1
|
Sitaram R, Sanchez-Corzo A, Vargas G, Cortese A, El-Deredy W, Jackson A, Fetz E. Mechanisms of brain self-regulation: psychological factors, mechanistic models and neural substrates. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230093. [PMID: 39428875 PMCID: PMC11491850 DOI: 10.1098/rstb.2023.0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/22/2024] [Accepted: 06/26/2024] [Indexed: 10/22/2024] Open
Abstract
While neurofeedback represents a promising tool for neuroscience and a brain self-regulation approach to psychological rehabilitation, the field faces several problems and challenges. Current research has shown great variability and even failure among human participants in learning to self-regulate target features of brain activity with neurofeedback. A better understanding of cognitive mechanisms, psychological factors and neural substrates underlying self-regulation might help improve neurofeedback's scientific and clinical practices. This article reviews the current understanding of the neural mechanisms of brain self-regulation by drawing on findings from human and animal studies in neurofeedback, brain-computer/machine interfaces and neuroprosthetics. In this article, we look closer at the following topics: cognitive processes and psychophysiological factors affecting self-regulation, theoretical models and neural substrates underlying self-regulation, and finally, we provide an outlook on the outstanding gaps in knowledge and technical challenges. This article is part of the theme issue 'Neurofeedback: new territories and neurocognitive mechanisms of endogenous neuromodulation'.
Collapse
Affiliation(s)
- Ranganatha Sitaram
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, Saint Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN38105, USA
| | - Andrea Sanchez-Corzo
- Multimodal Functional Brain Imaging and Neurorehabilitation Hub, Diagnostic Imaging Department, Saint Jude Children’s Research Hospital, 262 Danny Thomas Place Memphis, TN38105, USA
| | - Gabriela Vargas
- Institute of Biological and Medical Engineering, Pontificia Universidad Católica de Chile, Diagonal Paraguay 362, Santiago de Chile8330074, Chile
| | - Aurelio Cortese
- Department of Decoded Neurofeedback, ATR Computational Neuroscience Laboratories, Kyoto619-0288, Japan
| | - Wael El-Deredy
- Brain Dynamics Lab, Universidad de Valparaíso, Valparaiso, Chile
- ValgrAI: Valencian Graduate School and Research Network of Artificial Intelligence – University of Valencia, Spain, Spain
| | - Andrew Jackson
- Biosciences Institute, Newcastle University, NewcastleNE2 4HH, UK
| | - Eberhard Fetz
- Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
2
|
Badcock PB, Davey CG. Active Inference in Psychology and Psychiatry: Progress to Date? ENTROPY (BASEL, SWITZERLAND) 2024; 26:833. [PMID: 39451909 PMCID: PMC11507080 DOI: 10.3390/e26100833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024]
Abstract
The free energy principle is a formal theory of adaptive self-organising systems that emerged from statistical thermodynamics, machine learning and theoretical neuroscience and has since been translated into biologically plausible 'process theories' of cognition and behaviour, which fall under the banner of 'active inference'. Despite the promise this theory holds for theorising, research and practical applications in psychology and psychiatry, its impact on these disciplines has only now begun to bear fruit. The aim of this treatment is to consider the extent to which active inference has informed theoretical progress in psychology, before exploring its contributions to our understanding and treatment of psychopathology. Despite facing persistent translational obstacles, progress suggests that active inference has the potential to become a new paradigm that promises to unite psychology's subdisciplines, while readily incorporating the traditionally competing paradigms of evolutionary and developmental psychology. To date, however, progress towards this end has been slow. Meanwhile, the main outstanding question is whether this theory will make a positive difference through applications in clinical psychology, and its sister discipline of psychiatry.
Collapse
Affiliation(s)
- Paul B. Badcock
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC 3052, Australia
- Orygen, Melbourne, VIC 3052, Australia
| | - Christopher G. Davey
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC 3010, Australia;
| |
Collapse
|
3
|
Putica A, Agathos J. Reconceptualizing complex posttraumatic stress disorder: A predictive processing framework for mechanisms and intervention. Neurosci Biobehav Rev 2024; 164:105836. [PMID: 39084584 DOI: 10.1016/j.neubiorev.2024.105836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
In this article, we introduce a framework for interpreting Complex Posttraumatic Stress Disorder (C-PTSD) through predictive processing, a neuroscience concept explaining the brain's interpretation and prediction of sensory information. While closely related to PTSD, C-PTSD encompasses additional symptom clusters marked by disturbances in self-organization (DSO), such as negative self-concept, affect dysregulation, and relational difficulties, typically resulting from prolonged traumatic stressors. Our model leverages advances in computational psychiatry and neuroscience, offering a mechanistic explanation for these symptoms by illustrating how prolonged trauma disrupts the brain's predictive processing. Specifically, altered predictive mechanisms contribute to C-PTSD's symptomatology, focusing on DSO: (1) Negative self-concept emerges from maladaptive priors that bias perception towards self-criticism, misaligning expected and actual interoceptive states; (2) Misalignment between predicted and actual interoceptive signals leads to affect dysregulation, with sensitivity to bodily cues; and (3) Relationship challenges arise from skewed social prediction errors, fostering mistrust and withdrawal. This precision-focused approach sheds light on the dynamics underpinning C-PTSD and highlights potential intervention targets aimed at recalibrating the predictive processing system.
Collapse
Affiliation(s)
- Andrea Putica
- School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia.
| | - James Agathos
- Department of Psychiatry, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Fisher EL, Hohwy J. The Universal Optimism of the Self-Evidencing Mind. ENTROPY (BASEL, SWITZERLAND) 2024; 26:518. [PMID: 38920527 PMCID: PMC11202793 DOI: 10.3390/e26060518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
Karl Friston's free-energy principle casts agents as self-evidencing through active inference. This implies that decision-making, planning and information-seeking are, in a generic sense, 'wishful'. We take an interdisciplinary perspective on this perplexing aspect of the free-energy principle and unpack the epistemological implications of wishful thinking under the free-energy principle. We use this epistemic framing to discuss the emergence of biases for self-evidencing agents. In particular, we argue that this elucidates an optimism bias as a foundational tenet of self-evidencing. We allude to a historical precursor to some of these themes, interestingly found in Machiavelli's oeuvre, to contextualise the universal optimism of the free-energy principle.
Collapse
Affiliation(s)
| | - Jakob Hohwy
- Monash Centre for Consciousness and Contemplative Studies, Monash University, Melbourne, VIC 3800, Australia;
| |
Collapse
|
5
|
Negro N. (Dis)confirming theories of consciousness and their predictions: towards a Lakatosian consciousness science. Neurosci Conscious 2024; 2024:niae012. [PMID: 38495333 PMCID: PMC10944285 DOI: 10.1093/nc/niae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
The neuroscience of consciousness is undergoing a significant empirical acceleration thanks to several adversarial collaborations that intend to test different predictions of rival theories of consciousness. In this context, it is important to pair consciousness science with confirmation theory, the philosophical discipline that explores the interaction between evidence and hypotheses, in order to understand how exactly, and to what extent, specific experiments are challenging or validating theories of consciousness. In this paper, I examine this intricate relationship by adopting a Lakatosian lens. I propose that Lakatos' philosophy of science can aid consciousness scientists to better interpret adversarial collaborations in consciousness science and, more generally, to develop a confirmation-theoretic model of theory-appraisal in this field. I do so by suggesting that such a model be built upon three Lakatos-inspired criteria for assessing the relationship between empirical evidence and theoretical predictions: (i) the model should represent the 'distinction between prediction and accommodation'; (ii) the model should represent the 'structural relevance' of predictions; (iii) the model should represent the 'boldness' of the predictions. I argue that a Lakatosian model of theory-appraisal has both normative and descriptive virtues, and can move the debate forward by acknowledging that theory-appraisal needs to consider the diachronic development of theories, their logical structure, and their relationship with background beliefs and knowledge.
Collapse
Affiliation(s)
- Niccolò Negro
- School of Psychological Sciences, Tel Aviv University, Tel Aviv-Yafo 69978, Israel
| |
Collapse
|
6
|
Evers K, Farisco M, Pennartz CMA. Assessing the commensurability of theories of consciousness: On the usefulness of common denominators in differentiating, integrating and testing hypotheses. Conscious Cogn 2024; 119:103668. [PMID: 38417198 DOI: 10.1016/j.concog.2024.103668] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
How deep is the current diversity in the panoply of theories to define consciousness, and to what extent do these theories share common denominators? Here we first examine to what extent different theories are commensurable (or comparable) along particular dimensions. We posit logical (and, when applicable, empirical) commensurability as a necessary condition for identifying common denominators among different theories. By consequence, dimensions for inclusion in a set of logically and empirically commensurable theories of consciousness can be proposed. Next, we compare a limited subset of neuroscience-based theories in terms of commensurability. This analysis does not yield a denominator that might serve to define a minimally unifying model of consciousness. Theories that seem to be akin by one denominator can be remote by another. We suggest a methodology of comparing different theories via multiple probing questions, allowing to discern overall (dis)similarities between theories. Despite very different background definitions of consciousness, we conclude that, if attention is paid to the search for a common methological approach to brain-consciousness relationships, it should be possible in principle to overcome the current Babylonian confusion of tongues and eventually integrate and merge different theories.
Collapse
Affiliation(s)
- K Evers
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden.
| | - M Farisco
- Centre for Research Ethics and Bioethics, Uppsala University, Uppsala, Sweden; Bioethics Unit, Biogem, Molecular Biology and Molecular Genetics Research Institute, Ariano Irpino (AV), Italy
| | - C M A Pennartz
- Department of Cognitive and Systems Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherland; Research Priority Area, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Hu R, Li S, Yuan P, Wang Y, Jiang Y. Temporal integration by multi-level regularities fosters the emergence of dynamic conscious experience. Ann N Y Acad Sci 2024; 1533:156-168. [PMID: 38294967 DOI: 10.1111/nyas.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The relationship between integration and awareness is central to contemporary theories and research on consciousness. Here, we investigated whether and how information integration over time, by incorporating the underlying regularities, contributes to our awareness of the dynamic world. Using binocular rivalry, we demonstrated that structured visual streams, constituted by shape, motion, or idiom sequences containing perceptual- or semantic-level regularities, predominated over their nonstructured but otherwise matched counterparts in the competition for visual awareness. Despite the apparent resemblance, a substantial dissociation of the observed rivalry advantages emerged between perceptual- and semantic-level regularities. These effects stem from nonconscious and conscious temporal integration processes, respectively, with the former but not the latter being vulnerable to perturbations in the spatiotemporal integration window. These findings corroborate the essential role of structure-guided information integration in visual awareness and highlight a multi-level mechanism where temporal integration by perceptually and semantically defined regularities fosters the emergence of continuous conscious experience.
Collapse
Affiliation(s)
- Ruichen Hu
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Li
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Peijun Yuan
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ying Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Novicky F, Parr T, Friston K, Mirza MB, Sajid N. Bistable perception, precision and neuromodulation. Cereb Cortex 2024; 34:bhad401. [PMID: 37950879 PMCID: PMC10793076 DOI: 10.1093/cercor/bhad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/13/2023] Open
Abstract
Bistable perception follows from observing a static, ambiguous, (visual) stimulus with two possible interpretations. Here, we present an active (Bayesian) inference account of bistable perception and posit that perceptual transitions between different interpretations (i.e. inferences) of the same stimulus ensue from specific eye movements that shift the focus to a different visual feature. Formally, these inferences are a consequence of precision control that determines how confident beliefs are and change the frequency with which one can perceive-and alternate between-two distinct percepts. We hypothesized that there are multiple, but distinct, ways in which precision modulation can interact to give rise to a similar frequency of bistable perception. We validated this using numerical simulations of the Necker cube paradigm and demonstrate the multiple routes that underwrite the frequency of perceptual alternation. Our results provide an (enactive) computational account of the intricate precision balance underwriting bistable perception. Importantly, these precision parameters can be considered the computational homologs of particular neurotransmitters-i.e. acetylcholine, noradrenaline, dopamine-that have been previously implicated in controlling bistable perception, providing a computational link between the neurochemistry and perception.
Collapse
Affiliation(s)
- Filip Novicky
- Department of Neurophysics, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, Netherlands
- Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 406229 ER, Maastricht, Netherlands
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| | - Muammer Berk Mirza
- Department of Psychology, University of Cambridge, Downing Pl, Cambridge CB2 3EB, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, UCL, 12 Queen Square London WC1N 3AR, United Kingdom
| |
Collapse
|
9
|
He BJ. Towards a pluralistic neurobiological understanding of consciousness. Trends Cogn Sci 2023; 27:420-432. [PMID: 36842851 PMCID: PMC10101889 DOI: 10.1016/j.tics.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/27/2023]
Abstract
Theories of consciousness are often based on the assumption that a single, unified neurobiological account will explain different types of conscious awareness. However, recent findings show that, even within a single modality such as conscious visual perception, the anatomical location, timing, and information flow of neural activity related to conscious awareness vary depending on both external and internal factors. This suggests that the search for generic neural correlates of consciousness may not be fruitful. I argue that consciousness science requires a more pluralistic approach and propose a new framework: joint determinant theory (JDT). This theory may be capable of accommodating different brain circuit mechanisms for conscious contents as varied as percepts, wills, memories, emotions, and thoughts, as well as their integrated experience.
Collapse
Affiliation(s)
- Biyu J He
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience and Physiology, Radiology, New York University Grossman School of Medicine, New York, NY 10016.
| |
Collapse
|
10
|
Zajzon B, Dahmen D, Morrison A, Duarte R. Signal denoising through topographic modularity of neural circuits. eLife 2023; 12:77009. [PMID: 36700545 PMCID: PMC9981157 DOI: 10.7554/elife.77009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/25/2023] [Indexed: 01/27/2023] Open
Abstract
Information from the sensory periphery is conveyed to the cortex via structured projection pathways that spatially segregate stimulus features, providing a robust and efficient encoding strategy. Beyond sensory encoding, this prominent anatomical feature extends throughout the neocortex. However, the extent to which it influences cortical processing is unclear. In this study, we combine cortical circuit modeling with network theory to demonstrate that the sharpness of topographic projections acts as a bifurcation parameter, controlling the macroscopic dynamics and representational precision across a modular network. By shifting the balance of excitation and inhibition, topographic modularity gradually increases task performance and improves the signal-to-noise ratio across the system. We demonstrate that in biologically constrained networks, such a denoising behavior is contingent on recurrent inhibition. We show that this is a robust and generic structural feature that enables a broad range of behaviorally relevant operating regimes, and provide an in-depth theoretical analysis unraveling the dynamical principles underlying the mechanism.
Collapse
Affiliation(s)
- Barna Zajzon
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research CentreJülichGermany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachenGermany
| | - David Dahmen
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research CentreJülichGermany
| | - Abigail Morrison
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research CentreJülichGermany
- Department of Computer Science 3 - Software Engineering, RWTH Aachen UniversityAachenGermany
| | - Renato Duarte
- Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA-BRAIN Institute I, Jülich Research CentreJülichGermany
- Donders Institute for Brain, Cognition and Behavior, Radboud University NijmegenNijmegenNetherlands
| |
Collapse
|
11
|
Safron A. Integrated world modeling theory expanded: Implications for the future of consciousness. Front Comput Neurosci 2022; 16:642397. [PMID: 36507308 PMCID: PMC9730424 DOI: 10.3389/fncom.2022.642397] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/24/2022] [Indexed: 11/27/2022] Open
Abstract
Integrated world modeling theory (IWMT) is a synthetic theory of consciousness that uses the free energy principle and active inference (FEP-AI) framework to combine insights from integrated information theory (IIT) and global neuronal workspace theory (GNWT). Here, I first review philosophical principles and neural systems contributing to IWMT's integrative perspective. I then go on to describe predictive processing models of brains and their connections to machine learning architectures, with particular emphasis on autoencoders (perceptual and active inference), turbo-codes (establishment of shared latent spaces for multi-modal integration and inferential synergy), and graph neural networks (spatial and somatic modeling and control). Future directions for IIT and GNWT are considered by exploring ways in which modules and workspaces may be evaluated as both complexes of integrated information and arenas for iterated Bayesian model selection. Based on these considerations, I suggest novel ways in which integrated information might be estimated using concepts from probabilistic graphical models, flow networks, and game theory. Mechanistic and computational principles are also considered with respect to the ongoing debate between IIT and GNWT regarding the physical substrates of different kinds of conscious and unconscious phenomena. I further explore how these ideas might relate to the "Bayesian blur problem," or how it is that a seemingly discrete experience can be generated from probabilistic modeling, with some consideration of analogies from quantum mechanics as potentially revealing different varieties of inferential dynamics. I go on to describe potential means of addressing critiques of causal structure theories based on network unfolding, and the seeming absurdity of conscious expander graphs (without cybernetic symbol grounding). Finally, I discuss future directions for work centered on attentional selection and the evolutionary origins of consciousness as facilitated "unlimited associative learning." While not quite solving the Hard problem, this article expands on IWMT as a unifying model of consciousness and the potential future evolution of minds.
Collapse
Affiliation(s)
- Adam Safron
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Center for Psychedelic and Consciousness Research, Baltimore, MD, United States
- Cognitive Science Program, Indiana University, Bloomington, IN, United States
- Institute for Advanced Consciousness Studies (IACS), Santa Monica, CA, United States
| |
Collapse
|
12
|
Li C, Kovács G. The effect of short-term training on repetition probability effects for non-face objects. Biol Psychol 2022; 175:108452. [DOI: 10.1016/j.biopsycho.2022.108452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
13
|
Safavi S, Dayan P. Multistability, perceptual value, and internal foraging. Neuron 2022; 110:3076-3090. [PMID: 36041434 DOI: 10.1016/j.neuron.2022.07.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/03/2022] [Accepted: 07/25/2022] [Indexed: 11/19/2022]
Abstract
Substantial experimental, theoretical, and computational insights into sensory processing have been derived from the phenomena of perceptual multistability-when two or more percepts alternate or switch in response to a single sensory input. Here, we review a range of findings suggesting that alternations can be seen as internal choices by the brain responding to values. We discuss how elements of external, experimenter-controlled values and internal, uncertainty- and aesthetics-dependent values influence multistability. We then consider the implications for the involvement in switching of regions, such as the anterior cingulate cortex, which are more conventionally tied to value-dependent operations such as cognitive control and foraging.
Collapse
Affiliation(s)
- Shervin Safavi
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| | - Peter Dayan
- University of Tübingen, Tübingen, Germany; Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
14
|
Anil Meera A, Novicky F, Parr T, Friston K, Lanillos P, Sajid N. Reclaiming saliency: Rhythmic precision-modulated action and perception. Front Neurorobot 2022; 16:896229. [PMID: 35966370 PMCID: PMC9368584 DOI: 10.3389/fnbot.2022.896229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Computational models of visual attention in artificial intelligence and robotics have been inspired by the concept of a saliency map. These models account for the mutual information between the (current) visual information and its estimated causes. However, they fail to consider the circular causality between perception and action. In other words, they do not consider where to sample next, given current beliefs. Here, we reclaim salience as an active inference process that relies on two basic principles: uncertainty minimization and rhythmic scheduling. For this, we make a distinction between attention and salience. Briefly, we associate attention with precision control, i.e., the confidence with which beliefs can be updated given sampled sensory data, and salience with uncertainty minimization that underwrites the selection of future sensory data. Using this, we propose a new account of attention based on rhythmic precision-modulation and discuss its potential in robotics, providing numerical experiments that showcase its advantages for state and noise estimation, system identification and action selection for informative path planning.
Collapse
Affiliation(s)
- Ajith Anil Meera
- Department of Cognitive Robotics, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Ajith Anil Meera
| | - Filip Novicky
- Department of Neurophysiology, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
- Filip Novicky
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Pablo Lanillos
- Department of Artificial Intelligence, Donders Institute for Brain Cognition and Behavior, Radboud University, Nijmegen, Netherlands
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| |
Collapse
|
15
|
Pennartz CMA. What is neurorepresentationalism? From neural activity and predictive processing to multi-level representations and consciousness. Behav Brain Res 2022; 432:113969. [PMID: 35718232 DOI: 10.1016/j.bbr.2022.113969] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/02/2022]
Abstract
This review provides an update on Neurorepresentationalism, a theoretical framework that defines conscious experience as multimodal, situational survey and explains its neural basis from brain systems constructing best-guess representations of sensations originating in our environment and body [1]. It posits that conscious experience is characterized by five essential hallmarks: (i) multimodal richness, (ii) situatedness and immersion, (iii) unity and integration, (iv) dynamics and stability, and (v) intentionality. Consciousness is furthermore proposed to have a biological function, framed by the contrast between reflexes and habits (not requiring consciousness) versus goal-directed, planned behavior (requiring multimodal, situational survey). Conscious experience is therefore understood as a sensorily rich, spatially encompassing representation of body and environment, while we nevertheless have the impression of experiencing external reality directly. Contributions to understanding neural mechanisms underlying consciousness are derived from models for predictive processing, which are trained in an unsupervised manner, do not necessarily require overt action, and have been extended to deep neural networks. Even with predictive processing in place, however, the question remains why this type of neural network activity would give rise to phenomenal experience. Here, I propose to tackle the Hard Problem with the concept of multi-level representations which emergently give rise to multimodal, spatially wide superinferences corresponding to phenomenal experiences. Finally, Neurorepresentationalism is compared to other neural theories of consciousness, and its implications for defining indicators of consciousness in animals, artificial intelligence devices and immobile or unresponsive patients with disorders of consciousness are discussed.
Collapse
Affiliation(s)
- Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, the Netherlands.
| |
Collapse
|
16
|
Lubianiker N, Paret C, Dayan P, Hendler T. Neurofeedback through the lens of reinforcement learning. Trends Neurosci 2022; 45:579-593. [PMID: 35550813 DOI: 10.1016/j.tins.2022.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Despite decades of experimental and clinical practice, the neuropsychological mechanisms underlying neurofeedback (NF) training remain obscure. NF is a unique form of reinforcement learning (RL) task, during which participants are provided with rewarding feedback regarding desired changes in neural patterns. However, key RL considerations - including choices during practice, prediction errors, credit-assignment problems, or the exploration-exploitation tradeoff - have infrequently been considered in the context of NF. We offer an RL-based framework for NF, describing different internal states, actions, and rewards in common NF protocols, thus fashioning new proposals for characterizing, predicting, and hastening the course of learning. In this way we hope to advance current understanding of neural regulation via NF, and ultimately to promote its effectiveness, personalization, and clinical utility.
Collapse
Affiliation(s)
- Nitzan Lubianiker
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - Christian Paret
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health Mannheim, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; University of Tübingen, Tübingen, Germany
| | - Talma Hendler
- School of Psychological Sciences, Gershon H. Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel; Sagol Brain Institute, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol school of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Abstract
Recent years have seen a blossoming of theories about the biological and physical basis of consciousness. Good theories guide empirical research, allowing us to interpret data, develop new experimental techniques and expand our capacity to manipulate the phenomenon of interest. Indeed, it is only when couched in terms of a theory that empirical discoveries can ultimately deliver a satisfying understanding of a phenomenon. However, in the case of consciousness, it is unclear how current theories relate to each other, or whether they can be empirically distinguished. To clarify this complicated landscape, we review four prominent theoretical approaches to consciousness: higher-order theories, global workspace theories, re-entry and predictive processing theories and integrated information theory. We describe the key characteristics of each approach by identifying which aspects of consciousness they propose to explain, what their neurobiological commitments are and what empirical data are adduced in their support. We consider how some prominent empirical debates might distinguish among these theories, and we outline three ways in which theories need to be developed to deliver a mature regimen of theory-testing in the neuroscience of consciousness. There are good reasons to think that the iterative development, testing and comparison of theories of consciousness will lead to a deeper understanding of this most profound of mysteries.
Collapse
|
18
|
Ramstead MJD, Seth AK, Hesp C, Sandved-Smith L, Mago J, Lifshitz M, Pagnoni G, Smith R, Dumas G, Lutz A, Friston K, Constant A. From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology. REVIEW OF PHILOSOPHY AND PSYCHOLOGY 2022; 13:829-857. [PMID: 35317021 PMCID: PMC8932094 DOI: 10.1007/s13164-021-00604-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/28/2021] [Indexed: 12/16/2022]
Abstract
This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience.
Collapse
Affiliation(s)
- Maxwell J. D. Ramstead
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- VERSES Research Lab and Spatial Web Foundation, Los Angeles, California USA
| | - Anil K. Seth
- School of Engineering and Informatics, University of Sussex, Brighton, BN1 9QJ UK
- Canadian Institute for Advanced Research (CIFAR), Program on Brain, Mind, and Consciousness, Toronto, Ontario, M5G 1M1 Canada
| | - Casper Hesp
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Department of Psychology, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Amsterdam Brain and Cognition Centre, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
- Institute for Advanced Study, University of Amsterdam, Oude Turfmarkt 147, 1012 GC Amsterdam, Netherlands
| | - Lars Sandved-Smith
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Jonas Mago
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Integrated Program in Neuroscience, Department of Neuroscience, McGill University, Montreal, Canada
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, Canada
| | - Michael Lifshitz
- Division of Social and Transcultural Psychiatry, McGill University, Montreal, Canada
- Lady Davis Institute for Medical Research, Montreal Jewish General Hospital, Montreal, Canada
| | - Giuseppe Pagnoni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Ryan Smith
- Laureate Institute for Brain Research, Tulsa, Oklahoma USA
| | - Guillaume Dumas
- CHU Sainte-Justine Research Center, Department of Psychiatry, University of Montreal, Montreal, Canada
- Mila – Quebec Artificial Intelligence Institute, University of Montreal, Montreal, Canada
| | - Antoine Lutz
- Lyon Neuroscience Research Centre, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- VERSES Research Lab and Spatial Web Foundation, Los Angeles, California USA
| | - Axel Constant
- Charles Perkins Centre, The University of Sydney, Sydney, Australia
| |
Collapse
|
19
|
Holmes E, Parr T, Griffiths TD, Friston KJ. Active inference, selective attention, and the cocktail party problem. Neurosci Biobehav Rev 2021; 131:1288-1304. [PMID: 34687699 DOI: 10.1016/j.neubiorev.2021.09.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/27/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
In this paper, we introduce a new generative model for an active inference account of preparatory and selective attention, in the context of a classic 'cocktail party' paradigm. In this setup, pairs of words are presented simultaneously to the left and right ears and an instructive spatial cue directs attention to the left or right. We use this generative model to test competing hypotheses about the way that human listeners direct preparatory and selective attention. We show that assigning low precision to words at attended-relative to unattended-locations can explain why a listener reports words from a competing sentence. Under this model, temporal changes in sensory precision were not needed to account for faster reaction times with longer cue-target intervals, but were necessary to explain ramping effects on event-related potentials (ERPs)-resembling the contingent negative variation (CNV)-during the preparatory interval. These simulations reveal that different processes are likely to underlie the improvement in reaction times and the ramping of ERPs that are associated with spatial cueing.
Collapse
Affiliation(s)
- Emma Holmes
- Department of Speech Hearing and Phonetic Sciences, UCL, London, WC1N 1PF, UK; Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK.
| | - Thomas Parr
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| | - Timothy D Griffiths
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK; Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, UK
| |
Collapse
|
20
|
Rorot W. Bayesian theories of consciousness: a review in search for a minimal unifying model. Neurosci Conscious 2021; 2021:niab038. [PMID: 34650816 PMCID: PMC8512254 DOI: 10.1093/nc/niab038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 11/30/2022] Open
Abstract
The goal of the paper is to review existing work on consciousness within the frameworks of Predictive Processing, Active Inference, and Free Energy Principle. The emphasis is put on the role played by the precision and complexity of the internal generative model. In the light of those proposals, these two properties appear to be the minimal necessary components for the emergence of conscious experience-a Minimal Unifying Model of consciousness.
Collapse
Affiliation(s)
- Wiktor Rorot
- Faculty of Philosophy and Faculty of Psychology, University of Warsaw, ul. Krakowskie Przedmieście 3, 00-927, Stawki 5/7, Warsaw 00-183, Poland
| |
Collapse
|
21
|
Abstract
Human social interactions depend on the ability to resolve uncertainty about the mental states of others. The context in which social interactions take place is crucial for mental state attribution as sensory inputs may be perceived differently depending on the context. In this paper, we introduce a mental state attribution task where a target-face with either an ambiguous or an unambiguous emotion is embedded in different social contexts. The social context is determined by the emotions conveyed by other faces in the scene. This task involves mental state attribution to a target-face (either happy or sad) depending on the social context. Using active inference models, we provide a proof of concept that an agent's perception of sensory stimuli may be altered by social context. We show with simulations that context congruency and facial expression coherency improve behavioural performance in terms of decision times. Furthermore, we show through simulations that the abnormal viewing strategies employed by patients with schizophrenia may be due to (i) an imbalance between the precisions of local and global features in the scene and (ii) a failure to modulate the sensory precision to contextualise emotions.
Collapse
|
22
|
Smith DH, Schillaci G. Why Build a Robot With Artificial Consciousness? How to Begin? A Cross-Disciplinary Dialogue on the Design and Implementation of a Synthetic Model of Consciousness. Front Psychol 2021; 12:530560. [PMID: 33967869 PMCID: PMC8096926 DOI: 10.3389/fpsyg.2021.530560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/12/2021] [Indexed: 11/25/2022] Open
Abstract
Creativity is intrinsic to Humanities and STEM disciplines. In the activities of artists and engineers, for example, an attempt is made to bring something new into the world through counterfactual thinking. However, creativity in these disciplines is distinguished by differences in motivations and constraints. For example, engineers typically direct their creativity toward building solutions to practical problems, whereas the outcomes of artistic creativity, which are largely useless to practical purposes, aspire to enrich the world aesthetically and conceptually. In this essay, an artist (DHS) and a roboticist (GS) engage in a cross-disciplinary conceptual analysis of the creative problem of artificial consciousness in a robot, expressing the counterfactual thinking necessitated by the problem, as well as disciplinary differences in motivations, constraints, and applications. We especially deal with the question of why one would build an artificial consciousness and we consider how an illusionist theory of consciousness alters prominent ethical debates on synthetic consciousness. We discuss theories of consciousness and their applicability to synthetic consciousness. We discuss practical approaches to implementing artificial consciousness in a robot and conclude by considering the role of creativity in the project of developing an artificial consciousness.
Collapse
Affiliation(s)
- David Harris Smith
- Communication Studies and Media Arts, McMaster University, Hamilton, ON, Canada
| | - Guido Schillaci
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Pisa, Italy.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
23
|
Parr T, Sajid N, Da Costa L, Mirza MB, Friston KJ. Generative Models for Active Vision. Front Neurorobot 2021; 15:651432. [PMID: 33927605 PMCID: PMC8076554 DOI: 10.3389/fnbot.2021.651432] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
The active visual system comprises the visual cortices, cerebral attention networks, and oculomotor system. While fascinating in its own right, it is also an important model for sensorimotor networks in general. A prominent approach to studying this system is active inference-which assumes the brain makes use of an internal (generative) model to predict proprioceptive and visual input. This approach treats action as ensuring sensations conform to predictions (i.e., by moving the eyes) and posits that visual percepts are the consequence of updating predictions to conform to sensations. Under active inference, the challenge is to identify the form of the generative model that makes these predictions-and thus directs behavior. In this paper, we provide an overview of the generative models that the brain must employ to engage in active vision. This means specifying the processes that explain retinal cell activity and proprioceptive information from oculomotor muscle fibers. In addition to the mechanics of the eyes and retina, these processes include our choices about where to move our eyes. These decisions rest upon beliefs about salient locations, or the potential for information gain and belief-updating. A key theme of this paper is the relationship between "looking" and "seeing" under the brain's implicit generative model of the visual world.
Collapse
Affiliation(s)
- Thomas Parr
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Noor Sajid
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| | - Lancelot Da Costa
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
- Department of Mathematics, Imperial College London, London, United Kingdom
| | - M. Berk Mirza
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Karl J. Friston
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
24
|
Feuerriegel D, Vogels R, Kovács G. Evaluating the evidence for expectation suppression in the visual system. Neurosci Biobehav Rev 2021; 126:368-381. [PMID: 33836212 DOI: 10.1016/j.neubiorev.2021.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/16/2021] [Accepted: 04/02/2021] [Indexed: 01/25/2023]
Abstract
Reports of expectation suppression have shaped the development of influential predictive coding-based theories of visual perception. However recent work has highlighted confounding factors that may mimic or inflate expectation suppression effects. In this review, we describe four confounds that are prevalent across experiments that tested for expectation suppression: effects of surprise, attention, stimulus repetition and adaptation, and stimulus novelty. With these confounds in mind we then critically review the evidence for expectation suppression across probabilistic cueing, statistical learning, oddball, action-outcome learning and apparent motion designs. We found evidence for expectation suppression within a specific subset of statistical learning designs that involved weeks of sequence learning prior to neural activity measurement. Across other experimental contexts, whereby stimulus appearance probabilities were learned within one or two testing sessions, there was inconsistent evidence for genuine expectation suppression. We discuss how an absence of expectation suppression could inform models of predictive processing, repetition suppression and perceptual decision-making. We also provide suggestions for designing experiments that may better test for expectation suppression in future work.
Collapse
Affiliation(s)
- Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Australia.
| | - Rufin Vogels
- Laboratorium voor Neuro- en Psychofysiologie, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Gyula Kovács
- Institute of Psychology, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
25
|
|
26
|
|
27
|
Be still my heart: Cardiac regulation as a mode of uncertainty reduction. Psychon Bull Rev 2021; 28:1211-1223. [PMID: 33755894 DOI: 10.3758/s13423-021-01888-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2021] [Indexed: 01/26/2023]
Abstract
Decreased heart rate (HR) and variability (HRV) are well-established correlates of attention; however, the functional significance of these dynamics remains unclear. Here, we investigate whether attention-related cardiac modulation is sensitive to different varieties of uncertainty. Thirty-nine adults performed a binocular rivalry-replay task in which changes in visual perception were driven either internally (in response to constant, conflicting stimuli; rivalry) or externally (in response to physically alternating stimuli; replay). Tonic HR and high-frequency HRV linearly decreased as participants progressed from resting-state baseline (minimal visual uncertainty) through replay (temporal uncertainty) to rivalry (temporal uncertainty and ambiguity). Time-resolved frequency estimates revealed that cardiac deceleration was sustained throughout the trial period and modulated by ambiguity, novelty, and switch rate. These findings suggest cardiac regulation during active attention may play an instrumental role in uncertainty reduction.
Collapse
|
28
|
The predictive global neuronal workspace: A formal active inference model of visual consciousness. Prog Neurobiol 2020; 199:101918. [PMID: 33039416 DOI: 10.1016/j.pneurobio.2020.101918] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/13/2020] [Accepted: 09/26/2020] [Indexed: 11/22/2022]
Abstract
The global neuronal workspace (GNW) model has inspired over two decades of hypothesis-driven research on the neural basis of consciousness. However, recent studies have reported findings that are at odds with empirical predictions of the model. Further, the macro-anatomical focus of current GNW research has limited the specificity of predictions afforded by the model. In this paper we present a neurocomputational model - based on Active Inference - that captures central architectural elements of the GNW and is able to address these limitations. The resulting 'predictive global workspace' casts neuronal dynamics as approximating Bayesian inference, allowing precise, testable predictions at both the behavioural and neural levels of description. We report simulations demonstrating the model's ability to reproduce: 1) the electrophysiological and behavioural results observed in previous studies of inattentional blindness; and 2) the previously introduced four-way taxonomy predicted by the GNW, which describes the relationship between consciousness, attention, and sensory signal strength. We then illustrate how our model can reconcile/explain (apparently) conflicting findings, extend the GNW taxonomy to include the influence of prior expectations, and inspire novel paradigms to test associated behavioural and neural predictions.
Collapse
|
29
|
Di Plinio S, Arnò S, Perrucci MG, Ebisch SJH. The evolving sense of agency: Context recency and quality modulate the interaction between prospective and retrospective processes. Conscious Cogn 2020; 80:102903. [PMID: 32145388 DOI: 10.1016/j.concog.2020.102903] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Humans acquire a sense of agency through their interactions with the world and their sensory consequences. Previous studies have highlighted stable agency-related phenomena like intentional binding, which depend on both prospective, context-dependent and retrospective, outcome-dependent processes. In the current study, we investigated the interaction between prospective and retrospective processes underlying the adaptation of an ongoing sense of agency. The results showed that prospective intentional binding developed during a temporal window of up to 20 prior events was independent of the nature of the ongoing event. By contrast, the characteristics of the ongoing event retrospectively influenced prospective intentional binding developed during a temporal window narrower than 6 prior events. These findings characterize the interaction between prospective and retrospective mechanisms as a fundamental process to continuously update the sense of agency through sensorimotor learning. High psychosis-like experience traits weakened this interaction, suggesting that reduced adaption to the context contributes to altered self-experience.
Collapse
Affiliation(s)
- Simone Di Plinio
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy.
| | - Simone Arnò
- Department of Psychological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies (ITAB), G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Sjoerd J H Ebisch
- Department of Neuroscience Imaging and Clinical Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies (ITAB), G d'Annunzio University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
30
|
Duquette P. More Than Words Can Say: A Multi-Disciplinary Consideration of the Psychotherapeutic Evaluation and Treatment of Alexithymia. Front Psychiatry 2020; 11:433. [PMID: 32523552 PMCID: PMC7261853 DOI: 10.3389/fpsyt.2020.00433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/28/2020] [Indexed: 11/13/2022] Open
Abstract
Alexithymia is a disorder that stands at the border of mind and body, with psychological/affective and physiological/experiential disturbances. The purpose of this article is to propose a new clinical access point for the evaluation and treatment of the deficits in emotional awareness demonstrated in alexithymia. This will be based on insights from recent neuroscientific research, which is adding to the psychodynamic understanding of alexithymia, regarding clinical presentation and etiology. Following a brief review of definitions, forms of measurement, and potential etiologic elements of alexithymia, current neuroscientific theory and research into "predictive processing" approaches to brain function will be outlined, including how "interoception" and "interoceptive inference" underpins emotion and emotional awareness. From this synergistic perspective, I will outline how interoceptive inference provides a key to the link between: problems in early life relational experiences and the patient's long held, but suboptimal models of their inner and outer world. This is reflected in the deficits in affective experiencing and emotional awareness described in alexithymia. Three clinical cases will be presented to illustrate this nuanced consideration of alexithymic etiology and treatment. The implications of the historical, psychological, and somatic aspects of experience will be considered, regarding the patients' diminished ability to: experience and represent emotional experience as distinct feeling states; signify the relevant meaning of affective experience; and incorporate such with cognitions to adaptively guide behavior. These will be addressed using psychometric, psychological, neuro-cognitive, and neurocomputational approaches. Elements from current theory, research, and treatment of alexithymia, will be highlighted that are salient to the clinician, in order to support their understanding of patients against the backdrop of current psychodynamic and neuroscientific research, which will thereby increase treatment options and benefits. The focus, and conclusion, of this article is the role that attention to interoception can play (within the safety of the therapeutic relationship and within any therapeutic process) in allowing updating of the patient's strongly held but dysfunctional beliefs.
Collapse
|