1
|
Lu Y, Cui Y, Hou L, Jiang Y, Shang J, Wang L, Xu H, Ye W, Qiu Y, Guo B. Optimized automated radiosynthesis of 18F-JNJ64413739 for purinergic ion channel receptor 7 (P2X7R) imaging in osteoporotic model rats. Front Pharmacol 2024; 15:1517127. [PMID: 39726781 PMCID: PMC11669691 DOI: 10.3389/fphar.2024.1517127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/28/2024] [Indexed: 12/28/2024] Open
Abstract
Objective To optimize the automated radiosynthesis of the purinergic ion channel receptor 7 (P2X7R) imaging agent 18F-JNJ64413739 and evaluate its potential for brain imaging in osteoporotic model rats. Methods A more electron-deficient nitropyridine was employed as the labeling precursor to facilitate the 18F-labeling. The radiosynthesis was conducted on an AllinOne synthesis module, and followed by purification via high-performance liquid chromatography (HPLC). The resulting 18F-JNJ64413739 was subjected to quality control tests. Small-animal PET/CT imaging studies were performed in sham and osteoporotic model rats. Results The optimized automated radiossynthesis of 18F-JNJ64413739 was successfully completed in approximately 100 min with non-decay-corrected radiochemical yield of 6.7% ± 3.8% (n = 3), >97% radiochemical purity and >14.3 ± 1.3 GBq/μmol molar activity. The product met all clinical quality requirements. 18F-JNJ64413739 PET/CT imaging showed revealed significantly higher radioactivity uptake in various brain regions of the osteoporotic model rats compared to sham control group. Conclusion We successfully optimized the automated radiosynthesis of 18F-JNJ64413739. The resulting tracer not only met clinical quality requirements but also demonstrated potential for clinical application in the diagnosis of osteoporosis, as evidenced by higher radioactivity uptake in various brain regions of osteoporotic model rats compared to normal controls.
Collapse
Affiliation(s)
- Yingtong Lu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yan Cui
- Traditional Chinese Medicine Department, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Hou
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yuanfang Jiang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Jingjie Shang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Lu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Hao Xu
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Weijian Ye
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yang Qiu
- Department of Gynecology, Jiangmen Wuyi Traditional Chinese Medicine Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Bin Guo
- Department of Nuclear Medicine, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Luo L, Wang J, Zhao J, Yang B, Ma W, Lin J. Dental pulp stem cells derived exosomes inhibit ferroptosis via regulating the Nrf2-keap1/GPX4 signaling pathway to ameliorate chronic kidney disease injury. Tissue Cell 2024; 93:102670. [PMID: 39667244 DOI: 10.1016/j.tice.2024.102670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Chronic kidney disease (CKD) has long represented a substantial global health challenge. Regrettably, current therapeutic interventions exhibit limited efficacy in halting the progression of CKD. Ferroptosis may play a crucial role in CKD, as indicated by substantial evidence. Dental pulp stem cell-derived exosomes (DPSC-Exos) possess advantages such as abundant sources and low immunogenicity, holding promising prospects in CKD treatment. METHODS This study constructed a mouse CKD model to investigate the therapeutic effects of DPSC-Exos. First, we successfully extracted and identified DPSC-Exos. Then, mice were randomly divided into sham, PBS, CKD, and CKD+Exos groups. Our study determined the expression of ferroptosis-related pathway molecules Nrf2, GPX4, Keap1, and HO-1 in each group. Finally, we detected the expression levels of inflammatory factors, TNF-α, IL-1β, and IL-6, at the injury site. RESULTS Mice treated with DPSC-Exos showed increased expression of the ferroptosis inhibitory factor Nrf2 and its downstream regulatory factors GPX4 and HO-1, while the expression of Keap1 decreased. The expression of TNF-α, IL-1β, and IL-6 also decreased. CONCLUSION DPSC-Exos may help inhibit ferroptosis through the Keap1-Nrf2/GPX4 pathway and reduce the inflammatory response at the injury site, revealing their potential therapeutic effects on CKD.
Collapse
Affiliation(s)
- Lin Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao; Department of spine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jing Wang
- Department of spine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Jie Zhao
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Bin Yang
- Department of Magnetic Resonance Imaging, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Wenzhe Ma
- State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, 999078, Macao.
| | - Jiaru Lin
- Department of nephropathy, the Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan 646000, China.
| |
Collapse
|
3
|
Yoshikoshi S, Yamamoto S, Suzuki Y, Imamura K, Harada M, Kamiya K, Matsunaga A. Prevalence of osteosarcopenia and its association with mortality and fractures among patients undergoing hemodialysis. J Bone Miner Metab 2024; 42:326-334. [PMID: 38546869 DOI: 10.1007/s00774-024-01503-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/12/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Osteosarcopenia is an age-related syndrome characterized by the coexistence of osteoporosis and sarcopenia. Little is known about the clinical implications of osteosarcopenia among patients undergoing hemodialysis. This study investigated the prevalence of osteosarcopenia and its association with all-cause mortality and fractures in this population. MATERIALS AND METHODS This retrospective cohort study included outpatients undergoing hemodialysis in Japan. Sarcopenia was defined according to the recommendations of the Asian Working Group for Sarcopenia 2019. Osteoporosis was defined as a T-score of the calcaneus bone < - 2.5. We divided patients into three groups: robust (no osteoporosis or sarcopenia), osteoporosis or sarcopenia alone (osteoporosis without sarcopenia or sarcopenia without osteoporosis), and osteosarcopenia (osteoporosis and sarcopenia). Cox proportional-hazard and negative binomial regression models were used to estimate the associations between osteosarcopenia and all-cause mortality and fractures. RESULTS Among the 328 patients (mean age, 65.5 ± 11.3 years; men, 59.1%), the prevalence of osteosarcopenia was 22.9%. During the follow-up period (1972 person-years), 131 deaths and 113 fractures occurred. Patients with osteoporosis or sarcopenia alone (hazard ratio 1.36; 95% confidence interval 0.85-2.18) and osteosarcopenia (hazard ratio 2.13; 95% confidence interval, 1.23-3.68) showed a higher risk of all-cause mortality than the robust group. Similar results were observed for the risk of fractures in patients with osteosarcopenia. CONCLUSIONS Patients undergoing hemodialysis showed a high prevalence of osteosarcopenia, and osteosarcopenia was associated with a poor prognosis in this patient population. Assessing osteosarcopenia may be useful for accurate prognostic stratification of patients undergoing hemodialysis.
Collapse
Affiliation(s)
- Shun Yoshikoshi
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
- Research Team for Social Participation and Healthy Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Shohei Yamamoto
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, 1-21-1, Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Yuta Suzuki
- Center for Outcomes Research and Economic Evaluation for Health, National Institute of Public Health, Saitama, Japan
| | - Keigo Imamura
- Research Team for Human Care, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Manae Harada
- Department of Rehabilitation, Sagami Circulatory Organ Clinic, Kanagawa, Japan
| | - Kentaro Kamiya
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Atsuhiko Matsunaga
- Department of Rehabilitation Sciences, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| |
Collapse
|
4
|
Badr S, Cotten A, Mentaverri R, Lombardo D, Labreuche J, Martin C, Hénaut L, Cortet B, Paccou J. Relationship between bone marrow adipose tissue and kidney function in postmenopausal women. Bone Rep 2023; 19:101713. [PMID: 37711545 PMCID: PMC10498167 DOI: 10.1016/j.bonr.2023.101713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Bone marrow adipose tissue (BMAT) is associated with aging, osteoporosis, and chronic kidney disease (CKD). To date, the association between BMAT and kidney function in postmenopausal women has not been thoroughly investigated. The main purpose of this study was to determine whether a relationship exists between proton density fat fraction (PDFF) and kidney function in postmenopausal women. Methods We investigated the cross-sectional association between estimated glomerular filtration rate (eGFR) - calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) equation - and PDFF - measured at the lumbar spine and proximal femur using Water Fat Imaging (WFI) MRI - in 199 postmenopausal women from the ADIMOS cohort study. We also performed DXA scans and laboratory measurements of sclerostin and c-terminal Fibroblast Growth Factor 23 (cFGF23). Results Participants' mean age was 67.5 (standard deviation, SD 10.0) years. Their median eGFR was 85.0 (interquartile range, IQR 72.2-95.0) ml/min/1.73 cm2, and their mean lumbar spine PDFF was 57.9 % (SD 9.6). When classified by eGFR-based CKD stages, 41.7 % of the cohort had an eGFR ≥ 90 (n = 83), 47.2 % had an eGFR of 60-89.9 (n = 94), and 11.1 % had an eGFR of 30-59.9 (n = 22). Participants with eGFR ≥ 90 had a lower lumbar spine PDFF than those with eGFR 60-89.9 (mean 55.8 % (9.8) vs. 58.9 % (9.0), p = 0.031) and those with eGFR 30-59.9 (55.8 % (9.8) vs. 60.8 % (9.8), p = 0.043). However, the differences did not remain significant after adjusting for predetermined confounders, including age, diabetes, Charlson comorbidity index, recent history of fragility fracture, appendicular lean mass, and lumbar spine BMD. The inclusion of sclerostin and/or cFGF23 as suspected mediators did not alter the findings. When proximal hip imaging-based PDFF was considered, no significant differences were found between the eGFR categories in the unadjusted and adjusted analyses. Conclusion No evidence of an association between kidney function and bone marrow adiposity was found either in the lumbar spine or proximal femur in a cohort of postmenopausal women.
Collapse
Affiliation(s)
- Sammy Badr
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Radiology and Musculoskeletal Imaging, F-59000 Lille, France
| | - Anne Cotten
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Radiology and Musculoskeletal Imaging, F-59000 Lille, France
| | - Romuald Mentaverri
- UR UPJV 7517, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France
| | - Daniela Lombardo
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Rheumatology, F-59000 Lille, France
| | | | - Claire Martin
- CHU Lille, Department of Biostatistics, F-59000 Lille, France
| | - Lucie Hénaut
- UR UPJV 7517, Pathophysiological Mechanisms and Consequences of Cardiovascular Calcifications (MP3CV), Picardie Jules Verne University, 80025 Amiens, France
| | - Bernard Cortet
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Rheumatology, F-59000 Lille, France
| | - Julien Paccou
- Univ. Lille, CHU Lille, MABlab ULR 4490, Department of Rheumatology, F-59000 Lille, France
| |
Collapse
|
5
|
Cozzolino M, Maffei Faccioli F, Cara A, Boni Brivio G, Rivela F, Ciceri P, Magagnoli L, Galassi A, Barbuto S, Speciale S, Minicucci C, Cianciolo G. Future treatment of vascular calcification in chronic kidney disease. Expert Opin Pharmacother 2023; 24:2041-2057. [PMID: 37776230 DOI: 10.1080/14656566.2023.2266381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Cardiovascular disease (CVD) is one of the global leading causes of morbidity and mortality in chronic kidney disease (CKD) patients. Vascular calcification (VC) is a major cause of CVD in this population and is the consequence of complex interactions between inhibitor and promoter factors leading to pathological deposition of calcium and phosphate in soft tissues. Different pathological landscapes are associated with the development of VC, such as endothelial dysfunction, oxidative stress, chronic inflammation, loss of mineralization inhibitors, release of calcifying extracellular vesicles (cEVs) and circulating calcifying cells. AREAS COVERED In this review, we examined the literature and summarized the pathophysiology, biomarkers and focused on the treatments of VC. EXPERT OPINION Even though there is no consensus regarding specific treatment options, we provide the currently available treatment strategies that focus on phosphate balance, correction of vitamin D and vitamin K deficiencies, avoidance of both extremes of bone turnover, normalizing calcium levels and reduction of inflammatory response and the potential and promising therapeutic approaches liketargeting cellular mechanisms of calcification (e.g. SNF472, TNAP inhibitors).Creating novel scores to detect in advance VC and implementing targeted therapies is crucial to treat them and improve the future management of these patients.
Collapse
Affiliation(s)
- Mario Cozzolino
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Federico Maffei Faccioli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Anila Cara
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Giulia Boni Brivio
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Francesca Rivela
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Paola Ciceri
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Lorenza Magagnoli
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Andrea Galassi
- Renal Division, Department of Health Sciences, ASST Santi Paolo e Carlo, University of Milan, Milan, Italy
| | - Simona Barbuto
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Serena Speciale
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Carlo Minicucci
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
6
|
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L, He X. P2X7Rs: new therapeutic targets for osteoporosis. Purinergic Signal 2023; 19:207-219. [PMID: 35106736 PMCID: PMC9984661 DOI: 10.1007/s11302-021-09836-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
Increasing evidence suggests that both the occurrence and progression of osteoporosis are associated with inflammation, especially in primary osteoporosis. The maintenance of skeletal homeostasis is dependent on the complex regulation of bone metabolism. Numerous evidence suggested that purinoceptor networks are essential for bone homeostasis. In this review, the relationship between inflammation and the development of osteoporosis and the role of P2X7 receptor (P2X7R) in regulating the dynamic regulation of bone reconstruction were covered. We also discussed how P2X7R regulates the balance between resorption and bone formation by osteoblasts and reviewed the relevance of P2X7R polymorphisms in skeletal physiology. Finally, we analyzed potential targets of P2X7R for osteoporosis.
Collapse
Affiliation(s)
- Haoyun Huang
- Clinical Medical School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yu-Mei He
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Miao-Miao Lin
- School of Sports Medicine and Health, Chengdu Sports University, Chengdu, 610041, China
| | - Yanchao Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaomei Zhang
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China
| | - Li Liang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Xueling He
- Laboratory Animal Center of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
7
|
Marcucci G, Domazetovic V, Nediani C, Ruzzolini J, Favre C, Brandi ML. Oxidative Stress and Natural Antioxidants in Osteoporosis: Novel Preventive and Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12020373. [PMID: 36829932 PMCID: PMC9952369 DOI: 10.3390/antiox12020373] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023] Open
Abstract
This review reports in detail the cellular and molecular mechanisms which regulate the bone remodeling process in relation to oxidative stress (OS), inflammatory factors, and estrogen deficiency. OS is considered an important pathogenic factor of osteoporosis, inducing osteocyte apoptosis and varying levels of specific factors, such as receptor activator κB ligand (RANKL), sclerostin, and, according to recent evidence, fibroblast growth factor 23, with consequent impairment of bone remodeling and high bone resorption. Bone loss increases the risk of fragility fractures, and the most commonly used treatments are antiresorptive drugs, followed by anabolic drugs or those with a double effect. In addition, recent data show that natural antioxidants contained in the diet are efficient in preventing and reducing the negative effects of OS on bone remodeling and osteocytes through the involvement of sirtuin type 1 enzyme. Indeed, osteocytes and some of their molecular factors are considered potential biological targets on which antioxidants can act to prevent and reduce bone loss, as well as to promote bone anabolic and regenerative processes by restoring physiological bone remodeling. Several data suggest including antioxidants in novel therapeutic approaches to develop better management strategies for the prevention and treatment of osteoporosis and OS-related bone diseases. In particular, anthocyanins, as well as resveratrol, lycopene, oleuropein, some vitamins, and thiol antioxidants, could have protective and therapeutic anti-osteoporotic effects.
Collapse
Affiliation(s)
- Gemma Marcucci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Vladana Domazetovic
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | - Chiara Nediani
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
- Correspondence:
| | - Jessica Ruzzolini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134 Florence, Italy
| | - Claudio Favre
- Department of Paediatric Haematology-Oncology, Meyer Children’s Hospital IRCCS, 50139 Florence, Italy
| | | |
Collapse
|
8
|
Gliflozins Have an Anti-Inflammatory Effect on Renal Proximal Tubular Epithelial Cells in a Diabetic and Inflammatory Microenvironment In Vitro. Int J Mol Sci 2023; 24:ijms24031811. [PMID: 36768138 PMCID: PMC9916320 DOI: 10.3390/ijms24031811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023] Open
Abstract
Inflammation is intimately involved in the pathogenesis of diabetic kidney disease. Inhibition of SGLT-2 by a specific class of drugs, gliflozins, has been shown to reduce inflammation and attenuate the progression of diabetic nephropathy, in addition to its main effect of inhibiting renal glucose reabsorption. We used highly purified human renal proximal tubular epithelial cells (PTCs) as an in vitro model to study the cellular response to a diabetic (high glucose) and inflammatory (cytokines) microenvironment and the effect of gliflozins. In this context, we investigated the influence of SGLT-2 inhibition by empa- and dapagliflozin (500 nM) on the expression of pro-inflammatory factors (IL-1β, IL-6, TNF-α, MCP-1, and ICAM-1). The results clearly indicate an anti-inflammatory effect of both gliflozins. Although induced expression of the four cytokines was only slightly attenuated, there was a clear effect on the expression of the adhesion molecule ICAM-1, a master regulator of cellular responses in inflammation and injury resolution. The induced expression of ICAM-1 mRNA was significantly reduced by approximately 13.5% by empagliflozin and also showed an inhibitory trend with dapagliflozin. However, induced ICAM-1 protein expression was significantly inhibited from 24.71 ± 1.0 ng/mL to 18.81 ± 3.9 (empagliflozin) and 19.62 ± 2.1 ng/mL (dapagliflozin). In conclusion, an additional anti-inflammatory effect of empa- and dapagliflozin in therapeutically observed concentrations was demonstrated in primary human PTCs in vitro.
Collapse
|
9
|
Alkaline Phosphatase: An Old Friend as Treatment Target for Cardiovascular and Mineral Bone Disorders in Chronic Kidney Disease. Nutrients 2022; 14:nu14102124. [PMID: 35631265 PMCID: PMC9144546 DOI: 10.3390/nu14102124] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 11/17/2022] Open
Abstract
Alkaline phosphatase (ALP) is an evolutionary conserved enzyme and widely used biomarker in clinical practice. Tissue-nonspecific alkaline phosphatase (TNALP) is one of four human isozymes that are expressed as distinct TNALP isoforms after posttranslational modifications, mainly in bone, liver, and kidney tissues. Beyond the well-known effects on bone mineralization, the bone ALP (BALP) isoforms (B/I, B1, B1x, and B2) are also involved in the pathogenesis of ectopic calcification. This narrative review summarizes the recent clinical investigations and mechanisms that link ALP and BALP to inflammation, metabolic syndrome, vascular calcification, endothelial dysfunction, fibrosis, cardiovascular disease, and mortality. The association between ALP, vitamin K, bone metabolism, and fracture risk in patients with chronic kidney disease (CKD) is also discussed. Recent advances in different pharmacological strategies are highlighted, with the potential to modulate the expression of ALP directly and indirectly in CKD–mineral and bone disorder (CKD-MBD), e.g., epigenetic modulation, phosphate binders, calcimimetics, vitamin D, and other anti-fracture treatments. We conclude that the significant evidence for ALP as a pathogenic factor and risk marker in CKD-MBD supports the inclusion of concrete treatment targets for ALP in clinical guidelines. While a target value below 120 U/L is associated with improved survival, further experimental and clinical research should explore interventional strategies with optimal risk–benefit profiles. The future holds great promise for novel drug therapies modulating ALP.
Collapse
|
10
|
Chiang MH, Yang CY, Kuo YJ, Cheng CY, Huang SW, Chen YP. Inverse Relationship between Mean Corpuscular Volume and T-Score in Chronic Dialysis Patients. Medicina (B Aires) 2022; 58:medicina58040497. [PMID: 35454336 PMCID: PMC9032450 DOI: 10.3390/medicina58040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 11/23/2022] Open
Abstract
Background and Objectives: Osteoporosis and anemia are prevalent among chronic kidney disease stage 5D (CKD stage 5D) patients. Osteoblasts are known as the niche cells of hematopoietic stem cells (HSCs) and stimulate HSCs to form blood-cell lineages within bone marrow microenvironments. We hypothesized that an inverse correlation may exist between mean corpuscular volume (MCV), a surrogate for ineffective hematopoiesis, and bone mineral density (BMD) in the CKD stage 5D population. Materials and Methods: This is a cross-sectional designed cohort study evaluating CKD stage 5D patients who have received dialysis therapy for over three months. Baseline clinical characteristics and laboratory data were prospectively collected. The dual-energy X-ray absorptiometry (DXA) method was used to measure BMD at five sites, which were bilateral femoral neck, total hip, and lumbar spine 1–4. The Pearson correlation test was initially adopted, and a multivariate linear regression model was further applied for potential confounder adjustments. Results: From September 2020 to January 2021, a total of 123 CKD stage 5D patients were enrolled. The Pearson correlation test revealed a significant inverse association between MCV and BMD at bilateral femoral neck and lumbar spine. The lowest T-score of the five body sites was determined as the recorded T-score. After adjustments for several potential confounding factors, the multivariate linear regression model found consistent negative associations between T-score and MCV. Conclusions: The present study found significant inverse correlations between MCV and BMD at specific body locations in patients on dialysis. A decreased T-score was also found to be associated with macrocytosis after adjustments for confounding variables. However, direct evidence for the causative etiology was lacking.
Collapse
Affiliation(s)
- Ming-Hsiu Chiang
- Department of General Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Chih-Yu Yang
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan;
- Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yi-Jie Kuo
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-J.K.); (S.-W.H.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Yi Cheng
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Shu-Wei Huang
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-J.K.); (S.-W.H.)
| | - Yu-Pin Chen
- Department of Orthopedics, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (Y.-J.K.); (S.-W.H.)
- Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Correspondence: ; Tel.: +886-9-75-930-396
| |
Collapse
|
11
|
Fusaro M, Tondolo F, Gasperoni L, Tripepi G, Plebani M, Zaninotto M, Nickolas TL, Ketteler M, Aghi A, Politi C, La Manna G, Brandi ML, Ferrari S, Gallieni M, Mereu MC, Cianciolo G. The Role of Vitamin K in CKD-MBD. Curr Osteoporos Rep 2022; 20:65-77. [PMID: 35132525 PMCID: PMC8821802 DOI: 10.1007/s11914-022-00716-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW We describe the mechanism of action of vitamin K, and its implication in cardiovascular disease, bone fractures, and inflammation to underline its protective role, especially in chronic kidney disease (CKD). RECENT FINDINGS Vitamin K acts as a coenzyme of y-glutamyl carboxylase, transforming undercarboxylated in carboxylated vitamin K-dependent proteins. Furthermore, through the binding of the nuclear steroid and xenobiotic receptor, it activates the expression of genes that encode proteins involved in the maintenance of bone quality and bone remodeling. There are three main types of K vitamers: phylloquinone, menaquinones, and menadione. CKD patients, for several conditions typical of the disease, are characterized by lower levels of vitamin K than the general populations, with a resulting higher prevalence of bone fractures, vascular calcifications, and mortality. Therefore, the definition of vitamin K dosage is an important issue, potentially leading to reduced bone fractures and improved vascular calcifications in the general population and CKD patients.
Collapse
Affiliation(s)
- Maria Fusaro
- National Research Council (CNR), Institute of Clinical Physiology (IFC), Via G. Moruzzi 1, 56124, Pisa, Italy.
- Department of Medicine, University of Padova, Via Giustiniani 2, 35128, Padova, Italy.
| | - Francesco Tondolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lorenzo Gasperoni
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Giovanni Tripepi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Mario Plebani
- Laboratory Medicine Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Martina Zaninotto
- Laboratory Medicine Unit, Department of Medicine, University of Padua, Padua, Italy
| | - Thomas L Nickolas
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York City, NY, USA
| | - Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Andrea Aghi
- Department of Medicine, Clinica Medica 1, University of Padua, Padua, Italy
| | - Cristina Politi
- CNR-IFC, Clinical Epidemiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Maria Luisa Brandi
- Department of Surgery and Translational Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Serge Ferrari
- Service des Maladies Osseuses, Département de Médecine, HUG, Genève, Switzerland
| | - Maurizio Gallieni
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', Università di Milano, 20157, Milano, Italy
| | | | - Giuseppe Cianciolo
- Nephrology, Dialysis and Renal Transplant Unit, IRCCS - Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
12
|
The Role of Diet in Bone and Mineral Metabolism and Secondary Hyperparathyroidism. Nutrients 2021; 13:nu13072328. [PMID: 34371838 PMCID: PMC8308808 DOI: 10.3390/nu13072328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/13/2022] Open
Abstract
Bone disorders are a common complication of chronic kidney disease (CKD), obesity and gut malabsorption. Secondary hyperparathyroidism (SHPT) is defined as an appropriate increase in parathyroid hormone (PTH) secretion, driven by either reduced serum calcium or increased phosphate concentrations, due to an underlying condition. The available evidence on the effects of dietary advice on secondary hyperparathyroidism confirms the benefit of a diet characterized by decreased phosphate intake, avoiding low calcium and vitamin D consumption (recommended intakes 1000-1200 mg/day and 400-800 UI/day, respectively). In addition, low protein intake in CKD patients is associated with a better control of SHPT risk factors, although its strength in avoiding hyperphosphatemia and the resulting outcomes are debated, mostly for dialyzed patients. Ultimately, a consensus on the effect of dietary acid loads in the prevention of SHPT is still lacking. In conclusion, a reasonable approach for reducing the risk for secondary hyperparathyroidism is to individualize dietary manipulation based on existing risk factors and concomitant medical conditions. More studies are needed to evaluate long-term outcomes of a balanced diet on the management and prevention of secondary hyperparathyroidism in at-risk patients at.
Collapse
|
13
|
Bover J, Ureña-Torres P, Cozzolino M, Rodríguez-García M, Gómez-Alonso C. The Non-invasive Diagnosis of Bone Disorders in CKD. Calcif Tissue Int 2021; 108:512-527. [PMID: 33398414 DOI: 10.1007/s00223-020-00781-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/17/2020] [Indexed: 12/14/2022]
Abstract
Abnormal bone metabolism is an integral part of the chronic kidney disease-mineral bone disorder (CKD-MBD). For several reasons, the difficult bone compartment was neglected for some time, but there has been renewed interest as a result of the conception of bone as a new endocrine organ, the increasing recognition of the cross-talk between bone and vessels, and, especially, the very high risk of osteoporotic fractures (and associated mortality) demonstrated in patients with CKD. Therefore, it has been acknowledged in different guidelines that action is needed in respect of fracture risk assessment and the diagnosis and treatment of osteoporosis in the context of CKD and CKD-MBD, even beyond renal osteodystrophy. These updated guidelines clearly underline the need to improve a non-invasive approach to these bone disorders in order to guide treatment decisions aimed at not only controlling CKD-MBD but also decreasing the risk of fracture. In this report, we review the current role of the most often clinically used or promising biochemical circulating biomarkers such as parathyroid hormone, alkaline phosphatases, and other biochemical markers of bone activity as alternatives to some aspects of bone histomorphometry. We also mention the potential role of classic and new imaging techniques for CKD patients. Information on many aspects is still scarce and heterogeneous, but many of us consider that it is indeed time for action, recognizing our definitely limited ability to base certain treatment decisions only on our current non-comprehensive knowledge.
Collapse
Affiliation(s)
- Jordi Bover
- Department of Nephrology, Fundació Puigvert and Universitat Autònoma, IIB Sant Pau, REDinREN, C. Cartagena 340-350, 08025, Barcelona, Catalonia, Spain.
| | - Pablo Ureña-Torres
- Department of Dialysis, AURA Nord Saint Ouen and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Mario Cozzolino
- Renal Division, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Minerva Rodríguez-García
- Unidad de Gestión Clínica de Nefrología, Hospital Universitario Central de Asturias, REDinREN, Universidad de Oviedo, Oviedo, Spain
| | - Carlos Gómez-Alonso
- Unidad de Gestión Clínica de Metabolismo Óseo y Mineral, Instituto de Investigación Sanitaria del Principado de Asturias, Hospital Universitario Central de Asturias, Oviedo, Spain
| |
Collapse
|
14
|
Mazzaferro S, Bagordo D, De Martini N, Pasquali M, Rotondi S, Tartaglione L, Stenvinkel P. Inflammation, Oxidative Stress, and Bone in Chronic Kidney Disease in the Osteoimmunology Era. Calcif Tissue Int 2021; 108:452-460. [PMID: 33388898 PMCID: PMC7778498 DOI: 10.1007/s00223-020-00794-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022]
Abstract
Bone is not only a mineralized and apparently non-vital structure that provides support for locomotion and protection to inner organs. An increasing number of studies are unveiling new biologic functions and connections to other systems, giving the rise to new fields of research, such as osteoimmunology. The bone marrow niche, a new entity in bone physiology, seems to represent the site where a complex crosstalk between bone and immune/inflammatory responses takes place. An impressive interplay with the immune system is realized in bone marrow, with reciprocal influences between bone cells and haematopoietic cells. In this way, systemic chronic inflammatory diseases realize a crosstalk with bone, resulting in bone disease. Thus, pathogenetic links between chronic kidney disease-mineral bone disorders and osteoporosis, cardiovascular disease, and ageing are common. The aim of this narrative review is to provide a general view of the progresses in the field of bone research and their potential clinical implications, with emphasis on the links with inflammation and the connections to osteoimmunology and chemokines.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy.
- Nephrology Unit, Policlinico Umberto I, Rome, Italy.
| | - Domenico Bagordo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Natalia De Martini
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | | | - Silverio Rotondi
- Nephrology and Dialysis Unit, ICOT Hospital, Polo Pontino Sapienza University of Rome, Rome, Italy
| | - Lida Tartaglione
- Department of Translational and Precision Medicine, Sapienza University of Rome, Viale del Policlinico, 155, 00161, Rome, Italy
| | - Peter Stenvinkel
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
15
|
Osteocyte apoptosis: the roles and key molecular mechanisms in resorption-related bone diseases. Cell Death Dis 2020; 11:846. [PMID: 33046704 PMCID: PMC7552426 DOI: 10.1038/s41419-020-03059-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 01/18/2023]
Abstract
Vital osteocytes have been well known to function as an important orchestrator in the preservation of robustness and fidelity of the bone remodeling process. Nevertheless, some key pathological factors, such as sex steroid deficiency and excess glucocorticoids, and so on, are implicated in inducing a bulk of apoptotic osteocytes, subsequently resulting in resorption-related bone loss. As much, osteocyte apoptosis, under homeostatic conditions, is in an optimal state of balance tightly controlled by pro- and anti-apoptotic mechanism pathways. Importantly, there exist many essential signaling proteins in the process of osteocyte apoptosis, which has a crucial role in maintaining a homeostatic environment. While increasing in vitro and in vivo studies have established, in part, key signaling pathways and cross-talk mechanism on osteocyte apoptosis, intrinsic and complex mechanism underlying osteocyte apoptosis occurs in various states of pathologies remains ill-defined. In this review, we discuss not only essential pro- and anti-apoptotic signaling pathways and key biomarkers involved in these key mechanisms under different pathological agents, but also the pivotal role of apoptotic osteocytes in osteoclastogenesis-triggered bone loss, hopefully shedding new light on the attractive and proper actions of pharmacotherapeutics of targeting apoptosis and ensuing resorption-related bone diseases such as osteoporosis and fragility fractures.
Collapse
|
16
|
Hsu CY, Chen LR, Chen KH. Osteoporosis in Patients with Chronic Kidney Diseases: A Systemic Review. Int J Mol Sci 2020; 21:E6846. [PMID: 32961953 PMCID: PMC7555655 DOI: 10.3390/ijms21186846] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic kidney disease (CKD) is associated with the development of mineral bone disorder (MBD), osteoporosis, and fragility fractures. Among CKD patients, adynamic bone disease or low bone turnover is the most common type of renal osteodystrophy. The consequences of CKD-MBD include increased fracture risk, greater morbidity, and mortality. Thus, the goal is to prevent the occurrences of fractures by means of alleviating CKD-induced MBD and treating subsequent osteoporosis. Changes in mineral and humoral metabolism as well as bone structure develop early in the course of CKD. CKD-MBD includes abnormalities of calcium, phosphorus, PTH, and/or vitamin D; abnormalities in bone turnover, mineralization, volume, linear growth, or strength; and/or vascular or other soft tissue calcification. In patients with CKD-MBD, using either DXA or FRAX to screen fracture risk should be considered. Biomarkers such as bALP and iPTH may assist to assess bone turnover. Before initiating an antiresorptive or anabolic agent to treat osteoporosis in CKD patients, lifestyle modifications, such as exercise, calcium, and vitamin D supplementation, smoking cessation, and avoidance of excessive alcohol intake are important. Managing hyperphosphatemia and SHPT are also crucial. Understanding the complex pathogenesis of CKD-MBD is crucial in improving one's short- and long-term outcomes. Treatment strategies for CKD-associated osteoporosis should be patient-centered to determine the type of renal osteodystrophy. This review focuses on the mechanism, evaluation and management of patients with CKD-MBD. However, further studies are needed to explore more details regarding the underlying pathophysiology and to assess the safety and efficacy of agents for treating CKD-MBD.
Collapse
Affiliation(s)
- Chia-Yu Hsu
- Department of Rehabilitation Medicine, Ten-Chan General Hospital, Zhongli, Taoyuan 320, Taiwan;
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 320, Taiwan
| | - Li-Ru Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei 104, Taiwan;
- Department of Mechanical Engineering, National Chiao-Tung University, Hsinchu 300, Taiwan
| | - Kuo-Hu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei 231, Taiwan
- Department of Medicine, School of Medicine, Tzu-Chi University, Hualien 970, Taiwan
| |
Collapse
|
17
|
Cianciolo G, De Pascalis A, Gasperoni L, Tondolo F, Zappulo F, Capelli I, Cappuccilli M, La Manna G. The Off-Target Effects, Electrolyte and Mineral Disorders of SGLT2i. Molecules 2020; 25:molecules25122757. [PMID: 32549243 PMCID: PMC7355461 DOI: 10.3390/molecules25122757] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/21/2022] Open
Abstract
The sodium-glucose cotransporter 2 inhibitors (SGLT2i) are a relatively new class of antidiabetic drugs that, in addition to emerging as an effective hypoglycemic treatment, have been shown to improve, in several trials, both renal and cardiovascular outcomes. In consideration of the renal site of action and the associated osmotic diuresis, a negative sodium balance has been postulated during SGLT2i administration. Although it is presumable that sodium and water depletion may contribute to some positive actions of SGLT2i, evidence is far from being conclusive and the real physiologic effects of SGLT2i on sodium remain largely unknown. Indeed, no study has yet investigated how SGLT2i change sodium balance in the long term and especially the pathways through which the natriuretic effect is expressed. Furthermore, recently, several experimental studies have identified different pathways, not directly linked to tubular sodium handling, which could contribute to the renal and cardiovascular benefits associated with SGLT2i. These compounds may also modulate urinary chloride, potassium, magnesium, phosphate, and calcium excretion. Some changes in electrolyte homeostasis are transient, whereas others may persist, suggesting that the administration of SGLT2i may affect mineral and electrolyte balances in exposed subjects. This paper will review the evidence of SGLT2i action on sodium transporters, their off-target effects and their potential role on kidney protection as well as their influence on electrolytes and mineral homeostasis.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | | | - Lorenzo Gasperoni
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Francesco Tondolo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Fulvia Zappulo
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Irene Capelli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Maria Cappuccilli
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
| | - Gaetano La Manna
- Department of Experimental Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Renal Transplant Unit, S. Orsola Hospital, University of Bologna, 40100 Bologna, Italy; (G.C.); (L.G.); (F.T.); (F.Z.); (I.C.); (M.C.)
- Correspondence: ; Tel.: +39-051-214-3255; Fax: +39-051-340-871
| |
Collapse
|
18
|
Mazzaferro S, De Martini N, Rotondi S, Tartaglione L, Ureña-Torres P, Bover J, Pasquali M. Bone, inflammation and chronic kidney disease. Clin Chim Acta 2020; 506:236-240. [PMID: 32275989 DOI: 10.1016/j.cca.2020.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/04/2023]
Abstract
Increasing knowledge on inflammatory mediators and bone metabolism highlights the relationship between inflammation and bone disease. During acute illness, inflammatory cells and cytokines modulate bone cells activity so as to mobilize calcium seemingly to supply the metabolic requirements for immune response. In case of long lasting, chronic inflammatory states a condition of maladaptive, smouldering inflammation is realized and negatively affects calcium bone balance. Aging, now nicknamed inflammaging, is regarded as a chronic inflammatory condition, characterized by increased circulating inflammatory cytokines, that contributes to the development of osteoporosis, cardiovascular diseases and chronic kidney disease. In patients with renal insufficiency, the development of bone and mineral disorders (so called CKD-MBD "syndrome") is now a recognized pathogenic factor for the seemingly accelerated process of aging and for the increased risk of cardiovascular death in these patients. The adaptive changes in mineral and bone metabolism developing in the early stages of chronic kidney disease could represent a hypothetical model of accelerated aging, osteoporosis and cardiovascular disease.
Collapse
Affiliation(s)
- Sandro Mazzaferro
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | - Natalia De Martini
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | | | - Lida Tartaglione
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy.
| | - Pablo Ureña-Torres
- AURA Nord Saint Ouen, Saint Ouen, France; Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France.
| | - Jordi Bover
- Fundació Puigvert, Department of Nephrology, IIB Sant Pau, Universitat Autònoma, RedinRen, Barcelona, Catalonia, Spain.
| | - Marzia Pasquali
- Azienda Ospedaliero-Universitaria Policlinico Umberto I, Roma, Italy.
| | | |
Collapse
|
19
|
Chao CT, Wang J, Huang JW, Chan DC, Hung KY, Chien KL. Chronic kidney disease-related osteoporosis is associated with incident frailty among patients with diabetic kidney disease: a propensity score-matched cohort study. Osteoporos Int 2020; 31:699-708. [PMID: 32103279 DOI: 10.1007/s00198-020-05353-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022]
Abstract
UNLABELLED Chronic kidney disease (CKD)-related osteoporosis is a major complication in patients with CKD, conferring a higher risk of adverse outcomes. We found that among those with diabetic kidney disease, this complication increased the risk of incident frailty, an important mediator of adverse outcomes. INTRODUCTION Renal osteodystrophy and chronic kidney disease (CKD)-related osteoporosis increases complications for patients with diabetic kidney disease (DKD). Since musculoskeletal degeneration is central to frailty development, we investigated the relationship between baseline osteoporosis and the subsequent frailty risk in patients with DKD. METHODS From the Longitudinal Cohort of Diabetes Patients in Taiwan (n = 840,000), we identified 12,027 patients having DKD with osteoporosis and 24,054 propensity score-matched controls having DKD but without osteoporosis. The primary endpoint was incident frailty on the basis of a modified FRAIL scale. Patients were prospectively followed-up until the development of endpoints or the end of this study. The Kaplan-Meier technique and Cox proportional hazard regression were used to analyze the association between osteoporosis at baseline and incident frailty in these patients. RESULTS The mean age of the DKD patients was 67.2 years, with 55.4% female and a 12.6% prevalence of osteoporosis at baseline. After 3.5 ± 2.2 years of follow up, the incidence rate of frailty in patients having DKD with osteoporosis was higher than that in DKD patients without (6.6 vs. 5.7 per 1000 patient-year, p = 0.04). A Cox proportional hazard regression showed that after accounting for age, gender, obesity, comorbidities, and medications, patients having DKD with osteoporosis had a significantly higher risk of developing frailty (hazard ratio, 1.19; 95% confidence interval, 1.02-1.38) than those without osteoporosis. CONCLUSIONS CKD-related osteoporosis is associated with a higher risk of incident frailty in patients with DKD.
Collapse
Affiliation(s)
- C-T Chao
- Department of Internal Medicine, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
- Geriatric and Community Medicine Research Center, National Taiwan University Hospital BeiHu Branch, Taipei, Taiwan
- Graduate Institute of Toxicology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - J Wang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - J-W Huang
- Nephrology division, Department of Internal Medicine, National Taiwan University Hospital YunLin branch, Douliou, YunLin County, Taiwan.
| | - D-C Chan
- Department of Internal Medicine, National Taiwan University Hospital ChuTung branch, Zhudong, HsinChu County, Taiwan
| | - K-Y Hung
- Department of Internal Medicine, National Taiwan University Hospital HsinChu branch, HsinChu City, Taiwan
| | - K-L Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
20
|
Baer PC, Koch B, Freitag J, Schubert R, Geiger H. No Cytotoxic and Inflammatory Effects of Empagliflozin and Dapagliflozin on Primary Renal Proximal Tubular Epithelial Cells under Diabetic Conditions In Vitro. Int J Mol Sci 2020; 21:ijms21020391. [PMID: 31936266 PMCID: PMC7013746 DOI: 10.3390/ijms21020391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Abstract
Gliflozins are inhibitors of the renal proximal tubular sodium-glucose co-transporter-2 (SGLT-2), that inhibit reabsorption of urinary glucose and they are able to reduce hyperglycemia in patients with type 2 diabetes. A renoprotective function of gliflozins has been proven in diabetic nephropathy, but harmful side effects on the kidney have also been described. In the current project, primary highly purified human renal proximal tubular epithelial cells (PTCs) have been shown to express functional SGLT-2, and were used as an in vitro model to study possible cellular damage induced by two therapeutically used gliflozins: empagliflozin and dapagliflozin. Cell viability, proliferation, and cytotoxicity assays revealed that neither empagliflozin nor dapagliflozin induce effects in PTCs cultured in a hyperglycemic environment, or in co-medication with ramipril or hydro-chloro-thiazide. Oxidative stress was significantly lowered by dapagliflozin but not by empagliflozin. No effect of either inhibitor could be detected on mRNA and protein expression of the pro-inflammatory cytokine interleukin-6 and the renal injury markers KIM-1 and NGAL. In conclusion, empa- and dapagliflozin in therapeutic concentrations were shown to induce no direct cell injury in cultured primary renal PTCs in hyperglycemic conditions.
Collapse
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany (J.F.); (H.G.)
- Correspondence: or ; Tel.: +49-69-6301-5554; Fax: +49-69-6301-4749
| | - Benjamin Koch
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany (J.F.); (H.G.)
| | - Janina Freitag
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany (J.F.); (H.G.)
| | - Ralf Schubert
- Division of Allergology, Pneumology and Cystic Fibrosis, Department for Children and Adolescents, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany;
| | - Helmut Geiger
- Division of Nephrology, Department of Internal Medicine III, University Hospital, Goethe-University, 60596 Frankfurt/M., Germany (J.F.); (H.G.)
| |
Collapse
|
21
|
Cianciolo G, De Pascalis A, Capelli I, Gasperoni L, Di Lullo L, Bellasi A, La Manna G. Mineral and Electrolyte Disorders With SGLT2i Therapy. JBMR Plus 2019; 3:e10242. [PMID: 31768494 PMCID: PMC6874177 DOI: 10.1002/jbm4.10242] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/18/2022] Open
Abstract
The newly developed sodium‐glucose cotransporter 2 inhibitors (SGLT2is) effectively modulate glucose metabolism in diabetes. Although clinical data suggest that SGLT2is (empagliflozin, dapagliflozin, ertugliflozin, canagliflozin, ipragliflozin) are safe and protect against renal and cardiovascular events, very little attention has been dedicated to the effects of these compounds on different electrolytes. As with other antidiabetic compounds, some effects on water and electrolytes balance have been documented. Although the natriuretic effect and osmotic diuresis are expected with SGLT2is, these compounds may also modulate urinary potassium, magnesium, phosphate, and calcium excretion. Notably, they have had no effect on plasma sodium levels and promoted only small increases in serum potassium and magnesium concentrations in clinical trials. Moreover, SGLT2is may induce an increase in serum phosphate, FGF‐23, and PTH; reduce 1,25‐dihydroxyvitamin D; and generate normal serum calcium. Some published and preliminary reports, as well as unconfirmed reports have suggested an association with bone fractures. Some homeostasis perturbations are transient, whereas others may persist, suggesting that the administration of SGLT2is may affect electrolyte balances in exposed subjects. Although current evidence supports their safety, additional efforts are needed to elucidate the long‐term impact of these compounds on chronic kidney disease, mineral metabolism, and bone health. Indeed, the limited follow‐up studies and the heterogeneity of the case‐mix of different randomized controlled trials preclude a definitive answer on the impact of these compounds on long‐term outcomes such as the risk of bone fracture. Here we review the current understanding of the mechanisms involved in electrolyte handling and the available data on the clinical implications of electrolytes and mineral metabolism perturbations induced by SGLT2i administration. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Giuseppe Cianciolo
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | | | - Irene Capelli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | - Lorenzo Gasperoni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| | - Luca Di Lullo
- Department of Nephrology and Dialysis Parodi-Delfino Hospital Colleferro Italy
| | - Antonio Bellasi
- Department of Research Innovation and Brand Reputation, ASST Papa Giovanni XXIII Bergamo Italy
| | - Gaetano La Manna
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Nephrology, Dialysis and Transplantation Unit, St. Orsola Hospital University of Bologna Bologna Italy
| |
Collapse
|
22
|
Pongrac Barlovic D, Tikkanen-Dolenc H, Groop PH. Physical Activity in the Prevention of Development and Progression of Kidney Disease in Type 1 Diabetes. Curr Diab Rep 2019; 19:41. [PMID: 31152254 PMCID: PMC6544601 DOI: 10.1007/s11892-019-1157-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Physical activity is a fundamental part of lifestyle management in diabetes care. Although its benefits are very well recognized in the general population and in people with type 2 diabetes, much less is known about the effects of exercise in type 1 diabetes. In particular, exercise effects in relation to diabetic kidney disease (DKD) are understudied. Some uncertainties about physical activity recommendations stem from the fact that strenuous exercise may worsen albuminuria immediately after the activity. However, in middle-aged and older adults without diabetes, observational studies have suggested that physical activity is associated with a decreased risk of rapid kidney function deterioration. In this review, we focus on the role of physical activity in patients with DKD and type 1 diabetes. RECENT FINDINGS Hereby, we present data that show that in individuals at risk of DKD or with established DKD, regular moderate-to-vigorous physical activity was associated with reduced incidence and progression of DKD, as well as reduced risk of cardiovascular events and mortality. Therefore, regular moderate-to-vigorous exercise should become a central part of the management of individuals with type 1 diabetes, in the absence of contraindications and accompanied with all needed educational support for optimal diabetes management.
Collapse
Affiliation(s)
- Drazenka Pongrac Barlovic
- University Medical Center Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University Ljubljana, Ljubljana, Slovenia
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O Box 63, FIN-00014 Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Heidi Tikkanen-Dolenc
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O Box 63, FIN-00014 Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O Box 63, FIN-00014 Helsinki, Finland
- Abdominal Center Nephrology, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria Australia
| |
Collapse
|
23
|
de Borst MH. Interaction between inflammation, mineral metabolism and the renin-angiotensin system: implications for cardiorenal outcomes in chronic kidney disease. Nephrol Dial Transplant 2019; 34:547-551. [PMID: 30957171 DOI: 10.1093/ndt/gfz036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Martin H de Borst
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
24
|
Herpes zoster and the risks of osteoporosis and fracture: a nationwide cohort study. Eur J Clin Microbiol Infect Dis 2018; 38:365-372. [PMID: 30460416 DOI: 10.1007/s10096-018-3436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
This study aimed to investigate the association between herpes zoster (HZ) and the risks of osteoporosis and fracture. We conducted a nationwide retrospective cohort study using the National Health Insurance Research Database of Taiwan. The study enrolled 63,786 patients: 31,893 diagnosed with HZ between 2000 and 2012 were included in the HZ cohort, and 31,893 matched controls without HZ were included in the non-HZ cohort, with 1:1 exact matching for age, sex, and index year. Hazard ratios (HRs) were calculated for the risks of osteoporosis and fracture according to the HZ status using the Cox proportional hazards regression models. During a mean follow-up period of 6.0 years, 5597 and 4639 patients in the HZ and non-HZ cohorts, respectively, developed osteoporosis or fractures (incidence rate: 29.8 vs. 23.8 per 1000 person-years). HZ diagnosis was significantly associated with an elevated risk of developing osteoporosis or fracture (adjusted HR [aHR] = 1.20, p < 0.001). On analyses for each individual event, the HZ cohort had significantly increased risks for all events, including osteoporosis (aHR = 1.32, p < 0.001), hip fracture (aHR = 1.34, p < 0.001), vertebral fracture (aHR = 1.38, p < 0.001), and other fractures (aHR = 1.10, p < 0.001) compared with the non-HZ cohort. Patients with postherpetic neuralgia had especially higher risks of osteoporosis and fracture. Age- and sex-stratified analyses also revealed similar patterns. In conclusion, HZ was independently associated with an increased risk of osteoporosis and fracture. Further studies are required to investigate its underlying mechanisms.
Collapse
|