonucleotide Conjugates via Metal-Free Thiol-Ene Click Reaction. Bioconjug Chem 2024; 35. [PMID: 39264307 PMCID: PMC11487498 DOI: 10.1021/acs.bioconjchem.4c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/20/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Chemical conjugation of oligonucleotides is widely used to improve their delivery and therapeutic potential. A variety of strategies are implemented to efficiently modify oligonucleotides with conjugating partners. The linkers typically used for oligonucleotide conjugation have limitations in terms of stability or ease of synthesis, which generates the need for providing new improved linkers for oligonucleotide conjugation. Herein, we report the synthesis of novel vinylpyrimidine phosphoramidite building blocks, which can be incorporated into an oligonucleotide by standard solid-phase synthesis in an automated synthesizer. These linker-bearing oligonucleotides can be easily conjugated in a biocompatible manner with thiol-functionalized molecules leading to the efficient generation of oligonucleotide conjugates.
Collapse
Affiliation(s)
- Anna L. Malinowska
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Harley L. Huynh
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Andrés F. Correa-Sánchez
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| | - Sritama Bose
- Medical Research Council, Nucleic Acid
Therapy Accelerator (UKRI) Research Complex at Harwell (RCaH), Rutherford Appleton Laboratory, Harwell OX11 0FA, U.K.
| |
Collapse
|
8
|
Iwamoto N, Liu Y, Frank-Kamenetsky M, Maguire A, Tseng WC, Taborn K, Kothari N, Akhtar A, Bowman K, Shelke JD, Lamattina A, Hu XS, Jang HG, Kandasamy P, Liu F, Longo K, Looby R, Meena, Metterville J, Pan Q, Purcell-Estabrook E, Shimizu M, Prakasha PS, Standley S, Upadhyay H, Yang H, Yin Y, Zhao A, Francis C, Byrne M, Dale E, Verdine GL, Vargeese C. Preclinical evaluation of stereopure antisense oligonucleotides for allele-selective lowering of mutant HTT. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102246. [PMID: 39027419 PMCID: PMC11255113 DOI: 10.1016/j.omtn.2024.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in one copy of the HTT gene (mutant HTT, mHTT). The unaffected HTT gene encodes wild-type HTT (wtHTT) protein, which supports processes important for the health and function of the central nervous system. Selective lowering of mHTT for the treatment of HD may provide a benefit over nonselective HTT-lowering approaches, as it aims to preserve the beneficial activities of wtHTT. Targeting a heterozygous single-nucleotide polymorphism (SNP) where the targeted variant is on the mHTT gene is one strategy for achieving allele-selective activity. Herein, we investigated whether stereopure phosphorothioate (PS)- and phosphoryl guanidine (PN)-containing oligonucleotides can direct allele-selective mHTT lowering by targeting rs362273 (SNP3). We demonstrate that our SNP3-targeting molecules are potent, durable, and selective for mHTT in vitro and in vivo in mouse models. Through comparisons with a surrogate for the nonselective investigational compound tominersen, we also demonstrate that allele-selective molecules display equivalent potency toward mHTT with improved durability while sparing wtHTT. Our preclinical findings support the advancement of WVE-003, an investigational allele-selective compound currently in clinical testing (NCT05032196) for the treatment of patients with HD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ali Akhtar
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | - Fangjun Liu
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Ken Longo
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Meena
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | - Qianli Pan
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Hailin Yang
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Yuan Yin
- Wave Life Sciences, Cambridge, MA 02138, USA
| | | | | | - Mike Byrne
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Elena Dale
- Wave Life Sciences, Cambridge, MA 02138, USA
| | - Gregory L. Verdine
- Department of Stem Cell and Regenerative Biology, Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
9
|
Beck SL, Yokota T. Oligonucleotide Therapies for Facioscapulohumeral Muscular Dystrophy: Current Preclinical Landscape. Int J Mol Sci 2024; 25:9065. [PMID: 39201751 PMCID: PMC11354670 DOI: 10.3390/ijms25169065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an inherited myopathy, characterized by progressive and asymmetric muscle atrophy, primarily affecting muscles of the face, shoulder girdle, and upper arms before affecting muscles of the lower extremities with age and greater disease severity. FSHD is a disabling condition, and patients may also present with various extramuscular symptoms. FSHD is caused by the aberrant expression of double homeobox 4 (DUX4) in skeletal muscle, arising from compromised epigenetic repression of the D4Z4 array. DUX4 encodes the DUX4 protein, a transcription factor that activates myotoxic gene programs to produce the FSHD pathology. Therefore, sequence-specific oligonucleotides aimed at reducing DUX4 levels in patients is a compelling therapeutic approach, and one that has received considerable research interest over the last decade. This review aims to describe the current preclinical landscape of oligonucleotide therapies for FSHD. This includes outlining the mechanism of action of each therapy and summarizing the preclinical results obtained regarding their efficacy in cellular and/or murine disease models. The scope of this review is limited to oligonucleotide-based therapies that inhibit the DUX4 gene, mRNA, or protein in a way that does not involve gene editing.
Collapse
Affiliation(s)
- Samuel L. Beck
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
10
|
Yamamura N, Takakusa H, Asano D, Watanabe K, Shibaya Y, Yamanaka R, Fusegawa K, Kanda A, Nagase H, Takaishi K, Koizumi M, Takeshima Y, Matsuo M. Tissue distribution of renadirsen sodium, a dystrophin exon-skipping antisense oligonucleotide, in heart and diaphragm after subcutaneous administration to cynomolgus monkeys. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-17. [PMID: 39126396 DOI: 10.1080/15257770.2024.2389545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
The pharmacokinetics and tissue distribution of renadirsen sodium, a dystrophin exon-skipping phosphorothioate-modified antisense oligonucleotide with 2'-O,4'-C-ethylene-bridged nucleic acid (ENA), after subcutaneous or intravenous administration to cynomolgus monkeys were investigated. The plasma concentration of renadirsen after subcutaneous administration at 1, 3, and 10 mg/kg increased with the dose. The absolute bioavailability at 3 mg/kg after subcutaneous administration was calculated as 88.6%, and the time to reach maximum plasma concentration of renadirsen was within 4 h, indicating the efficient and rapid absorption following subcutaneous administration. The exposure of muscle tissues to renadirsen was found to increase with repeated dosing at 6 mg/kg, and higher exposure was observed in the diaphragm and heart than in the quadriceps femoris and anterior tibialis muscles. Renadirsen achieved more exon 45-skipped dystrophin mRNA in the diaphragm and heart than in the quadriceps femoris and anterior tibialis muscles. Renadirsen also showed a cumulative skipping effect in a repeated-dose study. The findings on exon 45-skipped dystrophin mRNA in these muscle tissues were consistent with the concentration of renadirsen in these tissues. Because it is not feasible to directly evaluate drug concentration and exon skipping in the heart and diaphragm in humans, the pharmacokinetics and pharmacodynamics of renadirsen in these tissues in monkeys are crucial for the design and interpretation of clinical settings.
Collapse
Affiliation(s)
- Naotoshi Yamamura
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Hideo Takakusa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Daigo Asano
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kyoko Watanabe
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Yukari Shibaya
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Ryo Yamanaka
- Research & Innovation Promotion Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Keiichi Fusegawa
- Research & Innovation Promotion Department, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Akira Kanda
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Hiroyuki Nagase
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Makoto Koizumi
- Modality Research Laboratories, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | | | - Masafumi Matsuo
- Faculty of Health Sciences, Kobe Tokiwa University, Kobe, Japan
| |
Collapse
|
11
|
Lincy-Bianchi L, Häfner M, Becquart C, Tängemo C, Kurczy ME, Munier CC, Knerr L. Incorporation of Intracellular NanoSIMS Tracers to Oligonucleotide Conjugates via Strain Promoted Sydnone-Alkyne Cycloaddition. Bioconjug Chem 2024; 35:912-921. [PMID: 38860868 DOI: 10.1021/acs.bioconjchem.4c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Extensive efforts have been dedicated to developing cell-specific targeting ligands that can be conjugated to therapeutic cargo, offering a promising yet still challenging strategy to deliver oligonucleotide therapeutics beyond the liver. Indeed, while the cargo and the ligand are crucial, the third component, the linker, is integral but is often overlooked. Here, we present strain-promoted sydnone-alkyne cycloaddition as a versatile linker chemistry for oligonucleotide synthesis, expanding the choices for bioconjugation of therapeutics while enabling subcellular detection of the linker and payload using nanoscale secondary ion mass spectrometry (NanoSIMS) imaging. This strategy was successfully applied to peptide and lipid ligands and profiled using the well characterized N-acetylgalactosamine (GalNAc) targeting ligand. The linker did not affect the expected activity of the conjugate and was detectable and distinguishable from the labeled cargo. Finally, this work not only offers a practical bioconjugation method but also enables the assessment of the linker's subcellular behavior, facilitating NanoSIMS imaging to monitor the three key components of therapeutic conjugates.
Collapse
Affiliation(s)
- Loujahine Lincy-Bianchi
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Maximilian Häfner
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Cécile Becquart
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Carolina Tängemo
- Discovery Biology, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Michael E Kurczy
- DMPK, Early Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Claire C Munier
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| | - Laurent Knerr
- Medicinal Chemistry, Research and Development, Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, SE-431 83 Gothenburg, Sweden
| |
Collapse
|
12
|
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O’Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting siRNA scaffold supports potent two-gene modulation in the central nervous system. Nucleic Acids Res 2024; 52:6099-6113. [PMID: 38726879 PMCID: PMC11194107 DOI: 10.1093/nar/gkae368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/10/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024] Open
Abstract
Divalent short-interfering RNA (siRNA) holds promise as a therapeutic approach allowing for the sequence-specific modulation of a target gene within the central nervous system (CNS). However, an siRNA modality capable of simultaneously modulating gene pairs would be invaluable for treating complex neurodegenerative disorders, where more than one pathway contributes to pathogenesis. Currently, the parameters and scaffold considerations for multi-targeting nucleic acid modalities in the CNS are undefined. Here, we propose a framework for designing unimolecular 'dual-targeting' divalent siRNAs capable of co-silencing two genes in the CNS. We systematically adjusted the original CNS-active divalent siRNA and identified that connecting two sense strands 3' and 5' through an intra-strand linker enabled a functional dual-targeting scaffold, greatly simplifying the synthetic process. Our findings demonstrate that the dual-targeting siRNA supports at least two months of maximal distribution and target silencing in the mouse CNS. The dual-targeting divalent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g. Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting divalent siRNAs against each gene. This work enhances the potential for CNS modulation of disease-related gene pairs using a unimolecular siRNA.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sam Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Dan O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Sarah Allen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Department of Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital; Charlestown, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, MA, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School; Worcester, MA, USA
| |
Collapse
|
13
|
Taylor KS, McMonagle MM, Guy SC, Human-McKinnon AM, Asamizu S, Fletcher HJ, Davis BW, Suyama TL. Albumin-ruthenium catalyst conjugate for bio-orthogonal uncaging of alloc group. Org Biomol Chem 2024; 22:2992-3000. [PMID: 38526322 DOI: 10.1039/d4ob00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The employment of antibodies as a targeted drug delivery vehicle has proven successful which is exemplified by the emergence of antibody-drug conjugates (ADCs). However, ADCs are not without their shortcomings. Improvements may be made to the ADC platform by decoupling the cytotoxic drug from the delivery vehicle and conjugating an organometallic catalyst in its place. The resulting protein-metal catalyst conjugate was designed to uncage the masked cytotoxin administered as a separate entity. Macropinocytosis of albumin by cancerous cells suggests the potential of albumin acting as the tumor-targeting delivery vehicle. Herein reported are the first preparation and demonstration of ruthenium catalysts with cyclopentadienyl and quinoline-based ligands conjugated to albumin. The effective uncaging abilities were demonstrated on allyloxy carbamate (alloc)-protected rhodamine 110 and doxorubicin, providing a promising catalytic scaffold for the advancement of selective drug delivery methods in the future.
Collapse
Affiliation(s)
- Kimberly S Taylor
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Madison M McMonagle
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Schaelee C Guy
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Ariana M Human-McKinnon
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Shumpei Asamizu
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Heidi J Fletcher
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Bradley W Davis
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| | - Takashi L Suyama
- Department of Chemistry and Forensic Science, Waynesburg University, 51 W College St, Waynesburg, PA 15370, USA.
| |
Collapse
|
14
|
Hoogenboezem EN, Patel SS, Lo JH, Cavnar AB, Babb LM, Francini N, Gbur EF, Patil P, Colazo JM, Michell DL, Sanchez VM, McCune JT, Ma J, DeJulius CR, Lee LH, Rosch JC, Allen RM, Stokes LD, Hill JL, Vickers KC, Cook RS, Duvall CL. Structural optimization of siRNA conjugates for albumin binding achieves effective MCL1-directed cancer therapy. Nat Commun 2024; 15:1581. [PMID: 38383524 PMCID: PMC10881965 DOI: 10.1038/s41467-024-45609-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024] Open
Abstract
The high potential of siRNAs to silence oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, divalent lipid-conjugated siRNAs are optimized for in situ binding to albumin to improve pharmacokinetics and tumor delivery. Systematic variation of the siRNA conjugate structure reveals that the location of the linker branching site dictates tendency toward albumin association versus self-assembly, while the lipid hydrophobicity and reversibility of albumin binding also contribute to siRNA intracellular delivery. The lead structure increases tumor siRNA accumulation 12-fold in orthotopic triple negative breast cancer (TNBC) tumors over the parent siRNA. This structure achieves approximately 80% silencing of the anti-apoptotic oncogene MCL1 and yields better survival outcomes in three TNBC models than an MCL-1 small molecule inhibitor. These studies provide new structure-function insights on siRNA-lipid conjugate structures that are intravenously injected, associate in situ with serum albumin, and improve pharmacokinetics and tumor treatment efficacy.
Collapse
Affiliation(s)
- Ella N Hoogenboezem
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Shrusti S Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Justin H Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ashley B Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lauren M Babb
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eva F Gbur
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Danielle L Michell
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Violeta M Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua T McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jinqi Ma
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Linus H Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Ryan M Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Larry D Stokes
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jordan L Hill
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kasey C Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Rebecca S Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
15
|
Hofman CR, Corey DR. Targeting RNA with synthetic oligonucleotides: Clinical success invites new challenges. Cell Chem Biol 2024; 31:125-138. [PMID: 37804835 PMCID: PMC10841528 DOI: 10.1016/j.chembiol.2023.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 10/09/2023]
Abstract
Synthetic antisense oligonucleotides (ASOs) and duplex RNAs (dsRNAs) are an increasingly successful strategy for drug development. After a slow start, the pace of success has accelerated since the approval of Spinraza (nusinersen) in 2016 with several drug approvals. These accomplishments have been achieved even though oligonucleotides are large, negatively charged, and have little resemblance to traditional small-molecule drugs-a remarkable achievement of basic and applied science. The goal of this review is to summarize the foundation underlying recent progress and describe ongoing research programs that may increase the scope and impact of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Cristina R Hofman
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA
| | - David R Corey
- The Departments of Pharmacology and Biochemistry, UT Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
| |
Collapse
|
16
|
Smidt JM, Lykke L, Stidsen CE, Pristovšek N, Gothelf K. Synthesis of peptide-siRNA conjugates via internal sulfonylphosphoramidate modifications and evaluation of their in vitro activity. Nucleic Acids Res 2024; 52:49-58. [PMID: 37971296 PMCID: PMC10783514 DOI: 10.1093/nar/gkad1015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/28/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Conjugates of therapeutic oligonucleotides (ONs) including peptide conjugates, provide a potential solution to the major challenge of specific tissue delivery faced by this class of drugs. Conjugations are often positioned terminal at the ONs, although internal placement of other chemical modifications are known to be of critical importance. The introduction of internal conjugation handles in chemically modified ONs require highly specialized and expensive nucleoside phosphoramidites. Here, we present a method for synthesizing a library of peptide-siRNA conjugates by conjugation at internal phosphorous positions via sulfonylphosphoramidate modifications incorporated into the sense strand. The sulfonylphosphoramidate modification offers benefits as it can be directly incorporated into chemically modified ONs by simply changing the oxidation step during synthesis, and furthermore holds the potential to create multifunctionalized therapeutic ONs. We have developed a workflow using a novel pH-controlled amine-to-amine linker that yields peptide-siRNA conjugates linked via amide bonds, and we have synthesized conjugates between GLP1 peptides and a HPRT1 siRNA as a model system. The in vitro activity of the conjugates was tested by GLP1R activity and knockdown of the HPRT1 gene. We found that conjugation near the 3'-end is more favorable than certain central internal positions and different internal conjugation strategies were compared.
Collapse
Affiliation(s)
- Jakob Melgaard Smidt
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Lennart Lykke
- Research Chemistry, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Carsten Enggaard Stidsen
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Nuša Pristovšek
- Centre for Functional Assays and Screening, Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | - Kurt V Gothelf
- Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
17
|
Lauffer MC, van Roon-Mom W, Aartsma-Rus A. Possibilities and limitations of antisense oligonucleotide therapies for the treatment of monogenic disorders. COMMUNICATIONS MEDICINE 2024; 4:6. [PMID: 38182878 PMCID: PMC10770028 DOI: 10.1038/s43856-023-00419-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024] Open
Abstract
Antisense oligonucleotides (ASOs) are incredibly versatile molecules that can be designed to specifically target and modify RNA transcripts to slow down or halt rare genetic disease progression. They offer the potential to target groups of patients or can be tailored for individual cases. Nonetheless, not all genetic variants and disorders are amenable to ASO-based treatments, and hence, it is important to consider several factors before embarking on the drug development journey. Here, we discuss which genetic disorders have the potential to benefit from a specific type of ASO approach, based on the pathophysiology of the disease and pathogenic variant type, as well as those disorders that might not be suitable for ASO therapies. We further explore additional aspects, such as the target tissues, intervention time points, and potential clinical benefits, which need to be considered before developing a compound. Overall, we provide an overview of the current potentials and limitations of ASO-based therapeutics for the treatment of monogenic disorders.
Collapse
Affiliation(s)
- Marlen C Lauffer
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Willeke van Roon-Mom
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Aartsma-Rus
- Dutch Center for RNA Therapeutics, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Guo S, Zhang M, Huang Y. Three 'E' challenges for siRNA drug development. Trends Mol Med 2024; 30:13-24. [PMID: 37951790 DOI: 10.1016/j.molmed.2023.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
siRNA therapeutics have gained extensive attention, and to date six siRNAs are approved for clinical use. Despite being investigated for the treatment of metabolic, cardiovascular, infectious, and rare genetic diseases, cancer, and central nervous system (CNS) disorders, there exist several druggability challenges. Here, we provide insightful discussions concerning these challenges, comprising targeted accumulation and cellular uptake ('entry'), endolysosomal escape ('escape'), and in vivo pharmaceutical performance ('efficacy') - the three 'E' challenges - while also shedding light on siRNA drug development. Moreover, we propose several promising strategies that hold great potential in facilitating the clinical translation of siRNA therapeutics, including the exploration of diverse ligand-siRNA conjugates, expansion of potential disease targets, and excavation of novel modification geometries, as well as the development of combination therapies.
Collapse
Affiliation(s)
- Shuai Guo
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Mengjie Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyu Huang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Molecular Medicine and Biotherapy, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics, Suzhou, Jiangsu 215127, China; Rigerna Therapeutics, Beijing 102629, China.
| |
Collapse
|
19
|
Belgrad J, Tang Q, Hildebrand S, Summers A, Sapp E, Echeverria D, O’Reilly D, Luu E, Bramato B, Allen S, Cooper D, Alterman J, Yamada K, Aronin N, DiFiglia M, Khvorova A. A programmable dual-targeting di-valent siRNA scaffold supports potent multi-gene modulation in the central nervous system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572404. [PMID: 38187561 PMCID: PMC10769306 DOI: 10.1101/2023.12.19.572404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Di-valent short interfering RNA (siRNA) is a promising therapeutic modality that enables sequence-specific modulation of a single target gene in the central nervous system (CNS). To treat complex neurodegenerative disorders, where pathogenesis is driven by multiple genes or pathways, di-valent siRNA must be able to silence multiple target genes simultaneously. Here we present a framework for designing unimolecular "dual-targeting" di-valent siRNAs capable of co-silencing two genes in the CNS. We reconfigured di-valent siRNA - in which two identical, linked siRNAs are made concurrently - to create linear di-valent siRNA - where two siRNAs are made sequentially attached by a covalent linker. This linear configuration, synthesized using commercially available reagents, enables incorporation of two different siRNAs to silence two different targets. We demonstrate that this dual-targeting di-valent siRNA is fully functional in the CNS of mice, supporting at least two months of maximal target silencing. Dual-targeting di-valent siRNA is highly programmable, enabling simultaneous modulation of two different disease-relevant gene pairs (e.g., Huntington's disease: MSH3 and HTT; Alzheimer's disease: APOE and JAK1) with similar potency to a mixture of single-targeting di-valent siRNAs against each gene. This work potentiates CNS modulation of virtually any pair of disease-related targets using a simple unimolecular siRNA.
Collapse
Affiliation(s)
- Jillian Belgrad
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Sam Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Dan O’Reilly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Eric Luu
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Sarah Allen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Julia Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Ken Yamada
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Neil Aronin
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
- Department of Medicine, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital; Boston, Massachusetts, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School; Worcester, Massachusetts, USA
| |
Collapse
|
20
|
Bauer I, Ilina E, Zharkov T, Grigorieva E, Chinak O, Kupryushkin M, Golyshev V, Mitin D, Chubarov A, Khodyreva S, Dmitrienko E. Self-Penetrating Oligonucleotide Derivatives: Features of Self-Assembly and Interactions with Serum and Intracellular Proteins. Pharmaceutics 2023; 15:2779. [PMID: 38140119 PMCID: PMC10747088 DOI: 10.3390/pharmaceutics15122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Lipophilic oligonucleotide derivatives are a potent approach to the intracellular delivery of nucleic acids. The binding of these derivatives to serum albumin is a determinant of their fate in the body, as its structure contains several sites of high affinity for hydrophobic compounds. This study focuses on the features of self-association and non-covalent interactions with human serum albumin of novel self-penetrating oligonucleotide derivatives. The study revealed that the introduction of a triazinyl phosphoramidate modification bearing two dodecyl groups at the 3' end region of the oligonucleotide sequence has a negligible effect on its affinity for the complementary sequence. Dynamic light scattering verified that the amphiphilic oligonucleotides under study can self-assemble into micelle-like particles ranging from 8 to 15 nm in size. The oligonucleotides with dodecyl groups form stable complexes with human serum albumin with a dissociation constant of approximately 10-6 M. The oligonucleotide micelles are simultaneously destroyed upon binding to albumin. Using an electrophoretic mobility shift assay and affinity modification, we examined the ability of DNA duplexes containing triazinyl phosphoramidate oligonucleotides to interact with Ku antigen and PARP1, as well as the mutual influence of PARP1 and albumin or Ku antigen and albumin upon interaction with DNA duplexes. These findings, together with the capability of dodecyl-containing derivatives to effectively penetrate different cells, such as HEK293 and T98G, indicate that the oligonucleotides under study can be considered as a platform for the development of therapeutic preparations with a target effect.
Collapse
Affiliation(s)
- Irina Bauer
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ekaterina Ilina
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Timofey Zharkov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Evgeniya Grigorieva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Olga Chinak
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Maxim Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Victor Golyshev
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Dmitry Mitin
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Alexey Chubarov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Svetlana Khodyreva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
| | - Elena Dmitrienko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (I.B.); (T.Z.); (O.C.); (M.K.); (V.G.); (D.M.); (S.K.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
21
|
Pfeiffer LS, Stafforst T. Precision RNA base editing with engineered and endogenous effectors. Nat Biotechnol 2023; 41:1526-1542. [PMID: 37735261 DOI: 10.1038/s41587-023-01927-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/26/2023] [Indexed: 09/23/2023]
Abstract
RNA base editing refers to the rewriting of genetic information within an intact RNA molecule and serves various functions, such as evasion of the endogenous immune system and regulation of protein function. To achieve this, certain enzymes have been discovered in human cells that catalyze the conversion of one nucleobase into another. This natural process could be exploited to manipulate and recode any base in a target transcript. In contrast to DNA base editing, analogous changes introduced in RNA are not permanent or inheritable but rather allow reversible and doseable effects that appeal to various therapeutic applications. The current practice of RNA base editing involves the deamination of adenosines and cytidines, which are converted to inosines and uridines, respectively. In this Review, we summarize current site-directed RNA base-editing strategies and highlight recent achievements to improve editing efficiency, precision, codon-targeting scope and in vivo delivery into disease-relevant tissues. Besides engineered editing effectors, we focus on strategies to harness endogenous adenosine deaminases acting on RNA (ADAR) enzymes and discuss limitations and future perspectives to apply the tools in basic research and as a therapeutic modality. We expect the field to realize the first RNA base-editing drug soon, likely on a well-defined genetic disease. However, the long-term challenge will be to carve out the sweet spot of the technology where its unique ability is exploited to modulate signaling cues, metabolism or other clinically relevant processes in a safe and doseable manner.
Collapse
Affiliation(s)
- Laura S Pfeiffer
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.
- Gene and RNA Therapy Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
22
|
Zhang B, Xie SH, Hu JY, Lei SJ, Shen LH, Liu HT, Zheng Q, Zhang ZM, Wu CL, Li Q, Wang F. Truncated SCRIB isoform promotes breast cancer metastasis through HNRNP A1 mediated exon 16 skipping. Acta Pharmacol Sin 2023; 44:2307-2321. [PMID: 37402999 PMCID: PMC10618471 DOI: 10.1038/s41401-023-01116-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/25/2023] [Indexed: 07/06/2023] Open
Abstract
Breast cancer is one of the most common malignant tumors with high mortality due to metastases. SCRIB, a scaffold protein mainly distributed in the cell membrane, is a potential tumor suppressor. Mislocalization and aberrant expression of SCRIB stimulate the EMT pathway and promote tumor cell metastasis. SCRIB has two isoforms (with or without exon 16) produced by alternative splicing. In this study we investigated the function of SCRIB isoforms in breast cancer metastasis and their regulatory mechanisms. We showed that in contrast to the full-length isoform (SCRIB-L), the truncated SCRIB isoform (SCRIB-S) was overexpressed in highly metastatic MDA-MB-231 cells that promoted breast cancer metastasis through activation of the ERK pathway. The affinity of SCRIB-S for the catalytic phosphatase subunit PPP1CA was lower than that of SCRIB-L and such difference might contribute to the different function of the two isoforms in cancer metastasis. By conducting CLIP, RIP and MS2-GFP-based experiments, we revealed that the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) promoted SCRIB exon 16 skipping by binding to the "AG"-rich sequence "caggauggaggccccccgugccgag" on intron 15 of SCRIB. Transfection of MDA-MB-231 cells with a SCRIB antisense oligodeoxynucleotide (ASO-SCRIB) designed on the basis of this binding sequence, not only effectively inhibited the binding of hnRNP A1 to SCRIB pre-mRNA and suppressed the production of SCRIB-S, but also reversed the activation of the ERK pathway by hnRNP A1 and inhibited the metastasis of breast cancer. This study provides a new potential target and a candidate drug for treating breast cancer.
Collapse
Affiliation(s)
- Bin Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shao-Han Xie
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jun-Yi Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Lei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Liang-Hua Shen
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Hong-Tao Liu
- College of Life Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, 450001, China
| | - Qing Zheng
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
| | - Zhi-Ming Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
| | - Chun-Lian Wu
- Key Laboratory of Southwest China Wildlife Resources Conservation (China West Normal University), Ministry of Education, Nanchong, 637009, China.
| | - Qiang Li
- Department of General Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China.
- Department of General Surgery, Chaoshan Hospital, The First Affiliated Hospital of Jinan University, Chaozhou City, 515600, China.
| | - Feng Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China.
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
23
|
Hill AC, Becker JP, Slominski D, Halloy F, Søndergaard C, Ravn J, Hall J. Peptide Conjugates of a 2'- O-Methoxyethyl Phosphorothioate Splice-Switching Oligonucleotide Show Increased Entrapment in Endosomes. ACS OMEGA 2023; 8:40463-40481. [PMID: 37929104 PMCID: PMC10620785 DOI: 10.1021/acsomega.3c05144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023]
Abstract
Antisense oligonucleotides (ASOs) are short, single-stranded nucleic acid molecules that alter gene expression. However, their transport into appropriate cellular compartments is a limiting factor in their potency. Here, we synthesized splice-switching oligonucleotides (SSOs) previously developed to treat the rare disease erythropoietic protoporphyria. Using chemical ligation-quantitative polymerase chain reaction (CL-qPCR), we quantified the SSOs in cells and subcellular compartments following free uptake. To drive nuclear localization, we covalently conjugated nuclear localization signal (NLS) peptides to a lead 2'-O-methoxyethyl phosphorothioate SSO using thiol-maleimide chemistry. The conjugates and parent SSO displayed similar RNA target-binding affinities. CL-qPCR quantification of the conjugates in cells and subcellular compartments following free uptake revealed one conjugate with better nuclear accumulation relative to the parent SSO. However, compared to the parent SSO, which altered the splicing of the target pre-mRNA, the conjugates were inactive at splice correction under free uptake conditions in vitro. Splice-switching activity could be conferred on the conjugates by delivering them into cells via cationic lipid-mediated transfection or by treating the cells into which the conjugates had been freely taken up with chloroquine, an endosome-disrupting agent. Our results identify the major barrier to the activity of the peptide-oligonucleotide conjugates as endosomal entrapment.
Collapse
Affiliation(s)
- Alyssa C. Hill
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - J. Philipp Becker
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - Daria Slominski
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | - François Halloy
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| | | | - Jacob Ravn
- Roche
Innovation Center Copenhagen (RICC), Hørsholm 2970, Denmark
| | - Jonathan Hall
- Institute
of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, Eidgenössische Technische Hochschule Zürich
(ETH Zürich), Zürich 8093, Switzerland
| |
Collapse
|
24
|
Pacelli C, Rossi A, Milella M, Colombo T, Le Pera L. RNA-Based Strategies for Cancer Therapy: In Silico Design and Evaluation of ASOs for Targeted Exon Skipping. Int J Mol Sci 2023; 24:14862. [PMID: 37834310 PMCID: PMC10573945 DOI: 10.3390/ijms241914862] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Precision medicine in oncology has made significant progress in recent years by approving drugs that target specific genetic mutations. However, many cancer driver genes remain challenging to pharmacologically target ("undruggable"). To tackle this issue, RNA-based methods like antisense oligonucleotides (ASOs) that induce targeted exon skipping (ES) could provide a promising alternative. In this work, a comprehensive computational procedure is presented, focused on the development of ES-based cancer treatments. The procedure aims to produce specific protein variants, including inactive oncogenes and partially restored tumor suppressors. This novel computational procedure encompasses target-exon selection, in silico prediction of ES products, and identification of the best candidate ASOs for further experimental validation. The method was effectively employed on extensively mutated cancer genes, prioritized according to their suitability for ES-based interventions. Notable genes, such as NRAS and VHL, exhibited potential for this therapeutic approach, as specific target exons were identified and optimal ASO sequences were devised to induce their skipping. To the best of our knowledge, this is the first computational procedure that encompasses all necessary steps for designing ASO sequences tailored for targeted ES, contributing with a versatile and innovative approach to addressing the challenges posed by undruggable cancer driver genes and beyond.
Collapse
Affiliation(s)
- Chiara Pacelli
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, 00185 Rome, Italy
| | - Alice Rossi
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona-School of Medicine and Verona University Hospital Trust, 37134 Verona, Italy
| | - Teresa Colombo
- Institute of Molecular Biology and Pathology (IBPM), National Research Council (CNR), 00185 Rome, Italy
| | - Loredana Le Pera
- Core Facilities, Italian National Institute of Health (ISS), 00161 Rome, Italy
| |
Collapse
|
25
|
Martínez-Montero S, Rajwanshi VK, Pandey RK, De Costa NTS, Hong J, Beigelman L, Gryaznov SM, Pourshahian S. New Oligonucleotide 2'-O-Alkyl N3'→P5' (Thio)-Phosphoramidates as Potent Antisense Agents: Physicochemical Properties and Biological Activity. Nucleic Acid Ther 2023; 33:319-328. [PMID: 37638793 DOI: 10.1089/nat.2023.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
We describe here the design, synthesis, physicochemical properties, and hepatitis B antiviral activity of new 2'-O-alkyl ribonucleotide N3'→P5' phosphoramidate (2'-O-alkyl-NPO) and (thio)-phosphoramidite (2'-O-alkyl-NPS) oligonucleotide analogs. Oligonucleotides with different 2'-O-alkyl modifications such as 2'-O-methyl, -O-ethyl, -O-allyl, and -O-methoxyethyl combined with 3'-amino sugar-phosphate backbone were synthesized and evaluated. These molecules form stable duplexes with complementary DNA and RNA strands. They show an increase in duplex melting temperatures of up to 2.5°C and 4°C per linkage, respectively, compared to unmodified DNA. The results agree with predominantly C3'-endo sugar pucker conformation. Moreover, 2'-O-alkyl phosphoramidites demonstrate higher hydrolytic stability at pH 5.5 than 2'-deoxy NPOs. In addition, the relative lipophilicity of the 2'-O-alkyl-NPO and NPS oligonucleotides is higher than that of their 3'-O- counterparts. The 2'-O-alkyl-NPS oligonucleotides were evaluated as antisense (ASO) compounds in vitro and in vivo using Hepatitis B virus as a model system. Subcutaneous delivery of GalNAc conjugated 2'-O-MOE-NPS gapmers demonstrated higher activity than the 3'-O-containing 2'-O-MOE counterpart. The properties of 2'-O-alkyl-NPS constructs make them attractive candidates as ASO suitable for further evaluation and development.
Collapse
Affiliation(s)
- Saúl Martínez-Montero
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Vivek K Rajwanshi
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Rajendra K Pandey
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - N Tilani S De Costa
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Jin Hong
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Leonid Beigelman
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Sergei M Gryaznov
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| | - Soheil Pourshahian
- Janssen Pharmaceutical Companies of Johnson and Johnson, South San Francisco, California, USA
| |
Collapse
|
26
|
Mangla P, Vicentini Q, Biscans A. Therapeutic Oligonucleotides: An Outlook on Chemical Strategies to Improve Endosomal Trafficking. Cells 2023; 12:2253. [PMID: 37759475 PMCID: PMC10527716 DOI: 10.3390/cells12182253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of oligonucleotide therapeutics is undeniable as more than 15 drugs have been approved to treat various diseases in the liver, central nervous system (CNS), and muscles. However, achieving effective delivery of oligonucleotide therapeutics to specific tissues still remains a major challenge, limiting their widespread use. Chemical modifications play a crucial role to overcome biological barriers to enable efficient oligonucleotide delivery to the tissues/cells of interest. They provide oligonucleotide metabolic stability and confer favourable pharmacokinetic/pharmacodynamic properties. This review focuses on the various chemical approaches implicated in mitigating the delivery problem of oligonucleotides and their limitations. It highlights the importance of linkers in designing oligonucleotide conjugates and discusses their potential role in escaping the endosomal barrier, a bottleneck in the development of oligonucleotide therapeutics.
Collapse
Affiliation(s)
- Priyanka Mangla
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| | - Quentin Vicentini
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
- Department of Laboratory Medicine, Clinical Research Centre, Karolinska Institute, 141 57 Stockholm, Sweden
| | - Annabelle Biscans
- Oligonucleotide Discovery, Discovery Sciences Research and Development, AstraZeneca, 431 38 Gothenburg, Sweden; (P.M.); (Q.V.)
| |
Collapse
|
27
|
Pavlova AS, Ilyushchenko VV, Kupryushkin MS, Zharkov TD, Dyudeeva ES, Bauer IA, Chubarov AS, Pyshnyi DV, Pyshnaya IA. Complexes and Supramolecular Associates of Dodecyl-Containing Oligonucleotides with Serum Albumin. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:1165-1180. [PMID: 37758315 DOI: 10.1134/s0006297923080102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 10/03/2023]
Abstract
Serum albumin is currently in the focus of biomedical research as a promising platform for the creation of multicomponent self-assembling systems due to the presence of several sites with high binding affinity of various compounds in its molecule, including lipophilic oligonucleotide conjugates. In this work, we investigated the stoichiometry of the dodecyl-containing oligonucleotides binding to bovine and human serum albumins using an electrophoretic mobility shift assay. The results indicate the formation of the albumin-oligonucleotide complexes with a stoichiometry of about 1 : (1.25 ± 0.25) under physiological-like conditions. Using atomic force microscopy, it was found that the interaction of human serum albumin with the duplex of complementary dodecyl-containing oligonucleotides resulted in the formation of circular associates with a diameter of 165.5 ± 94.3 nm and 28.9 ± 16.9 nm in height, and interaction with polydeoxyadenylic acid and dodecyl-containing oligothymidylate resulted in formation of supramolecular associates with the size of about 315.4 ± 70.9 and 188.3 ± 43.7 nm, respectively. The obtained data allow considering the dodecyl-containing oligonucleotides and albumin as potential components of the designed self-assembling systems for solving problems of molecular biology, biomedicine, and development of unique theranostics with targeted action.
Collapse
Affiliation(s)
- Anna S Pavlova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Valeriya V Ilyushchenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maxim S Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Timofey D Zharkov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Evgeniya S Dyudeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Irina A Bauer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Alexey S Chubarov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Inna A Pyshnaya
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| |
Collapse
|
28
|
Kusznir EA, Hau JC, Portmann M, Reinhart AG, Falivene F, Bastien J, Worm J, Ross A, Lauer M, Ringler P, Sladojevich F, Huber S, Bleicher K, Keller M. Propensities of Fatty Acid-Modified ASOs: Self-Assembly vs Albumin Binding. Bioconjug Chem 2023; 34:866-879. [PMID: 37145959 DOI: 10.1021/acs.bioconjchem.3c00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We conducted a biophysical study to investigate the self-assembling and albumin-binding propensities of a series of fatty acid-modified locked nucleic acid (LNA) antisense oligonucleotide (ASO) gapmers specific to the MALAT1 gene. To this end, a series of biophysical techniques were applied using label-free ASOs that were covalently modified with saturated fatty acids (FAs) of varying length, branching, and 5'/3' attachment. Using analytical ultracentrifugation (AUC), we demonstrate that ASOs conjugated with fatty acids longer than C16 exhibit an increasing tendency to form self-assembled vesicular structures. The C16 to C24 conjugates interacted via the fatty acid chains with mouse and human serum albumin (MSA/HSA) to form stable adducts with near-linear correlation between FA-ASO hydrophobicity and binding strength to mouse albumin. This was not observed for the longer fatty acid chain ASO conjugates (>C24) under the experimental conditions applied. The longer FA-ASO however adopted self-assembled structures with increasing intrinsic stabilities proportional to the fatty acid chain length. For instance, FA chain lengths smaller than C24 readily formed self-assembled structures containing 2 (C16), 6 (C22, bis-C12), and 12 (C24) monomers, as measured by analytical ultracentrifugation (AUC). Incubation with albumin disrupted these supramolecular architectures to form FA-ASO/albumin complexes mostly with 2:1 stoichiometry and binding affinities in the low micromolar range, as determined by isothermal titration calorimetry (ITC) and analytical ultracentrifugation (AUC). Binding of FA-ASOs underwent a biphasic pattern for medium-length FA chain lengths (>C16) with an initial endothermic phase of particulate disruption, followed by an exothermic binding event to the albumin. Conversely, ASO modified with di-palmitic acid (C32) formed a strong, hexameric complex. This structure was not disrupted when incubated with albumin under conditions above the critical nanoparticle concentration (CNC; <0.4 μM). It is noteworthy that the interaction of parent, fatty acid-free malat1 ASO to albumin was below detectability by ITC (KD ≫150 μM). This work demonstrates that the nature of mono- vs multimeric structures of hydrophobically modified ASOs is governed by the hydrophobic effect. Consequently, supramolecular assembly to form particulate structures is a direct consequence of the fatty acid chain length. This provides opportunities to exploit the concept of hydrophobic modification to influence pharmacokinetics (PK) and biodistribution for ASOs in two ways: (1) binding of the FA-ASO to albumin as a carrier vehicle and (2) self-assembly resulting in albumin-inert, supramolecular architectures. Both concepts create opportunities to influence biodistribution, receptor interaction, uptake mechanism, and pharmacokinetics/pharmacodynamics (PK/PD) properties in vivo, potentially enabling access to extrahepatic tissues in sufficient concentration to treat disease.
Collapse
Affiliation(s)
- Eric-André Kusznir
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jean-Christophe Hau
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michaela Portmann
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Anne-Gaëlle Reinhart
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Fabio Falivene
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica Bastien
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jesper Worm
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Copenhagen, F. Hoffmann-La Roche Ltd., Fremtidsvej 3, 2970 Hoersholm, Denmark
| | - Alfred Ross
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Matthias Lauer
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Philippe Ringler
- Biozentrum, University of Basel, Spitalstrasse 41, CH - 4056 Basel, Switzerland
| | - Filippo Sladojevich
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sylwia Huber
- Roche Pharma Research and Early Development, Therapeutic Modalities, Lead Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Konrad Bleicher
- Roche Pharma Research and Early Development, Therapeutic Modalities, RMR, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Michael Keller
- Roche Pharma Research and Early Development, Therapeutic Modalities, pCMC, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| |
Collapse
|
29
|
Kodr D, Kužmová E, Pohl R, Kraus T, Hocek M. Lipid-linked nucleoside triphosphates for enzymatic synthesis of hydrophobic oligonucleotides with enhanced membrane anchoring efficiency. Chem Sci 2023; 14:4059-4069. [PMID: 37063801 PMCID: PMC10094435 DOI: 10.1039/d2sc06718h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/19/2023] [Indexed: 03/22/2023] Open
Abstract
We designed and synthesized a series of 2'-deoxyribonucleoside triphosphates (dNTPs) bearing various lipid moieties. Fatty acid- and cholesterol-modified dNTPs proved to be substrates for KOD XL DNA polymerase in primer extension reactions. They were also mutually compatible for simultaneous multiple incorporations into the DNA strand. The methodology of enzymatic synthesis opened a pathway to diverse structurally unique lipid-ON probes containing one or more lipid units. We studied interactions of such probes with the plasma membranes of live cells. Employing a rational design, we found a series of lipid-ONs with enhanced membrane anchoring efficiency. The in-membrane stability of multiply modified ONs was superior to that of commonly studied ON analogues, in which a single cholesterol molecule is typically tethered to the thread end. Notably, some of the probes were detected at the cell surface even after 24 h upon removal of the probe solution. Such an effect was general to several studied cell lines.
Collapse
Affiliation(s)
- David Kodr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Erika Kužmová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Tomáš Kraus
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences Flemingovo namesti 2 CZ-16610 Prague 6 Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague Hlavova 8 Prague-2 12843 Czech Republic
| |
Collapse
|
30
|
Hu N, Kim E, Antoury L, Wheeler TM. Correction of Clcn1 alternative splicing reverses muscle fiber type transition in mice with myotonic dystrophy. Nat Commun 2023; 14:1956. [PMID: 37029100 PMCID: PMC10082032 DOI: 10.1038/s41467-023-37619-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
In myotonic dystrophy type 1 (DM1), deregulated alternative splicing of the muscle chloride channel Clcn1 causes myotonia, a delayed relaxation of muscles due to repetitive action potentials. The degree of weakness in adult DM1 is associated with increased frequency of oxidative muscle fibers. However, the mechanism for glycolytic-to-oxidative fiber type transition in DM1 and its relationship to myotonia are uncertain. Here we cross two mouse models of DM1 to create a double homozygous model that features progressive functional impairment, severe myotonia, and near absence of type 2B glycolytic fibers. Intramuscular injection of an antisense oligonucleotide for targeted skipping of Clcn1 exon 7a corrects Clcn1 alternative splicing, increases glycolytic 2B levels to ≥ 40% frequency, reduces muscle injury, and improves fiber hypertrophy relative to treatment with a control oligo. Our results demonstrate that fiber type transitions in DM1 result from myotonia and are reversible, and support the development of Clcn1-targeting therapies for DM1.
Collapse
Affiliation(s)
- Ningyan Hu
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eunjoo Kim
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Layal Antoury
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thurman M Wheeler
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
31
|
Anwar S, Mir F, Yokota T. Enhancing the Effectiveness of Oligonucleotide Therapeutics Using Cell-Penetrating Peptide Conjugation, Chemical Modification, and Carrier-Based Delivery Strategies. Pharmaceutics 2023; 15:pharmaceutics15041130. [PMID: 37111616 PMCID: PMC10140998 DOI: 10.3390/pharmaceutics15041130] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Abstract
Oligonucleotide-based therapies are a promising approach for treating a wide range of hard-to-treat diseases, particularly genetic and rare diseases. These therapies involve the use of short synthetic sequences of DNA or RNA that can modulate gene expression or inhibit proteins through various mechanisms. Despite the potential of these therapies, a significant barrier to their widespread use is the difficulty in ensuring their uptake by target cells/tissues. Strategies to overcome this challenge include cell-penetrating peptide conjugation, chemical modification, nanoparticle formulation, and the use of endogenous vesicles, spherical nucleic acids, and smart material-based delivery vehicles. This article provides an overview of these strategies and their potential for the efficient delivery of oligonucleotide drugs, as well as the safety and toxicity considerations, regulatory requirements, and challenges in translating these therapies from the laboratory to the clinic.
Collapse
Affiliation(s)
- Saeed Anwar
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Farin Mir
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
32
|
Tanaka Y, Tanioku Y, Nakayama T, Aso K, Yamaguchi T, Kamada H, Obika S. Synthesis of multivalent fatty acid-conjugated antisense oligonucleotides: Cell internalization, physical properties, and in vitro and in vivo activities. Bioorg Med Chem 2023; 81:117192. [PMID: 36780806 DOI: 10.1016/j.bmc.2023.117192] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/12/2023]
Abstract
Herein, we describe the design and synthesis of multi-conjugatable fatty acid monomer phosphoramidites and their conjugation to antisense oligonucleotides (ASOs). Multivalent long-chain fatty acid conjugation improved the cellular uptake of ASOs but decreased in vitro activity due to alterations in physical properties and cellular localization. In addition, multivalently fatty acid-conjugated ASOs showed different organ specificity compared with that of unconjugated ASO in in vivo experiment. Although optimization of the linker structure between the fatty acid moiety and the ASO may be required, divalent long-chain fatty acid conjugation provides a new approach to increase endocytosis, thereby potentially improving the activity of therapeutic ASOs.
Collapse
Affiliation(s)
- Yuya Tanaka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yurika Tanioku
- School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Taisuke Nakayama
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Kotomi Aso
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Haruhiko Kamada
- National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan; National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka 567-0085, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
33
|
Hoogenboezem EN, Patel SS, Cavnar AB, Lo JH, Babb LM, Francini N, Patil P, Colazo JM, Michell DL, Sanchez VM, McCune JT, Ma J, DeJulius CR, Lee LH, Rosch JC, Allen RM, Stokes LD, Hill JL, Vickers KC, Cook RS, Duvall CL. Structural Optimization of siRNA Conjugates for Albumin Binding Achieves Effective MCL1-Targeted Cancer Therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.14.528574. [PMID: 36824780 PMCID: PMC9948981 DOI: 10.1101/2023.02.14.528574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The high potential for therapeutic application of siRNAs to silence traditionally undruggable oncogenic drivers remains largely untapped due to the challenges of tumor cell delivery. Here, siRNAs were optimized for in situ binding to albumin through C18 lipid modifications to improve pharmacokinetics and tumor delivery. Systematic variation of siRNA conjugates revealed a lead structure with divalent C18 lipids each linked through three repeats of hexaethylene glycol connected by phosphorothioate bonds. Importantly, we discovered that locating the branch site of the divalent lipid structure proximally (adjacent to the RNA) rather than at a more distal site (after the linker segment) promotes association with albumin, while minimizing self-assembly and lipoprotein association. Comparison to higher albumin affinity (diacid) lipid variants and siRNA directly conjugated to albumin underscored the importance of conjugate hydrophobicity and reversibility of albumin binding for siRNA delivery and bioactivity in tumors. The lead conjugate increased tumor siRNA accumulation 12-fold in orthotopic mouse models of triple negative breast cancer over the parent siRNA. When applied for silencing of the anti-apoptotic oncogene MCL-1, this structure achieved approximately 80% MCL1 silencing in orthotopic breast tumors. Furthermore, application of the lead conjugate structure to target MCL1 yielded better survival outcomes in three independent, orthotopic, triple negative breast cancer models than an MCL1 small molecule inhibitor. These studies provide new structure-function insights on optimally leveraging siRNA-lipid conjugate structures that associate in situ with plasma albumin for molecular-targeted cancer therapy.
Collapse
Affiliation(s)
| | - Shrusti S. Patel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Ashley B. Cavnar
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Justin H. Lo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Lauren M. Babb
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Prarthana Patil
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Juan M. Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
- Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN
| | | | - Violeta M. Sanchez
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua T. McCune
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Jinqi Ma
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | | | | | - Jonah C. Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN
| | - Ryan M. Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Larry D. Stokes
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Jordan L. Hill
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Rebecca S. Cook
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| | - Craig L. Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN
| |
Collapse
|
34
|
Saher O, Zaghloul EM, Umek T, Hagey DW, Mozafari N, Danielsen MB, Gouda AS, Lundin KE, Jørgensen PT, Wengel J, Smith CIE, Zain R. Chemical Modifications and Design Influence the Potency of Huntingtin Anti-Gene Oligonucleotides. Nucleic Acid Ther 2023; 33:117-131. [PMID: 36735581 PMCID: PMC10066784 DOI: 10.1089/nat.2022.0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Huntington's disease is a neurodegenerative, trinucleotide repeat (TNR) disorder affecting both males and females. It is caused by an abnormal increase in the length of CAG•CTG TNR in exon 1 of the Huntingtin gene (HTT). The resultant, mutant HTT mRNA and protein cause neuronal toxicity, suggesting that reduction of their levels would constitute a promising therapeutic approach. We previously reported a novel strategy in which chemically modified oligonucleotides (ONs) directly target chromosomal DNA. These anti-gene ONs were able to downregulate both HTT mRNA and protein. In this study, various locked nucleic acid (LNA)/DNA mixmer anti-gene ONs were tested to investigate the effects of varying ON length, LNA content, and fatty acid modification on HTT expression. Altering the length did not significantly influence the ON potency, while LNA content was critical for activity. Utilization of palmitoyl-modified LNA monomers enhanced the ON activity relatively to the corresponding nonmodified LNA under serum starvation conditions. Furthermore, the number of palmitoylated LNA monomers and their positioning greatly affected ON potency. In addition, we performed RNA sequencing analysis, which showed that the anti-gene ONs affect the "immune system process, mRNA processing, and neurogenesis." Furthermore, we observed that for repeat containing genes, there is a higher tendency for antisense off-targeting. Taken together, our findings provide an optimized design of anti-gene ONs that could potentially be developed as DNA-targeting therapeutics for this class of TNR-related diseases.
Collapse
Affiliation(s)
- Osama Saher
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman M Zaghloul
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Tea Umek
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Daniel W Hagey
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Negin Mozafari
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Mathias B Danielsen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Alaa S Gouda
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark.,Department of Chemistry, Faculty of Science, Benha University, Benha, Egypt
| | - Karin E Lundin
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Per T Jørgensen
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - Jesper Wengel
- Department of Physics, Chemistry and Pharmacy, Biomolecular Nanoscale Engineering Center, University of Southern Denmark, Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Translational Research Center Karolinska (TRACK), Karolinska Institutet, Karolinska University Hospital, SE-14186 Huddinge, Sweden.,Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-17176 Stockholm, Sweden
| |
Collapse
|
35
|
Takakusa H, Iwazaki N, Nishikawa M, Yoshida T, Obika S, Inoue T. Drug Metabolism and Pharmacokinetics of Antisense Oligonucleotide Therapeutics: Typical Profiles, Evaluation Approaches, and Points to Consider Compared with Small Molecule Drugs. Nucleic Acid Ther 2023; 33:83-94. [PMID: 36735616 PMCID: PMC10066781 DOI: 10.1089/nat.2022.0054] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oligonucleotide therapeutics are attracting attention as a new treatment modality for a range of diseases that have been difficult to target using conventional approaches. Technical advances in chemical modification and drug delivery systems have led to the generation of compounds with excellent profiles as pharmaceuticals, and 16 oligonucleotide therapeutics have been marketed to date. There is a growing need to develop optimal and efficient approaches to evaluate drug metabolism and pharmacokinetics (DMPK) and drug-drug interactions (DDIs) of oligonucleotide therapeutics. The DMPK/DDI profiles of small molecule drugs are highly diverse depending on their structural and physicochemical characteristics, whereas oligonucleotide therapeutics share similar DMPK profiles within each chemistry type. Most importantly, the mechanisms and molecules involved in the distribution and metabolism of oligonucleotides differ from those of small molecules. In addition, there are considerations regarding experimental approaches in the evaluation of oligonucleotides, such as bioanalytical challenges, the use of radiolabeled tracers, materials for in vitro metabolism/DDI studies, and methods to study biodistribution. In this review, we attempt to summarize the DMPK characteristics of antisense oligonucleotide (ASO) therapeutics and discuss some of the issues regarding how to optimize the evaluation and prediction of the DMPK and DDI of ASOs.
Collapse
Affiliation(s)
- Hideo Takakusa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Norihiko Iwazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
36
|
Stoodley J, Vallejo-Bedia F, Seone-Miraz D, Debasa-Mouce M, Wood MJA, Varela MA. Application of Antisense Conjugates for the Treatment of Myotonic Dystrophy Type 1. Int J Mol Sci 2023; 24:2697. [PMID: 36769018 PMCID: PMC9916419 DOI: 10.3390/ijms24032697] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is one of the most common muscular dystrophies and can be potentially treated with antisense therapy decreasing mutant DMPK, targeting miRNAs or their binding sites or via a blocking mechanism for MBNL1 displacement from the repeats. Unconjugated antisense molecules are able to correct the disease phenotype in mouse models, but they show poor muscle penetration upon systemic delivery in DM1 patients. In order to overcome this challenge, research has focused on the improvement of the therapeutic window and biodistribution of antisense therapy using bioconjugation to lipids, cell penetrating peptides or antibodies. Antisense conjugates are able to induce the long-lasting correction of DM1 pathology at both molecular and functional levels and also efficiently penetrate hard-to-reach tissues such as cardiac muscle. Delivery to the CNS at clinically relevant levels remains challenging and the use of alternative administration routes may be necessary to ameliorate some of the symptoms experienced by DM1 patients. With several antisense therapies currently in clinical trials, the outlook for achieving a clinically approved treatment for patients has never looked more promising.
Collapse
Affiliation(s)
- Jessica Stoodley
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Francisco Vallejo-Bedia
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - David Seone-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Manuel Debasa-Mouce
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Matthew J. A. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, Oxford OX3 7TY, UK
| |
Collapse
|
37
|
Fàbrega C, Aviñó A, Navarro N, Jorge AF, Grijalvo S, Eritja R. Lipid and Peptide-Oligonucleotide Conjugates for Therapeutic Purposes: From Simple Hybrids to Complex Multifunctional Assemblies. Pharmaceutics 2023; 15:320. [PMID: 36839642 PMCID: PMC9959333 DOI: 10.3390/pharmaceutics15020320] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
Antisense and small interfering RNA (siRNA) oligonucleotides have been recognized as powerful therapeutic compounds for targeting mRNAs and inducing their degradation. However, a major obstacle is that unmodified oligonucleotides are not readily taken up into tissues and are susceptible to degradation by nucleases. For these reasons, the design and preparation of modified DNA/RNA derivatives with better stability and an ability to be produced at large scale with enhanced uptake properties is of vital importance to improve current limitations. In the present study, we review the conjugation of oligonucleotides with lipids and peptides in order to produce oligonucleotide conjugates for therapeutics aiming to develop novel compounds with favorable pharmacokinetics.
Collapse
Affiliation(s)
- Carme Fàbrega
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Anna Aviñó
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Natalia Navarro
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| | - Andreia F. Jorge
- Department of Chemistry, Coimbra Chemistry Centre (CQC), University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Santiago Grijalvo
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Colloidal and Interfacial Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), E-08034 Barcelona, Spain
| | - Ramon Eritja
- Nucleic Acids Chemistry Group, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, E-08034 Barcelona, Spain
| |
Collapse
|
38
|
2'-N-Alkylaminocarbonyl-2'-amino-LNA: Synthesis, duplex stability, nuclease resistance, and in vitro anti-microRNA activity. Bioorg Med Chem 2023; 78:117148. [PMID: 36580743 DOI: 10.1016/j.bmc.2022.117148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/25/2022]
Abstract
2'-Amino-LNA has the potential to acquire various functions through chemical modification at the 2'-nitrogen atom. This study focused on 2'-N-alkylaminocarbonyl 2'-amino-LNA, which is a derivative of 2'-amino-LNA. We evaluated its practical usefulness as a chemical modification of anti-miRNA oligonucleotide. The synthesis of phosphoramidites of 2'-N-alkylaminocarbonyl substituted 2'-amino-LNA bearing thymine and 5-methylcytosine proceeded in good yields. Incorporating the 2'-N-alkylaminocarbonyl-2'-amino-LNA monomers into oligonucleotides improved the duplex stability for complementary RNA strands and robust nuclease resistance. Moreover, 2'-N-alkylaminocarbonyl-2'-amino-LNA is a promising scaffold that significantly increases the potency of anti-miRNA oligonucleotides.
Collapse
|
39
|
Steffens RC, Wagner E. Directing the Way-Receptor and Chemical Targeting Strategies for Nucleic Acid Delivery. Pharm Res 2023; 40:47-76. [PMID: 36109461 PMCID: PMC9483255 DOI: 10.1007/s11095-022-03385-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/29/2022] [Indexed: 11/20/2022]
Abstract
Nucleic acid therapeutics have shown great potential for the treatment of numerous diseases, such as genetic disorders, cancer and infections. Moreover, they have been successfully used as vaccines during the COVID-19 pandemic. In order to unfold full therapeutical potential, these nano agents have to overcome several barriers. Therefore, directed transport to specific tissues and cell types remains a central challenge to receive carrier systems with enhanced efficiency and desired biodistribution profiles. Active targeting strategies include receptor-targeting, mediating cellular uptake based on ligand-receptor interactions, and chemical targeting, enabling cell-specific delivery as a consequence of chemically and structurally modified carriers. With a focus on synthetic delivery systems including polyplexes, lipid-based systems such as lipoplexes and lipid nanoparticles, and direct conjugates optimized for various types of nucleic acids (DNA, mRNA, siRNA, miRNA, oligonucleotides), we highlight recent achievements, exemplified by several nucleic acid drugs on the market, and discuss challenges for targeted delivery to different organs such as brain, eye, liver, lung, spleen and muscle in vivo.
Collapse
Affiliation(s)
- Ricarda Carolin Steffens
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany
| | - Ernst Wagner
- Pharmaceutical Biotechnology, Center for System-Based Drug Research, Ludwig-Maximilians-Universität, 81377, Munich, Germany.
- Center for Nanoscience (CeNS), Ludwig-Maximilians-Universität, 81377, Munich, Germany.
| |
Collapse
|
40
|
Kurtzhals P, Østergaard S, Nishimura E, Kjeldsen T. Derivatization with fatty acids in peptide and protein drug discovery. Nat Rev Drug Discov 2023; 22:59-80. [PMID: 36002588 DOI: 10.1038/s41573-022-00529-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 01/28/2023]
Abstract
Peptides and proteins are widely used to treat a range of medical conditions; however, they often have to be injected and their effects are short-lived. These shortcomings of the native structure can be addressed by molecular engineering, but this is a complex undertaking. A molecular engineering technology initially applied to insulin - and which has now been successfully applied to several biopharmaceuticals - entails the derivatization of peptides and proteins with fatty acids. Various protraction mechanisms are enabled by the specific characteristics and positions of the attached fatty acid. Furthermore, the technology can ensure a long half-life following oral administration of peptide drugs, can alter the distribution of peptides and may hold potential for tissue targeting. Due to the inherent safety and well-defined chemical nature of the fatty acids, this technology provides a versatile approach to peptide and protein drug discovery.
Collapse
|
41
|
Takegawa-Araki T, Yasukawa K, Iwazaki N, Maruyama H, Furukawa H, Sawamoto H, Obika S. Parallel synthesis of oligonucleotides containing N-acyl amino-LNA and their therapeutic effects as anti-microRNAs. Org Biomol Chem 2022; 20:9351-9361. [PMID: 36383101 DOI: 10.1039/d2ob01809h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
2'-Amino-locked nucleic acid (ALNA), maintains excellent duplex stability, and the nitrogen at the 2'-position is an attractive scaffold for functionalization. Herein, a facile and efficient method for the synthesis of various 2'-N-acyl amino-LNA derivatives by direct acylation of the 2'-amino moiety contained in the synthesized oligonucleotides and its fundamental properties are described. The introduction of the acylated amino-LNA enhances the potency of the molecules as therapeutic anti-microRNA oligonucleotides.
Collapse
Affiliation(s)
- Tomo Takegawa-Araki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kai Yasukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Norihiko Iwazaki
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hideto Maruyama
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroyuki Furukawa
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroaki Sawamoto
- Soyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1, Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
42
|
De Serres-Bérard T, Ait Benichou S, Jauvin D, Boutjdir M, Puymirat J, Chahine M. Recent Progress and Challenges in the Development of Antisense Therapies for Myotonic Dystrophy Type 1. Int J Mol Sci 2022; 23:13359. [PMID: 36362145 PMCID: PMC9657934 DOI: 10.3390/ijms232113359] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 08/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a dominant genetic disease in which the expansion of long CTG trinucleotides in the 3' UTR of the myotonic dystrophy protein kinase (DMPK) gene results in toxic RNA gain-of-function and gene mis-splicing affecting mainly the muscles, the heart, and the brain. The CUG-expanded transcripts are a suitable target for the development of antisense oligonucleotide (ASO) therapies. Various chemical modifications of the sugar-phosphate backbone have been reported to significantly enhance the affinity of ASOs for RNA and their resistance to nucleases, making it possible to reverse DM1-like symptoms following systemic administration in different transgenic mouse models. However, specific tissue delivery remains to be improved to achieve significant clinical outcomes in humans. Several strategies, including ASO conjugation to cell-penetrating peptides, fatty acids, or monoclonal antibodies, have recently been shown to improve potency in muscle and cardiac tissues in mice. Moreover, intrathecal administration of ASOs may be an advantageous complementary administration route to bypass the blood-brain barrier and correct defects of the central nervous system in DM1. This review describes the evolution of the chemical design of antisense oligonucleotides targeting CUG-expanded mRNAs and how recent advances in the field may be game-changing by forwarding laboratory findings into clinical research and treatments for DM1 and other microsatellite diseases.
Collapse
Affiliation(s)
- Thiéry De Serres-Bérard
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Siham Ait Benichou
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
| | - Dominic Jauvin
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, New York, NY 11209, USA
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Science University, New York, NY 11203, USA
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | - Jack Puymirat
- LOEX, CHU de Québec-Université Laval Research Center, Quebec City, QC G1J 1Z4, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| | - Mohamed Chahine
- CERVO Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC G1J 2G3, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
43
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
44
|
Madaoui M, Datta D, Wassarman K, Zlatev I, Egli M, Ross BS, Manoharan M. A Chemical Approach to Introduce 2,6-Diaminopurine and 2-Aminoadenine Conjugates into Oligonucleotides without Need for Protecting Groups. Org Lett 2022; 24:6111-6116. [PMID: 35973215 PMCID: PMC9425559 DOI: 10.1021/acs.orglett.2c01848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We report a simple, postsynthetic strategy for synthesis
of oligonucleotides
containing 2,6-diaminopurine nucleotides and 2-aminoadenine conjugates
using 2-fluoro-6-amino-adenosine. The strategy allows introduction
of 2,6-diaminopurine and other 2-amino group-containing ligands. The
strongly electronegative 2-fluoro deactivates 6-NH2 obviating
the need for any protecting group on adenine, and simple aromatic
nucleophilic substitution of fluorine makes reaction with aqueous
NH3 or R-NH2 feasible at the 2-position.
Collapse
Affiliation(s)
- Mimouna Madaoui
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Bruce S Ross
- Ross Chemistry Consulting, El Granada, California 94018, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
45
|
Ait Benichou S, Jauvin D, De-Serres-Berard T, Bennett F, Rigo F, Gourdon G, Boutjdir M, Chahine M, Puymirat J. Enhanced Delivery of Ligand-Conjugated Antisense Oligonucleotides (C16-HA-ASO) Targeting DMPK Transcripts for the Treatment of Myotonic Dystrophy Type 1. Hum Gene Ther 2022; 33:810-820. [PMID: 35794764 DOI: 10.1089/hum.2022.069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a neuromuscular disorder that affects many organs. It is caused by the expansion of a cytosine-thymine-guanine (CTG) triplet repeat in the 3' untranslated region (UTR) of the human myotonic dystrophy protein kinase (hDMPK) gene, which results in a toxic gain-of-function of mutant hDMPK RNA transcripts. Antisense oligonucleotides (ASOs) have emerged in recent years as a potential gene therapy to treat DM1. However, the clinical efficacy of the systemic administration of ASOs is limited by a combination of insufficient potency and poor tissue distribution. In the present study, we assessed the potential of a new ligand-conjugated ASO (IONIS-877864; C16-HA-ASO) to target mutant hDMPK mRNA transcripts in the DMSXL mouse model of DM1. DMSXL mice were treated subcutaneously for 9 weeks with either IONIS-877864 (12.5, or 25 mg/kg) or with IONIS-486178 (12.5 or 25 mg/kg), an unconjugated ASO with the same sequence. At 25 mg/kg, IONIS-877864 significantly enhanced ASO delivery into the striated muscles of DMSXL mice following systemic administration compared to the unconjugated control. IONIS-877864 was also more efficacious than IONIS-486178, reducing mutant hDMPK transcripts by up to 92% in the skeletal muscles and 78% in the hearts of DMSXL mice. The decrease in mutant hDMPK transcripts in the skeletal muscles caused by IONIS-877864 was associated with a significant improvement in skeletal muscle strength. IONIS-877864 was non-toxic in the DMSXL mouse model. The present study showed that the C16-HA-conjugated ASO is a powerful tool for the development of a gene therapy for DM1.
Collapse
Affiliation(s)
| | | | | | - Frank Bennett
- Ionis Pharmaceuticals Inc, 448132, Carlsbad, California, United States;
| | - Frank Rigo
- Ionis Pharmaceuticals Inc, 448132, Carlsbad, California, United States;
| | - Geneiviève Gourdon
- Sorbonne Université Faculté de Médecine, 517733, Paris, Île-de-France, France;
| | - Mohamed Boutjdir
- State University of New York , VA New York Harbor Healthcare System , New York, United States;
| | - Mohamed Chahine
- Laval University, 4440, Medecine, 2325 Rue de l'Université,, Québec, QC, Quebec, Quebec, Canada, G1V 0A6;
| | | |
Collapse
|
46
|
Datta D, Mori S, Madaoui M, Wassarman K, Zlatev I, Manoharan M. Aminooxy Click Chemistry as a Tool for Bis-homo and Bis-hetero Ligand Conjugation to Nucleic Acids. Org Lett 2022; 24:4496-4501. [PMID: 35715221 PMCID: PMC9251770 DOI: 10.1021/acs.orglett.2c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
An aminooxy click
chemistry (AOCC) strategy was used to synthesize
nucleoside building blocks for incorporation during solid-support
synthesis of oligonucleotides to enable bis-homo and bis-hetero conjugation
of various biologically relevant ligands. The bis-homo aminooxy conjugation
leads to bivalent ligand presentation, whereas the bis-hetero conjugation
allows the placement of different ligands with either the same or
different chemical linkages. This facile synthetic methodology allows
introduction of two different ligands with different biological functions
simultaneously.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Shohei Mori
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Mimouna Madaoui
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
47
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
48
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
49
|
Jayatunga DPW, Hone E, Fernando WMADB, Garg ML, Verdile G, Martins RN. A Synergistic Combination of DHA, Luteolin, and Urolithin A Against Alzheimer's Disease. Front Aging Neurosci 2022; 14:780602. [PMID: 35250535 PMCID: PMC8890506 DOI: 10.3389/fnagi.2022.780602] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder and the most common form of dementia worldwide. The classical AD brain is characterized by extracellular deposition of amyloid-β (Aβ) protein aggregates as senile plaques and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated forms of the microtubule-associated protein Tau. There has been limited success in clinical trials for some proposed therapies for AD, so attention has been drawn toward using alternative approaches, including prevention strategies. As a result, nutraceuticals have become attractive compounds for their potential neuroprotective capabilities. The objective of the present study was to derive a synergistic nutraceutical combination in vitro that may act as a potential preventative therapy for AD. The compounds of interest were docosahexaenoic acid (DHA), luteolin (LUT), and urolithin A (UA). The cell viability and cytotoxicity assays MTS and LDH were used to evaluate the compounds individually and in two-compound combinations, for their ability to inhibit Aβ1-42-induced toxicity in human neuroblastoma BE(2)-M17 cells. The LDH-derived% protection values were used in the program CompuSyn v.1.0 to calculate the combination index (CI) of the two-compound combinations. The software-predicted potentially synergistic (CI < 1) two-compound combinations were validated using CellTiter Glo assay. Finally, a three-compound combination was predicted (D5L5U5) and shown to be the most effective at inhibiting Aβ1-42-induced toxicity. The synergistic combination, D5L5U5 warrants further research for its mechanism of action; however, it can serve as a basis to develop an advanced functional food for the prevention or co-treatment of AD.
Collapse
Affiliation(s)
- Dona P. W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Cooperative Research Centre for Mental Health, Carlton, VIC, Australia
| | - W. M. A. D. Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Manohar L. Garg
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, Nedlands, WA, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
50
|
Delivery of Oligonucleotides: Efficiency with Lipid Conjugation and Clinical Outcome. Pharmaceutics 2022; 14:pharmaceutics14020342. [PMID: 35214074 PMCID: PMC8879684 DOI: 10.3390/pharmaceutics14020342] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Oligonucleotides have shifted drug discovery into a new paradigm due to their ability to silence the genes and inhibit protein translation. Importantly, they can drug the un-druggable targets from the conventional small-molecule perspective. Unfortunately, poor cellular permeability and susceptibility to nuclease degradation remain as major hurdles for the development of oligonucleotide therapeutic agents. Studies of safe and effective delivery technique with lipid bioconjugates gains attention to resolve these issues. Our review article summarizes the physicochemical effect of well-studied hydrophobic moieties to enhance the cellular entry of oligonucleotides. The structural impacts of fatty acids, cholesterol, tocopherol, and squalene on cellular internalization and membrane penetration in vitro and in vivo were discussed first. The crucial assays for delivery evaluation within this section were analyzed sequentially. Next, we provided a few successful examples of lipid-conjugated oligonucleotides advanced into clinical studies for treating patients with different medical backgrounds. Finally, we pinpointed current limitations and outlooks in this research field along with opportunities to explore new modifications and efficacy studies.
Collapse
|