1
|
Liu X, Gennerich A. Insect Cell-Based Expression of Cytoskeletal Motor Proteins for Single-Molecule Studies. Methods Mol Biol 2024; 2694:69-90. [PMID: 37824000 PMCID: PMC10880877 DOI: 10.1007/978-1-0716-3377-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Cytoskeletal motor proteins are essential molecular machines that hydrolyze ATP to generate force and motion along cytoskeletal filaments. Members of the dynein and kinesin superfamilies play critical roles in transporting biological payloads (such as proteins, organelles, and vesicles) along microtubule pathways, cause the beating of flagella and cilia, and act within the mitotic and meiotic spindles to segregate replicated chromosomes to progeny cells. Understanding the underlying mechanisms and behaviors of motor proteins is critical to provide better strategies for the treatment of motor protein-related diseases. Here, we provide detailed protocols for the recombinant expression of the Kinesin-1 motor KIF5C using a baculovirus/insect cell system and provide updated protocols for performing single-molecule studies using total internal reflection fluorescence microscopy and optical tweezers to study the motility and force generation of the purified motor.
Collapse
Affiliation(s)
- Xinglei Liu
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
2
|
The production and biochemical characterization of α-carbonic anhydrase from Lactobacillus rhamnosus GG. Appl Microbiol Biotechnol 2022; 106:4065-4074. [PMID: 35612631 PMCID: PMC9200688 DOI: 10.1007/s00253-022-11990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
Abstract
We report the production and biochemical characterization of an α-carbonic anhydrase (LrhCA) from gram-positive probiotic bacteria Lactobacillus rhamnosus GG. CAs form a family of metalloenzymes that catalyze hydration of CO2/interconversion between CO2 and water to bicarbonate ions and protons. They are divided into eight independent gene families (α, β, γ, δ, ζ, η, θ, and ι). Interestingly, many pathogens have been identified with only β- and/or γ-CAs, which can be targeted with CA-specific inhibitors (CAIs) acting as anti-pathogen drugs. Since it is important to study the potential off-target effects of CAIs for both the human body and its commensal bacteria, we took L. rhamnosus GG as our study subject. To date, only a single α-CA has been identified in L. rhamnosus GG, which was successfully produced and biochemically characterized. LrhCA showed moderate catalytic activity with the following kinetic parameters: kcat of 9.86 × 105 s−1 and kcat/KM of 1.41 × 107 s−1 M−1. Moderate inhibition was established with 11 of the 39 studied sulfonamides. The best inhibitors were 5-((4-aminophenyl)sulfonamido)-1,3,4-thiadiazole-2-sulfonamide, 4-(2-hydroxymethyl-4-nitrophenyl-sulfonamidoethyl)-benzenesulfonamide, and benzolamide with Ki values of 319 nM, 378 nM, and 387 nM, respectively. The other compounds showed weaker inhibitory effects. The Ki of acetazolamide, a classical CAI, was 733 nM. In vitro experiments with acetazolamide showed that it had no significant effect on cell growth in L. rhamnosus GG culture. Several sulfonamides, including acetazolamide, are in use as clinical drugs, making their inhibition data highly relevant to avoid any adverse off-target effects towards the human body and its probiotic organisms. Key points • The α-carbonic anhydrase from Lactobacillus rhamnosus GG (LrhCA) is 24.3 kDa. • LrhCA has significant catalytic activity with a kcat of 9.9 × 105 s-1. • Acetazolamide resulted in a marginal inhibitory effect on cell growth.
Collapse
|
3
|
Rapid high-throughput compatible label-free virus particle quantification method based on time-resolved luminescence. Anal Bioanal Chem 2022; 414:4509-4518. [PMID: 35581427 PMCID: PMC9113738 DOI: 10.1007/s00216-022-04104-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
Viruses play a major role in modern society and create risks from global pandemics and bioterrorism to challenges in agriculture. Virus infectivity assays and genome copy number determination methods are often used to obtain information on virus preparations used in diagnostics and vaccine development. However, these methods do not provide information on virus particle count. Current methods to measure the number of viral particles are often cumbersome and require highly purified virus preparations and expensive instrumentation. To tackle these problems, we developed a simple and cost-effective time-resolved luminescence-based method for virus particle quantification. This mix-and-measure technique is based on the recognition of the virus particles by an external Eu3+-peptide probe, providing results on virus count in minutes. The method enables the detection of non-enveloped and enveloped viruses, having over tenfold higher detectability for enveloped, dynamic range from 5E6 to 3E10 vp/mL, than non-enveloped viruses. Multiple non-enveloped and enveloped viruses were used to demonstrate the functionality and robustness of the Protein-Probe method.
Collapse
|
4
|
Urbanski LJ, Bua S, Angeli A, Kuuslahti M, Hytönen VP, Supuran CT, Parkkila S. Sulphonamide inhibition profile of Staphylococcus aureus β-carbonic anhydrase. J Enzyme Inhib Med Chem 2021; 35:1834-1839. [PMID: 32972256 PMCID: PMC7534311 DOI: 10.1080/14756366.2020.1826942] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This paper presents the production and kinetic and inhibitory characterisation of β-carbonic anhydrase from the opportunistic bacterium Staphylococcus aureus (SauBCA). From the eight different carbonic anhydrase (CA) families known to date, humans have only the α-form, whereas many clinically relevant pathogens have β- and/or γ-form(s). Based on this discovery, β- and γ-CAs have been introduced as promising new anti-infective targets. The results of this study revealed that recombinant SauBCA possesses significant CO2 hydration activity with a kcat of 1.46 × 105 s-1 and a kcat/KM of 2.56 × 107 s- 1M-1. Its enzymatic function was inhibited by various sulphonamides in the nanomolar - micromolar range, and the Ki of acetazolamide was 628 nM. The best inhibitor was the clinically used sulfamide agent famotidine (Ki of 71 nM). The least efficient inhibitors were zonisamide and dorzolamide. Our work encourages further investigations of SauBCA in an attempt to discover novel drugs against staphylococcal infections.
Collapse
Affiliation(s)
- Linda J Urbanski
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Silvia Bua
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino (Firenze), Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
5
|
Urbański LJ, Di Fiore A, Azizi L, Hytönen VP, Kuuslahti M, Buonanno M, Monti SM, Angeli A, Zolfaghari Emameh R, Supuran CT, De Simone G, Parkkila S. Biochemical and structural characterisation of a protozoan beta-carbonic anhydrase from Trichomonas vaginalis. J Enzyme Inhib Med Chem 2021; 35:1292-1299. [PMID: 32515610 PMCID: PMC7717681 DOI: 10.1080/14756366.2020.1774572] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We report the biochemical and structural characterisation of a beta-carbonic anhydrase (β-CA) from Trichomonas vaginalis, a unicellular parasite responsible for one of the world’s leading sexually transmitted infections, trichomoniasis. CAs are ubiquitous metalloenzymes belonging to eight evolutionarily divergent groups (α, β, γ, δ, ζ, η, θ, and ι); humans express only α-CAs, whereas many clinically significant pathogens express only β- and/or γ-CAs. For this reason, the latter two groups of CAs are promising biomedical targets for novel antiinfective agents. The β-CA from T. vaginalis (TvaCA1) was recombinantly produced and biochemically characterised. The crystal structure was determined, revealing the canonical dimeric fold of β-CAs and the main features of the enzyme active site. The comparison with the active site of human CA enzymes revealed significant differences that can be exploited for the design of inhibitors selective for the protozoan enzyme with respect to the human ones.
Collapse
Affiliation(s)
- Linda J Urbański
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Di Fiore
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Latifeh Azizi
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Marianne Kuuslahti
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Martina Buonanno
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Simona M Monti
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Andrea Angeli
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Reza Zolfaghari Emameh
- Department of Energy and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, (NIGEB), Tehran, Iran
| | - Claudiu T Supuran
- Neurofarba Department, Sezione di Chimica Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Giuseppina De Simone
- Institute of Biostructures and Bioimaging of the National Research Council, Naples, Italy
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| |
Collapse
|
6
|
Saarinen NVV, Lehtonen J, Veijola R, Lempainen J, Knip M, Hyöty H, Laitinen OH, Hytönen VP. Multiplexed High-Throughput Serological Assay for Human Enteroviruses. Microorganisms 2020; 8:microorganisms8060963. [PMID: 32604930 PMCID: PMC7355947 DOI: 10.3390/microorganisms8060963] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/23/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Immunological assays detecting antibodies against enteroviruses typically use a single enterovirus serotype as antigen. This limits the ability of such assays to detect antibodies against different enterovirus types and to detect possible type-specific variation in antibody responses. We set out to develop a multiplexed assay for simultaneous detection of antibodies against multiple enterovirus and rhinovirus types encompassing all human infecting species. Seven recombinant VP1 proteins from enteroviruses EV-A to EV-D and rhinoviruses RV-A to RV-C species were produced. Using Meso Scale Diagnostics U-PLEX platform we were able to study antibody reactions against these proteins as well as non-structural enterovirus proteins in a single well with 140 human serum samples. Adults had on average 33-fold stronger antibody responses to these antigens (p < 10−11) compared to children, but children had less cross-reactivity between different enterovirus types. The results suggest that this new high-throughput assay offers clear benefits in the evaluation of humoral enterovirus immunity in children, giving more exact information than assays that are based on a single enterovirus type as antigen.
Collapse
Affiliation(s)
- Niila V. V. Saarinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Jussi Lehtonen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Riitta Veijola
- Department of Paediatrics, University of Oulu, 90570 Oulu, Finland;
| | - Johanna Lempainen
- Department of Paediatrics, University of Turku, 20520 Turku, Finland;
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, 00029 Helsinki, Finland;
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00029 Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
- Fimlab Laboratories, 33520 Tampere, Finland
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, 33520 Tampere, Finland; (N.V.V.S.); (J.L.); (H.H.); (O.H.L.)
- Fimlab Laboratories, 33520 Tampere, Finland
- Correspondence: ; Tel.: +358-401901517
| |
Collapse
|
7
|
Saarinen NVV, Stone VM, Hankaniemi MM, Mazur MA, Vuorinen T, Flodström-Tullberg M, Hyöty H, Hytönen VP, Laitinen OH. Antibody Responses against Enterovirus Proteases are Potential Markers for an Acute Infection. Viruses 2020; 12:E78. [PMID: 31936473 PMCID: PMC7020046 DOI: 10.3390/v12010078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/02/2020] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Enteroviruses are a group of common non-enveloped RNA viruses that cause symptoms ranging from mild respiratory infections to paralysis. Due to the abundance of enterovirus infections it is hard to distinguish between on-going and previous infections using immunological assays unless the IgM fraction is studied. METHODS In this study we show using Indirect ELISA and capture IgM ELISA that an IgG antibody response against the nonstructural enteroviral proteins 2A and 3C can be used to distinguish between IgM positive (n = 22) and IgM negative (n = 20) human patients with 83% accuracy and a diagnostic odds ratio of 30. Using a mouse model, we establish that the antibody response to the proteases is short-lived compared to the antibody response to the structural proteins in. As such, the protease antibody response serves as a potential marker for an acute infection. CONCLUSIONS Antibody responses against enterovirus proteases are shorter-lived than against structural proteins and can differentiate between IgM positive and negative patients, and therefore they are a potential marker for acute infections.
Collapse
Affiliation(s)
- Niila V. V. Saarinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Virginia M. Stone
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Minna M. Hankaniemi
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Magdalena A. Mazur
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Tytti Vuorinen
- Turku University Hospital, Clinical Microbiology and University of Turku, Institute of Biomedicine, 20520 Turku, Finland;
| | - Malin Flodström-Tullberg
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
- Karolinska Institutet, The Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska University Hospital, 14152 Stockholm, Sweden;
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Vesa P. Hytönen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| | - Olli H. Laitinen
- Faculty of Medicine and Health Technology, Tampere University, FI-33014 Tampere, Finland; (N.V.V.S.); (V.M.S.); (M.M.H.); (M.F.-T.); (H.H.); (V.P.H.)
| |
Collapse
|
8
|
Somogyi M, Szimler T, Baksa A, Végh BM, Bakos T, Paréj K, Ádám C, Zsigmond Á, Megyeri M, Flachner B, Sajó R, Gráczer É, Závodszky P, Hajdú I, Beinrohr L. A versatile modular vector set for optimizing protein expression among bacterial, yeast, insect and mammalian hosts. PLoS One 2019; 14:e0227110. [PMID: 31887188 PMCID: PMC6936851 DOI: 10.1371/journal.pone.0227110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
We have developed a unified, versatile vector set for expression of recombinant proteins, fit for use in any bacterial, yeast, insect or mammalian cell host. The advantage of this system is its versatility at the vector level, achieved by the introduction of a novel expression cassette. This cassette contains a unified multi-cloning site, affinity tags, protease cleavable linkers, an optional secretion signal, and common restriction endonuclease sites at key positions. This way, genes of interest and all elements of the cassette can be switched freely among the vectors, using restriction digestion and ligation without the need of polymerase chain reaction (PCR). This vector set allows rapid protein expression screening of various hosts and affinity tags. The reason behind this approach was that it is difficult to predict which expression host and which affinity tag will lead to functional expression. The new system is based on four optimized and frequently used expression systems (Escherichia coli pET, the yeast Pichia pastoris, pVL and pIEx for Spodoptera frugiperda insect cells and pLEXm based mammalian systems), which were modified as described above. The resulting vector set was named pONE series. We have successfully applied the pONE vector set for expression of the following human proteins: the tumour suppressor RASSF1A and the protein kinases Aurora A and LIMK1. Finally, we used it to express the large multidomain protein, Rho-associated protein kinase 2 (ROCK2, 164 kDa) and demonstrated that the yeast Pichia pastoris reproducibly expresses the large ROCK2 kinase with identical activity to the insect cell produced counterpart. To our knowledge this is among the largest proteins ever expressed in yeast. This demonstrates that the cost-effective yeast system can match and replace the industry-standard insect cell expression system even for large and complex mammalian proteins. These experiments demonstrate the applicability of our pONE vector set.
Collapse
Affiliation(s)
- Márk Somogyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Tamás Szimler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Attila Baksa
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Barbara M. Végh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Tamás Bakos
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Katalin Paréj
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Csaba Ádám
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Áron Zsigmond
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Márton Megyeri
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Beáta Flachner
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Ráchel Sajó
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Éva Gráczer
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - Péter Závodszky
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
| | - István Hajdú
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
- * E-mail: (LB); (IH)
| | - László Beinrohr
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Pázmány Péter sétány, Budapest, Hungary
- * E-mail: (LB); (IH)
| |
Collapse
|
9
|
Sulfonamide Inhibition Studies of a New β-Carbonic Anhydrase from the Pathogenic Protozoan Entamoeba histolytica. Int J Mol Sci 2018; 19:ijms19123946. [PMID: 30544802 PMCID: PMC6321117 DOI: 10.3390/ijms19123946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 11/27/2018] [Accepted: 12/06/2018] [Indexed: 12/25/2022] Open
Abstract
A newly described β-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic protozoan Entamoeba histolytica, EhiCA, was recently shown to possess a significant catalytic activity for the physiologic CO2 hydration reaction (kcat of 6.7 × 105 s−1 and a kcat/Km of 8.9 × 107 M−1 s−1). A panel of sulfonamides and one sulfamate, some of which are clinically used drugs, were investigated for their inhibitory properties against EhiCA. The best inhibitors detected in the study were 4-hydroxymethyl/ethyl-benzenesulfonamide (KIs of 36–89 nM), whereas some sulfanilyl-sulfonamides showed activities in the range of 285–331 nM. Acetazolamide, methazolamide, ethoxzolamide, and dichlorophenamide were less effective inhibitors (KIs of 509–845 nM) compared to other sulfonamides investigated here. As β-CAs are not present in vertebrates, the present study may be useful for detecting lead compounds for the design of more effective inhibitors with potential to develop anti-infectives with alternative mechanisms of action.
Collapse
|
10
|
Laitinen OH, Svedin E, Kapell S, Hankaniemi MM, Larsson PG, Domsgen E, Stone VM, Määttä JAE, Hyöty H, Hytönen VP, Flodström-Tullberg M. New Coxsackievirus 2A pro and 3C pro protease antibodies for virus detection and discovery of pathogenic mechanisms. J Virol Methods 2018; 255:29-37. [PMID: 29425680 DOI: 10.1016/j.jviromet.2018.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 12/16/2022]
Abstract
Enteroviruses (EVs), such as the Coxsackie B-viruses (CVBs), are common human pathogens, which can cause severe diseases including meningitis, myocarditis and neonatal sepsis. EVs encode two proteases (2Apro and 3Cpro), which perform the proteolytic cleavage of the CVB polyprotein and also cleave host cell proteins to facilitate viral replication. The 2Apro cause direct damage to the infected heart and tools to investigate 2Apro and 3Cpro expression may contribute new knowledge on virus-induced pathologies. Here, we developed new antibodies to CVB-encoded 2Apro and 3Cpro; Two monoclonal 2Apro antibodies and one 3Cpro antibody were produced. Using cells infected with selected viruses belonging to the EV A, B and C species and immunocytochemistry, we demonstrate that the 3Cpro antibody detects all of the EV species B (EV-B) viruses tested and that the 2Apro antibody detects all EV-B viruses apart from Echovirus 9. We furthermore show that the new antibodies work in Western blotting, immunocyto- and immunohistochemistry, and flow cytometry to detect CVBs. Confocal microscopy demonstrated the expression kinetics of 2Apro and 3Cpro, and revealed a preferential cytosolic localization of the proteases in CVB3 infected cells. In summary, the new antibodies detect proteases that belong to EV species B in cells and tissue using multiple applications.
Collapse
Affiliation(s)
- Olli H Laitinen
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Emma Svedin
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Sebastian Kapell
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Minna M Hankaniemi
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | - Pär G Larsson
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Erna Domsgen
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Virginia M Stone
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden
| | - Juha A E Määttä
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland; Fimlab Laboratories, 33520 Tampere, Finland
| | - Malin Flodström-Tullberg
- The Center for Infectious Medicine, Department of Medicine HS, Karolinska Institutet, Karolinska University Hospital, Stockholm, 141 86, Sweden; Faculty of Medicine and Life Sciences, University of Tampere, Tampere, 33520, Finland.
| |
Collapse
|
11
|
Saarinen NVV, Laiho JE, Richardson SJ, Zeissler M, Stone VM, Marjomäki V, Kantoluoto T, Horwitz MS, Sioofy-Khojine A, Honkimaa A, Hankaniemi MM, Flodström-Tullberg M, Hyöty H, Hytönen VP, Laitinen OH. A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Sci Rep 2018; 8:33. [PMID: 29311608 PMCID: PMC5758616 DOI: 10.1038/s41598-017-18495-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/12/2017] [Indexed: 11/09/2022] Open
Abstract
Enteroviruses (EVs) are common RNA viruses that cause diseases ranging from rash to paralytic poliomyelitis. For example, EV-A and EV-C viruses cause hand-foot and mouth disease and EV-B viruses cause encephalitis and myocarditis, which can result in severe morbidity and mortality. While new vaccines and treatments for EVs are under development, methods for studying and diagnosing EV infections are still limited and therefore new diagnostic tools are required. Our aim was to produce and characterize new antibodies that work in multiple applications and detect EVs in tissues and in vitro. Rats were immunized with Coxsackievirus B1 capsid protein VP1 and hybridomas were produced. Hybridoma clones were selected based on their reactivity in different immunoassays. The most promising clone, 3A6, was characterized and it performed well in multiple techniques including ELISA, immunoelectron microscopy, immunocyto- and histochemistry and in Western blotting, detecting EVs in infected cells and tissues. It recognized several EV-Bs and also the EV-C representative Poliovirus 3, making it a broad-spectrum EV specific antibody. The 3A6 rat monoclonal antibody can help to overcome some of the challenges faced with commonly used EV antibodies: it enables simultaneous use of mouse-derived antibodies in double staining and it is useful in murine models.
Collapse
Affiliation(s)
- Niila V V Saarinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Jutta E Laiho
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | | | - Virginia M Stone
- Department of Medicine HS, Karolinska Institutet, Stockholm, Sweden
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/Nanoscience center, University of Jyväskylä, Jyväskylä, Finland
| | - Tino Kantoluoto
- Department of Biological and Environmental Science/Nanoscience center, University of Jyväskylä, Jyväskylä, Finland
| | - Marc S Horwitz
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - Anni Honkimaa
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Minna M Hankaniemi
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | | | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.,Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Olli H Laitinen
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland.
| |
Collapse
|
12
|
Karste K, Bleckmann M, van den Heuvel J. Not Limited to E. coli: Versatile Expression Vectors for Mammalian Protein Expression. Methods Mol Biol 2017; 1586:313-324. [PMID: 28470614 DOI: 10.1007/978-1-4939-6887-9_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recombinant protein expression is not limited to E. coli or other prokaryotic systems. It is inevitable to use eukaryotic systems in order to express challenging mammalian proteins. Eukaryotic systems are able to perform complex posttranslational modifications like protein processing, phosphorylation, glycosylation, which are essential for stability and functionality of many proteins. Different eukaryotic protein expression systems employing yeast, insect, or mammalian cell lines are established with each having its own advantages and disadvantages. Often it is quite difficult to decide which will be the most optimal expression system as this depends highly on the protein itself. Expression in stable cell lines requires substantial screening of expressible constructs prior to developing a stable expression cell line. To achieve fast screening by transient expression in multiple hosts, versatile vectors can be applied. In this chapter, we present an overview of the most common multi-host vectors, which allow for fast expression analysis without tedious (re)cloning of the gene of interest in several different protein production systems. The protocols in this chapter describe the latest methods for fast transient expression in insect and mammalian cell lines.
Collapse
Affiliation(s)
- Katharina Karste
- Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Maren Bleckmann
- Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Joop van den Heuvel
- Helmholtz Zentrum für Infektionsforschung GmbH, Inhoffenstrasse 7, 38124, Braunschweig, Germany.
| |
Collapse
|
13
|
Makkonen KE, Airenne K, Ylä-Herttulala S. Baculovirus-mediated gene delivery and RNAi applications. Viruses 2015; 7:2099-125. [PMID: 25912715 PMCID: PMC4411692 DOI: 10.3390/v7042099] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/02/2015] [Accepted: 04/16/2015] [Indexed: 12/11/2022] Open
Abstract
Baculoviruses are widely encountered in nature and a great deal of data is available about their safety and biology. Recently, these versatile, insect-specific viruses have demonstrated their usefulness in various biotechnological applications including protein production and gene transfer. Multiple in vitro and in vivo studies exist and support their use as gene delivery vehicles in vertebrate cells. Recently, baculoviruses have also demonstrated high potential in RNAi applications in which several advantages of the virus make it a promising tool for RNA gene transfer with high safety and wide tropism.
Collapse
Affiliation(s)
- Kaisa-Emilia Makkonen
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Kari Airenne
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
| | - Seppo Ylä-Herttulala
- Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio 70211 Finland.
- Gene Therapy Unit, Kuopio University Hospital, Kuopio 70211, Finland.
- Science Service Center, Kuopio University Hospital, Kuopio 70211, Finland.
| |
Collapse
|
14
|
Patil NA, Tailhades J, Hughes RA, Separovic F, Wade JD, Hossain MA. Cellular disulfide bond formation in bioactive peptides and proteins. Int J Mol Sci 2015; 16:1791-805. [PMID: 25594871 PMCID: PMC4307334 DOI: 10.3390/ijms16011791] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/02/2015] [Indexed: 11/16/2022] Open
Abstract
Bioactive peptides play important roles in metabolic regulation and modulation and many are used as therapeutics. These peptides often possess disulfide bonds, which are important for their structure, function and stability. A systematic network of enzymes--a disulfide bond generating enzyme, a disulfide bond donor enzyme and a redox cofactor--that function inside the cell dictates the formation and maintenance of disulfide bonds. The main pathways that catalyze disulfide bond formation in peptides and proteins in prokaryotes and eukaryotes are remarkably similar and share several mechanistic features. This review summarizes the formation of disulfide bonds in peptides and proteins by cellular and recombinant machinery.
Collapse
Affiliation(s)
- Nitin A Patil
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Julien Tailhades
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Richard Anthony Hughes
- Department of Pharmacology and Therapeutics, the University of Melbourne, Victoria 3010, Australia.
| | - Frances Separovic
- School of Chemistry, the University of Melbourne, Victoria 3010, Australia.
| | - John D Wade
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| | - Mohammed Akhter Hossain
- Florey Institute of Neuroscience and Mental Health, the University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
15
|
Turunen TAK, Laakkonen JP, Alasaarela L, Airenne KJ, Ylä-Herttuala S. Sleeping Beauty-baculovirus hybrid vectors for long-term gene expression in the eye. J Gene Med 2014; 16:40-53. [PMID: 24464652 DOI: 10.1002/jgm.2756] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 11/18/2013] [Accepted: 01/22/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND A baculovirus vector is capable of efficiently transducing many nondiving and diving cell types. However, the potential of baculovirus is restricted for many gene delivery applications as a result of the transient gene expression that it mediates. The plasmid-based Sleeping Beauty (SB) transposon system integrates transgenes into target cell genome efficiently with a genomic integration pattern that is generally considered safer than the integration of many other integrating vectors; yet efficient delivery of therapeutic genes into cells of target tissues in vivo is a major challenge for nonviral gene therapy. In the present study, SB was introduced into baculovirus to obtain novel hybrid vectors that would combine the best features of the two vector systems (i.e. effective gene delivery and efficient integration into the genome), thus circumventing the major limitations of these vectors. METHODS We constructed and optimized SB-baculovirus hybrid vectors that bear either SB100x transposase or SB transposon in the forward or reverse orientations with respect to the viral backbone The functionality of the novel hybrid vectors was investigated in cell cultures and in a proof-of-concept study in the mouse eye. RESULTS The hybrid vectors showed high and sustained transgene expression that remained stable and demonstrated no signs of decline during the 2 months follow-up in vitro. These results were verified in the mouse eye where persistent transgene expression was detected two months after intravitreal injection. CONCLUSIONS Our results confirm that (i) SB-baculovirus hybrid vectors mediate long-term gene expression in vitro and in vivo, and (ii) the hybrid vectors are potential new tools for the treatment of ocular diseases.
Collapse
Affiliation(s)
- Tytteli Anni Kaarina Turunen
- A. I. Virtanen Institute for Molecular Sciences, Department of Biotechnology and Molecular Medicine, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | |
Collapse
|
16
|
Abstract
ABSTRACT
The bacterial transposon Tn7 is distinguished by the levels of control it displays over transposition and its capacity to utilize different kinds of target sites. Transposition is carried out using five transposon-encoded proteins, TnsA, TnsB, TnsC, TnsD, and TnsE, which facilitate transfer of the element while minimizing the chances of inactivating host genes by using two pathways of transposition. One of these pathways utilizes TnsD, which targets transposition into a single site found in bacteria (
attTn7
), and a second utilizes TnsE, which preferentially directs transposition into plasmids capable of moving between bacteria. Control of transposition involves a heteromeric transposase that consists of two proteins, TnsA and TnsB, and a regulator protein TnsC. Tn7 also has the ability to inhibit transposition into a region already occupied by the element in a process called target immunity. Considerable information is available about the functional interactions of the Tn7 proteins and many of the protein–DNA complexes involved in transposition. Tn7-like elements that encode homologs of all five of the proteins found in Tn7 are common in diverse bacteria, but a newly appreciated larger family of elements appears to use the same core TnsA, TnsB, and TnsC proteins with other putative target site selector proteins allowing different targeting pathways.
Collapse
|
17
|
Paul A, Hasan A, Rodes L, Sangaralingam M, Prakash S. Bioengineered baculoviruses as new class of therapeutics using micro and nanotechnologies: principles, prospects and challenges. Adv Drug Deliv Rev 2014; 71:115-30. [PMID: 24503281 DOI: 10.1016/j.addr.2014.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 12/15/2022]
Abstract
Designing a safe and efficient gene delivery system is required for success of gene therapy trials. Although a wide variety of viral, non-viral and polymeric nanoparticle based careers have been widely studied, the current gene delivery vehicles are limited by their suboptimal, non-specific therapeutic efficacy and acute immunological reactions, leading to unwanted side effects. Recently, there has been a growing interest in insect-cell-originated baculoviruses as gene delivery vehicles for diverse biomedical applications. Specifically, the emergence of diverse types of surface functionalized and bioengineered baculoviruses is posed to edge over currently available gene delivery vehicles. This is primarily because baculoviruses are comparatively non-pathogenic and non-toxic as they cannot replicate in mammalian cells and do not invoke any cytopathic effect. Moreover, emerging advanced studies in this direction have demonstrated that hybridizing the baculovirus surface with different kinds of bioactive therapeutic molecules, cell-specific targeting moieties, protective polymeric grafts and nanomaterials can significantly improve the preclinical efficacy of baculoviruses. This review presents a comprehensive overview of the recent advancements in the field of bioengineering and biotherapeutics to engineer baculovirus hybrids for tailored gene therapy, and articulates in detail the potential and challenges of these strategies for clinical realization. In addition, the article illustrates the rapid evolvement of microfluidic devices as a high throughput platform for optimizing baculovirus production and treatment conditions.
Collapse
Affiliation(s)
- Arghya Paul
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Anwarul Hasan
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Center for Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA
| | - Laetitia Rodes
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Mugundhine Sangaralingam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering and Artificial Cells and Organs Research Centre, Faculty of Medicine, McGill University, 3775 University Street, Montreal, Québec H3A 2B4, Canada.
| |
Collapse
|
18
|
Feasibility of baculovirus-mediated reporter gene delivery for efficient monitoring of islet transplantation in vivo. Nucl Med Biol 2013; 41:171-8. [PMID: 24296083 DOI: 10.1016/j.nucmedbio.2013.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 09/21/2013] [Accepted: 10/15/2013] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The objective of this study was to explore the feasibility of baculovirus vector-mediated sodium iodide symporter (NIS) gene delivery to monitor islet transplantation. METHODS Baculovirus vectors expressing green fluorescent protein (GFP) or NIS (Bac-GFP and Bac-NIS) were established using the Bac-to-Bac baculovirus expression system. The GFP expression of Bac-GFP-infected rat islets was observed in vitro by fluorescence microscopy. Iodine uptake and inhibition of iodine uptake by NaClO4 in Bac-NIS-infected islets were dynamically monitored in vitro. Bac-GFP- or Bac-NIS-infected islets were implanted into the left axillary cavity of NOD-SCID mice, and fluorescence imaging and (125)I NanoSPECT/CT imaging were subsequently performed in vivo. RESULTS Bac-GFP efficiently infected rat islets (over 95% infected at MOI=40), and the expression of GFP lasted approximately two weeks. NaClO4 could inhibit iodine uptake by Bac-NIS-infected islets. In vivo imaging revealed that the fluorescence intensity of the transplant sites in Bac-GFP-infected groups was significantly higher than in the non-infected group. Grafts could be clearly observed by (125)I NanoSPECT/CT imaging for up to 8 h. CONCLUSION Baculovirus vectors are powerful vehicles for studying rat islets in gene delivery. It is feasible to use a baculovirus vector to delivery an NIS gene for non-invasive monitoring transplanted islets in vivo by the expression of the target gene.
Collapse
|
19
|
Nieminen T, Toivanen PI, Rintanen N, Heikura T, Jauhiainen S, Airenne KJ, Alitalo K, Marjomäki V, Ylä-Herttuala S. The impact of the receptor binding profiles of the vascular endothelial growth factors on their angiogenic features. Biochim Biophys Acta Gen Subj 2013; 1840:454-63. [PMID: 24112971 DOI: 10.1016/j.bbagen.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 09/12/2013] [Accepted: 10/01/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vascular endothelial growth factors (VEGFs) are potential therapeutic agents for treatment of ischemic diseases. Their angiogenic effects are mainly mediated through VEGF receptor 2 (VEGFR2). METHODS Receptor binding, signaling, and biological efficacy of several VEGFR2 ligands were compared to determine their characteristics regarding angiogenic activity and vascular permeability. RESULTS Tested VEGFR2 ligands induced receptor tyrosine phosphorylation with different efficacy depending on their binding affinities. However, the tyrosine phosphorylation pattern and the activation of the major downstream signaling pathways were comparable. The maximal angiogenic effect stimulated by different VEGFR2 ligands was dependent on their ability to bind to co-receptor Neuropilin (Nrp), which was shown to form complexes with VEGFR2. The ability of these VEGFR2 ligands to induce vascular permeability was dependent on their concentration and VEGFR2 affinity, but not on Nrp binding. CONCLUSIONS VEGFR2 activation alone is sufficient for inducing endothelial cell proliferation, formation of tube-like structures and vascular permeability. The level of VEGFR2 activation is dependent on the binding properties of the ligand used. However, closely similar activation pattern of the receptor kinase domain is seen with all VEGFR2 ligands. Nrp binding strengthens the angiogenic potency without increasing vascular permeability. GENERAL SIGNIFICANCE This study sheds light on how different structurally closely related VEGFR2 ligands bind to and signal via VEGFR2/Nrp complex to induce angiogenesis and vascular permeability. The knowledge of this study could be used for designing VEGFR2/Nrp ligands with improved therapeutic properties.
Collapse
Affiliation(s)
- Tiina Nieminen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Schenkwein D, Turkki V, Ahlroth MK, Timonen O, Airenne KJ, Ylä-Herttuala S. rDNA-directed integration by an HIV-1 integrase--I-PpoI fusion protein. Nucleic Acids Res 2012; 41:e61. [PMID: 23275537 PMCID: PMC3597653 DOI: 10.1093/nar/gks1438] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Integrating viral vectors are efficient gene transfer tools, but their integration patterns have been associated with genotoxicity and oncogenicity. The recent development of highly specific designer nucleases has enabled target DNA modification and site-specific gene insertion at desired genomic loci. However, a lack of consensus exists regarding a perfect genomic safe harbour (GSH) that would allow transgenes to be stably and reliably expressed without adversely affecting endogenous gene structure and function. Ribosomal DNA (rDNA) has many advantages as a GSH, but efficient means to target integration to this locus are currently lacking. We tested whether lentivirus vector integration can be directed to rDNA by using fusion proteins consisting of the Human Immunodeficiency Virus 1 (HIV-1) integrase (IN) and the homing endonuclease I-PpoI, which has natural cleavage sites in the rDNA. A point mutation (N119A) was introduced into I-PpoI to abolish unwanted DNA cleavage by the endonuclease. The vector-incorporated IN-I-PpoIN119A fusion protein targeted integration into rDNA significantly more than unmodified lentivirus vectors, with an efficiency of 2.7%. Our findings show that IN-fusion proteins can be used to modify the integration pattern of lentivirus vectors, and to package site-specific DNA-recognizing proteins into vectors to obtain safer transgene integration.
Collapse
Affiliation(s)
- Diana Schenkwein
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland.
| | | | | | | | | | | |
Collapse
|
21
|
Heikura T, Nieminen T, Roschier MM, Karvinen H, Kaikkonen MU, Mähönen AJ, Lesch HP, Rissanen TT, Laitinen OH, Airenne KJ, Ylä-Herttuala S. Baculovirus-mediated vascular endothelial growth factor-D(ΔNΔC) gene transfer induces angiogenesis in rabbit skeletal muscle. J Gene Med 2012; 14:35-43. [PMID: 22162149 DOI: 10.1002/jgm.1637] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Occluded arteries and ischemic tissues cannot always be treated by angioplasty, stenting or by-pass-surgery. Under such circumstances, viral gene therapy may be useful in inducing increased blood supply to ischemic area. There is evidence of improved blood flow in ischemic skeletal muscle and myocardium in both animal and human studies using adenoviral vascular endothelial growth factor (VEGF) gene therapy. However, the expression is transient and repeated gene transfers with the same vector are inefficient due to immune responses. METHODS Different baculoviral vectors pseudotyped with or without vesicular stomatitis virus glycoprotein (VSV-G) and/or carrying woodchuck hepatitis virus post-transcriptional regulatory element (Wpre) were tested both in vitro and in vivo. VEGF-D(ΔNΔC) was used as therapeutic transgene and lacZ as a control. In vivo efficacy was evaluated as capillary enlargement and transgene expression in New Zealand White (NZW) rabbit skeletal muscle. RESULTS A statistically significant capillary enlargement was detected 6 days after gene transfer in transduced areas compared to the control gene transfers with baculovirus and adenovirus encoding β-galactosidase (lacZ). Substantially improved gene transfer efficiency was achieved with a modified baculovirus pseudotyped with VSV-G and carrying Wpre. Dose escalation experiments revealed that either too large volume or too many virus particles caused inflammation and necrosis in the target tissue, whereas 10(9) plaque forming units injected in multiple aliquots resulted in transgene expression with only mild immune reactions. CONCLUSIONS We show the first evidence of biologically significant baculoviral gene transfer in skeletal muscle of NZW rabbits using VEGF-D(ΔNΔC) as a therapeutic transgene.
Collapse
Affiliation(s)
- Tommi Heikura
- Department of Biotechnology and Molecular Medicine, AI Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lesch HP, Makkonen KE, Laitinen A, Määttä AM, Närvänen O, Airenne KJ, Ylä-Herttuala S. Requirements for baculoviruses for clinical gene therapy applications. J Invertebr Pathol 2011; 107 Suppl:S106-12. [PMID: 21784225 DOI: 10.1016/j.jip.2011.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 01/23/2011] [Indexed: 11/30/2022]
Affiliation(s)
- Hanna P Lesch
- AI Virtanen Institute Department of Biotechnology and Molecular Medicine, University of Eastern Finland/Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
23
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
24
|
Airenne KJ, Makkonen KE, Mähönen AJ, Ylä-Herttuala S. Baculoviruses mediate efficient gene expression in a wide range of vertebrate cells. Methods Mol Biol 2011; 737:279-301. [PMID: 21590402 DOI: 10.1007/978-1-61779-095-9_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Baculovirus expression vector system (BEVS) is well known as a feasible and safe technology to produce recombinant (re-)proteins in a eukaryotic milieu of insect cells. However, its proven power in gene delivery and gene therapy is still poorly recognized. The basis of BEVS lies in large enveloped DNA viruses derived from insects, the prototype virus being Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Infection of insect cell culture with a virus encoding a desired transgene under powerful baculovirus promoter leads to re-protein production in high quantities. Although the replication of AcMNPV is highly insect specific in nature, it can penetrate and transduce a wide range of cells of other origin. Efficient transduction requires only virus arming with an expression cassette active in the cells under investigation. The inherent safety, ease and speed of virus generation in high quantities, low cytotoxicity and extreme transgene capacity and tropism provides many advantages for gene delivery over the other viral vectors typically derived from human pathogens.
Collapse
Affiliation(s)
- Kari J Airenne
- Department of Molecular Medicine, A.I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland.
| | | | | | | |
Collapse
|
25
|
Trowitzsch S, Bieniossek C, Nie Y, Garzoni F, Berger I. New baculovirus expression tools for recombinant protein complex production. J Struct Biol 2010; 172:45-54. [PMID: 20178849 DOI: 10.1016/j.jsb.2010.02.010] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/12/2010] [Accepted: 02/15/2010] [Indexed: 02/07/2023]
Abstract
Most eukaryotic proteins exist as large multicomponent assemblies with many subunits, which act in concert to catalyze specific cellular activities. Many of these molecular machines are only present in low amounts in their native hosts, which impede purification from source material. Unraveling their structure and function at high resolution will often depend on heterologous overproduction. Recombinant expression of multiprotein complexes for structural studies can entail considerable, sometimes inhibitory, investment in both labor and materials, in particular if altering and diversifying of the individual subunits are necessary for successful structure determination. Our laboratory has addressed this challenge by developing technologies that streamline the complex production and diversification process. Here, we review several of these developments for recombinant multiprotein complex production using the MultiBac baculovirus/insect cell expression system which we created. We also addressed parallelization and automation of gene assembly for multiprotein complex expression by developing robotic routines for multigene vector generation. In this contribution, we focus on several improvements of baculovirus expression system performance which we introduced: the modifications of the transfer plasmids, the methods for generation of composite multigene baculoviral DNA, and the simplified and standardized expression procedures which we delineated using our MultiBac system.
Collapse
Affiliation(s)
- Simon Trowitzsch
- European Molecular Biology Laboratory (EMBL), Grenoble Outstation, and Unit of Virus Host Cell Interactions UVHCI, UMI3265, 6 rue Jules Horowitz, Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
26
|
Mähönen AJ, Makkonen KE, Laakkonen JP, Ihalainen TO, Kukkonen SP, Kaikkonen MU, Vihinen-Ranta M, Ylä-Herttuala S, Airenne KJ. Culture medium induced vimentin reorganization associates with enhanced baculovirus-mediated gene delivery. J Biotechnol 2009; 145:111-9. [PMID: 19903502 DOI: 10.1016/j.jbiotec.2009.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/16/2009] [Accepted: 11/03/2009] [Indexed: 01/04/2023]
Abstract
Baculoviruses can express transgenes under mammalian promoters in a wide range of vertebrate cells. However, the success of transgene expression is dependent on both the appropriate cell type and culture conditions. We studied the mechanism behind the substantial effect of the cell culture medium on efficiency of the baculovirus transduction in different cell lines. We tested six cell culture mediums; the highest transduction efficiency was detected in the presence of RPMI 1640 medium. Vimentin, a major component of type III intermediate filaments, was reorganized in the optimized medium, which associated with enhanced nuclear entry of baculoviruses. Accordingly, the phosphorylation pattern of vimentin was changed in the studied cell lines. These results suggest that vimentin has an important role in baculovirus entry into vertebrate cells. Enhanced gene delivery in the optimized medium was observed also with adenoviruses and lentiviruses. The results highlight the general importance of the culture medium in the assembly of the cytoskeleton network and in viral gene delivery.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, University of Kuopio Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kinnunen K, Kalesnykas G, Mähönen AJ, Laidinen S, Holma L, Heikura T, Airenne K, Uusitalo H, Ylä-Herttuala S. Baculovirus is an efficient vector for the transduction of the eye: comparison of baculovirus- and adenovirus-mediated intravitreal vascular endothelial growth factor D gene transfer in the rabbit eye. J Gene Med 2009; 11:382-9. [PMID: 19263462 DOI: 10.1002/jgm.1311] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The present study aimed to determine the efficiency and safety of baculovirus-mediated intravitreal gene transfer in rabbit eye and to compare its efficiency with adenovirus. We also studied how an intravitreal injection of vectors producing vascular endothelial growth factor D (VEGF-D) impacts the vasculature of rabbit eye. METHODS Baculoviral (BacVEGF-D) or adenoviral VEGF-D (AdVEGF-D) were administered intravitreally into the right eye at different doses (10(8), 10(9) and 10(10) IU/ml) to 24 animals. Left eyes were injected with control viruses. To determine how long transgene expression lasted, we injected BacVEGF-D or BacLacZ to the vitreous humour of 11 animals and followed them for 4 weeks. Vitreous samples were taken after sacrifice for enzyme-linked immunosorbent assays and eyes were removed and fixed for histological analyses. RESULTS Both baculoviruses and adenoviruses caused efficient expression of VEGF-D in the rabbit eyes. BacVEGF-D caused a dose-dependent vascular leakage and a moderate dilation of the capillaries. The highest effect was seen 6 days after gene transfer and was detectable for 2 weeks. Intravitreal injection of baculovirus caused expression of VEGF-D in the inner retina, photoreceptor cells and in retinal pigment epithelium cells, whereas adenovirus-mediated VEGF-D expression was detected in the nerve fiber layer and ganglion cell layer. Baculovirus caused a transient inflammation similar to adenoviruses. CONCLUSIONS The study suggests that baculoviruses are efficient vectors for ocular gene transfer, especially if deeper retinal layers need to be transduced. In addition, intravitreal VEGF-D gene transfer caused blood-retina barrier breakdown but not neovessel formation in the rabbit eye.
Collapse
Affiliation(s)
- Kati Kinnunen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute, University of Kuopio, Kuopio, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Kärkkäinen HR, Lesch HP, Määttä AI, Toivanen PI, Mähönen AJ, Roschier MM, Airenne KJ, Laitinen OH, Ylä-Herttuala S. A 96-well format for a high-throughput baculovirus generation, fast titering and recombinant protein production in insect and mammalian cells. BMC Res Notes 2009; 2:63. [PMID: 19389242 PMCID: PMC2680411 DOI: 10.1186/1756-0500-2-63] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Accepted: 04/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Baculovirus expression vector system (BEVS) has become a standard in recombinant protein production and virus-like particle preparation for numerous applications. Findings We describe here protocols which adapt baculovirus generation into 96-well format. Conclusion The established methodology allows simple baculovirus generation, fast virus titering within 18 h and efficient recombinant protein production in a high-throughput format. Furthermore, the produced baculovirus vectors are compatible with gene expression in vertebrate cells in vitro and in vivo.
Collapse
Affiliation(s)
- Hanna-Riikka Kärkkäinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Toivanen PI, Nieminen T, Viitanen L, Alitalo A, Roschier M, Jauhiainen S, Markkanen JE, Laitinen OH, Airenne TT, Salminen TA, Johnson MS, Airenne KJ, Ylä-Herttuala S. Novel vascular endothelial growth factor D variants with increased biological activity. J Biol Chem 2009; 284:16037-48. [PMID: 19366703 DOI: 10.1074/jbc.m109.001123] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Members of the vascular endothelial growth factor (VEGF) family play a pivotal role in angiogenesis and lymphangiogenesis. They are potential therapeutics to induce blood vessel formation in myocardium and skeletal muscle, when normal blood flow is compromised. Most members of the VEGF/platelet derived growth factor protein superfamily exist as covalently bound antiparallel dimers. However, the mature form of VEGF-D (VEGF-D(DeltaNDeltaC)) is predominantly a non-covalent dimer even though the cysteine residues (Cys-44 and Cys-53) forming the intersubunit disulfide bridges in the other members of the VEGF family are also conserved in VEGF-D. Moreover, VEGF-D bears an additional cysteine residue (Cys-25) at the subunit interface. Guided by our model of VEGF-D(DeltaNDeltaC), the cysteines at the subunit interface were mutated to study the effect of these residues on the structural and functional properties of VEGF-D(DeltaNDeltaC). The conserved cysteines Cys-44 and Cys-53 were found to be essential for the function of VEGF-D(DeltaNDeltaC). More importantly, the substitution of the Cys-25 at the dimer interface by various amino acids improved the activity of the recombinant VEGF-D(DeltaNDeltaC) and increased the dimer to monomer ratio. Specifically, substitutions to hydrophobic amino acids Ile, Leu, and Val, equivalent to those found in other VEGFs, most favorably affected the activity of the recombinant VEGF-D(DeltaNDeltaC). The increased activity of these mutants was mainly due to stabilization of the protein. This study enables us to better understand the structural determinants controlling the biological activity of VEGF-D. The novel variants of VEGF-D(DeltaNDeltaC) described here are potential agents for therapeutic applications, where induction of vascular formation is required.
Collapse
Affiliation(s)
- Pyry I Toivanen
- Department of Biotechnology and Molecular Medicine, A. I. Virtanen Institute for Molecular Sciences, FI-70211 Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Airenne KJ, Laitinen OH, Mähönen AJ, Ylä-Herttuala S. Preparation of recombinant baculoviruses with the BVboost system. Cold Spring Harb Protoc 2009; 2009:pdb.prot5181. [PMID: 20147116 DOI: 10.1101/pdb.prot5181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
INTRODUCTIONWe have developed an improved transposition-based system (BVboost) for the generation of recombinant baculoviruses. This system bypasses the disadvantages of the original transposition-based generation of baculoviral genomes in Escherichia coli while remaining a simple, rapid, and convenient viral production technique. The method is based on the modified donor vector (pBVboost) and an improved selection scheme of the baculoviral genomes (bacmids) in E. coli with a mutated sacB gene. Recombinant bacmids can be generated at a frequency of ~107/μg of donor vector with a negligible background. The BVboost system also allows efficient setups for high-throughput screening and gene expression purposes. After cloning the desired gene/cDNA/library into a BVboost system-compatible donor plasmid, the recombinant baculoviral genome is prepared simply by transforming electrocompetent DH10BacΔTn7 E. coli cells with the donor. Transfer from the donor vector into the baculoviral genome (bacmid) occurs via a Tn7-mediated site-specific transposition reaction in E. coli cells. The selection scheme guarantees that virtually all colonies are correct. The recombinant baculoviral genome is subsequently extracted from E. coli culture using a modified isolation procedure for large plasmids. To generate the recombinant viruses, insect cells are transfected with the isolated recombinant bacmid. This protocol provides instructions on how to prepare recombinant baculoviruses by the BVboost system in order to express the desired gene(s) in insect and/or vertebrate cells.
Collapse
|
31
|
Määttä JAE, Airenne TT, Nordlund HR, Jänis J, Paldanius TA, Vainiotalo P, Johnson MS, Kulomaa MS, Hytönen VP. Rational Modification of Ligand-Binding Preference of Avidin by Circular Permutation and Mutagenesis. Chembiochem 2008; 9:1124-35. [DOI: 10.1002/cbic.200700671] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
32
|
Moschos SA, Jones SW, Perry MM, Williams AE, Erjefalt JS, Turner JJ, Barnes PJ, Sproat BS, Gait MJ, Lindsay MA. Lung delivery studies using siRNA conjugated to TAT(48-60) and penetratin reveal peptide induced reduction in gene expression and induction of innate immunity. Bioconjug Chem 2007; 18:1450-9. [PMID: 17711319 PMCID: PMC2621305 DOI: 10.1021/bc070077d] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The therapeutic application of siRNA shows promise as an alternative approach to small-molecule inhibitors for the treatment of human disease. However, the major obstacle to its use has been the difficulty in delivering these large anionic molecules in vivo. In this study, we have investigated whether siRNA-mediated knockdown of p38 MAP kinase mRNA in mouse lung is influenced by conjugation to the nonviral delivery vector cholesterol and the cell penetrating peptides (CPP) TAT(48-60) and penetratin. Initial studies in the mouse fibroblast L929 cell line showed that siRNA conjugated to cholesterol, TAT(48-60), and penetratin, but not siRNA alone, achieved a limited reduction of p38 MAP kinase mRNA expression. Intratracheal administration of siRNA resulted in localization within macrophages and scattered epithelial cells and produced a 30-45% knockdown of p38 MAP kinase mRNA at 6 h. As with increasing doses of siRNA, conjugation to cholesterol improved upon the duration but not the magnitude of mRNA knockdown, while penetratin and TAT(48-60) had no effect. Importantly, administration of the penetratin or TAT(48-60) peptides alone caused significant reduction in p38 MAP kinase mRNA expression, while the penetratin-siRNA conjugate activated the innate immune response. Overall, these studies suggest that conjugation to cholesterol may extend but not increase siRNA-mediated p38 MAP kinase mRNA knockdown in the lung. Furthermore, the use of CPP may be limited due to as yet uncharacterized effects upon gene expression and a potential for immune activation.
Collapse
Affiliation(s)
- Sterghios Athanasios Moschos
- Biopharmaceutics Research Group, Airways Disease, National Heart and Lung Institute, Imperial College, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fraley AW, Pons B, Dalkara D, Nullans G, Behr JP, Zuber G. Cationic oligonucleotide-peptide conjugates with aggregating properties enter efficiently into cells while maintaining hybridization properties and enzymatic recognition. J Am Chem Soc 2007; 128:10763-71. [PMID: 16910671 DOI: 10.1021/ja060873e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligonucleotide delivery is a crucial issue for therapeutical purposes and is often addressed by conjugation to short cationic peptides although with controversial results. To further examine this mechanism, a 15-mer anionic oligonucleotide was conjugated to a cationic peptide in order to obtain a diblock compound with an overall positive charge with aggregation properties. These microaggregates were efficiently internalized in cells via the expeditious pathway used by commercial gene delivery systems. Moreover, stability of the duplex formed with the complementary sequence increased without inhibiting oligonucleotide enzyme recognition as shown by the properties of the conjugate to prime chain elongation by Taq DNA polymerase in a linear amplification/sequencing process.
Collapse
Affiliation(s)
- Andrew W Fraley
- Université Louis Pasteur de Strasbourg, Laboratoire de Chimie Génétique associé au CNRS, Faculté de Pharmacie, BP 60024, 67401 Illkirch, France
| | | | | | | | | | | |
Collapse
|
34
|
Mähönen AJ, Airenne KJ, Purola S, Peltomaa E, Kaikkonen MU, Riekkinen MS, Heikura T, Kinnunen K, Roschier MM, Wirth T, Ylä-Herttuala S. Post-transcriptional regulatory element boosts baculovirus-mediated gene expression in vertebrate cells. J Biotechnol 2007; 131:1-8. [PMID: 17617485 DOI: 10.1016/j.jbiotec.2007.05.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 05/09/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
Baculoviruses can express transgenes in a wide range of vertebrate cells. However, in some cells transgene expression is weak. To enhance transgene expression, we studied the effect of the Woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) on baculovirus (BV)-mediated gene expression of several transgenes. A significant increase in BV-mediated gene expression was detected in several cell lines. A 10-fold increase in transgene expression was observed with the WPRE as determined by the percentage of positive cells and mean fluorescence intensity (MFI). Furthermore, a combination of optimized cell culture medium and WPRE virus led to more than a 60-fold increase in gene expression. In accordance, elevated mRNA and protein levels were detected in WPRE-virus transduced cells. In HepG2 and RaaSMC, WPRE-mediated enhancement was comparable to the previously shown positive effect of sodium butyrate on BV-mediated gene expression. Thus, inclusion of the WPRE into a baculovirus vector provides a simple means to improve BV-mediated gene expression in vertebrate cells.
Collapse
Affiliation(s)
- Anssi J Mähönen
- A.I. Virtanen Institute, Department of Biotechnology and Molecular Medicine, Kuopio, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Structure and characterization of a novel chicken biotin-binding protein A (BBP-A). BMC STRUCTURAL BIOLOGY 2007; 7:8. [PMID: 17343730 PMCID: PMC1831776 DOI: 10.1186/1472-6807-7-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Accepted: 03/07/2007] [Indexed: 11/30/2022]
Abstract
Background The chicken genome contains a BBP-A gene showing similar characteristics to avidin family genes. In a previous study we reported that the BBP-A gene may encode a biotin-binding protein due to the high sequence similarity with chicken avidin, especially at regions encoding residues known to be located at the ligand-binding site of avidin. Results Here, we expand the repertoire of known macromolecular biotin binders by reporting a novel biotin-binding protein A (BBP-A) from chicken. The BBP-A recombinant protein was expressed using two different expression systems and purified with affinity chromatography, biochemically characterized and two X-ray structures were solved – in complex with D-biotin (BTN) and in complex with D-biotin D-sulfoxide (BSO). The BBP-A protein binds free biotin with high, "streptavidin-like" affinity (Kd ~ 10-13 M), which is about 50 times lower than that of chicken avidin. Surprisingly, the affinity of BBP-A for BSO is even higher than the affinity for BTN. Furthermore, the solved structures of the BBP-A – BTN and BBP-A – BSO complexes, which share the fold with the members of the avidin and lipocalin protein families, are extremely similar to each other. Conclusion BBP-A is an avidin-like protein having a β-barrel fold and high affinity towards BTN. However, BBP-A differs from the other known members of the avidin protein family in thermal stability and immunological properties. BBP-A also has a unique ligand-binding property, the ability to bind BTN and BSO at comparable affinities. BBP-A may have use as a novel material in, e.g. modern bio(nano)technological applications.
Collapse
|
36
|
Tuukkanen S, Toppari JJ, Kuzyk A, Hirviniemi L, Hytönen VP, Ihalainen T, Törmä P. Carbon nanotubes as electrodes for dielectrophoresis of DNA. NANO LETTERS 2006; 6:1339-43. [PMID: 16834407 DOI: 10.1021/nl060771m] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Dielectrophoresis can potentially be used as an efficient trapping tool in the fabrication of molecular devices. For nanoscale objects, however, the Brownian motion poses a challenge. We show that the use of carbon nanotube electrodes makes it possible to apply relatively low trapping voltages and still achieve high enough field gradients for trapping nanoscale objects, e.g., single molecules. We compare the efficiency and other characteristics of dielectrophoresis between carbon nanotube electrodes and lithographically fabricated metallic electrodes, in the case of trapping nanoscale DNA molecules. The results are analyzed using finite element method simulations and reveal information about the frequency-dependent polarizability of DNA.
Collapse
Affiliation(s)
- Sampo Tuukkanen
- Nanoscience Center, Department of Physics, University of Jyväskylä, Finland
| | | | | | | | | | | | | |
Collapse
|
37
|
Prizant M, Eisenberg-Domovich Y, Hytönen VP, Kulomaa MS, Wilchek M, Bayer EA, Livnah O. Factors Dictating the Pseudocatalytic Efficiency of Avidins. J Mol Biol 2006; 358:754-63. [PMID: 16546211 DOI: 10.1016/j.jmb.2006.02.044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/13/2006] [Accepted: 02/15/2006] [Indexed: 11/16/2022]
Abstract
The hydrolysis of biotinyl p-nitrophenyl ester (BNP) by a series of avidin derivatives was examined. Surprisingly, a hyperthermostable avidin-related protein (AVR4) was shown to display extraordinary yet puzzling hydrolytic activity. In order to evaluate the molecular determinants that contribute to the reaction, the crystal structure of AVR4 was compared with those of avidin, streptavidin and key mutants of the two proteins in complex with biotinyl p-nitroanilide (BNA), the inert amide analogue of BNP. The structures revealed that a critical lysine residue contributes to the hydrolysis of BNP by avidin but has only a minor contribution to the AVR4-mediated reaction. Indeed, the respective rates of hydrolysis among the different avidins reflect several molecular parameters, including binding-site architecture, the availability of the ligand to solvent and the conformation of the ligand and consequent susceptibility to efficient nucleophilic attack. In avidin, the interaction of BNP with Lys111 and disorder of the L3,4 loop (and consequent solvent availability) together comprise the major driving force behind the hydrolysis, whereas in AVR4 the status of the ligand (the pseudo-substrate) is a major distinguishing feature. In the latter protein, a unique conformation of the L3,4 loop restrains the pseudo-substrate, thereby exposing the carbonyl carbon atom to nucleophilic attack. In addition, due to its conformation, the pseudo-substrate in the AVR4 complex cannot interact with the conserved lysine analogue (Lys109); instead, this function is superseded by polar interactions with Arg112. The results demonstrate that, in highly similar proteins, different residues can perform the same function and that subtle differences in the active-site architecture of such proteins can result in alternative modes of reaction.
Collapse
Affiliation(s)
- Maya Prizant
- Department of Biological Chemistry, The Institute of Life Sciences, The Wolfson Centre for Applied Structural Biology; The Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | | | | | | | | | | | | |
Collapse
|
38
|
Janout V, Jing B, Regen SL. Molecular umbrella-assisted transport of an oligonucleotide across cholesterol-rich phospholipid bilayers. J Am Chem Soc 2006; 127:15862-70. [PMID: 16277529 DOI: 10.1021/ja053930x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of molecular umbrella conjugates, derived from cholic acid, deoxycholic acid, spermidine, lysine, and 5-mercapto-2-nitrobenzoic acid, have been synthesized and found capable of transporting an attached 16-mer oligonucleotide (S-dT16) across liposomal membranes made from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidyldglycerol (POPG), and cholesterol [POPC/POPG/cholesterol (65/5/30; mol/mol/mol, v/v/v)] at 37 degrees C. Those molecular umbrellas containing four choloyl (or deoxycholoyl) groups resulted in significantly faster rates of transport as compared to those containing only two such moieties. A model that accounts for these membrane transport processes is proposed.
Collapse
Affiliation(s)
- Vaclav Janout
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, USA
| | | | | |
Collapse
|
39
|
Baculovirus as versatile vectors for protein expression in insect and mammalian cells. Nat Biotechnol 2005; 23:567-75. [PMID: 15877075 PMCID: PMC3610534 DOI: 10.1038/nbt1095] [Citation(s) in RCA: 683] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.
Collapse
|