1
|
Chen L, Chen X, Cai G, Jiang H, Chen X, Zhang M. An inflammatory cytokine signature predicts IgA nephropathy severity and progression. MedComm (Beijing) 2024; 5:e783. [PMID: 39492831 PMCID: PMC11531656 DOI: 10.1002/mco2.783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 11/05/2024] Open
Abstract
IgA nephropathy (IgAN) is the most prevalent primary glomerulonephritis, resulting in end-stage renal disease and increased mortality rates. Prognostic biomarkers reflecting molecular mechanisms for effective IgAN management are urgently needed. Analysis of kidney single-cell transcriptomic sequencing data demonstrated that IgAN expressed high-expression levels of inflammatory cytokines TNFSF10, TNFSF12, CCL2, CXCL1, and CXCL12 than healthy controls (HCs). We also measured the urine proteins in 120 IgAN (57 stable and 63 progressive) and 32 HCs using the proximity extension assay (PEA), and the multivariable and least absolute shrinkage and selection operator (LASSO) logistic regression analysis both revealed that CXCL12, MCP1 were the prognostic significant variables to predict IgAN progression severity. These two proteins exhibited negative correlation with the estimated glomerular filtration rate (eGFR) and patients with higher expression levels of these two proteins had a higher probability to have poorer renal outcome. We further developed a risk index model utilizing CXCL12, MCP1, and baseline clinical indicators, which achieved an impressive area under the curve (AUC) of 0.896 for prediction of IgAN progression severity. Our study highlights the significance of the inflammatory protein biomarkers for noninvasive prediction of IgAN severity and progression, offering valuable insights for clinical management.
Collapse
Affiliation(s)
- Lei Chen
- Department of Critical Care Nephrology and Blood Purificationthe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xizhao Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purificationthe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xiangmei Chen
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney DiseasesBeijing Key Laboratory of Kidney Disease ResearchBeijingChina
| |
Collapse
|
2
|
Baeza C, Ribagorda M, Maya-Lopez C, Fresno M, Sanchez-Diaz T, Pintor-Chocano A, Sanz AB, Carrasco S, Ortiz A, Sanchez-Niño MD. NIK Is a Mediator of Inflammation and Intimal Hyperplasia in Endothelial Denudation-Induced Vascular Injury. Int J Mol Sci 2024; 25:11473. [PMID: 39519026 PMCID: PMC11546836 DOI: 10.3390/ijms252111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. NFκB is a key mediator of inflammation that is activated during neointimal hyperplasia following endothelial injury. However, the molecular mechanisms involved in NFκB activation are poorly understood. NFκB may be activated through canonical (transient) and non-canonical (persistent) pathways. NFκB-inducing kinase (NIK, MAP3K14) is the upstream kinase of the non-canonical pathway. We have now explored the impact of NIK deficiency on neointimal hyperplasia following guidewire-induced endothelial cell injury and on local inflammation by comparing NIK activity-deficient alymphoplasia mice (NIKaly/aly) with control wild-type (NIK+/+) mice. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the local expression of NIK and the NFκB target chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and chemokine ligand 5 (RANTES/CCL5). Immunohistochemistry disclosed the infiltration of the media and intima by F4/80 positive macrophages. The intima/media ratio and percentage of stenosis were milder in the NIKaly/aly than in the NIK+/+ mice. Additionally, the gene expression for MCP-1 and RANTES was lower and F4/80+ cell infiltration was milder in the NIKaly/aly than in the NIK+/+ mice. Finally, circulating MCP-1 levels were lower in the NIKaly/aly than in the NIK+/+ mice, reflecting milder systemic inflammation. In conclusion, NIK is a driver of vascular wall inflammation and stenosis following guidewire-induced endothelial cell injury. NIK targeting may be a novel therapeutic approach to limit arterial stenosis following endothelial cell injury.
Collapse
Affiliation(s)
- Ciro Baeza
- Department of Vascular Surgery, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Marta Ribagorda
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Carla Maya-Lopez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas de la Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| | - Tania Sanchez-Diaz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Ana B. Sanz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Susana Carrasco
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Alberto Ortiz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
3
|
Mao W, Xu K, Wang K, Zhang H, Ji J, Geng J, Sun S, Gu C, Bhattacharya A, Fang C, Tao T, Chen M, Wu J, Chen S, Sun C, Xu B. Single-cell RNA sequencing and spatial transcriptomics of bladder Ewing sarcoma. iScience 2024; 27:110921. [PMID: 39386756 PMCID: PMC11462044 DOI: 10.1016/j.isci.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/15/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Bladder Ewing sarcoma/primitive neuroectodermal tumor (bladder ES/PNET) is a rare and highly malignant tumor associated with a poor prognosis, yet its underlying mechanisms remain poorly understood. Here, we employed a combination of single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), and functional analyses to delve into the pathogenesis of bladder ES/PNET. The investigation revealed the presence of specialized types of epithelial cells (referred to as bladder ES-Epi) and mast cells (referred to as bladder ES-Mast) within bladder ES/PNET in comparison to urothelial carcinoma. Notably, TNFRSF12A exhibited significant upregulation in bladder ES/PNET. Furthermore, mast cells possessed the ability to activate epithelial cells through the TNFSF12-TNFRSF12A ligand-receptor signaling pattern. In addition, Enavatuzumab can significantly inhibit the migratory ability of the Ewing sarcoma cell line RD-ES. This groundbreaking study provides unprecedented mechanistic insights into the progression of bladder ES/PNET and introduces a potential therapeutic avenue for treating this challenging malignancy.
Collapse
Affiliation(s)
- Weipu Mao
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Kangjie Xu
- Central Laboratory Department, Binhai County People’s Hospital, Yancheng 224000, China
| | - Keyi Wang
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Houliang Zhang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jie Ji
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jiang Geng
- Department of Urology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
| | - Si Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chaoming Gu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Atrayee Bhattacharya
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cheng Fang
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Tao Tao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Ming Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Jianping Wu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Shuqiu Chen
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Chao Sun
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| | - Bin Xu
- Department of Urology, Affiliated Zhongda Hospital of Southeast University, Nanjing 210009, China
| |
Collapse
|
4
|
Villalvazo P, Villavicencio C, Gonzalez de Rivera M, Fernandez-Fernandez B, Ortiz A. Systems Biology and Novel Biomarkers for the Early Detection of Diabetic Kidney Disease. Nephron Clin Pract 2024:1-7. [PMID: 39074450 DOI: 10.1159/000540307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Diabetic kidney disease is the most common driver of chronic kidney disease (CKD)-associated mortality and kidney replacement therapy. Despite recent therapeutic advances (sodium glucose co-transporter 2 [SGLT2] inhibitors, finerenone), the residual kidney and mortality risk remains high for patients already diagnosed of having CKD (i.e., estimated glomerular filtration rate <60 mL/min/1.73 m2 or urinary albumin:creatinine ratio >30 mg/g). The challenge for the near future is to identify patients at higher risk of developing CKD to initiate therapy before CKD develops (primary prevention of CKD) and to identify patients with CKD and high risk of progression or death, in order to intensify therapy. We now discuss recent advances in biomarkers that may contribute to the identification of such high-risk individuals for clinical trials of novel primary prevention or treatment approaches for CKD. The most advanced biomarker from a clinical development point of view is the urinary peptidomics classifier CKD273, that integrates prognostic information from 273 urinary peptides and identifies high-risk individuals before CKD develops.
Collapse
Affiliation(s)
- Priscila Villalvazo
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Villavicencio
- Hospital General Regional 46 del Instituto Mexicano del Seguro Social, Universidad de Guadalajara, Guadalajara, Mexico
| | - Marina Gonzalez de Rivera
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Beatriz Fernandez-Fernandez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, Madrid, Spain
- RICORS2040, Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
5
|
Stefania K, Ashok KK, Geena PV, Katarina P, Isak D. TMAO enhances TNF-α mediated fibrosis and release of inflammatory mediators from renal fibroblasts. Sci Rep 2024; 14:9070. [PMID: 38643262 PMCID: PMC11032383 DOI: 10.1038/s41598-024-58084-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
Trimethylamine-N-oxide (TMAO) is a gut microbiota-derived metabolite and TNF-α is proinflammatory cytokine, both known to be associated with renal inflammation, fibrosis and chronic kidney disease. However, today there are no data showing the combined effect of TMAO and TNF-α on renal fibrosis-and inflammation. The aim of this study was to investigate whether TMAO can enhance the inflammatory and fibrotic effects of TNF-α on renal fibroblasts. We found that the combination of TNF-α and TMAO synergistically increased fibronectin release and total collagen production from renal fibroblasts. The combination of TMAO and TNF-α also promoted increased cell proliferation. Both renal proliferation and collagen production were mediated through Akt/mTOR/ERK signaling. We also found that TMAO enhanced TNF-α mediated renal inflammation by inducing the release of several cytokines (IL-6, LAP TGF-beta-1), chemokines (CXCL-6, MCP-3), inflammatory-and growth mediators (VEGFA, CD40, HGF) from renal fibroblasts. In conclusion, we showed that TMAO can enhance TNF-α mediated renal fibrosis and release of inflammatory mediators from renal fibroblasts in vitro. Our results can promote further research evaluating the combined effect of TMAO and inflammatory mediators on the development of kidney disease.
Collapse
Affiliation(s)
- Kapetanaki Stefania
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden.
- Nephrology Department, Karolinska University Hospital, 171 76, Solna, Sweden.
- Nephrology Department, Karolinska University Hospital, 141 86, Huddinge, Stockholm, Sweden.
| | - Kumawat Kumar Ashok
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| | | | - Persson Katarina
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| | - Demirel Isak
- School of Medical Sciences, Örebro University, Campus USÖ, 701 82, Örebro, Sweden
| |
Collapse
|
6
|
Moriano C, Bellido-Pastrana D, San Román Gutiérrez C, Rodríguez E. Evolution of diagnosis and treatment for lupus nephritis in Spain. Nefrologia 2023; 43:668-675. [PMID: 38246809 DOI: 10.1016/j.nefroe.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/28/2022] [Indexed: 01/23/2024] Open
Abstract
Lupus nephritis (LN) is a serious manifestation of systemic lupus erythematosus that can lead to end-stage renal disease. Many clinical and prognostic data on which our therapeutic decisions are based come from international cohorts, which have important ethnic and prognostic differences. To identify clinical and prognostic data from patients with LN in Spain, we undertook a bibliographic search of NL-related papers by Spanish authors and published in national and international journals between 2005 and 2022. According to the selected references, renal biopsy is not only essential for LN diagnosis but its repetition can be useful for the follow-up. Regarding LN treatment, standard strategy consists of an induction phase and a maintenance phase. However, as new drugs have been released, a new paradigm of treatment in a single, continuing and personalized phase has been proposed.
Collapse
Affiliation(s)
- Clara Moriano
- Servicio de Reumatología, Hospital Universitario de León, León, Spain
| | - David Bellido-Pastrana
- Servicio de Medicina Interna, Hospital General Universitario de Ciudad Real, Ciudad Real, Spain
| | | | - Eva Rodríguez
- Servicio de Nefrología, Hospital del Mar, Barcelona, Spain.
| |
Collapse
|
7
|
Nie H, Chang S, Li Y, Li F. Biomarkers Associated with Drugs for the Treatment of Lupus Nephritis. Biomolecules 2023; 13:1601. [PMID: 38002282 PMCID: PMC10669579 DOI: 10.3390/biom13111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/17/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
The constant updating of lupus drug treatment guidelines has led to a question. How can the efficacy of treatment be more effectively monitored? Systemic lupus erythematosus (SLE) is a complex autoimmune disease that often presents clinically with multi-organ involvement, and approximately 30% of patients with SLE develop lupus nephritis (LN). Therefore, it is important to better track disease progression and drug efficacy. Now, kidney biopsy is still the gold standard for diagnosing and guiding the treatment of LN, but it is invasive and expensive. If simple, non-invasive and effective biomarkers can be found, drug intervention and prognosis can be better monitored and targeted. In this review, we focus on LN and explore biomarkers related to LN therapeutics, providing clinicians with more possibilities to track the therapeutic effect of drugs, improve treatment options and assess patient outcomes.
Collapse
Affiliation(s)
- Huiyu Nie
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Siyuan Chang
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yuanyuan Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Fen Li
- Department of Rheumatology and Immunology, The Second Xiangya Hospital of Central South University, Changsha 410011, China
- Clinical Medical Research Center for Systemic Autoimmune Diseases in Hunan Province, Changsha 410011, China
| |
Collapse
|
8
|
Turkmen K, Baloglu I, Aykut T, Demir S, Altın E, Akguzel ZA, Kocabas M, Yerlikaya FH. The Relationship between Serum TWEAK Levels and Carotid Intima-media Thickness in Patients with Fabry Disease. SAUDI JOURNAL OF KIDNEY DISEASES AND TRANSPLANTATION 2023; 34:406-415. [PMID: 38995299 DOI: 10.4103/1319-2442.397202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Fabry disease (FD) is associated with inflammation, proteinuria, and chronic kidney disease. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) plays an important role in inflammation in diabetic nephropathy and lupus nephritis. Since there is a close relationship linking serum TWEAK (sTWEAK), inflammation, and carotid intima-media thickness (CIMT) in various kidney diseases, we aimed to determine the relationship between sTWEAK levels and CIMT in subjects with and without proteinuria in a cross-sectional study involving 15 FD patients (seven females, eight males) and seven healthy controls (four females, three males). There were no differences in age, sex, estimated glomerular filtration rate, and biochemical parameters (serum glucose, albumin, creatinine, uric acid, C-reactive protein (CRP), low-density lipoprotein, and high-density lipoprotein) between FD patients and healthy controls. The spot urine protein-creatinine ratios of healthy controls and FD patients were 90 mg/g and 185 mg/g, respectively (P = 0.022). STWEAK levels were higher in FD patients than in healthy controls (P = 0.007). The CIMT of FD patients and healthy controls was 0.55 ± 0.14 mm and 0.42 ± 0.04 mm, respectively (P = 0.007). STWEAK was positively correlated with CRP and CIMT, and negatively with proteinuria (P = 0.005, P = 0.013, and P = 0.018, respectively). In the multivariate analysis, only sTWEAK was an independent variable of increased CIMT. We demonstrated that sTWEAK and CIMT were increased in FD patients. STWEAK might have a role in the pathogenesis of subclinical atherosclerosis in FD.
Collapse
Affiliation(s)
- Kultigin Turkmen
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ismail Baloglu
- Department of Internal Medicine, Division of Nephrology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Talat Aykut
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Salih Demir
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Ebru Altın
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Zeynep Aybike Akguzel
- Department of Internal Medicine, Division of Internal Medicine, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Muhammet Kocabas
- Department of Internal Medicine, Division of Endocrinology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Fatma Humeyra Yerlikaya
- Department of Biochemistry, Necmettin Erbakan University, Meram School of Medicine, Konya, Turkey
| |
Collapse
|
9
|
Hirohama D, Abedini A, Moon S, Surapaneni A, Dillon ST, Vassalotti A, Liu H, Doke T, Martinez V, Md Dom Z, Karihaloo A, Palmer MB, Coresh J, Grams ME, Niewczas MA, Susztak K. Unbiased Human Kidney Tissue Proteomics Identifies Matrix Metalloproteinase 7 as a Kidney Disease Biomarker. J Am Soc Nephrol 2023; 34:1279-1291. [PMID: 37022120 PMCID: PMC10356165 DOI: 10.1681/asn.0000000000000141] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/10/2023] [Indexed: 04/07/2023] Open
Abstract
SIGNIFICANCE STATEMENT Although gene expression changes have been characterized in human diabetic kidney disease (DKD), unbiased tissue proteomics information for this condition is lacking. The authors conducted an unbiased aptamer-based proteomic analysis of samples from patients with DKD and healthy controls, identifying proteins with levels that associate with kidney function (eGFR) or fibrosis, after adjusting for key covariates. Overall, tissue gene expression only modestly correlated with tissue protein levels. Kidney protein and RNA levels of matrix metalloproteinase 7 (MMP7) strongly correlated with fibrosis and with eGFR. Single-cell RNA sequencing indicated that kidney tubule cells are an important source of MMP7. Furthermore, plasma MMP7 levels predicted future kidney function decline. These findings identify kidney tissue MMP7 as a biomarker of fibrosis and blood MMP7 as a biomarker for future kidney function decline. BACKGROUND Diabetic kidney disease (DKD) is responsible for close to half of all ESKD cases. Although unbiased gene expression changes have been extensively characterized in human kidney tissue samples, unbiased protein-level information is not available. METHODS We collected human kidney samples from 23 individuals with DKD and ten healthy controls, gathered associated clinical and demographics information, and implemented histologic analysis. We performed unbiased proteomics using the SomaScan platform and quantified the level of 1305 proteins and analyzed gene expression levels by bulk RNA and single-cell RNA sequencing (scRNA-seq). We validated protein levels in a separate cohort of kidney tissue samples as well as in 11,030 blood samples. RESULTS Globally, human kidney transcript and protein levels showed only modest correlation. Our analysis identified 14 proteins with kidney tissue levels that correlated with eGFR and found that the levels of 152 proteins correlated with interstitial fibrosis. Of the identified proteins, matrix metalloprotease 7 (MMP7) showed the strongest association with both fibrosis and eGFR. The correlation between tissue MMP7 protein expression and kidney function was validated in external datasets. The levels of MMP7 RNA correlated with fibrosis in the primary and validation datasets. Findings from scRNA-seq pointed to proximal tubules, connecting tubules, and principal cells as likely cellular sources of increased tissue MMP7 expression. Furthermore, plasma MMP7 levels correlated not only with kidney function but also associated with prospective kidney function decline. CONCLUSIONS Our findings, which underscore the value of human kidney tissue proteomics analysis, identify kidney tissue MMP7 as a diagnostic marker of kidney fibrosis and blood MMP7 as a biomarker for future kidney function decline.
Collapse
Affiliation(s)
- Daigoro Hirohama
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amin Abedini
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Salina Moon
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Simon T. Dillon
- Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Allison Vassalotti
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- School of Medicine, Tulane University, New Orleans, Louisiana
| | - Hongbo Liu
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tomohito Doke
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victor Martinez
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zaipul Md Dom
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Anil Karihaloo
- Novo Nordisk Research Center Seattle Inc., Seattle, Washington
| | - Matthew B. Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, New York University, New York, New York
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Division of Precision Medicine, Department of Medicine, New York University, New York, New York
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Katalin Susztak
- Renal Electrolyte and Hypertension Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Institute of Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
10
|
Cuarental L, Ribagorda M, Ceballos MI, Pintor-Chocano A, Carriazo SM, Dopazo A, Vazquez E, Suarez-Alvarez B, Cannata-Ortiz P, Sanz AB, Ortiz A, Sanchez-Niño MD. The transcription factor Fosl1 preserves Klotho expression and protects from acute kidney injury. Kidney Int 2023; 103:686-701. [PMID: 36565807 DOI: 10.1016/j.kint.2022.11.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/02/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Increased expression of AP-1 transcription factor components has been reported in acute kidney injury (AKI). However, the role of specific components, such as Fosl1, in tubular cells or AKI is unknown. Upstream regulator analysis of murine nephrotoxic AKI transcriptomics identified AP-1 as highly upregulated. Among AP-1 canonical components, Fosl1 was found to be upregulated in two transcriptomics datasets from nephrotoxic murine AKI induced by folic acid or cisplatin and from proximal tubular cells exposed to TWEAK, a cytokine mediator of AKI. Fosl1 was minimally expressed in the kidneys of control uninjured mice. Increased Fosl1 protein was localized to proximal tubular cell nuclei in AKI. In human AKI, FOSL1 was found present in proximal tubular cells in kidney sections and in urine along with increased urinary FOSL1 mRNA. Selective Fosl1 deficiency in proximal tubular cells (Fosl1Δtub) increased the severity of murine cisplatin- or folate-induced AKI as characterized by lower kidney function, more severe kidney inflammation and Klotho downregulation. Indeed, elevated AP-1 activity was observed after cisplatin-induced AKI in Fosl1Δtub mice compared to wild-type mice. More severe Klotho downregulation preceded more severe kidney dysfunction. The Klotho promoter was enriched in Fosl1 binding sites and Fosl1 bound to the Klotho promoter in cisplatin-AKI. In cultured proximal tubular cells, Fosl1 targeting increased the proinflammatory response and downregulated Klotho. In vivo, recombinant Klotho administration protected Fosl1Δtub mice from cisplatin-AKI. Thus, increased proximal tubular Fosl1 expression during AKI is an adaptive response, preserves Klotho, and limits the severity of tubular cell injury and AKI.
Collapse
Affiliation(s)
- Leticia Cuarental
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Marta Ribagorda
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Maria I Ceballos
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Sol M Carriazo
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Ana Dopazo
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Enrique Vazquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Beatriz Suarez-Alvarez
- Translational Immunology, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, IIS-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Ana B Sanz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain
| | - Alberto Ortiz
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Maria D Sanchez-Niño
- Department of Nephrology and Hypertension, Instituto de Investigacion Sanitaria Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain; RICORS2040 (Redes de Investigación Cooperativa Orientadas a Resultados en Salud), Madrid, Spain; Departamento de Farmacología, Universidad Autonoma de Madrid (UAM), Madrid, Spain.
| |
Collapse
|
11
|
He H, Ge J, Yi S, Wang Y, Liu Y, Liu Y, Liu X. Ginkgolide A downregulates transient receptor potential (melastatin) 2 to protect cisplatin-induced acute kidney injury in rats through the TWEAK/Fn14 pathway: Ginkgolide A improve acute renal injury. Hum Exp Toxicol 2023; 42:9603271231200868. [PMID: 37715308 DOI: 10.1177/09603271231200868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
PURPOSE In order to seek effective drugs for treating cisplatin-induced acute renal injury and explore the corresponding potential mechanism. METHODS Mouse kidney injury model was established by intraperitoneal injection of 20 mg/kg cisplatin. The temporal expression of TRPM2 and the regulation of Ginkgolide A on its expression were analyzed by western blot. In order to perform the mechanical analysis, we used TRPM2-KO knockout mice. In this study, we evaluated the repair effect of GA on acute kidney injury through renal function factors, inflammatory factors and calcium and potassium content. Pathological injury and cell apoptosis were detected by H&E and TUNEL, respectively. RESULT Ginkgolide A inhibited inflammatory reaction and excessive oxidative stress, reduced renal function parameters, and improved pathological injury. Meanwhile, we also found that the repair effect of Ginkgolide A on renal injury is related to TRPM2, and Ginkgolide A downregulated TRPM2 expression and inactivated TWEAK/Fn14 pathway in cisplatin-induced renal injury model. We also found that inhibition of TWEAK/Fn14 pathway was more effective in TRPM2-KO mice than TRPM2-WT mice. CONCLUSION Ginkgolide A was the effective therapeutic drug for cisplatin-induced renal injury through acting on TRPM2, and TWEAK/Fn14 pathway was the downstream pathway of Ginkgolide A in acute renal injury, and Ginkgolide A inhibited TWEAK/Fn14 pathway in cisplatin-induced renal injury model.
Collapse
Affiliation(s)
- Haiyan He
- Department of Nephrology, Yantaishan Hospital, Yantai, China
| | - Jun Ge
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaona Yi
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yuhong Wang
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ye Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Ying Liu
- Department of Pathology, Yantaishan Hospital, Yantai, China
| | - Xiaoming Liu
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
12
|
Mora-Fernández C, Sánchez-Niño MD, Donate-Correa J, Martín-Núñez E, Pérez-Delgado N, Valiño-Rivas L, Fernández-Fernández B, Ortiz A, Navarro-González JF. Sodium-glucose co-transporter-2 inhibitors increase Klotho in patients with diabetic kidney disease: A clinical and experimental study. Biomed Pharmacother 2022; 154:113677. [PMID: 36942605 DOI: 10.1016/j.biopha.2022.113677] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Sodium-glucose co-transporter-2 inhibitors (SGLT2i) provide cardiorenal protection. However, the molecular mechanisms remain poorly understood. We explored the impact of SGLT2i on Klotho, a kidney-derived protein with antiaging, renal-protective and heart-protective properties. A real world prospective observational study addressed the impact of initiating SGLT2i (canagliflozin, dapagliflozin, empagliflozin) or dipeptidyl peptidase-4 inhibitors (DPP4i) in patients with early diabetic kidney disease (DKD). Serum and urinary soluble Klotho, albuminuria and serum and urinary tumor necrosis factor-alpha (TNFa) were measured. The effect of SGLT2i on Klotho mRNA and protein was explored in vitro in kidney proximal tubular cells stressed with high glucose concentrations to simulate the diabetic milieu, albumin to simulate albuminuria, and the inflammatory cytokine TWEAK to simulate the inflammatory environment in DKD. Baseline urinary Klotho was negatively associated with albuminuria (r - 0.45, P < 0.001) and urinary TNFa (r - 0.40, P < 0.01). Both DPP4i and SGLT2i reduced HbA1c similarly, but only SGLT2i decreased eGFR, albuminuria and urinary TNFa and increased (P < 0.001) serum (5.2 %) and urinary Klotho (38.9 %). Changes in urinary TNFa (β - 0.53, P = 0.001) and albuminuria (β - 0.31, P < 0.05) were independently associated with changes in urinary Klotho (adjusted R2 = 0.54, P < 0.001). Studies in renal tubular cells demonstrated that high glucose, albumin and TWEAK decreased Klotho mRNA expression and protein levels, an effect similarly prevented by SGLT2i. SGLT2i increase Klotho availability in type 2 diabetic patients with poorly controlled diabetes and early DKD, as well as in stressed tubular cells. This effect on Klotho may contribute to the kidney and heart protection afforded by SGLT2i.
Collapse
Affiliation(s)
- Carmen Mora-Fernández
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain; GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain
| | - María Dolores Sánchez-Niño
- RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain; Departamento de Farmacología, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Javier Donate-Correa
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain; GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain
| | - Ernesto Martín-Núñez
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Lara Valiño-Rivas
- RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain
| | - Beatriz Fernández-Fernández
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain
| | - Alberto Ortiz
- GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Spain
| | - Juan F Navarro-González
- Unidad de Investigación, Hospital Universitario Nuestra Señora de Candelaria (HUNSC), Santa Cruz de Tenerife, Spain; GEENDIAB (Grupo Español para el Estudio de la Nefropatía Diabética), Sociedad Española de Nefrología, Santander, Spain; RICORS2040 KIDNEY DISEASE, Instituto de Salud Carlos III, Madrid, Spain; Servicio de Nefrología, HUNSC, Santa Cruz de Tenerife, Spain; Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
13
|
Magkrioti C, Antonopoulou G, Fanidis D, Pliaka V, Sakellaropoulos T, Alexopoulos LG, Ullmer C, Aidinis V. Lysophosphatidic Acid Is a Proinflammatory Stimulus of Renal Tubular Epithelial Cells. Int J Mol Sci 2022; 23:ijms23137452. [PMID: 35806457 PMCID: PMC9267536 DOI: 10.3390/ijms23137452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic kidney disease (CKD) refers to a spectrum of diseases defined by renal fibrosis, permanent alterations in kidney structure, and low glomerular-filtration rate. Prolonged epithelial-tubular damage involves a series of changes that eventually lead to CKD, highlighting the importance of tubular epithelial cells in this process. Lysophosphatidic acid (LPA) is a bioactive lipid that signals mainly through its six cognate LPA receptors and is implicated in several chronic inflammatory pathological conditions. In this report, we have stimulated human proximal tubular epithelial cells (HKC-8) with LPA and 175 other possibly pathological stimuli, and simultaneously detected the levels of 27 intracellular phosphoproteins and 32 extracellular secreted molecules with multiplex ELISA. This quantification revealed a large amount of information concerning the signaling and the physiology of HKC-8 cells that can be extrapolated to other proximal tubular epithelial cells. LPA responses clustered with pro-inflammatory stimuli such as TNF and IL-1, promoting the phosphorylation of important inflammatory signaling hubs, including CREB1, ERK1, JUN, IκΒα, and MEK1, as well as the secretion of inflammatory factors of clinical relevance, including CCL2, CCL3, CXCL10, ICAM1, IL-6, and IL-8, most of them shown for the first time in proximal tubular epithelial cells. The identified LPA-induced signal-transduction pathways, which were pharmacologically validated, and the secretion of the inflammatory factors offer novel insights into the possible role of LPA in CKD pathogenesis.
Collapse
Affiliation(s)
- Christiana Magkrioti
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Georgia Antonopoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Dionysios Fanidis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
| | - Vaia Pliaka
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
| | | | - Leonidas G. Alexopoulos
- ProtATonce Ltd., 15343 Athens, Greece; (V.P.); (T.S.); (L.G.A.)
- School of Mechanical Engineering, National Technical University of Athens, 15780 Zografou, Greece
| | - Christoph Ullmer
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., 4070 Basel, Switzerland;
| | - Vassilis Aidinis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center Alexander Fleming, 16672 Athens, Greece; (C.M.); (G.A.); (D.F.)
- Correspondence:
| |
Collapse
|
14
|
Martin-Sanchez D, Guerrero-Mauvecin J, Fontecha-Barriuso M, Mendez-Barbero N, Saiz ML, Lopez-Diaz AM, Sanchez-Niño MD, Carrasco S, Cannata-Ortiz P, Ruiz-Ortega M, Ortiz A, Sanz AB. Bone Marrow-Derived RIPK3 Mediates Kidney Inflammation in Acute Kidney Injury. J Am Soc Nephrol 2022; 33:357-373. [PMID: 35046131 PMCID: PMC8819996 DOI: 10.1681/asn.2021030383] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 12/04/2021] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Receptor-interacting protein kinase 3 (RIPK3), a component of necroptosis pathways, may have an independent role in inflammation. It has been unclear which RIPK3-expressing cells are responsible for the anti-inflammatory effect of overall Ripk3 deficiency and whether Ripk3 deficiency protects against kidney inflammation occurring in the absence of tubular cell death. METHODS We used chimeric mice with bone marrow from wild-type and Ripk3-knockout mice to explore RIPK3's contribution to kidney inflammation in the presence of folic acid-induced acute kidney injury AKI (FA-AKI) or absence of AKI and kidney cell death (as seen in systemic administration of the cytokine TNF-like weak inducer of apoptosis [TWEAK]). RESULTS Tubular and interstitial cell RIPK3 expressions were increased in murine AKI. Ripk3 deficiency decreased NF-κB activation and kidney inflammation in FA-AKI but did not prevent kidney failure. In the chimeric mice, RIPK3-expressing bone marrow-derived cells were required for early inflammation in FA-AKI. The NLRP3 inflammasome was not involved in RIPK3's proinflammatory effect. Systemic TWEAK administration induced kidney inflammation in wild-type but not Ripk3-deficient mice. In cell cultures, TWEAK increased RIPK3 expression in bone marrow-derived macrophages and tubular cells. RIPK3 mediated TWEAK-induced NF-κB activation and inflammatory responses in bone marrow-derived macrophages and dendritic cells and in Jurkat T cells; however, in tubular cells, RIPK3 mediated only TWEAK-induced Il-6 expression. Furthermore, conditioned media from TWEAK-exposed wild-type macrophages, but not from Ripk3-deficient macrophages, promoted proinflammatory responses in cultured tubular cells. CONCLUSIONS RIPK3 mediates kidney inflammation independently from tubular cell death. Specific targeting of bone marrow-derived RIPK3 may limit kidney inflammation without the potential adverse effects of systemic RIPK3 targeting.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| | - Juan Guerrero-Mauvecin
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| | - Nerea Mendez-Barbero
- Laboratorio de Patologia Vascular, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Maria Laura Saiz
- Translational Immunology Laboratory, Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ana M. Lopez-Diaz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Maria D. Sanchez-Niño
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Pharmacology, Universidad Autonoma de Madrid, Madrid, Spain
| | - Susana Carrasco
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Department of Pathology, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain,Department of Medicine, Universidad Autonoma de Madrid, Madrid, Spain,Instituto Reina Sofia de Investigaciones Nefrologicas, Madrid, Spain
| | - Ana B. Sanz
- Laboratorio de Nefrología Experimental, Instituto de Investigación Sanitaria-Fundacion Jimenez Diaz, Universidad Autonoma de Madrid, Madrid, Spain,Red de Investigacion Renal, Madrid, Spain
| |
Collapse
|
15
|
Yan Z, Wang G, Shi X. Advances in the Progression and Prognosis Biomarkers of Chronic Kidney Disease. Front Pharmacol 2022; 12:785375. [PMID: 34992536 PMCID: PMC8724575 DOI: 10.3389/fphar.2021.785375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease (CKD) is one of the increasingly serious public health concerns worldwide; the global burden of CKD is increasingly due to high morbidity and mortality. At present, there are three key problems in the clinical treatment and management of CKD. First, the current diagnostic indicators, such as proteinuria and serum creatinine, are greatly interfered by the physiological conditions of patients, and the changes in the indicator level are not synchronized with renal damage. Second, the established diagnosis of suspected CKD still depends on biopsy, which is not suitable for contraindication patients, is also traumatic, and is not sensitive to early progression. Finally, the prognosis of CKD is affected by many factors; hence, it is ineviatble to develop effective biomarkers to predict CKD prognosis and improve the prognosis through early intervention. Accurate progression monitoring and prognosis improvement of CKD are extremely significant for improving the clinical treatment and management of CKD and reducing the social burden. Therefore, biomarkers reported in recent years, which could play important roles in accurate progression monitoring and prognosis improvement of CKD, were concluded and highlighted in this review article that aims to provide a reference for both the construction of CKD precision therapy system and the pharmaceutical research and development.
Collapse
Affiliation(s)
- Zhonghong Yan
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Guanran Wang
- Heilongjiang University of Chinese Medicine, Harbin, China.,Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xingyang Shi
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
16
|
Tezuka Y, Eguchi-Ishimae M, Ozaki E, Ito T, Ishii E, Eguchi M. Activation of fibroblast growth factor-inducible 14 in the early phase of childhood IgA nephropathy. PLoS One 2021; 16:e0258090. [PMID: 34597335 PMCID: PMC8486145 DOI: 10.1371/journal.pone.0258090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 09/17/2021] [Indexed: 11/23/2022] Open
Abstract
IgA nephropathy (IgAN) is the most common form of glomerulonephritis worldwide. Pediatric patients in Japan are diagnosed with IgAN at an early stage of the disease through annual urinary examinations. Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor-inducible 14 (Fn14) have various roles, including proinflammatory effects, and modulation of several kidney diseases; however, no reports have described their roles in pediatric IgAN. In this study, we performed pathological and immunohistochemical analyses of samples from 14 pediatric IgAN patients. Additionally, gene expression arrays of glomeruli by laser-captured microdissection were performed in hemi-nephrectomized high serum IgA (HIGA) mice, a model of IgA nephropathy, to determine the role of Fn14. Glomeruli with intense Fn14 deposition were observed in 80% of mild IgAN cases; however, most severe cases showed glomeruli with little or no Fn14 deposition. Fn14 deposition was not observed in obvious mesangial proliferation or the crescent region of glomeruli, but was detected strongly in the glomerular tuft, with an intact appearance. In HIGA mice, Fn14 deposition was observed mildly beginning at 11 weeks of age, and stronger Fn14 deposition was detected at 14 weeks of age. Expression array analysis indicated that Fn14 expression was higher in HIGA mice at 6 weeks of age, increased slightly at 11 weeks, and then decreased at 26 weeks when compared with controls at equivalent ages. These findings suggest that Fn14 signaling affects early lesions but not advanced lesions in patients with IgAN. Further study of the TWEAK/Fn14 pathway will contribute to our understanding of the progression of IgAN.
Collapse
Affiliation(s)
- Yuko Tezuka
- Department of Pediatrics, Takamatsu Red Cross Hospital, Takamatsu, Kagawa, Japan
| | | | - Erina Ozaki
- Department of Total Medical Support Center, Ehime University Hospital, Toon, Ehime, Japan
| | - Toshiyuki Ito
- Department of Pediatrics, Takamatsu Red Cross Hospital, Takamatsu, Kagawa, Japan
| | - Eiichi Ishii
- Department of Pediatrics, Takamatsu Red Cross Hospital, Takamatsu, Kagawa, Japan
| | - Mariko Eguchi
- Department of Pediatrics, Takamatsu Red Cross Hospital, Takamatsu, Kagawa, Japan
- Division of Medical Genetics, Ehime University Hospital, Toon, Ehime, Japan
- * E-mail:
| |
Collapse
|
17
|
Cordido A, Nuñez-Gonzalez L, Martinez-Moreno JM, Lamas-Gonzalez O, Rodriguez-Osorio L, Perez-Gomez MV, Martin-Sanchez D, Outeda P, Chiaravalli M, Watnick T, Boletta A, Diaz C, Carracedo A, Sanz AB, Ortiz A, Garcia-Gonzalez MA. TWEAK Signaling Pathway Blockade Slows Cyst Growth and Disease Progression in Autosomal Dominant Polycystic Kidney Disease. J Am Soc Nephrol 2021; 32:1913-1932. [PMID: 34155062 PMCID: PMC8455272 DOI: 10.1681/asn.2020071094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND In autosomal dominant polycystic kidney disease (ADPKD), cyst development and enlargement lead to ESKD. Macrophage recruitment and interstitial inflammation promote cyst growth. TWEAK is a TNF superfamily (TNFSF) cytokine that regulates inflammatory responses, cell proliferation, and cell death, and its receptor Fn14 (TNFRSF12a) is expressed in macrophage and nephron epithelia. METHODS To evaluate the role of the TWEAK signaling pathway in cystic disease, we evaluated Fn14 expression in human and in an orthologous murine model of ADPKD. We also explored the cystic response to TWEAK signaling pathway activation and inhibition by peritoneal injection. RESULTS Meta-analysis of published animal-model data of cystic disease reveals mRNA upregulation of several components of the TWEAK signaling pathway. We also observed that TWEAK and Fn14 were overexpressed in mouse ADPKD kidney cysts, and TWEAK was significantly high in urine and cystic fluid from patients with ADPKD. TWEAK administration induced cystogenesis and increased cystic growth, worsening the phenotype in a murine ADPKD model. Anti-TWEAK antibodies significantly slowed the progression of ADPKD, preserved renal function, and improved survival. Furthermore, the anti-TWEAK cystogenesis reduction is related to decreased cell proliferation-related MAPK signaling, decreased NF-κB pathway activation, a slight reduction of fibrosis and apoptosis, and an indirect decrease in macrophage recruitment. CONCLUSIONS This study identifies the TWEAK signaling pathway as a new disease mechanism involved in cystogenesis and cystic growth and may lead to a new therapeutic approach in ADPKD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Julio M. Martinez-Moreno
- Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Olaya Lamas-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Laura Rodriguez-Osorio
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Maria Vanessa Perez-Gomez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Diego Martin-Sanchez
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Patricia Outeda
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Marco Chiaravalli
- Division of Genetics and Cell Biology, Molecular Basis of Cystic Kidney Disorders Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS)–San Raffaele Scientific Institute, Milan, Italy
| | - Terry Watnick
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | | | - Candido Diaz
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Nephrology Service, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Center in Network of Rare Diseases (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana B. Sanz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Alberto Ortiz
- RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Department of Nephrology and Hypertension, Jiménez Díaz Foundation (Health Research Institute and Autonomous University of Madrid), Madrid, Spain
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain,RedInRen RETIC, Instituto de Salud Carlos III, Madrid, Spain,Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), Santiago de Compostela, Spain
| |
Collapse
|
18
|
Xue L, Zhang Y, Xu J, Lu W, Wang Q, Fu J, Liu Z. Anti-TWEAK Antibody Alleviates Renal Interstitial Fibrosis by Increasing PGC-1α Expression in Lupus Nephritis. J Inflamm Res 2021; 14:1173-1184. [PMID: 33814923 PMCID: PMC8009537 DOI: 10.2147/jir.s301356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/11/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose Current studies on the mechanism of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in lupus nephritis (LN) mainly focus on the inflammatory pathway. Herein, we aimed to determine whether TWEAK could promote the progression of renal interstitial fibrosis by regulating peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) expression and intervening in lipid metabolism in LN. Materials and Methods MRL/lpr mice, an animal model of lupus, were treated with the anti-TWEAK antibody or co-treated with adeno-associated virus-mediated PGC-1α short hairpin RNA (shRNA). In addition, human proximal tubular epithelial cells (HK2 cells) were treated with recombinant human TWEAK (rhTWEAK) or ammonium pyrrolidine dithiocarbamate (PDTC) in vitro. Results The renal contents of free fatty acids and triglycerides were higher in MRL/lpr mice than in MRL/MpJ mice; however, these contents were decreased by treatment with the anti-TWEAK antibody. Based on immunofluorescence staining, the expression of PGC-1α was markedly more in the renal tubules of MRL/MpJ mice than in the glomeruli. However, treatment with anti-TWEAK antibody increased the levels of PGC-1α and its downstream target genes, which were remarkably lower in MRL/lpr mice than in MRL/MpJ mice. Anti-TWEAK antibody effectively eased renal interstitial fibrosis, which manifested as a decrease in the deposition of collagen fibers and the inhibition of type I collagen and fibronectin expression. However, the therapeutic effects of the anti-TWEAK antibody were abolished by PGC-1α shRNA. Treatment with rhTWEAK decreased PGC-1α expression in both dose- and time-dependent manners in HK2 cells in vitro. PDTC, an inhibitor of IκBα phosphorylation, suppressed the decrease in the PGC-1α protein level induced by rhTWEAK treatment. Conclusion Our results suggest that TWEAK prevents renal tubular PGC-1α expression by promoting NF-κB activation, resulting in a deficiency in lipid metabolism and the progress of renal interstitial fibrosis. The upregulation of renal tubular PGC-1α expression to improve lipid metabolism is one of the mechanisms employed by the anti-TWEAK antibody to treat renal interstitial fibrosis.
Collapse
Affiliation(s)
- Leixi Xue
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yi Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jiajun Xu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Wentian Lu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Qing Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jinxiang Fu
- Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
19
|
Poveda J, Vázquez-Sánchez S, Sanz AB, Ortiz A, Ruilope LM, Ruiz-Hurtado G. TWEAK-Fn14 as a common pathway in the heart and the kidneys in cardiorenal syndrome. J Pathol 2021; 254:5-19. [PMID: 33512736 DOI: 10.1002/path.5631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
There is a complex relationship between cardiac and renal disease, often referred to as the cardiorenal syndrome. Heart failure adversely affects kidney function, and both acute and chronic kidney disease are associated with structural and functional changes to the myocardium. The pathological mechanisms and contributing interactions that surround this relationship remain poorly understood, limiting the opportunities for therapeutic intervention. The cytokine tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and its receptor, fibroblast growth factor-inducible 14 (Fn14), are abundantly expressed in injured kidneys and heart. The TWEAK-Fn14 axis promotes responses that drive tissue injury such as inflammation, proliferation, fibrosis, and apoptosis, while restraining the expression of tissue protective factors such as the anti-aging factor Klotho and the master regulator of mitochondrial biogenesis peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α). High levels of TWEAK induce cardiac remodeling, and promote inflammation, tubular and podocyte injury and death, fibroblast proliferation, and, ultimately, renal fibrosis. Accordingly, targeting the TWEAK-Fn14 axis is protective in experimental kidney and heart disease. TWEAK has also emerged as a biomarker of kidney damage and cardiovascular outcomes and has been successfully targeted in clinical trials. In this review, we update our current knowledge of the roles of the TWEAK-Fn14 axis in cardiovascular and kidney disease and its potential contribution to the cardiorenal syndrome. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jonay Poveda
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Sara Vázquez-Sánchez
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana B Sanz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute - Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Luis M Ruilope
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,School of Doctoral Studies and Research, European University of Madrid, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,CIBER-CV, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
20
|
Capecchi R, Puxeddu I, Pratesi F, Migliorini P. New biomarkers in SLE: from bench to bedside. Rheumatology (Oxford) 2021; 59:v12-v18. [PMID: 32911542 PMCID: PMC7719038 DOI: 10.1093/rheumatology/keaa484] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/23/2020] [Indexed: 12/20/2022] Open
Abstract
Biomarkers may have a diagnostic or monitoring value, or may predict response to therapy or disease course. The aim of this review is to discuss new serum and urinary biomarkers recently proposed for the diagnosis and management of SLE patients. Novel sensitive and specific assays have been proposed to evaluate complement proteins, ‘old’ biomarkers that are still a cornerstone in the management of this disease. Chemokines and lectins have been evaluated as surrogate biomarkers of IFN signature. Other cytokines like the B cell activating factor (BAFF) family cytokines are directly related to perturbations of the B cell compartment as key pathogenetic mechanism of the disease. A large number of urine biomarkers have been proposed, either related to the migration and homing of leukocytes to the kidney or to the local regulation of inflammatory circuits and the survival of renal intrinsic cells. The combination of traditional disease-specific biomarkers and novel serum or urine biomarkers may represent the best choice to correctly classify, stage and treat patients with SLE.
Collapse
Affiliation(s)
- Riccardo Capecchi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ilaria Puxeddu
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Pratesi
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Paola Migliorini
- Clinical Immunology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
21
|
Valiño-Rivas L, Cuarental L, Nuñez G, Sanz AB, Ortiz A, Sanchez-Niño MD. Loss of NLRP6 expression increases the severity of acute kidney injury. Nephrol Dial Transplant 2020; 35:587-598. [PMID: 31504777 DOI: 10.1093/ndt/gfz169] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Nlrp6 is a nucleotide-binding oligomerization domain-like receptor (NLR) that forms atypical inflammasomes. Nlrp6 modulates the gut epithelium interaction with the microbiota. However, the expression and function of Nlrp6 in the kidney, a sterile environment, have not been characterized. We explored the role of Nlrp6 in acute kidney injury (AKI). METHODS In a transcriptomics array of murine nephrotoxic AKI, Nlrp6 and Naip3 were the only significantly downregulated NLR genes. The functional implications of Nlrp6 downregulation were explored in mice and in cultured murine tubular cells. RESULTS Nlrp6 was expressed by healthy murine and human kidney tubular epithelium, and expression was reduced during human kidney injury or murine nephrotoxic AKI induced by cisplatin or a folic acid overdose. Genetic Nlrp6 deficiency resulted in upregulation of kidney extracellular signal-regulated kinase 1/2 (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) phosphorylation and more severe AKI and kidney inflammation. In cultured tubular cells, Nlrp6 downregulation induced by specific small interfering RNA resulted in upregulation of ERK1/2 and p38 phosphorylation and chemokine messenger RNA expression and downregulation of the nephroprotective gene Klotho. MAPK inhibition prevented the inflammatory response in Nlrp6-deficient cells. CONCLUSION Nlrp6 dampens sterile inflammation and has a nephroprotective role during nephrotoxic kidney injury through suppression of MAP kinase activation.
Collapse
Affiliation(s)
- Lara Valiño-Rivas
- Nephrology and Hypertension Laboratory, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology and Hypertension Laboratory, REDINREN, Madrid, Spain
| | - Leticia Cuarental
- Nephrology and Hypertension Laboratory, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ana B Sanz
- Nephrology and Hypertension Laboratory, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology and Hypertension Laboratory, REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Nephrology and Hypertension Laboratory, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology and Hypertension Laboratory, REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Nephrology and Hypertension Laboratory, IIS-Fundacion Jimenez Diaz-Universidad Autonoma de Madrid and Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, Madrid, Spain.,Nephrology and Hypertension Laboratory, REDINREN, Madrid, Spain
| |
Collapse
|
22
|
Targeting chromatin dysregulation in organ fibrosis. Cytokine Growth Factor Rev 2020; 57:64-72. [PMID: 32900600 DOI: 10.1016/j.cytogfr.2020.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Fibrosis leads to destruction of organ architecture accompanied by chronic inflammation and loss of function. Fibrosis affects nearly every organ in the body and accounts for ∼45% of total deaths worldwide. Over the past decade, tremendous progress has been made in understanding the basic mechanisms leading to organ fibrosis. However, we are limited with therapeutic options and there is a significant need to develop highly effective anti-fibrotic therapies. Recent advances in sequencing technologies have advanced the burgeoning field of epigenetics towards molecular understanding at a higher resolution. Here we provide a comprehensive review of the recent advances in chromatin regulatory processes, specifically DNA methylation, post-translational modification of histones, and chromatin remodeling complexes in kidney, liver and lung fibrosis. Although this research field is young, we discuss new strategies for potential therapeutic interventions for treating organ fibrosis.
Collapse
|
23
|
Tacrolimus Prevents TWEAK-Induced PLA2R Expression in Cultured Human Podocytes. J Clin Med 2020; 9:jcm9072178. [PMID: 32664235 PMCID: PMC7408934 DOI: 10.3390/jcm9072178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/27/2022] Open
Abstract
Primary membranous nephropathy is usually caused by antibodies against the podocyte antigen membrane M-type phospholipase A2 receptor (PLA2R). The treatment of membranous nephropathy is not fully satisfactory. The calcineurin inhibitor tacrolimus is used to treat membranous nephropathy, but recurrence upon drug withdrawal is common. TNF superfamily members are key mediators of kidney injury. We have now identified key TNF receptor superfamily members in podocytes and explored the regulation of PLA2R expression and the impact of tacrolimus. Data mining of single cell transcriptomics and glomerular transcriptomics data identified TNFRSF12a/Fn14 as the highest expressed TNF receptor superfamily gene in human membranous nephropathy, and this was confirmed by immunohistochemistry that also identified NFκB activation in membranous nephropathy podocytes. Additionally, glomerular transcriptomics identified PLA2R1 expression as being increased in membranous nephropathy in the parenteral administration of the Fn14 ligand TWEAK increased podocyte PLA2R expression in mice. Furthermore, in cultured human podocytes, TWEAK increased the expression of PLA2R as well as the expression of other genes recently identified by GWAS as linked to membranous nephropathy: NFKB1 and IRF4. Interestingly, IRF4 encodes the FK506-binding protein 52 (FKBP52), a protein associated with tacrolimus. Tacrolimus prevented the increased expression of PLA2R, NFKB1 and IRF4 induced by TWEAK in cultured podocytes. In conclusion, TWEAK upregulates the expression of PLA2R and of other genes linked to membranous nephropathy in podocytes, and this is prevented by tacrolimus. An impact of tacrolimus on the expression of PLA2R and other genes in podocytes may underlie its efficacy in treating the disease as well as the frequent recurrence of nephrotic syndrome upon tacrolimus withdrawal.
Collapse
|
24
|
Rayego-Mateos S, Morgado-Pascual JL, Valdivielso JM, Sanz AB, Bosch-Panadero E, Rodrigues-Díez RR, Egido J, Ortiz A, González-Parra E, Ruiz-Ortega M. TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease. J Am Soc Nephrol 2020; 31:2026-2042. [PMID: 32631974 DOI: 10.1681/asn.2019111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND CKD leads to vitamin D deficiency. Treatment with vitamin D receptor agonists (VDRAs) may have nephroprotective and anti-inflammatory actions, but their mechanisms of action are poorly understood. METHODS Modulation of the noncanonical NF-κB2 pathway and its component TNF receptor-associated factor 3 (TRAF3) by the VDRA paricalcitol was studied in PBMCs from patients with ESKD, cytokine-stimulated cells, and preclinical kidney injury models. RESULTS In PBMCs isolated from patients with ESKD, TRAF3 protein levels were lower than in healthy controls. This finding was associated with evidence of noncanonical NF-κB2 activation and a proinflammatory state. However, PBMCs from patients with ESKD treated with paricalcitol did not exhibit these features. Experiments in cultured cells confirmed the link between TRAF3 and NF-κB2/inflammation. Decreased TRAF3 ubiquitination in K48-linked chains and cIAP1-TRAF3 interaction mediated the mechanisms of paricalcitol action.TRAF3 overexpression by CRISPR/Cas9 technology mimicked VDRA's effects. In a preclinical model of kidney injury, paricalcitol inhibited renal NF-κB2 activation and decreased renal inflammation. In VDR knockout mice with renal injury, paricalcitol prevented TRAF3 downregulation and NF-κB2-dependent gene upregulation, suggesting a VDR-independent anti-inflammatory effect of paricalcitol. CONCLUSIONS These data suggest the anti-inflammatory actions of paricalcitol depend on TRAF3 modulation and subsequent inhibition of the noncanonical NF-κB2 pathway, identifying a novel mechanism for VDRA's effects. Circulating TRAF3 levels could be a biomarker of renal damage associated with the inflammatory state.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain.,Vascular and Renal Translational Research Group. Institut de Receca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Jose Luis Morgado-Pascual
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain.,REDinREN (Red de Investigación Renal), Madrid, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group. Institut de Receca Biomedica de Lleida (IRBLleida), Lleida, Spain.,REDinREN (Red de Investigación Renal), Madrid, Spain
| | - Ana Belén Sanz
- REDinREN (Red de Investigación Renal), Madrid, Spain.,Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Enrique Bosch-Panadero
- Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Raúl R Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz.Universidad Autónoma. 28040 Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM). 28029 Madrid, Spain
| | - Alberto Ortiz
- REDinREN (Red de Investigación Renal), Madrid, Spain.,Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Emilio González-Parra
- Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain .,REDinREN (Red de Investigación Renal), Madrid, Spain
| |
Collapse
|
25
|
Parthenolide ameliorates tweak-induced podocytes injury. Mol Biol Rep 2020; 47:5165-5173. [PMID: 32572732 DOI: 10.1007/s11033-020-05591-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/16/2020] [Indexed: 11/27/2022]
Abstract
Parthenolide (PTL) is a natural product from the shoots of Tanacetum parthenium, which has immunomodulatory effects in multiply type of diseases. This study aimed to explore the effect and the underlying mechanism of PTL on the anti-apoptotic and anti- inflammatory ability of tweak-induced podocytes. Conditionally immortalized mouse podocytes were incubated with Tumor necrosis factor-like weak inducer of apoptosis (Tweak, 100 ng/ml), PTL(10 µM) or Tweak + PTL for 12 h, 24 and 48 h, respectively. Podocytes viability was detected by CCK-8 assay. Tweak and Cxcl16 expression were evaluated by western blot and immunofluorescence assay. Dil-oxLDL stain was detected by immunofluorescence analysis. Intracellular Total Cholesterol (TC) content was measured through TC detection Kit. These results demonstrated that the podocytes cells viability was gradually decreased after treatment with different concentrations of Tweak (0, 50, 100, 150). Tweak and Cxcl16 protein expression in mouse podocytes treated with tweak were remarkably elevated and were found to have higher intracellular lipid accumulation compared with the control group, whereas co-administration with PTL, tweak and Cxcl16 expression as well as the intracellular lipid accumulation were notablely decreased in tweak-induced podocytes. Therefore, our conclusion was that tweak and Cxcl16 were involved in the regulation of tweak-induced podocytes injury. Meanwhile, the anti-apoptotic and anti-inflammatory effect of PTL may be correlated with the tweak and Cxcl16 expression decreased.
Collapse
|
26
|
Lymphocyte and monocyte vitamin D receptor expression during paricalcitol or calcitriol treatments in patients with stage 5 chronic kidney disease. Int Urol Nephrol 2020; 52:1563-1570. [PMID: 32405698 DOI: 10.1007/s11255-020-02475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 04/15/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE In this study, we aimed to investigate the effect of paricalcitol and calcitriol usage on vitamin D receptor (VDR) contents of CD8+ , CD4+ lymphocytes and monocytes in stage 5d chronic kidney disease (CKD) patients. METHODS Thirty-six hemodialysis patients older than 18 years of age and 19 healthy controls (group HC) without any known acute or chronic diseases were included in the study. The group of patients undergoing scheduled hemodialysis comprised three subgroups: group CL: patients on calcitriol (n: 10), group PC: patients on paricalcitol (n: 13), and group NT: patients not taking any vitamin D or VDR activating medications (n: 13). CD8+/VDR, CD4+/VDR and MONO/VDR values were representing the ratio of VDR representing cells among related cell group. On the other hand, values of CD8+/MFI, CD4+/MFI and MONO/MFI have shown the total amount of cellular VDR content per cell which has been given as of mean fluorescence intensity in the flow cytometric process. Main CKD mineral bone disorder parameters such as a hemogram, serum BUN, creatinine, albumin, Ca, iP, iPTH, 25(OH)D3 levels were also measured. RESULTS Average VDR contents in CD8+, CD4+ and monocytes were not different among three patient groups on hemodialysis. But in all hemodialysis subgroups, CD8+/VDR, CD4+/VDR, MONO/VDR, CD8+/MFI, CD4+/MFI and MONO/MFI levels were found to be higher compared with the healthy control subjects (p < 0.001). Among hemodialysis groups, no significant CD8+/VDR, CD4+/VDR, and MONO/VDR content differences were found with regard to the type of VDR activator agent used. There was no difference in serum levels of 25(OH)D3 and CRP among groups participating in the study. CONCLUSION There was no difference between CD8+/VDR, CD4+/VDR, and MONO/VDR levels in hemodialysis patients using calcitriol or paricalcitol, suggesting that both treatment agents may have a similar effect on VDR contents in lymphocytes and monocytes in that patient population. But in all hemodialysis subgroups, CD8+/VDR, CD4+/VDR, and MONO/VDR levels were found to be higher compared with the healthy control subjects, suggesting an overexpression of VDR through a non CRP and/or 25(OH)D3 dependent mechanism.
Collapse
|
27
|
Erez DL, Denburg MR, Afolayan S, Jodele S, Wallace G, Davies SM, Seif AE, Bunin N, Laskin BL, Sullivan KE. Acute Kidney Injury in Children after Hematopoietic Cell Transplantation Is Associated with Elevated Urine CXCL10 and CXCL9. Biol Blood Marrow Transplant 2020; 26:1266-1272. [PMID: 32165324 DOI: 10.1016/j.bbmt.2020.02.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/23/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is nearly universally associated with worse outcomes, especially among children after hematopoietic stem cell transplant (HCT). Our objective was to examine urinary immune biomarkers of AKI after HCT to provide insights into novel mechanisms of kidney injury in this population. Studying patients undergoing allogeneic HCT provides a unique opportunity to examine immune markers of AKI because the risk of AKI is high and the immune system newly develops after transplant. Children (>2 years old) and young adults undergoing their first allogeneic HCT and enrolled in a prospective, observational cohort study at 2 large children's hospitals had urine collected pre-HCT and monthly for the first 4 months after HCT. Urine samples at each monthly time point were assayed for 8 immune-related biomarkers. AKI was defined as a 1.5-fold increase in the monthly serum creatinine value, which was recorded ±1 day from when the research urine sample was obtained, as compared with the pre-HCT baseline. Generalized estimating equation regression analysis evaluated the association between the monthly repeated measures (urinary biomarkers and AKI). A total of 176 patients were included from 2 pediatric centers. Thirty-six patients from 1 center were analyzed as a discovery cohort and the remaining 140 patients from the second center were analyzed as a validation cohort. AKI rates were 18% to 35% depending on the monthly time point after HCT. Urine CXCL10 and CXCL9 concentrations were significantly higher among children who developed AKI compared with children who did not (P < .01) in both cohorts. In order to gain a better understanding of the cellular source for these biomarkers in the urine, we also analyzed in vitro expression of CXCL10 and CXCL9 in kidney cell lines after stimulation with interferon-γ and interferon-α. HEK293-epithelial kidney cells demonstrated interferon-induced expression of CXCL10 and CXCL9, suggesting a potential mechanism driving the key finding. CXCL10 and CXCL9 are associated with AKI after HCT and are therefore promising biomarkers to guide improved diagnostic and treatment strategies for AKI in this high-risk population.
Collapse
Affiliation(s)
- Daniella Levy Erez
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Michelle R Denburg
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Simisola Afolayan
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sonata Jodele
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Gregory Wallace
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Stella M Davies
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Alix E Seif
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nancy Bunin
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benjamin L Laskin
- Division of Nephrology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathleen E Sullivan
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Division of Immunology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| |
Collapse
|
28
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|
29
|
Fontecha-Barriuso M, Martin-Sanchez D, Martinez-Moreno JM, Monsalve M, Ramos AM, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. The Role of PGC-1α and Mitochondrial Biogenesis in Kidney Diseases. Biomolecules 2020; 10:biom10020347. [PMID: 32102312 PMCID: PMC7072614 DOI: 10.3390/biom10020347] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is one of the fastest growing causes of death worldwide, emphasizing the need to develop novel therapeutic approaches. CKD predisposes to acute kidney injury (AKI) and AKI favors CKD progression. Mitochondrial derangements are common features of both AKI and CKD and mitochondria-targeting therapies are under study as nephroprotective agents. PGC-1α is a master regulator of mitochondrial biogenesis and an attractive therapeutic target. Low PGC-1α levels and decreased transcription of its gene targets have been observed in both preclinical AKI (nephrotoxic, endotoxemia, and ischemia-reperfusion) and in experimental and human CKD, most notably diabetic nephropathy. In mice, PGC-1α deficiency was associated with subclinical CKD and predisposition to AKI while PGC-1α overexpression in tubular cells protected from AKI of diverse causes. Several therapeutic strategies may increase kidney PGC-1α activity and have been successfully tested in animal models. These include AMP-activated protein kinase (AMPK) activators, phosphodiesterase (PDE) inhibitors, and anti-TWEAK antibodies. In conclusion, low PGC-1α activity appears to be a common feature of AKI and CKD and recent characterization of nephroprotective approaches that increase PGC-1α activity may pave the way for nephroprotective strategies potentially effective in both AKI and CKD.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Julio Manuel Martinez-Moreno
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Adrian Mario Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- School of Medicine, UAM, 28029 Madrid, Spain
- IRSIN, 28040 Madrid, Spain
| | - Ana Belen Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, 28040 Madrid, Spain; (M.F.-B.); (D.M.-S.); (J.M.M.-M.); (A.M.R.); (M.D.S.-N.); (M.R.-O.); (A.O.)
- REDINREN, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-550-48-00
| |
Collapse
|
30
|
Fontecha-Barriuso M, Martin-Sanchez D, Ruiz-Andres O, Poveda J, Sanchez-Niño MD, Valiño-Rivas L, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting epigenetic DNA and histone modifications to treat kidney disease. Nephrol Dial Transplant 2019. [PMID: 29534238 DOI: 10.1093/ndt/gfy009] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Epigenetics refers to heritable changes in gene expression patterns not caused by an altered nucleotide sequence, and includes non-coding RNAs and covalent modifications of DNA and histones. This review focuses on functional evidence for the involvement of DNA and histone epigenetic modifications in the pathogenesis of kidney disease and the potential therapeutic implications. There is evidence of activation of epigenetic regulatory mechanisms in acute kidney injury (AKI), chronic kidney disease (CKD) and the AKI-to-CKD transition of diverse aetiologies, including ischaemia-reperfusion injury, nephrotoxicity, ureteral obstruction, diabetes, glomerulonephritis and polycystic kidney disease. A beneficial in vivo effect over preclinical kidney injury has been reported for drugs that decrease DNA methylation by either inhibiting DNA methylation (e.g. 5-azacytidine and decitabine) or activating DNA demethylation (e.g. hydralazine), decrease histone methylation by inhibiting histone methyltransferases, increase histone acetylation by inhibiting histone deacetylases (HDACs, e.g. valproic acid, vorinostat, entinostat), increase histone crotonylation (crotonate) or interfere with histone modification readers [e.g. inhibits of bromodomain and extra-terminal proteins (BET)]. Most preclinical studies addressed CKD or the AKI-to-CKD transition. Crotonate administration protected from nephrotoxic AKI, but evidence is conflicting on DNA methylation inhibitors for preclinical AKI. Several drugs targeting epigenetic regulators are in clinical development or use, most of them for malignancy. The BET inhibitor apabetalone is in Phase 3 trials for atherosclerosis, kidney function being a secondary endpoint, but nephrotoxicity was reported for DNA and HDAC inhibitors. While research into epigenetic modulators may provide novel therapies for kidney disease, caution should be exercised based on the clinical nephrotoxicity of some drugs.
Collapse
Affiliation(s)
- Miguel Fontecha-Barriuso
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Diego Martin-Sanchez
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Lara Valiño-Rivas
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute IIS-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.,IRSIN, Madrid, Spain.,REDINREN, Madrid, Spain
| |
Collapse
|
31
|
Kanbay M, Yerlikaya A, Sag AA, Ortiz A, Kuwabara M, Covic A, Wiecek A, Stenvinkel P, Afsar B. A journey from microenvironment to macroenvironment: the role of metaflammation and epigenetic changes in cardiorenal disease. Clin Kidney J 2019; 12:861-870. [PMID: 31807301 PMCID: PMC6885688 DOI: 10.1093/ckj/sfz106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic non-communicable diseases have become a pandemic public problem in the 21st century, causing enormous burden on the economy, health and quality of life of societies. The role of a chronic inflammatory state in the pathogenesis of chronic disease has been more comprehensively recognized by recent findings. The new paradigm ‘metaflammation’ focuses on metabolism-induced (high fat or fructose-based diet or excessive calorie intake) chronic inflammation. There is a close correlation between the increased incidence of chronic kidney disease (CKD) and chronic heart failure with both increased inflammatory marker levels and western-type diet. In this review we describe the concept of metaflammation, its role in the development of CKD and chronic heart disease, the molecular and signalling pathways involved and the therapeutic consequences.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Aslihan Yerlikaya
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Alberto Ortiz
- Dialysis Unit, School of Medicine, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Adrian Covic
- Nephrology Department, Dialysis and Renal Transplant Center, "Dr. C.I. Parhon" University Hospital, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Peter Stenvinkel
- Department of Clinical Science Intervention and Technology, Division of Renal Medicine and Baxter Novum, Karolinska Institutet, Stockholm, Sweden
| | - Baris Afsar
- Department of Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| |
Collapse
|
32
|
Adamichou C, Georgakis S, Bertsias G. Cytokine targets in lupus nephritis: Current and future prospects. Clin Immunol 2019; 206:42-52. [DOI: 10.1016/j.clim.2018.08.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/21/2018] [Accepted: 08/31/2018] [Indexed: 12/13/2022]
|
33
|
TRAIL, OPG, and TWEAK in kidney disease: biomarkers or therapeutic targets? Clin Sci (Lond) 2019; 133:1145-1166. [PMID: 31097613 PMCID: PMC6526163 DOI: 10.1042/cs20181116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 04/19/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022]
Abstract
Ligands and receptors of the tumor necrosis factor (TNF) superfamily regulate immune responses and homeostatic functions with potential diagnostic and therapeutic implications. Kidney disease represents a global public health problem, whose prevalence is rising worldwide, due to the aging of the population and the increasing prevalence of diabetes, hypertension, obesity, and immune disorders. In addition, chronic kidney disease is an independent risk factor for the development of cardiovascular disease, which further increases kidney-related morbidity and mortality. Recently, it has been shown that some TNF superfamily members are actively implicated in renal pathophysiology. These members include TNF-related apoptosis-inducing ligand (TRAIL), its decoy receptor osteoprotegerin (OPG), and TNF-like weaker inducer of apoptosis (TWEAK). All of them have shown the ability to activate crucial pathways involved in kidney disease development and progression (e.g. canonical and non-canonical pathways of the transcription factor nuclear factor-kappa B), as well as the ability to regulate cell proliferation, differentiation, apoptosis, necrosis, inflammation, angiogenesis, and fibrosis with double-edged effects depending on the type and stage of kidney injury. Here we will review the actions of TRAIL, OPG, and TWEAK on diabetic and non-diabetic kidney disease, in order to provide insights into their full clinical potential as biomarkers and/or therapeutic options against kidney disease.
Collapse
|
34
|
Suttichet TB, Kittanamongkolchai W, Phromjeen C, Anutrakulchai S, Panaput T, Ingsathit A, Kamanamool N, Ophascharoensuk V, Sumethakul V, Avihingsanon Y. Urine TWEAK level as a biomarker for early response to treatment in active lupus nephritis: a prospective multicentre study. Lupus Sci Med 2019; 6:e000298. [PMID: 31168397 PMCID: PMC6519400 DOI: 10.1136/lupus-2018-000298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 12/31/2018] [Indexed: 11/25/2022]
Abstract
Background TNF-like weak inducer of apoptosis (TWEAK) is a proinflammatory molecule that plays a key role in active inflammation of lupus nephritis (LN). Urine TWEAK (uTWEAK) levels were found to be associated with renal disease activity among patients with LN. Here, we determined whether serial measurements of uTWEAK during induction therapy could predict treatment response or not. Methods Spot urine samples were collected from patients with biopsy-proven active LN at time of flare, and 3 and 6 months after flare to assess the uTWEAK levels. All patients received standard immunosuppressive therapy and treatment response was evaluated at 6 months. The performance of uTWEAK as a predictor for treatment response was compared with clinically used biomarkers for patients with LN. Results Among 110 patients with LN, there were 29% complete responders (CR), 34% partial responders (PR) and 37% non-responders (NR). On average, uTWEAK level was consistently low in CR, trended down by 3 months in PR and persistently elevated in NR. uTWEAK levels at month 3 were able to predict complete response at month 6 (OR adjusted for age, sex and creatinine=0.34 [95% CI 0.15 to 0.80], the area under the receiver operating characteristic curve [ROC-AUC]=0.68, p=0.02). The optimal threshold for uTWEAK level at month 3 was 0.46 pg/mgCr, discriminating complete response with 70% sensitivity and 63% specificity. Combining uTWEAK and urine protein at month 3 improved predictive performance for complete response at 6 months (ROC-AUC 0.83, p<0.001). Conclusions In addition to urine protein, uTWEAK level at 3 months after flare can improve the accuracy in predicting complete response at 6 months of induction therapy.
Collapse
Affiliation(s)
- Thitima Benjachat Suttichet
- Department of Medicine, Faculty of Medicine, Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Wonngarm Kittanamongkolchai
- Chula Clinical Research Center and Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chutipha Phromjeen
- Chula Clinical Research Center and Renal Immunology and Transplantation Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Thanachai Panaput
- Department of Medicine, Khon Kaen Regional Hospital, Khon Kaen, Thailand
| | - Atiporn Ingsathit
- Section for Clinical Epidemiology and Biostatistics, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Nanticha Kamanamool
- Department of Preventive and Social Medicine, Faculty of Medicine, Srinakharinwirot University, Bangkok, Thailand
| | | | - Vasant Sumethakul
- Department of Internal Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yingyos Avihingsanon
- Department of Medicine, Faculty of Medicine, Center of Excellence in Immunology and Immune-mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
35
|
How Acute Kidney Injury Contributes to Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:117-142. [PMID: 31399964 DOI: 10.1007/978-981-13-8871-2_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Acute kidney injury (AKI) is a widespread clinical syndrome directly associated with patient short-term and long-term morbidity and mortality. During the last decade, the incidence rate of AKI has been increasing, the repeated and severe episodes of AKI have been recognized as a major risk factor chronic kidney diseases (CKD) and end-stage kidney disease (ESRD) leading to global disease burden. Proposed pathological processes and risk factors that add to the transition of AKI to CKD and ESRD include severity and frequency of kidney injury, older age, gender, genetics and chronic health conditions like diabetes, hypertension, and obesity. Therefore, there is a great interest in learning about the mechanism of AKI leading to renal fibrosis, the ultimate renal lesions of CKD. Over the last several years, a significant attention has been given to the field of renal fibrosis with impressive progression in knowing the mechanism of renal fibrosis to detailed cellular characterization and molecular pathways implicated in tubulointerstitial fibrosis. Research and clinical trial are underway for emerging biomarkers detecting early kidney injury, predicting kidney disease progression and developing strategies to efficiently treat AKI and to minimize AKI progression to CKD and ESRD. Specific interventions to prevent renal fibrosis are still experimental. Potential therapeutic advances based on those molecular mechanisms will hopefully offer promising insights into the development of new therapeutic interventions for patients in the near future.
Collapse
|
36
|
The clinical relevance of necroinflammation-highlighting the importance of acute kidney injury and the adrenal glands. Cell Death Differ 2018; 26:68-82. [PMID: 30224638 DOI: 10.1038/s41418-018-0193-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 01/06/2023] Open
Abstract
Necroinflammation is defined as the inflammatory response to necrotic cell death. Different necrotic cell death pathways exhibit different immune reponses, despite a comparable level of intracellular content release (referred to as damage associated molecular patterns or DAMPs). In addition to DAMP release, which is inevitably associated with necrotic cell death, the active production of pro/anti-inflammatory cytokines characterizes certain necrotic pathways. Necroptosis, ferroptosis and pyroptosis, therefore, are immunogenic to a different extent. In this review, we discuss the clinical relevance of necroinflammation highlighting potential human serum markers. We focus on the role of the adrenal glands and the lungs as central organs affected by systemic and/or local DAMP release and underline their role in intensive care medicine. In addition, data from models of acute kidney injury (AKI) and kidney transplantation have significantly shaped the field of necroinflammation and may be helpful for the understanding of the potential role of dialysis and plasma exchange to treat ongoing necroinflammation upon intensive care unit (ICU) conditions. In conclusion, we are only beginning to understand the importance of necroinflammation in diseases and transplantation, including xenotransplantation. However, given the existing efforts to develop inhibitors of necrotic cell death (ferrostatins, necrostatins, etc), we consider it likely that interference with necroinflammation reaches clinical routine in the near future.
Collapse
|
37
|
Henao Agudelo JS, Baia LC, Ormanji MS, Santos ARP, Machado JR, Saraiva Câmara NO, Navis GJ, de Borst MH, Heilberg IP. Fish Oil Supplementation Reduces Inflammation but Does Not Restore Renal Function and Klotho Expression in an Adenine-Induced CKD Model. Nutrients 2018; 10:nu10091283. [PMID: 30208590 PMCID: PMC6164930 DOI: 10.3390/nu10091283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 12/29/2022] Open
Abstract
Background: Chronic kidney disease and inflammation promote loss of Klotho expression. Given the well-established anti-inflammatory effects of omega-3 fatty acids, we aimed to investigate the effect of fish oil supplementation in a model of CKD. Methods: Male C57BL/6 mice received supplementation with an adenine-enriched diet (AD, n = 5) or standard diet (CTL, n = 5) for 10 days. Two other experimental groups were kept under the adenine diet for 10 days. Following adenine withdrawal on the 11th day, the animals returned to a standard diet supplemented with fish oil (Post AD-Fish oil, n = 9) or not (Post AD-CTL, n = 9) for an additional period of 7 days. Results: Adenine mice exhibited significantly higher mean serum urea, creatinine, and renal expression of the pro-inflammatory markers Interleukin-6 (IL-6), C-X-C motif chemokine 10 (CXCL10), and Interleukin-1β (IL-1β), in addition to prominent renal fibrosis and reduced renal Klotho gene expression compared to the control. Post AD-Fish oil animals demonstrated a significant reduction of IL-6, C-X-C motif chemokine 9 (CXCL9), and IL-1β compared to Post AD-CTL animals. However, serum creatinine, renal fibrosis, and Klotho were not significantly different in the fish oil-treated group. Furthermore, renal histomorphological changes such as tubular dilatation and interstitial infiltration persisted despite treatment. Conclusions: Fish oil supplementation reduced renal pro-inflammatory markers but was not able to restore renal function nor Klotho expression in an adenine-induced CKD model.
Collapse
Affiliation(s)
- Juan S Henao Agudelo
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Leandro C Baia
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Milene S Ormanji
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Amandda R P Santos
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| | - Juliana R Machado
- Tropical Medicine & Public Health, Federal University of Goiás (UFG), Rua 235 s/n-University Sector, 74605-050 Goiânia, Brazil.
| | - Niels O Saraiva Câmara
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1730, ICB IV, Sala 238, 05508-000 São Paulo, Brazil.
| | - Gerjan J Navis
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Martin H de Borst
- Division of Nephrology, University of Groningen, University Medical Centre Groningen (UMCG), P.O. Box 30.001, 9700 RB Groningen, The Netherlands.
| | - Ita P Heilberg
- Division of Nephrology, Federal University of São Paulo (UNIFESP), Rua Botucatu 740, 04023-900 São Paulo, Brazil.
| |
Collapse
|
38
|
Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J Immunol Res 2018; 2018:2180373. [PMID: 30271792 PMCID: PMC6146775 DOI: 10.1155/2018/2180373] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.
Collapse
|
39
|
Askarian F, Ghorbanihaghjo A, Argani H, Sanajou D, Nasehi N, Askarian R, Ahmadi R, Rahtchizadeh N. Soluble Tumor Necrosis Factor Like Weak Inducer of Apoptosis and Vitamin D in Hemodialysis Patients: Relation to Carotid Intima-Media Thickness. Indian J Clin Biochem 2018; 33:297-303. [PMID: 30072829 DOI: 10.1007/s12291-017-0675-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 06/26/2017] [Indexed: 11/27/2022]
Abstract
Cardiovascular disease, as the leading cause of patient death with chronic kidney disease, could be predicted by carotid atherosclerosis. The aim of the present study was to evaluate a possible relationship between serum soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK) and Vitamin D levels with mean right/left carotid intima-media thickness (cIMT), in the hemodialysis (HD) patients. In this cross-sectional study, serums were obtained from 50 stable chronic HD patients and 39 healthy controls. The serum levels of sTWEAK, Vitamin D, intact parathyroid hormone (iPTH) in both groups, and cIMT were determined in HD patients by standard methods. Serum levels of sTWEAK were higher [808.8 (521.6-5032.4) pg/ml vs. 664.4 (487.4-2955.8) pg/ml (p = 0.006)] and Vitamin D levels were lower [13.4 (2.5-153) ng/ml vs. 27.8 (18.4-59.0) ng/ml (p = 0.001)] in the hemodialysis patients than in the healthy control. No important correlation was found between sTWEAK Vitamin D levels (r = 0.010/p = 0.946), and mean right(r = -0.194/p = 0.178) and left (r = 0.061/p = 0.673) cIMT in the HD patients. Our study shows that sTWEAK levels are elevated in HD patients. This elevation has no association with the cIMT.
Collapse
Affiliation(s)
- Farahnaz Askarian
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ghorbanihaghjo
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hassan Argani
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davoud Sanajou
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Nasehi
- 2Department of Radiology, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Roya Askarian
- 3Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ravan Ahmadi
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nadereh Rahtchizadeh
- 1Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
40
|
TWEAK increases CD74 expression and sensitizes to DDT proinflammatory actions in tubular cells. PLoS One 2018; 13:e0199391. [PMID: 29924850 PMCID: PMC6010292 DOI: 10.1371/journal.pone.0199391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 06/06/2018] [Indexed: 12/17/2022] Open
Abstract
CD74 is a multifunctional protein and a receptor for Macrophage Migration Inhibitory Factor (MIF) and MIF-2 / D-dopachrome tautomerase (DDT) cytokines, upregulated in diabetic kidney disease. However, the drivers of CD74 expression and DDT function in kidney cells are poorly characterized. TWEAK is a proinflammatory cytokine that promotes kidney injury. We have now identified CD74 gene expression as upregulated in the kidneys in response to systemic TWEAK administration in mice, and have characterized the in vivo CD74 expression and the functional consequences in cultured cells. TWEAK administration to mice resulted in a progressive time-dependent (up to 24h) upregulation of kidney CD74 mRNA (RT-PCR) and protein (Western blot). Furthermore, the CD74 ligands MIF and DDT were also upregulated at the protein level 24h after TWEAK administration. Immunohistochemistry localized the increased CD74, MIF and DDT expression to tubular cells. In cultured tubular cells, TWEAK increased CD74 mRNA and protein expression dose-dependently, with a temporal pattern similar to in vivo. TWEAK-induced CD74 localized to the cell membrane, where it can function as a cytokine receptor. For the first time, we explored the actions of DDT in tubular cells and found that DDT amplified the increase in MCP-1 and RANTES expression in response to TWEAK. By contrast, DDT did not significantly modify TWEAK-induced Klotho downregulation. In conclusion, TWEAK upregulates CD74 and its ligands MIF and DDT in renal tubular cells. This may have functional consequences for kidney injury since DDT amplified the inflammatory response to TWEAK.
Collapse
|
41
|
Abstract
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored.
Collapse
Affiliation(s)
- Yin-Wu Bao
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Yuan Yuan
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| | - Jiang-Hua Chen
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China.
| | - Wei-Qiang Lin
- Kidney Disease Center, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China. .,Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou Zhejiang 310058, China
| |
Collapse
|
42
|
Abstract
Acute kidney injury (AKI) is characterized by necrotic tubular cell death and inflammation. The TWEAK/Fn14 axis is a mediator of renal injury. Diverse pathways of regulated necrosis have recently been reported to contribute to AKI, but there are ongoing discussions on the timing or molecular regulators involved. We have now explored the cell death pathways induced by TWEAK/Fn14 activation and their relevance during AKI. In cultured tubular cells, the inflammatory cytokine TWEAK induces apoptosis in a proinflammatory environment. The default inhibitor of necroptosis [necrostatin-1 (Nec-1)] was protective, while caspase inhibition switched cell death to necroptosis. Additionally, folic acid-induced AKI in mice resulted in increased expression of Fn14 and necroptosis mediators, such as receptor-interacting protein kinase 1 (RIPK1), RIPK3, and mixed lineage domain-like protein (MLKL). Targeting necroptosis with Nec-1 or by genetic RIPK3 deficiency and genetic Fn14 ablation failed to be protective at early time points (48 h). However, a persistently high cell death rate and kidney dysfunction (72-96 h) were dependent on an intact TWEAK/Fn14 axis driving necroptosis. This was prevented by Nec-1, or MLKL, or RIPK3 deficiency and by Nec-1 stable (Nec-1s) administered before or after induction of AKI. These data suggest that initial kidney damage and cell death are amplified through recruitment of inflammation-dependent necroptosis, opening a therapeutic window to treat AKI once it is established. This may be relevant for clinical AKI, since using current diagnostic criteria, severe injury had already led to loss of renal function at diagnosis.
Collapse
|
43
|
Liu BC, Tang TT, Lv LL, Lan HY. Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int 2018; 93:568-579. [DOI: 10.1016/j.kint.2017.09.033] [Citation(s) in RCA: 260] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/13/2022]
|
44
|
Martin-Sanchez D, Fontecha-Barriuso M, Sanchez-Niño MD, Ramos AM, Cabello R, Gonzalez-Enguita C, Linkermann A, Sanz AB, Ortiz A. Cell death-based approaches in treatment of the urinary tract-associated diseases: a fight for survival in the killing fields. Cell Death Dis 2018; 9:118. [PMID: 29371637 PMCID: PMC5833412 DOI: 10.1038/s41419-017-0043-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/26/2017] [Accepted: 10/05/2017] [Indexed: 02/06/2023]
Abstract
Urinary tract-associated diseases comprise a complex set of disorders with a variety of etiologic agents and therapeutic approaches and a huge global burden of disease, estimated at around 1 million deaths per year. These diseases include cancer (mainly prostate, renal, and bladder), urinary tract infections, and urolithiasis. Cell death plays a key role in the pathogenesis and therapy of these conditions. During urinary tract infections, invading bacteria may either promote or prevent host cell death by interfering with cell death pathways. This has been studied in detail for uropathogenic E. coli (UPEC). Inhibition of host cell death may allow intracellular persistence of live bacteria, while promoting host cell death causes tissue damage and releases the microbes. Both crystals and urinary tract obstruction lead to tubular cell death and kidney injury. Among the pathomechanisms, apoptosis, necroptosis, and autophagy represent key processes. With respect to malignant disorders, traditional therapeutic efforts have focused on directly promoting cancer cell death. This may exploit tumor-specific characteristics, such as targeting Vascular Endothelial Growth Factor (VEGF) signaling and mammalian Target of Rapamycin (mTOR) activity in renal cancer and inducing survival factor deprivation by targeting androgen signaling in prostate cancer. An area of intense research is the use of immune checkpoint inhibitors, aiming at unleashing the full potential of immune cells to kill cancer cells. In the future, this may be combined with additional approaches exploiting intrinsic sensitivities to specific modes of cell death such as necroptosis and ferroptosis. Here, we review the contribution of diverse cell death mechanisms to the pathogenesis of urinary tract-associated diseases as well as the potential for novel therapeutic approaches based on an improved molecular understanding of these mechanisms.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Adrian M Ramos
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
- IRSIN, Madrid, Spain
- REDINREN, Madrid, Spain
| | - Ramiro Cabello
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain
| | | | - Andreas Linkermann
- Department of Internal Medicine III, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ana Belén Sanz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| | - Alberto Ortiz
- Research Institute-Fundacion Jimenez Diaz, Autonoma University, Madrid, Spain.
- IRSIN, Madrid, Spain.
- REDINREN, Madrid, Spain.
| |
Collapse
|
45
|
Abstract
Precise regulation of cell death and survival is essential for proper maintenance of organismal homeostasis, development, and the immune system. Deregulated cell death can lead to developmental defects, neuropathies, infections, and cancer. Kidney diseases, especially acute pathologies linked to ischemia-reperfusion injury, are among illnesses that profoundly are affected by improper regulation or execution of cell death pathways. Attempts to develop medicines for kidney diseases have been impacted by the complexity of these pathologies given the heterogeneous patient population and diverse etiologies. By analyzing cell death pathways activated in kidney diseases, we attempt to differentiate their importance for these pathologies with a goal of identifying those that have more profound impact and the best therapeutic potential. Although classic apoptosis still might be important, regulated necrosis pathways including necroptosis, ferroptosis, parthanatos, and mitochondrial permeability transition-associated cell death play a significantly role in kidney diseases, especially in acute kidney pathologies. Although targeting receptor-interacting protein 1 kinase appears to be the best therapeutic strategy, combination with inhibitors of other cell death pathways is likely to bring superior benefit and possible cure to patients suffering from kidney diseases.
Collapse
Affiliation(s)
- Jay P Garg
- Product Development, Departments of Immunology, Infectious Diseases, and Ophthalmology, Genentech, South San Francisco, CA
| | - Domagoj Vucic
- Early Discovery Biochemistry, Genentech, South San Francisco, CA.
| |
Collapse
|
46
|
Involvement of TWEAK and the NF-κB signaling pathway in lupus nephritis. Exp Ther Med 2018; 15:2611-2619. [PMID: 29456665 DOI: 10.3892/etm.2018.5711] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 08/28/2017] [Indexed: 11/05/2022] Open
Abstract
Previous findings have identified that tumor necrosis factor-related weak inducer of apoptosis (TWEAK) is associated with lupus nephritis (LN) activity status; however, the mechanism involved remains unclear. The present study aimed to investigate the roles of TWEAK and the nuclear factor (NF)-κB signaling pathway in LN. TWEAK levels in the blood and urine of patients with LN or non-LN systemic lupus erythematosus were measured by ELISA and compared with those in healthy controls. TWEAK expression and NF-κB transcriptional activity in the kidney were detected by western blotting, and Ki-67 and cluster of differentiation (CD) 68 expression were assessed using immunofluorescence. Additionally, human mesangial cells (HMCs) were cultured in vitro and divided into five groups: Normal control, TWEAK stimulus group, TWEAK + TWEAK blocking antibody, TWEAK + NF-κB inhibitor (BAY 11-7082) and TWEAK + combined (blocking antibody + BAY 11-7082). Cell cycle activity and Ki-67 expression in the HMCs were evaluated using flow cytometry, and cell induction of macrophage chemotaxis was determined by a Transwell assay. Levels of the inflammation-associated factors interleukin (IL)-6, monocyte chemotactic protein 1 (MCP-1), chemokine ligand 5 (CCL5), IL-8 and IL-10 were also detected by reverse transcription-quantitative polymerase chain reaction. It was observed that the urine levels of TWEAK in patients with LN were significantly elevated compared with those in the other groups (P<0.05). LN kidneys exhibited markedly increased cell proliferative ability, macrophage infiltration, TWEAK expression and NF-κB transcriptional activity compared with normal kidneys. Furthermore, the results indicated that treatment with recombinant TWEAK notably enhanced NF-κB transcriptional activity and significantly promoted cell proliferation and cell cycle activity (P<0.05), induced macrophage chemotaxis (P<0.05), significantly increased the expression of the chemotactic factors IL-6, IL-8, MCP-1 and CCL5 (P<0.05), and significantly reduced anti-inflammatory cytokine IL-10 mRNA expression in HMCs (P<0.05), relative to normal controls. Accordingly, blocking TWEAK function or inhibiting NF-κB activity reversed these effects. Collectively these data indicate that urine TWEAK may be considered as a novel biomarker of LN activity, and that blocking TWEAK function or NF-κB activity may effectively alleviate glomerular mesangial cell proliferation and macrophage chemotaxis.
Collapse
|
47
|
Chen X, Farrokhi V, Singh P, Ocana MF, Patel J, Lin LL, Neubert H, Brodfuehrer J. Biomeasures and mechanistic modeling highlight PK/PD risks for a monoclonal antibody targeting Fn14 in kidney disease. MAbs 2017; 10:62-70. [PMID: 29190188 DOI: 10.1080/19420862.2017.1398873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Discovery of the upregulation of fibroblast growth factor-inducible-14 (Fn14) receptor following tissue injury has prompted investigation into biotherapeutic targeting of the Fn14 receptor for the treatment of conditions such as chronic kidney diseases. In the development of monoclonal antibody (mAb) therapeutics, there is an increasing trend to use biomeasures combined with mechanistic pharmacokinetic/pharmacodynamic (PK/PD) modeling to enable decision making in early discovery. With the aim of guiding preclinical efforts on designing an antibody with optimized properties, we developed a mechanistic site-of-action (SoA) PK/PD model for human application. This model incorporates experimental biomeasures, including concentration of soluble Fn14 (sFn14) in human plasma and membrane Fn14 (mFn14) in human kidney tissue, and turnover rate of human sFn14. Pulse-chase studies using stable isotope-labeled amino acids and mass spectrometry indicated the sFn14 half-life to be approximately 5 hours in healthy volunteers. The biomeasures (concentration, turnover) of sFn14 in plasma reveals a significant hurdle in designing an antibody against Fn14 with desired characteristics. The projected dose (>1 mg/kg/wk for 90% target coverage) derived from the human PK/PD model revealed potential high and frequent dosing requirements under certain conditions. The PK/PD model suggested a unique bell-shaped relationship between target coverage and antibody affinity for anti-Fn14 mAb, which could be applied to direct the antibody engineering towards an optimized affinity. This investigation highlighted potential applications, including assessment of PK/PD risks during early target validation, human dose prediction and drug candidate optimization.
Collapse
Affiliation(s)
- Xiaoying Chen
- a Department of Biomedicine Design , Pfizer Inc , Cambridge , MA , United States of America
| | - Vahid Farrokhi
- b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America
| | - Pratap Singh
- b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America
| | - Mireia Fernandez Ocana
- b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America
| | - Jenil Patel
- b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America
| | - Lih-Ling Lin
- c Inflammation and Immunology Research Unit , Pfizer Inc. , Cambridge , MA , United States of America
| | - Hendrik Neubert
- b Department of Biomedicine Design , Pfizer Inc , Andover , MA , United States of America
| | - Joanne Brodfuehrer
- a Department of Biomedicine Design , Pfizer Inc , Cambridge , MA , United States of America
| |
Collapse
|
48
|
Guo Y, Liao Y. miR-200bc/429 cluster alleviates inflammation in IgA nephropathy by targeting TWEAK/Fn14. Int Immunopharmacol 2017; 52:150-155. [PMID: 28910745 DOI: 10.1016/j.intimp.2017.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/27/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022]
Abstract
Immunoglobulin A nephropathy (IgAN) is one of the most common glomerular diseases worldwide. Various studies have identified a host of microRNAs (miRNAs) abnormally expressed in IgAN and might affect the pathogenesis and progression of IgAN. However, miR-200bc/429 cluster in the pathopoiesis of IgAN remains poorly understood. For this study, we found that miR-200bc/429 cluster is downregulated in IgAN tissues and IgAN podocytes and HK2 cells compared with their matched controls respectively. In addition, overexpression of miR-200bc/429 cluster in IgAN podocytes and HK2 cells could attenuate the release of inflammatory cytokines MCP-1, IL-6 and RANTES. Moreover, the 3' untranslated region (UTR) of TNF-like weak inducer of apoptosis (TWEAK) was identified to be a direct target of miR-200bc/429 cluster. Furthermore, our results showed that miR-200bc/429 cluster can inhibit TWEAK mediated NF-κB pathway activation in IgAN. Overall, our findings revealed that miR-200bc/429 cluster alleviates inflammation in IgAN through TWEAK/Fn14 system and might serve as a biomarker as well as a promising therapeutic target for IgAN.
Collapse
Affiliation(s)
- Yong Guo
- Department of Nephrology, Chongqing Ninth People's Hospital, Chongqing 400700, People's Republic of China
| | - Yuanjiang Liao
- Department of Nephrology, Chongqing Ninth People's Hospital, Chongqing 400700, People's Republic of China.
| |
Collapse
|
49
|
Poveda J, Sanz AB, Carrasco S, Ruiz-Ortega M, Cannata-Ortiz P, Sanchez-Niño MD, Ortiz A. Bcl3: a regulator of NF-κB inducible by TWEAK in acute kidney injury with anti-inflammatory and antiapoptotic properties in tubular cells. Exp Mol Med 2017; 49:e352. [PMID: 28684863 PMCID: PMC5565957 DOI: 10.1038/emm.2017.89] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/21/2016] [Accepted: 01/12/2017] [Indexed: 01/09/2023] Open
Abstract
Acute kidney injury (AKI) is characterized by tubular cell death and interstitial inflammation. TWEAK promotes experimental kidney injury and activates the transcription factor NF-κB, a key regulator of genes involved in cell survival and inflammatory response. In search of potential therapeutic targets for AKI, we compared a transcriptomics database of NF-κB-related genes from murine AKI-kidneys with a transcriptomics database of TWEAK-stimulated cultured tubular cells. Four out of twenty-four (17%) genes were significantly upregulated (false discovery rate, FDR<0.05), while nine out of twenty-four (37%) genes were significantly upregulated at FDR <0.1 in both databases. Bcl3 was the top upregulated NF-κB-related gene in experimental AKI and one of the most upregulated genes in TWEAK-stimulated tubular cells. Quantitative reverse transcription PCR (qRT-PCR), western blot and immunohistochemistry confirmed Bcl3 upregulation in both experimental conditions and localized increased Bcl3 expression to tubular cells in AKI. Transcriptomics database analysis revealed increased Bcl3 expression in numerous experimental and human kidney conditions. Furthermore, systemic TWEAK administration increased kidney Bcl3 expression. In cultured tubular cells, targeting Bcl3 by siRNA resulted in the magnification of TWEAK-induced NF-κB transcriptional activity, chemokine upregulation and Klotho downregulation, and in the sensitization to cell death induced by TWEAK/TNFα/interferon-γ. In contrast, Bcl3 overexpression decreased NF-κB transcriptional activity, inflammatory response and cell death while dampening the decrease in Klotho expression. In conclusion, Bcl3 expressed in response to TWEAK stimulation decreases TWEAK-induced inflammatory and lethal responses. Therefore, therapeutic upregulation of Bcl3 activity should be explored in kidney disease because it has advantages over chemical inhibitors of NF-κB that are known to prevent inflammatory responses but can also sensitize the cells to apoptosis.
Collapse
Affiliation(s)
- Jonay Poveda
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Ana B Sanz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Susana Carrasco
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Pablo Cannata-Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Maria D Sanchez-Niño
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Unidad de Dialisis, IIS-Fundación Jiménez Díaz, School of Medicine, Universidad Autónoma de Madrid, Fundación Renal Iñigo Álvarez de Toledo-IRSIN and REDINREN, Madrid, Spain
| |
Collapse
|
50
|
Martin-Sanchez D, Poveda J, Fontecha-Barriuso M, Ruiz-Andres O, Sanchez-Niño MD, Ruiz-Ortega M, Ortiz A, Sanz AB. Targeting of regulated necrosis in kidney disease. Nefrologia 2017. [PMID: 28647049 DOI: 10.1016/j.nefro.2017.04.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors) may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Diego Martin-Sanchez
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Jonay Poveda
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Miguel Fontecha-Barriuso
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Olga Ruiz-Andres
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Marta Ruiz-Ortega
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Alberto Ortiz
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain
| | - Ana Belén Sanz
- Research Institute-Fundación Jiménez Díaz, Autónoma University, Madrid, Spain; IRSIN, Madrid, Spain; REDINREN, Madrid, Spain.
| |
Collapse
|