1
|
Powell AM, Watson L, Luzietti L, Prekovic S, Young LS, Varešlija D. The epigenetic landscape of brain metastasis. Oncogene 2025:10.1038/s41388-025-03315-1. [PMID: 40016470 DOI: 10.1038/s41388-025-03315-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/16/2025] [Accepted: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Brain metastasis represents a significant challenge in oncology, driven by complex molecular and epigenetic mechanisms that distinguish it from primary tumors. While recent research has focused on identifying genomic mutation drivers with potential clinical utility, these strategies have not pinpointed specific genetic mutations responsible for site-specific metastasis to the brain. It is now clear that successful brain colonization by metastatic cancer cells requires intricate interactions with the brain tumor ecosystem and the acquisition of specialized molecular traits that facilitate their adaptation to this highly selective environment. This is best exemplified by widespread transcriptional adaptation during brain metastasis, resulting in aberrant gene programs that promote extravasation, seeding, and colonization of the brain. Increasing evidence suggests that epigenetic mechanisms play a significant role in shaping these pro-brain metastasis traits. This review explores dysregulated chromatin patterns driven by chromatin remodeling, histone modifications, DNA/RNA methylation, and other epigenetic regulators that underpin brain metastatic seeding, initiation, and outgrowth. We provide novel insights into how these epigenetic modifications arise within both the brain metastatic tumor and the surrounding brain metastatic tumor ecosystem. Finally, we discuss how the inherent plasticity and reversibility of the epigenomic landscape in brain metastases may offer new therapeutic opportunities.
Collapse
Affiliation(s)
- Aoibhín M Powell
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Louise Watson
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Lara Luzietti
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Stefan Prekovic
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie S Young
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland.
- Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Pluetrattanabha N, Direksunthorn T, Ahmad I, Jyothi SR, Shit D, Singh AK, Chauhan AS. Inflammasome activation in melanoma progression: the latest update concerning pathological role and therapeutic value. Arch Dermatol Res 2025; 317:258. [PMID: 39820618 DOI: 10.1007/s00403-025-03802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/11/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
The progression of melanoma is a complex process influenced by both internal and external cues which encourage the transition of tumour cells, uncontrolled growth, migration, and metastasis. Additionally, inflammation allows tumours to evade the immune system, contributing to cancer development. The inflammasome, a complex of many proteins, is crucial in enhancing immune responses to external and internal triggers. As a critical inflammatory mechanism, it contributes to the development of melanoma. These mechanisms may be triggered via various internal and external stimuli, causing the induction of specific enzymes such as caspase-1, caspase-11, or caspase-8. This, in turn, leads to the release of interleukin (IL)-1β and IL-18 and cell death by apoptosis and pyroptosis. Proper inflammasome stimulation is crucial for the host to deal with invading pathogens or tissue injury. However, inappropriate inflammasome stimulation can result in unregulated tissue reactions, thus easing many diseases, including melanoma. Hence, keeping a delicate equilibrium between the stimulation and prohibition of inflammasomes is crucial, necessitating meticulous control of the assembly and functional aspects of inflammasomes. This review examines the latest advancements in inflammasome studies, specifically focusing on the molecular processes that control inflammasome formation, signalling, and modulation in melanoma.
Collapse
Affiliation(s)
| | | | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Health and Medical Research Center, King Khalid University, P.O. Box 960, AlQura'a, Abha, Saudi Arabia
| | - S Renuka Jyothi
- Department of Biotechnology and Genetics, JAIN (Deemed to be University) School of Sciences, Bangalore, Karnataka, India
| | - Debasish Shit
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | | | - Ashish Singh Chauhan
- Uttaranchal Institute of Pharmaceutical Sciences, Division of research and innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Duckett D, Vormittag-Nocito ER, Jamshidi P, Sukhanova M, Parker S, Brat DJ, Jennings LJ, Santana-Santos L. Accurate identification of primary site in tumors of unknown origin (TUO) using DNA methylation. NPJ Precis Oncol 2025; 9:8. [PMID: 39789204 PMCID: PMC11718252 DOI: 10.1038/s41698-025-00805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Tumors of unknown origin (TUO) generally result in poor patient survival and are clinically difficult to address. Identification of the site of origin in TUO patients is paramount to their improved treatment and survival but is difficult to obtain with current methods. Here, we develop a random forest machine learning TUO methylation classifier using a large number of primary and metastatic tumor samples. Our classifier achieves high accuracy in primary site identification when applied to both publicly available and internal validation samples, with 97% of samples classified correctly and 85% receiving high probability scores (≥0.9). Moreover, by employing pathologist expertise and t-SNE visualization, the TUO classifier can assign samples to 46 different sites of origin/disease classes. This strategy also revealed multiple classes of yet unknown significance for future exploration. Overall, the presented TUO classifier represents a significant step forward in the diagnosis of TUO tumors.
Collapse
Affiliation(s)
- Drew Duckett
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Pouya Jamshidi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Madina Sukhanova
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie Parker
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Daniel J Brat
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lawrence J Jennings
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Lucas Santana-Santos
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
4
|
Grützmann K, Kraft T, Meinhardt M, Meier F, Westphal D, Seifert M. Network-based analysis of heterogeneous patient-matched brain and extracranial melanoma metastasis pairs reveals three homogeneous subgroups. Comput Struct Biotechnol J 2024; 23:1036-1050. [PMID: 38464935 PMCID: PMC10920107 DOI: 10.1016/j.csbj.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
Melanoma, the deadliest form of skin cancer, can metastasize to different organs. Molecular differences between brain and extracranial melanoma metastases are poorly understood. Here, promoter methylation and gene expression of 11 heterogeneous patient-matched pairs of brain and extracranial metastases were analyzed using melanoma-specific gene regulatory networks learned from public transcriptome and methylome data followed by network-based impact propagation of patient-specific alterations. This innovative data analysis strategy allowed to predict potential impacts of patient-specific driver candidate genes on other genes and pathways. The patient-matched metastasis pairs clustered into three robust subgroups with specific downstream targets with known roles in cancer, including melanoma (SG1: RBM38, BCL11B, SG2: GATA3, FES, SG3: SLAMF6, PYCARD). Patient subgroups and ranking of target gene candidates were confirmed in a validation cohort. Summarizing, computational network-based impact analyses of heterogeneous metastasis pairs predicted individual regulatory differences in melanoma brain metastases, cumulating into three consistent subgroups with specific downstream target genes.
Collapse
Affiliation(s)
- Konrad Grützmann
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Theresa Kraft
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), D-01307 Dresden, Germany
| |
Collapse
|
5
|
Conway K, Edmiston SN, Vondras A, Reiner A, Corcoran DL, Shen R, Parrish EA, Hao H, Lin L, Kenney JM, Ilelaboye G, Kostrzewa CE, Kuan PF, Busam KJ, Lezcano C, Lee TK, Hernando E, Googe PB, Ollila DW, Moschos S, Gorlov I, Amos CI, Ernstoff MS, Cust AE, Wilmott JS, Scolyer RA, Mann GJ, Vergara IA, Ko J, Rees JR, Yan S, Nagore E, Bosenberg M, Rothberg BG, Osman I, Lee JE, Saenger Y, Bogner P, Thompson CL, Gerstenblith M, Holmen SL, Funchain P, Brunsgaard E, Depcik-Smith ND, Luo L, Boyce T, Orlow I, Begg CB, Berwick M, Thomas NE. DNA Methylation Classes of Stage II and III Primary Melanomas and Their Clinical and Prognostic Significance. JCO Precis Oncol 2024; 8:e2400375. [PMID: 39509669 PMCID: PMC11737429 DOI: 10.1200/po-24-00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024] Open
Abstract
PURPOSE Patients with stage II and III cutaneous primary melanoma vary considerably in their risk of melanoma-related death. We explore the ability of methylation profiling to distinguish primary melanoma methylation classes and their associations with clinicopathologic characteristics and survival. MATERIALS AND METHODS InterMEL is a retrospective case-control study that assembled primary cutaneous melanomas from American Joint Committee on Cancer (AJCC) 8th edition stage II and III patients diagnosed between 1998 and 2015 in the United States and Australia. Cases are patients who died of melanoma within 5 years from original diagnosis. Controls survived longer than 5 years without evidence of melanoma recurrence or relapse. Methylation classes, distinguished by consensus clustering of 850K methylation data, were evaluated for their clinicopathologic characteristics, 5-year survival status, and differentially methylated gene sets. RESULTS Among 422 InterMEL melanomas, consensus clustering revealed three primary melanoma methylation classes (MethylClasses): a CpG island methylator phenotype (CIMP) class, an intermediate methylation (IM) class, and a low methylation (LM) class. CIMP and IM were associated with higher AJCC stage (both P = .002), Breslow thickness (CIMP P = .002; IM P = .006), and mitotic index (both P < .001) compared with LM, while IM had higher N stage than CIMP (P = .01) and LM (P = .007). CIMP and IM had a 2-fold higher likelihood of 5-year death from melanoma than LM (CIMP odds ratio [OR], 2.16 [95% CI, 1.18 to 3.96]; IM OR, 2.00 [95% CI, 1.12 to 3.58]) in a multivariable model adjusted for age, sex, log Breslow thickness, ulceration, mitotic index, and N stage. Despite more extensive CpG island hypermethylation in CIMP, CIMP and IM shared similar patterns of differential methylation and gene set enrichment compared with LM. CONCLUSION Melanoma MethylClasses may provide clinical value in predicting 5-year death from melanoma among patients with primary melanoma independent of other clinicopathologic factors.
Collapse
Affiliation(s)
- Kathleen Conway
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Sharon N. Edmiston
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Amanda Vondras
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Allison Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - David L. Corcoran
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Eloise A. Parrish
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Honglin Hao
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Lan Lin
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
| | - Jessica M Kenney
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Gbemisola Ilelaboye
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Caroline E. Kostrzewa
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook, NY
| | - Klaus J. Busam
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Cecilia Lezcano
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Tim K. Lee
- British Columbia Cancer Research Center, Vancouver, BC, Canada
| | - Eva Hernando
- Grossman School of Medicine, New York University, New York, NY
| | - Paul B. Googe
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David W. Ollila
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Stergios Moschos
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Medicine, Division of Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Ivan Gorlov
- Department of Medicine, Baylor Medical Center, Houston, TX
| | | | | | - Anne E. Cust
- The Daffodil Centre, The University of Sydney, a joint venture with Cancer Council NSW, Sydney, Australia
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Sydney School of Public Health, The University of Sydney, Sydney, Australia
| | - James S. Wilmott
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
| | - Richard A. Scolyer
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Graham J. Mann
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- John Curtin School of Medical Research, Australian National University, ACT 2601, Australia
| | - Ismael A. Vergara
- Melanoma Institute of Australia, The University of Sydney, New South Wales, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Judy R. Rees
- Department of Epidemiology, Dartmouth Medical School, Lebanon NH
| | - Shaofeng Yan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon NH
| | - Eduardo Nagore
- Instituto Valenciano de Oncologia, Valencia, Spain
- Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | | | | | - Iman Osman
- Grossman School of Medicine, New York University, New York, NY
| | - Jeffrey E. Lee
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Yvonne Saenger
- Columbia University Medical School, New York, NY
- Albert Einstein School of Medicine, New York, NY
| | - Paul Bogner
- Departments of Pathology and Dermatology, Roswell Park Comprehensive Cancer Center, Buffalo, NY
| | - Cheryl L. Thompson
- Case Western Reserve University, Cleveland, OH
- Penn State University, Hershey, PA
| | | | - Sheri L. Holmen
- Department of Surgery, University of Utah Health Sciences Center and Huntsman Cancer Institute, Salt Lake City, UT
| | | | - Elise Brunsgaard
- Department of Dermatology, Rush University Medical Center, Chicago, Il
| | | | - Li Luo
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Tawny Boyce
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Colin B. Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Marianne Berwick
- Department of Internal Medicine and the UNM Comprehensive Cancer Center, Albuquerque, NM
| | - Nancy E. Thomas
- Department of Dermatology, University of North Carolina, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
6
|
Kraft T, Grützmann K, Meinhardt M, Meier F, Westphal D, Seifert M. Personalized identification and characterization of genome-wide gene expression differences between patient-matched intracranial and extracranial melanoma metastasis pairs. Acta Neuropathol Commun 2024; 12:67. [PMID: 38671536 PMCID: PMC11055243 DOI: 10.1186/s40478-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Melanoma is the most serious type of skin cancer that frequently spreads to other organs of the human body. Especially melanoma metastases to the brain (intracranial metastases) are hard to treat and a major cause of death of melanoma patients. Little is known about molecular alterations and altered mechanisms that distinguish intra- from extracranial melanoma metastases. So far, almost all existing studies compared intracranial metastases from one set of patients to extracranial metastases of an another set of melanoma patients. This neglects the important facts that each melanoma is highly individual and that intra- and extracranial melanoma metastases from the same patient are more similar to each other than to melanoma metastases from other patients in the same organ. To overcome this, we compared the gene expression profiles of 16 intracranial metastases to their corresponding 21 patient-matched extracranial metastases in a personalized way using a three-state Hidden Markov Model (HMM) to identify altered genes for each individual metastasis pair. This enabled three major findings by considering the predicted gene expression alterations across all patients: (i) most frequently altered pathways include cytokine-receptor interaction, calcium signaling, ECM-receptor interaction, cAMP signaling, Jak-STAT and PI3K/Akt signaling, (ii) immune-relevant signaling pathway genes were downregulated in intracranial metastases, and (iii) intracranial metastases were associated with a brain-like phenotype gene expression program. Further, the integration of all differentially expressed genes across the patient-matched melanoma metastasis pairs led to a set of 103 genes that were consistently down- or up-regulated in at least 11 of the 16 of the patients. This set of genes contained many genes involved in the regulation of immune responses, cell growth, cellular signaling and transport processes. An analysis of these genes in the TCGA melanoma cohort showed that the expression behavior of 11 genes was significantly associated with survival. Moreover, a comparison of the 103 genes to three closely related melanoma metastasis studies revealed a core set of eight genes that were consistently down- or upregulated in intra- compared to extracranial metastases in at least two of the three related studies (down: CILP, DPT, FGF7, LAMP3, MEOX2, TMEM119; up: GLDN, PMP2) including FGF7 that was also significantly associated with survival. Our findings contribute to a better characterization of genes and pathways that distinguish intra- from extracranial melanoma metastasis and provide important hints for future experimental studies to identify potential targets for new therapeutic approaches.
Collapse
Affiliation(s)
- Theresa Kraft
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Konrad Grützmann
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Friedegund Meier
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- Skin Cancer Center at the University Cancer Center (UCC) Dresden and the National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Dana Westphal
- Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
- National Center for Tumor Diseases Dresden (NCT), Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
7
|
Al Hmada Y, Brodell RT, Kharouf N, Flanagan TW, Alamodi AA, Hassan SY, Shalaby H, Hassan SL, Haikel Y, Megahed M, Santourlidis S, Hassan M. Mechanisms of Melanoma Progression and Treatment Resistance: Role of Cancer Stem-like Cells. Cancers (Basel) 2024; 16:470. [PMID: 38275910 PMCID: PMC10814963 DOI: 10.3390/cancers16020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Melanoma is the third most common type of skin cancer, characterized by its heterogeneity and propensity to metastasize to distant organs. Melanoma is a heterogeneous tumor, composed of genetically divergent subpopulations, including a small fraction of melanoma-initiating cancer stem-like cells (CSCs) and many non-cancer stem cells (non-CSCs). CSCs are characterized by their unique surface proteins associated with aberrant signaling pathways with a causal or consequential relationship with tumor progression, drug resistance, and recurrence. Melanomas also harbor significant alterations in functional genes (BRAF, CDKN2A, NRAS, TP53, and NF1). Of these, the most common are the BRAF and NRAS oncogenes, with 50% of melanomas demonstrating the BRAF mutation (BRAFV600E). While the successful targeting of BRAFV600E does improve overall survival, the long-term efficacy of available therapeutic options is limited due to adverse side effects and reduced clinical efficacy. Additionally, drug resistance develops rapidly via mechanisms involving fast feedback re-activation of MAPK signaling pathways. This article updates information relevant to the mechanisms of melanoma progression and resistance and particularly the mechanistic role of CSCs in melanoma progression, drug resistance, and recurrence.
Collapse
Affiliation(s)
- Youssef Al Hmada
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Robert T. Brodell
- Department of Pathology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA; (Y.A.H.); (R.T.B.)
| | - Naji Kharouf
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Abdulhadi A. Alamodi
- College of Health Sciences, Jackson State University, 310 W Woodrow Wilson Ave Ste 300, Jackson, MS 39213, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Hosam Shalaby
- Department of Urology, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Dusseldorf, Germany;
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Simeon Santourlidis
- Epigenetics Core Laboratory, Medical Faculty, Institute of Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Düsseldorf, 40225 Dusseldorf, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France; (N.K.); (Y.H.)
- Department of Operative Dentistry and Endodontics, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
8
|
Sajedi S, Ebrahimi G, Roudi R, Mehta I, Heshmat A, Samimi H, Kazempour S, Zainulabadeen A, Docking TR, Arora SP, Cigarroa F, Seshadri S, Karsan A, Zare H. Integrating DNA methylation and gene expression data in a single gene network using the iNETgrate package. Sci Rep 2023; 13:21721. [PMID: 38066050 PMCID: PMC10709411 DOI: 10.1038/s41598-023-48237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Analyzing different omics data types independently is often too restrictive to allow for detection of subtle, but consistent, variations that are coherently supported based upon different assays. Integrating multi-omics data in one model can increase statistical power. However, designing such a model is challenging because different omics are measured at different levels. We developed the iNETgrate package ( https://bioconductor.org/packages/iNETgrate/ ) that efficiently integrates transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five independent datasets improved prognostication compared to common clinical gold standards and a patient similarity network approach.
Collapse
Affiliation(s)
- Sogand Sajedi
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, 78229, USA
| | - Ghazal Ebrahimi
- Bioinformatics Program, The University of British Columbia, Vancouver, BC, Canada
| | - Raheleh Roudi
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Amirreza Heshmat
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Hanie Samimi
- School of Architecture, University of Utah, Salt Lake City, UT, 84112, USA
| | - Shiva Kazempour
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, 78229, USA
| | - Aamir Zainulabadeen
- Department of Computer Science, Princeton University, Princeton, NJ, 08540, USA
| | - Thomas Roderick Docking
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Sukeshi Patel Arora
- Mays Cancer Center, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Francisco Cigarroa
- Malu and Carlos Alvarez Center for Transplantation, Hepatobiliary Surgery and Innovation, The University of Texas Health Science Center, San Antonio, TX, 78229, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, 78229, USA
- Department of Neurology, University of Texas, San Antonio, TX, 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, 02139, USA
| | - Aly Karsan
- Canada's Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, BC, V5Z 1L3, Canada
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, TX, 78229, USA.
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, San Antonio, TX, 78229, USA.
- Department of Cell Systems & Anatomy, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
9
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
10
|
Sajedi S, Ebrahimi G, Roudi R, Mehta I, Samimi H, Kazempour S, Zainulabadeen A, Docking TR, Arora SP, Cigarroa F, Seshadri S, Karsan A, Zare H. "iNETgrate": integrating DNA methylation and gene expression data in a single gene network. RESEARCH SQUARE 2023:rs.3.rs-3246325. [PMID: 37645739 PMCID: PMC10462231 DOI: 10.21203/rs.3.rs-3246325/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Integrating multi-omics data in one model can increase statistical power. However, designing such a model is challenging because different omics are measured at different levels. We developed the iNETgrate package (https://bioconductor.org/packages/iNETgrate/) that efficiently integrates transcriptome and DNA methylation data in a single gene network. Applying iNETgrate on five independent datasets improved prognostication compared to common clinical gold standards and a patient similarity network approach.
Collapse
Affiliation(s)
- Sogand Sajedi
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, San Antonio, Texas 78229, USA
| | - Ghazal Ebrahimi
- Bioinformatics Program, the University of British Columbia, Vancouver, BC, Canada
| | - Raheleh Roudi
- Department of Radiology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Isha Mehta
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | - Hanie Samimi
- School of Architecture, University of Utah, Salt Lake City, Utah 84112, USA
| | - Shiva Kazempour
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, San Antonio, Texas 78229, USA
| | - Aamir Zainulabadeen
- Department of Computer Science, Princeton University, Princeton, New Jersey 08540, USA
| | - Thomas Roderick Docking
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Sukeshi Patel Arora
- Mays Cancer Center, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Francisco Cigarroa
- Malu and Carlos Alvarez Center for Transplantation, Hepatobiliary Surgery and Innovation, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, San Antonio, Texas 78229, USA
- Department of Neurology, University of Texas, San Antonio, Texas 78229, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02139,USA
| | - Aly Karsan
- Canada’s Michael Smith Genome Sciences Centre, British Columbia Cancer Research Centre, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Habil Zare
- Department of Cell Systems & Anatomy, The University of Texas Health Science Center, San Antonio, Texas 78229, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, San Antonio, Texas 78229, USA
| |
Collapse
|
11
|
Ocaña-Tienda B, Pérez-Beteta J, Jiménez-Sánchez J, Molina-García D, Ortiz de Mendivil A, Asenjo B, Albillo D, Pérez-Romasanta LA, Valiente M, Zhu L, García-Gómez P, González-Del Portillo E, Llorente M, Carballo N, Arana E, Pérez-García VM. Growth exponents reflect evolutionary processes and treatment response in brain metastases. NPJ Syst Biol Appl 2023; 9:35. [PMID: 37479705 PMCID: PMC10361973 DOI: 10.1038/s41540-023-00298-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023] Open
Abstract
Tumor growth is the result of the interplay of complex biological processes in huge numbers of individual cells living in changing environments. Effective simple mathematical laws have been shown to describe tumor growth in vitro, or simple animal models with bounded-growth dynamics accurately. However, results for the growth of human cancers in patients are scarce. Our study mined a large dataset of 1133 brain metastases (BMs) with longitudinal imaging follow-up to find growth laws for untreated BMs and recurrent treated BMs. Untreated BMs showed high growth exponents, most likely related to the underlying evolutionary dynamics, with experimental tumors in mice resembling accurately the disease. Recurrent BMs growth exponents were smaller, most probably due to a reduction in tumor heterogeneity after treatment, which may limit the tumor evolutionary capabilities. In silico simulations using a stochastic discrete mesoscopic model with basic evolutionary dynamics led to results in line with the observed data.
Collapse
Affiliation(s)
| | | | | | | | | | - Beatriz Asenjo
- Hospital Regional Universitario de Málaga, Málaga, Spain
| | | | | | - Manuel Valiente
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Lucía Zhu
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Pedro García-Gómez
- Brain Metastasis Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Gorlov IP, Conway K, Edmiston SN, Parrish EA, Hao H, Amos CI, Tsavachidis S, Gorlova OY, Begg C, Hernando E, Cheng C, Shen R, Orlow I, Luo L, Ernstoff MS, Kuan PF, Ollila DW, Tsai YS, Berwick M, Thomas NE. Methylation of nonessential genes in cutaneous melanoma - Rule Out hypothesis. Melanoma Res 2023; 33:163-172. [PMID: 36805567 PMCID: PMC10148896 DOI: 10.1097/cmr.0000000000000881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Differential methylation plays an important role in melanoma development and is associated with survival, progression and response to treatment. However, the mechanisms by which methylation promotes melanoma development are poorly understood. The traditional explanation of selective advantage provided by differential methylation postulates that hypermethylation of regulatory 5'-cytosine-phosphate-guanine-3' dinucleotides (CpGs) downregulates the expression of tumor suppressor genes and therefore promotes tumorigenesis. We believe that other (not necessarily alternative) explanations of the selective advantages of methylation are also possible. Here, we hypothesize that melanoma cells use methylation to shut down transcription of nonessential genes - those not required for cell survival and proliferation. Suppression of nonessential genes allows tumor cells to be more efficient in terms of energy and resource usage, providing them with a selective advantage over the tumor cells that transcribe and subsequently translate genes they do not need. We named the hypothesis the Rule Out (RO) hypothesis. The RO hypothesis predicts higher methylation of CpGs located in regulatory regions (CpG islands) of nonessential genes. It also predicts the higher methylation of regulatory CpGs linked to nonessential genes in melanomas compared to nevi and lower expression of nonessential genes in malignant (derived from melanoma) versus normal (derived from nonaffected skin) melanocytes. The analyses conducted using in-house and publicly available data found that all predictions derived from the RO hypothesis hold, providing observational support for the hypothesis.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Kathleen Conway
- Department of Dermatology, University of North Carolina
- Department of Epidemiology
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Sharon N Edmiston
- Department of Dermatology, University of North Carolina
- Department of Epidemiology
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Eloise A Parrish
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook
| | - Honglin Hao
- Department of Dermatology, University of North Carolina
| | | | | | - Olga Y Gorlova
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Colin Begg
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, New York
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Ronglai Shen
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York
| | - Li Luo
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Maxico
| | - Marc S Ernstoff
- Roswell Park Comprehensive Cancer Center, Elm and Carlton, Buffalo
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, State University of New York, Stony Brook and
| | - David W Ollila
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Yihsuan S Tsai
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Marianne Berwick
- Department of Internal Medicine, University of New Mexico, Albuquerque, New Maxico
| | - Nancy E Thomas
- Department of Dermatology, University of North Carolina
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
13
|
Patient-specific identification of genome-wide DNA-methylation differences between intracranial and extracranial melanoma metastases. Sci Rep 2023; 13:444. [PMID: 36624125 PMCID: PMC9829750 DOI: 10.1038/s41598-022-24940-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Melanomas frequently metastasize to distant organs and especially intracranial metastases still represent a major clinical challenge. Epigenetic reprogramming of intracranial metastases is thought to be involved in therapy failure, but so far only little is known about patient-specific DNA-methylation differences between intra- and extracranial melanoma metastases. Hierarchical clustering of the methylomes of 24 patient-matched intra- and extracranial melanoma metastases pairs revealed that intra- and extracranial metastases of individual patients were more similar to each other than to metastases in the same tissue from other patients. Therefore, a personalized analysis of each metastases pair was done by a Hidden Markov Model to classify methylation levels of individual CpGs as decreased, unchanged or increased in the intra- compared to the extracranial metastasis. The predicted DNA-methylation alterations were highly patient-specific differing in the number and methylation states of altered CpGs. Nevertheless, four important general observations were made: (i) intracranial metastases of most patients mainly showed a reduction of DNA-methylation, (ii) cytokine signaling was most frequently affected by differential methylation in individual metastases pairs, but also MAPK, PI3K/Akt and ECM signaling were often altered, (iii) frequently affected genes were mainly involved in signaling, growth, adhesion or apoptosis, and (iv) an enrichment of functional terms related to channel and transporter activities supports previous findings for a brain-like phenotype. In addition, the derived set of 17 signaling pathway genes that distinguished intra- from extracranial metastases in more than 50% of patients included well-known oncogenes (e.g. PRKCA, DUSP6, BMP4) and several other genes known from neuronal disorders (e.g. EIF4B, SGK1, CACNG8). Moreover, associations of gene body methylation alterations with corresponding gene expression changes revealed that especially the three signaling pathway genes JAK3, MECOM, and TNXB differ strongly in their expression between patient-matched intra- and extracranial metastases. Our analysis contributes to an in-depth characterization of DNA-methylation differences between patient-matched intra- and extracranial melanoma metastases and may provide a basis for future experimental studies to identify targets for new therapeutic approaches.
Collapse
|
14
|
Pala L, Bagnardi V, Tettamanzi F, Barberis M, Mazzarol G, Casali C, De Pas T, Pennacchioli E, Coppola S, Baldini F, Cocorocchio E, Ferrucci P, Patane' D, Saponara M, Queirolo P, Conforti F. Genetic Alterations of Melanoma Brain Metastases: A Systematic Review and Meta-Analysis. Mol Diagn Ther 2023; 27:5-13. [PMID: 36401787 DOI: 10.1007/s40291-022-00623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND Data on molecular alterations harbored by melanoma brain metastases (MBMs) are limited, and this has hampered the development of more effective therapeutic strategies. We conducted a systematic review and meta-analysis of all the studies reporting DNA sequencing data of MBMs, in order to identify recurrently mutated genes and molecular pathways significantly enriched for genetic alterations. METHODS We searched PubMed, Embase and Scopus for articles published from the inception of each database to June 30, 2021. We included in the analysis all the studies that reported individual patient data on DNA sequencing of MBMs, assessing single nucleotide variants (SNVs) and/or gene copy number variations (CNVs) in at least five tumor samples. Meta-analysis was performed for genes evaluated for SNVs and/or CNVs in at least two studies. Pooled proportions of samples with SNVs and/or CNVs was calculated by applying random-effect models based on the DerSimonian-Laird method. Gene-set enrichment analysis (GSEA) was performed to identify molecular pathways significantly enriched for mutated genes. RESULTS Ten studies fulfilled the inclusion criteria and were included in the analysis, for a total of 531 samples of MBMs evaluated. Twenty-seven genes were found recurrently mutated with a meta-analytic rate of SNVs higher than 5%. GSEA conducted on the list of these 27 recurrently mutated genes revealed vascular endothelial growth factor-activated receptor activity and transmembrane receptor protein tyrosine kinase activity to be among the top 10 gene ontology (GO) molecular functions significantly enriched for mutated genes, while regulation of apoptosis and cell proliferation were among the top 10 significantly enriched GO biological processes. Notably, a high meta-analytic rate of SNVs was found in several actionable cancer-associated genes, such as all the vascular endothelial growth factor (VEGF) receptor isoforms (i.e., Flt1 and Flt2 genes, for both SNV rate: 0.22, 95% CI 0.04-0.49; KDR gene, SNV rate: 0.1, 95% CI 0.05-0.16). Finally, two tumor suppressor genes were characterized by a high meta-analytic rate of CNVs: CDKN2A/B (CNV rate: 0.59, 95% CI 0.23-0.90) and PTEN (CNV rate: 0.31, 95% CI 0.02-0.95). CONCLUSION MBMs harbored actionable molecular alterations that could be exploited as therapeutic targets to improve the poor prognosis of patients.
Collapse
Affiliation(s)
- Laura Pala
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy. .,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy.
| | - Vincenzo Bagnardi
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca, Milan, Italy
| | | | - Massimo Barberis
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giovanni Mazzarol
- Division of Pathology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Cecilia Casali
- Department of Neurological Surgery, IRCCS Foundation Neurological Institute "Carlo Besta", Milan, Italy
| | - Tommaso De Pas
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| | - Elisabetta Pennacchioli
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Sara Coppola
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Federica Baldini
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Emilia Cocorocchio
- Division of Medical Oncology, European Institute of Oncology, IRCCS, Milan, Italy
| | - Pierfrancesco Ferrucci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Damiano Patane'
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Maristella Saponara
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Paola Queirolo
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy
| | - Fabio Conforti
- Division of Melanoma, Sarcomas and Rare Tumors, European Institute of Oncology IRCCS, via Ripamonti 435, 20141, Milan, Italy.,Oncology Unit, Humanitas Gavazzeni, Via M.Gavazzeni 21, 24125, Bergamo, Italy
| |
Collapse
|
15
|
Chen Y, Yi X, Sun N, Guo W, Li C. Epigenetics Regulates Antitumor Immunity in Melanoma. Front Immunol 2022; 13:868786. [PMID: 35693795 PMCID: PMC9174518 DOI: 10.3389/fimmu.2022.868786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Melanoma is the most malignant skin cancer, which originates from epidermal melanocytes, with increasing worldwide incidence. The escape of immune surveillance is a hallmark of the tumor, which is manifested by the imbalance between the enhanced immune evasion of tumor cells and the impaired antitumor capacity of infiltrating immune cells. According to this notion, the invigoration of the exhausted immune cells by immune checkpoint blockades has gained encouraging outcomes in eliminating tumor cells and significantly prolonged the survival of patients, particularly in melanoma. Epigenetics is a pivotal non-genomic modulatory paradigm referring to heritable changes in gene expression without altering genome sequence, including DNA methylation, histone modification, non-coding RNAs, and m6A RNA methylation. Accumulating evidence has demonstrated how the dysregulation of epigenetics regulates multiple biological behaviors of tumor cells and contributes to carcinogenesis and tumor progression in melanoma. Nevertheless, the linkage between epigenetics and antitumor immunity, as well as its implication in melanoma immunotherapy, remains elusive. In this review, we first introduce the epidemiology, clinical characteristics, and therapeutic innovations of melanoma. Then, the tumor microenvironment and the functions of different types of infiltrating immune cells are discussed, with an emphasis on their involvement in antitumor immunity in melanoma. Subsequently, we systemically summarize the linkage between epigenetics and antitumor immunity in melanoma, from the perspective of distinct paradigms of epigenetics. Ultimately, the progression of the clinical trials regarding epigenetics-based melanoma immunotherapy is introduced.
Collapse
Affiliation(s)
- Yuhan Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ningyue Sun
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,School of Basic Medical Sciences, Fourth Military Medical University, Xi'an, China
| | - Weinan Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
The potential of liquid biopsy in the management of cancer patients. Semin Cancer Biol 2022; 84:69-79. [PMID: 35331850 DOI: 10.1016/j.semcancer.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 03/06/2022] [Accepted: 03/17/2022] [Indexed: 02/07/2023]
|
17
|
Sofía M, Sebastián R, Emanuel C, Branham MT, Marzese DM, Matthew S, De Blas G, Rodolfo A, Michael L, María R. When left does not seem right: epigenetic and bioelectric differences between left- and right-sided breast cancer. Mol Med 2022; 28:15. [PMID: 35123413 PMCID: PMC8817536 DOI: 10.1186/s10020-022-00440-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/18/2022] [Indexed: 01/22/2023] Open
Abstract
Background During embryogenesis lateral symmetry is broken, giving rise to Left/Right (L/R) breast tissues with distinct identity. L/R-sided breast tumors exhibit consistently-biased incidence, gene expression, and DNA methylation. We postulate that a differential L/R tumor-microenvironment crosstalk generates different tumorigenesis mechanisms. Methods We performed in-silico analyses on breast tumors of public datasets, developed xenografted tumors, and conditioned MDA-MB-231 cells with L/R mammary extracts. Results We found L/R differential DNA methylation involved in embryogenic and neuron-like functions. Focusing on ion-channels, we discovered significant L/R epigenetic and bioelectric differences. Specifically, L-sided cells presented increased methylation of hyperpolarizing ion channel genes and increased Ca2+ concentration and depolarized membrane potential, compared to R-ones. Functional consequences were associated with increased proliferation in left tumors, assessed by KI67 expression and mitotic count. Conclusions Our findings reveal considerable L/R asymmetry in cancer processes, and suggest specific L/R epigenetic and bioelectric differences as future targets for cancer therapeutic approaches in the breast and many other paired organs. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-022-00440-5.
Collapse
|
18
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
19
|
Karachaliou GS, Alkallas R, Carroll SB, Caressi C, Zakria D, Patel NM, Trembath DG, Ezzell JA, Pegna GJ, Googe PB, Galeotti JP, Ayvali F, Collichio FA, Lee CB, Ollila DW, Gulley ML, Johnson DB, Kim KB, Watson IR, Moschos SJ. The clinical significance of adenomatous polyposis coli (APC) and catenin Beta 1 (CTNNB1) genetic aberrations in patients with melanoma. BMC Cancer 2022; 22:38. [PMID: 34986841 PMCID: PMC8734243 DOI: 10.1186/s12885-021-08908-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Melanoma-intrinsic activated β-catenin pathway, the product of the catenin beta 1 (CTNNB1) gene, has been associated with low/absent tumor-infiltrating lymphocytes, accelerated tumor growth, metastases development, and resistance to anti-PD-L1/anti-CTLA-4 agents in mouse melanoma models. Little is known about the association between the adenomatous polyposis coli (APC) and CTNNB1 gene mutations in stage IV melanoma with immunotherapy response and overall survival (OS). METHODS We examined the prognostic significance of somatic APC/CTNNB1 mutations in the Cancer Genome Atlas Project for Skin Cutaneous Melanoma (TCGA-SKCM) database. We assessed APC/CTNNB1 mutations as predictors of response to immunotherapies in a clinicopathologically annotated metastatic patient cohort from three US melanoma centers. RESULTS In the TCGA-SKCM patient cohort (n = 434) presence of a somatic APC/CTNNB1 mutation was associated with a worse outcome only in stage IV melanoma (n = 82, median OS of APC/CTNNB1 mutants vs. wild-type was 8.15 vs. 22.8 months; log-rank hazard ratio 4.20, p = 0.011). APC/CTNNB1 mutation did not significantly affect lymphocyte distribution and density. In the 3-melanoma institution cohort, tumor tissues underwent targeted panel sequencing using two standards of care assays. We identified 55 patients with stage IV melanoma and APC/CTNNB1 genetic aberrations (mut) and 169 patients without (wt). At a median follow-up of more than 25 months for both groups, mut compared with wt patients had slightly more frequent (44% vs. 39%) and earlier (66% vs. 45% within six months from original diagnosis of stage IV melanoma) development of brain metastases. Nevertheless, time-to-development of brain metastases was not significantly different between the two groups. Fortunately, mut patients had similar clinical benefits from PD-1 inhibitor-based treatments compared to wt patients (median OS 26.1 months vs. 29.9 months, respectively, log-rank p = 0.23). Less frequent mutations in the NF1, RAC1, and PTEN genes were seen in the mut compared with wt patients from the 3-melanoma institution cohort. Analysis of brain melanoma tumor tissues from a separate craniotomy patient cohort (n = 55) showed that melanoma-specific, activated β-catenin (i.e., nuclear localization) was infrequent (n = 3, 6%) and not prognostic in established brain metastases. CONCLUSIONS APC/CTNNB1 mutations are associated with a worse outcome in stage IV melanoma and early brain metastases independent of tumor-infiltrating lymphocyte density. However, PD1 inhibitor-based treatments provide comparable benefits to both mut and wt patients with stage IV melanoma.
Collapse
Affiliation(s)
- Georgia Sofia Karachaliou
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Rached Alkallas
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Sarah B Carroll
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Chongshan Caressi
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Danny Zakria
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Nirali M Patel
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dimitri G Trembath
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer A Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Guillaume J Pegna
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Paul B Googe
- Department of Dermatology, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Jonathan P Galeotti
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Fatih Ayvali
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Frances A Collichio
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie B Lee
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - David W Ollila
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Surgery, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
| | - Margaret L Gulley
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Kevin B Kim
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Ian R Watson
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Stergios J Moschos
- Department of Medicine, The University of North Carolina at Chapel Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
20
|
Aleotti V, Catoni C, Poggiana C, Rosato A, Facchinetti A, Scaini MC. Methylation Markers in Cutaneous Melanoma: Unravelling the Potential Utility of Their Tracking by Liquid Biopsy. Cancers (Basel) 2021; 13:6217. [PMID: 34944843 PMCID: PMC8699653 DOI: 10.3390/cancers13246217] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 01/19/2023] Open
Abstract
Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.
Collapse
Affiliation(s)
- Valentina Aleotti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Catoni
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Cristina Poggiana
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Antonella Facchinetti
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
- Department of Surgery, Oncology and Gastroenterology, Oncology and Immunology Section, University of Padua, 35128 Padua, Italy
| | - Maria Chiara Scaini
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (V.A.); (C.C.); (A.F.); (M.C.S.)
| |
Collapse
|
21
|
Papp O, Doma V, Gil J, Markó-Varga G, Kárpáti S, Tímár J, Vízkeleti L. Organ Specific Copy Number Variations in Visceral Metastases of Human Melanoma. Cancers (Basel) 2021; 13:5984. [PMID: 34885093 PMCID: PMC8657127 DOI: 10.3390/cancers13235984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022] Open
Abstract
Malignant melanoma is one of the most aggressive skin cancers with high potential of visceral dissemination. Since the information about melanoma genomics is mainly based on primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank was established. We used copy number variation arrays (N = 38 samples) to reveal organ specific alterations. Results were partly completed by proteomic analysis. A significant increase of high-copy number gains was found in an organ-specific manner, whereas copy number losses were predominant in brain metastases, including the loss of numerous DNA damage response genes. Amplification of many immune genes was also observed, several of them are novel in melanoma, suggesting that their ectopic expression is possibly underestimated. This "immunogenic mimicry" was exclusive for lung metastasis. We also provided evidence for the possible autocrine activation of c-MET, especially in brain and lung metastases. Furthermore, frequent loss of 9p21 locus in brain metastases may predict higher metastatic potential to this organ. Finally, a significant correlation was observed between BRAF gene copy number and mutant allele frequency, mainly in lung metastases. All of these events may influence therapy efficacy in an organ specific manner, which knowledge may help in alleviating difficulties caused by resistance.
Collapse
Affiliation(s)
- Orsolya Papp
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
- Turbine Simulated Cell Technologies, 1027 Budapest, Hungary
| | - Viktória Doma
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
- Department of Dermatology, Venerology and Dermato-Oncology, Semmelweis University, 1085 Budapest, Hungary;
| | - Jeovanis Gil
- Division of Oncology, Department of Clinical Sciences, Lund University, 221 84 Lund, Sweden;
| | - György Markó-Varga
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, 221 84 Lund, Sweden;
- Chemical Genomics Global Research Lab, Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
- 1st Department of Surgery, Tokyo Medical University, Tokyo 160-8582, Japan
| | - Sarolta Kárpáti
- Department of Dermatology, Venerology and Dermato-Oncology, Semmelweis University, 1085 Budapest, Hungary;
| | - József Tímár
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
| | - Laura Vízkeleti
- 2nd Department of Pathology, Semmelweis University, 1091 Budapest, Hungary; (O.P.); (V.D.); (L.V.)
| |
Collapse
|
22
|
Inam H, Sokirniy I, Rao Y, Shah A, Naeemikia F, O'Brien E, Dong C, McCandlish DM, Pritchard JR. Genomic and experimental evidence that ALK ATI does not predict single agent sensitivity to ALK inhibitors. iScience 2021; 24:103343. [PMID: 34825133 PMCID: PMC8603052 DOI: 10.1016/j.isci.2021.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/17/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022] Open
Abstract
Genomic data can facilitate personalized treatment decisions by enabling therapeutic hypotheses in individual patients. Mutual exclusivity has been an empirically useful signal for identifying activating mutations that respond to single agent targeted therapies. However, a low mutation frequency can underpower this signal for rare variants. We develop a resampling based method for the direct pairwise comparison of conditional selection between sets of gene pairs. We apply this method to a transcript variant of anaplastic lymphoma kinase (ALK) in melanoma, termed ALKATI that was suggested to predict sensitivity to ALK inhibitors and we find that it is not mutually exclusive with key melanoma oncogenes. Furthermore, we find that ALKATI is not likely to be sufficient for cellular transformation or growth, and it does not predict single agent therapeutic dependency. Our work strongly disfavors the role of ALKATI as a targetable oncogenic driver that might be sensitive to single agent ALK treatment.
Collapse
Affiliation(s)
- Haider Inam
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ivan Sokirniy
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yiyun Rao
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anushka Shah
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Farnaz Naeemikia
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - Edward O'Brien
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin R. Pritchard
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Genomic and Transcriptomic Profiling of Brain Metastases. Cancers (Basel) 2021; 13:cancers13225598. [PMID: 34830758 PMCID: PMC8615723 DOI: 10.3390/cancers13225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 10/31/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Brain metastases (BM) are the most common brain tumors in adults and are the main cause of cancer-associated death. Omics analysis of BM will allow for a better understanding of metastatic progression, prognosis and therapeutic targeting. In this study, BM samples underwent comprehensive molecular profiling with genomics and transcriptomics. Mutational signatures suggested that most mutations were gained prior to metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples. Transcriptomics revealed that melanoma BM formed a distinct cluster in comparison to other subtypes. Poor survival correlated to self-identified black race and absence of radiation treatment but not molecular profiles. These data identify potential new drivers of brain metastatic progression, implicate that melanoma BM are distinctive and likely responsive to unique therapies, and further investigation of sociodemographic and clinical features are needed in BM cohorts. Abstract Brain metastases (BM) are the most common brain tumors in adults occurring in up to 40% of all cancer patients. Multi-omics approaches allow for understanding molecular mechanisms and identification of markers with prognostic significance. In this study, we profile 130 BM using genomics and transcriptomics and correlate molecular characteristics to clinical parameters. The most common tumor origins for BM were lung (40%) followed by melanoma (21%) and breast (15%). Melanoma and lung BMs contained more deleterious mutations than other subtypes (p < 0.001). Mutational signatures suggested that the bulk of the mutations were gained before metastasis. A novel copy number event centered around the MCL1 gene was found in 75% of all samples, suggesting a broader role in promoting metastasis. Unsupervised hierarchical cluster analysis of transcriptional signatures available in 65 samples based on the hallmarks of cancer revealed four distinct clusters. Melanoma samples formed a distinctive cluster in comparison to other BM subtypes. Characteristics of molecular profiles did not correlate with survival. However, patients with self-identified black race or those who did not receive radiation correlated with poor survival. These data identify potential new drivers of brain metastatic progression. Our data also suggest further investigation of sociodemographic and clinical features is needed in BM cohorts.
Collapse
|
24
|
Bona Fide Tumor Suppressor Genes Hypermethylated in Melanoma: A Narrative Review. Int J Mol Sci 2021; 22:ijms221910674. [PMID: 34639015 PMCID: PMC8508892 DOI: 10.3390/ijms221910674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/17/2022] Open
Abstract
Loss-of-function events in tumor suppressor genes (TSGs) contribute to the development and progression of cutaneous malignant melanoma (CMM). Epigenetic alterations are the major mechanisms of TSG inactivation, in particular, silencing by promoter CpG-island hypermethylation. TSGs are valuable tools in diagnosis and prognosis and, possibly, in future targeted therapy. The aim of this narrative review is to outline bona fide TSGs affected by promoter CpG-island hypermethylation and their functional role in the progression of CMM. We conducted a systematic literature review to identify studies providing evidence of bona fide TSGs by cell line or animal experiments. We performed a broad first search and a gene-specific second search, supplemented by reference checking. We included studies describing bona fide TSGs in CMM with promoter CpG-island hypermethylation in which inactivating mechanisms were reported. We extracted data about protein role, pathway, experiments conducted to meet the bona fide criteria and hallmarks of cancer acquired by TSG inactivation. A total of 24 studies were included, describing 24 bona fide TSGs silenced by promoter CpG-island hypermethylation in CMM. Their effect on cell proliferation, apoptosis, growth, senescence, angiogenesis, migration, invasion or metastasis is also described. These data give further insight into the role of TSGs in the progression of CMM.
Collapse
|
25
|
Epigenetic Regulation in Melanoma: Facts and Hopes. Cells 2021; 10:cells10082048. [PMID: 34440824 PMCID: PMC8392422 DOI: 10.3390/cells10082048] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022] Open
Abstract
Cutaneous melanoma is a lethal disease, even when diagnosed in advanced stages. Although recent progress in biology and treatment has dramatically improved survival rates, new therapeutic approaches are still needed. Deregulation of epigenetics, which mainly controls DNA methylation status and chromatin remodeling, is implied not only in cancer initiation and progression, but also in resistance to antitumor drugs. Epigenetics in melanoma has been studied recently in both melanoma preclinical models and patient samples, highlighting its potential role in different phases of melanomagenesis, as well as in resistance to approved drugs such as immune checkpoint inhibitors and MAPK inhibitors. This review summarizes what is currently known about epigenetics in melanoma and dwells on the recognized and potential new targets for testing epigenetic drugs, alone or together with other agents, in advanced melanoma patients.
Collapse
|
26
|
Park JH, de Lomana ALG, Marzese DM, Juarez T, Feroze A, Hothi P, Cobbs C, Patel AP, Kesari S, Huang S, Baliga NS. A Systems Approach to Brain Tumor Treatment. Cancers (Basel) 2021; 13:3152. [PMID: 34202449 PMCID: PMC8269017 DOI: 10.3390/cancers13133152] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Brain tumors are among the most lethal tumors. Glioblastoma, the most frequent primary brain tumor in adults, has a median survival time of approximately 15 months after diagnosis or a five-year survival rate of 10%; the recurrence rate is nearly 90%. Unfortunately, this prognosis has not improved for several decades. The lack of progress in the treatment of brain tumors has been attributed to their high rate of primary therapy resistance. Challenges such as pronounced inter-patient variability, intratumoral heterogeneity, and drug delivery across the blood-brain barrier hinder progress. A comprehensive, multiscale understanding of the disease, from the molecular to the whole tumor level, is needed to address the intratumor heterogeneity resulting from the coexistence of a diversity of neoplastic and non-neoplastic cell types in the tumor tissue. By contrast, inter-patient variability must be addressed by subtyping brain tumors to stratify patients and identify the best-matched drug(s) and therapies for a particular patient or cohort of patients. Accomplishing these diverse tasks will require a new framework, one involving a systems perspective in assessing the immense complexity of brain tumors. This would in turn entail a shift in how clinical medicine interfaces with the rapidly advancing high-throughput (HTP) technologies that have enabled the omics-scale profiling of molecular features of brain tumors from the single-cell to the tissue level. However, several gaps must be closed before such a framework can fulfill the promise of precision and personalized medicine for brain tumors. Ultimately, the goal is to integrate seamlessly multiscale systems analyses of patient tumors and clinical medicine. Accomplishing this goal would facilitate the rational design of therapeutic strategies matched to the characteristics of patients and their tumors. Here, we discuss some of the technologies, methodologies, and computational tools that will facilitate the realization of this vision to practice.
Collapse
Affiliation(s)
- James H. Park
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | | | - Diego M. Marzese
- Balearic Islands Health Research Institute (IdISBa), 07010 Palma, Spain;
| | - Tiffany Juarez
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Abdullah Feroze
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
| | - Parvinder Hothi
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Charles Cobbs
- Swedish Neuroscience Institute, Seattle, WA 98122, USA; (P.H.); (C.C.)
- Ben and Catherine Ivy Center for Advanced Brain Tumor Treatment, Seattle, WA 98122, USA
| | - Anoop P. Patel
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA; (A.F.); (A.P.P.)
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Brotman-Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Santosh Kesari
- St. John’s Cancer Institute, Santa Monica, CA 90401, USA; (T.J.); (S.K.)
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA 98109, USA; (J.H.P.); (S.H.)
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Trembath DG, Ivanova A, Krauze MT, Kirkwood JM, Nikolaishvilli-Feinberg N, Moschos SJ. Melanoma-specific expression of the tumor suppressor proteins p16 and PTEN is a favorable prognostic factor in established melanoma brain metastases. Melanoma Res 2021; 31:264-267. [PMID: 33871399 PMCID: PMC8086752 DOI: 10.1097/cmr.0000000000000731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PTEN and p16 frequently undergo (epi)genetic aberrations in melanoma resulting in decreased, or absent, protein levels. We investigated the prognostic significance of these tumor suppressor genes in melanoma brain metastases (MBMs). Immunohistochemical analysis was performed on archived tissue sections from craniotomies. Expression of PTEN and p16 was semiquantitatively scored (0-3 scale) in melanoma cells, glia, TILs, and endothelial cells of tumor-associated vessels and was compared among the different brain tumor cell compartments. Overall survival (OS) analysis was performed according to PTEN and p16 protein expression in melanoma cells. 58 patients (median age 56, 37 male) underwent craniotomy for MBMs before February 2014. The OS of patients with decreased, or absent, protein expression (0, 1+) of PTEN and p16 in melanoma cells was significantly shorter compared to that of patients with high (2+, 3+) expression (median OS 2.40 vs. 10.75 months and 4.1 vs. 8.1 months, respectively; Gehan-Breslow-Wilcoxon test P = 0.026 and P = 0.037, respectively). PTEN and p16 protein expression were significantly lower in TILs compared to melanoma cells (Mann-Whitney test P = 0.023 and P < 0.0001, respectively). Low/absent protein expression of PTEN/p16 is an adverse prognostic factor in MBMs. Surprisingly, expression of both PTEN and p16 proteins was significantly lower in TILs compared to melanoma cells. Proliferating (p16 absent/low) TILs within the brain with or without an active PI3K-Akt pathway (PTEN absent/low) may represent a favorable host response in MBMs. Thus, treatment of patients with MBMs with CDK4/6 or PI3K pathway inhibitors may result in an unfavorable, bystander, off-target effect on host immune response.
Collapse
Affiliation(s)
| | - Anastasia Ivanova
- Department of Biostatistics
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michal T Krauze
- Melanoma and Skin Cancer Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - John M Kirkwood
- Melanoma and Skin Cancer Program, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Nana Nikolaishvilli-Feinberg
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Stergios J Moschos
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
28
|
Dono A, Takayasu T, Yan Y, Bundrant BE, Arevalo O, Lopez-Garcia CA, Esquenazi Y, Ballester LY. Differences in Genomic Alterations Between Brain Metastases and Primary Tumors. Neurosurgery 2021; 88:592-602. [PMID: 33369669 DOI: 10.1093/neuros/nyaa471] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Brain metastases (BMs) occur in ∼1/3 of cancer patients and are associated with poor prognosis. Genomic alterations contribute to BM development; however, mutations that predispose and promote BM development are poorly understood. OBJECTIVE To identify differences in genomic alterations between BM and primary tumors. METHODS A retrospective cohort of 144 BM patients were tested for genomic alterations (85 lung, 21 breast, 14 melanoma, 4 renal, 4 colon, 3 prostate, 4 others, and 9 unknown carcinomas) by a next-generation sequencing assay interrogating 315 genes. The differences in genomic alterations between BM and primary tumors from COSMIC and TCGA were evaluated by chi-square or Fisher's exact test. Overall survival curves were plotted using the Kaplan-Meier method. RESULTS The comparison of BM and primary tumors revealed genes that were mutated in BM with increased frequency: TP53, ATR, and APC (lung adenocarcinoma); ARID1A and FGF10 (lung small-cell); PIK3CG, NOTCH3, and TET2 (lung squamous); ERBB2, BRCA2, and AXL1 (breast carcinoma); CDKN2A/B, PTEN, RUNX1T1, AXL, and FLT4 (melanoma); and ATM, AR, CDKN2A/B, TERT, and TSC1 (renal clear-cell carcinoma). Moreover, our results indicate that lung adenocarcinoma BM patients with CREBBP, GPR124, or SPTA1 mutations have a worse prognosis. Similarly, ERBB2, CDK12, or TP53 mutations are associated with worse prognosis in breast cancer BM patients. CONCLUSION The present study demonstrates significant differences in the frequency of mutations between primary tumors and BM and identifies targetable alterations and genes that correlate with prognosis. Identifying the genomic alterations that are enriched in metastatic central nervous system tumors could help our understanding of BM development and improve patient management.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Takeshi Takayasu
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Yuanqing Yan
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Bethany E Bundrant
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Octavio Arevalo
- Department of Diagnostic and Inteventional Imaging, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Carlos A Lopez-Garcia
- Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Department of Pathology and Laboratory Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Texas.,Memorial Hermann Hospital-TMC, Houston, Texas
| |
Collapse
|
29
|
Zhang S, Zeng T, Hu B, Zhang YH, Feng K, Chen L, Niu Z, Li J, Huang T, Cai YD. Discriminating Origin Tissues of Tumor Cell Lines by Methylation Signatures and Dys-Methylated Rules. Front Bioeng Biotechnol 2020; 8:507. [PMID: 32528944 PMCID: PMC7264161 DOI: 10.3389/fbioe.2020.00507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an essential epigenetic modification for multiple biological processes. DNA methylation in mammals acts as an epigenetic mark of transcriptional repression. Aberrant levels of DNA methylation can be observed in various types of tumor cells. Thus, DNA methylation has attracted considerable attention among researchers to provide new and feasible tumor therapies. Conventional studies considered single-gene methylation or specific loci as biomarkers for tumorigenesis. However, genome-scale methylated modification has not been completely investigated. Thus, we proposed and compared two novel computational approaches based on multiple machine learning algorithms for the qualitative and quantitative analyses of methylation-associated genes and their dys-methylated patterns. This study contributes to the identification of novel effective genes and the establishment of optimal quantitative rules for aberrant methylation distinguishing tumor cells with different origin tissues.
Collapse
Affiliation(s)
- Shiqi Zhang
- School of Life Sciences, Shanghai University, Shanghai, China.,Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Tao Zeng
- Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, China
| | - Bin Hu
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yu-Hang Zhang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaiyan Feng
- Department of Computer Science, Guangdong AIB Polytechnic, Guangzhou, China
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zhibin Niu
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| | - Jianhao Li
- State Key Laboratory of Livestock and Poultry Breeding, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Tao Huang
- Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
30
|
Albrecht M, Lucarelli P, Kulms D, Sauter T. Computational models of melanoma. Theor Biol Med Model 2020; 17:8. [PMID: 32410672 PMCID: PMC7222475 DOI: 10.1186/s12976-020-00126-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Genes, proteins, or cells influence each other and consequently create patterns, which can be increasingly better observed by experimental biology and medicine. Thereby, descriptive methods of statistics and bioinformatics sharpen and structure our perception. However, additionally considering the interconnectivity between biological elements promises a deeper and more coherent understanding of melanoma. For instance, integrative network-based tools and well-grounded inductive in silico research reveal disease mechanisms, stratify patients, and support treatment individualization. This review gives an overview of different modeling techniques beyond statistics, shows how different strategies align with the respective medical biology, and identifies possible areas of new computational melanoma research.
Collapse
Affiliation(s)
- Marco Albrecht
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| | - Philippe Lucarelli
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Dresden University of Technology, Fetscherstraße 105, Dresden, 01307 Germany
| | - Thomas Sauter
- Systems Biology Group, Life Science Research Unit, University of Luxembourg, 6, avenue du Swing, Belval, 4367 Luxembourg
| |
Collapse
|
31
|
Ma L, He H, Jiang K, Jiang P, He H, Feng S, Chen K, Shao J, Deng G. FAM46C inhibits cell proliferation and cell cycle progression and promotes apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity in prostate cancer. Aging (Albany NY) 2020; 12:6352-6369. [PMID: 32283544 PMCID: PMC7185131 DOI: 10.18632/aging.103030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 02/23/2020] [Indexed: 04/11/2023]
Abstract
Family with sequence similarity 46 member C (FAM46C) is a non-canonical poly(A) polymerase that is associated with tumorigenesis. However, its role in prostate cancer development is not fully understood. Herein, we determined expression pattern of FAM46C in prostate cancer and further identified its effect on the tumorigenesis and chemosensitivity. FAM46C expression was decreased in prostate cancer tissues and cell lines compared with corresponding controls. FAM46C expression was significantly associated with the Gleason score, tumor size and overall survival. FAM46C knockdown in 22RV1 and DU145 cells significantly inhibited apoptosis and promoted cell proliferation and cell cycle progression as well as activation of AKT. FAM46C overexpression had an inverse effect in DU145 cells and inhibited tumor growth in vivo. FAM46C inhibited cell proliferation and cell cycle progression and induced apoptosis via the PTEN/AKT signaling pathway. FAM46C promoted PTEN expression through inhibiting PTEN ubiquitination. The prostate cancer cells and patient-derived xenograft (PDX) mice with high-FAM46C-expressing demonstrated an enhanced chemosensitivity to docetaxel. These findings suggest that FAM46C control cell proliferation, cell cycle and apoptosis through PTEN/AKT signaling pathway and is associated with chemosensitivity of prostate cancer. Modulation of their levels may offer a new approach for improving anti-tumor efficacy for chemotherapeutic agents in prostate cancer.
Collapse
Affiliation(s)
- Libin Ma
- Department of Nephrology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Huadong He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Kang Jiang
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Peiwu Jiang
- Surgical Department I, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, Zhejiang, China
| | - Han He
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Shengjia Feng
- Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou 310006, Zhejiang, China
| | - Kean Chen
- Department of Urology, The Second Hospital of Jiaxing, Jiaxing 314001, Zhejiang, China
| | - Jia Shao
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| | - Gang Deng
- Department of Urology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, Zhejiang, China
| |
Collapse
|
32
|
Cai W, Ding X, Li J, Li Z. Methylation analysis highlights novel prognostic criteria in human-metastasized melanoma. J Cell Biochem 2019; 120:11990-12001. [PMID: 30861178 DOI: 10.1002/jcb.28484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/04/2018] [Accepted: 12/06/2018] [Indexed: 01/24/2023]
Abstract
Melanoma accounts for 90% of the deaths associated with cutaneous neoplasms, and the 5-year survival rate of patients with the advanced stage is about 20%. Many mechanisms are involved in melanoma progression, but dynamic epigenetic changes are likely to be critical contributors, especially for DNA methylation. However, we know little about the methylation events involved in melanoma lymph node metastasis (LNM), a deficit that is of particular concern because it has a growing incidence and mortality. To identify DNA methylated-associated changes involved in the formation of metastatic melanoma, we explored the different methylated genes (DMGs) between primary and LNM melanoma by Illumina Human Methylation 450 K BeadArray GSE44661. By integrating DNA methylation and messenger RNA expression data from The Cancer Genome Atlas database, we identified these DNA methylation biomarkers. Pathway analysis highlighted these DMGs, which were closely related to the carcinogenesis of melanoma, such as cell cycle regulation and RNA transcription process. Furthermore, according to the univariate and multivariate Cox regression analysis, we constructed a four-DMG prognostic signature model, which could precisely predict the outcome of melanoma in a more exact way. In summary, this four-DMG based risk score model successfully predicts the survival of melanoma. It is independent of other clinical characteristics and is good for prognosis prediction.
Collapse
Affiliation(s)
- Weiyang Cai
- Department of Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoxia Ding
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jingjing Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhiming Li
- Department of Dermatology and Venereology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
33
|
Orozco JI, Manughian-Peter AO, Salomon MP, Marzese DM. Epigenetic Classifiers for Precision Diagnosis of Brain Tumors. Epigenet Insights 2019; 12:2516865719840284. [PMID: 30968063 PMCID: PMC6444760 DOI: 10.1177/2516865719840284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 03/04/2019] [Indexed: 01/29/2023] Open
Abstract
DNA methylation profiling has proven to be a powerful analytical tool,
which can accurately identify the tissue of origin of a wide range of
benign and malignant neoplasms. Using microarray-based profiling and
supervised machine learning algorithms, we and other groups have
recently unraveled DNA methylation signatures capable of aiding the
histomolecular diagnosis of different tumor types. We have explored
the methylomes of metastatic brain tumors from patients with lung
cancer, breast cancer, and cutaneous melanoma and primary brain
neoplasms to build epigenetic classifiers. Our brain metastasis
methylation (BrainMETH) classifier has the ability to determine the
type of brain tumor, the origin of the metastases, and the
clinical-therapeutic subtype for patients with breast cancer brain
metastases. To facilitate the translation of these epigenetic
classifiers into clinical practice, we selected and validated the most
informative genomic regions utilizing quantitative
methylation-specific polymerase chain reaction (qMSP). We believe that
the refinement, expansion, integration, and clinical validation of
BrainMETH and other recently developed epigenetic classifiers will
significantly contribute to the development of more comprehensive and
accurate systems for the personalized management of patients with
brain metastases.
Collapse
Affiliation(s)
- Javier Ij Orozco
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Ayla O Manughian-Peter
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Computational Biology Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Cancer Epigenetics Laboratory, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| |
Collapse
|
34
|
Desjobert C, Carrier A, Delmas A, Marzese DM, Daunay A, Busato F, Pillon A, Tost J, Riond J, Favre G, Etievant C, Arimondo PB. Demethylation by low-dose 5-aza-2'-deoxycytidine impairs 3D melanoma invasion partially through miR-199a-3p expression revealing the role of this miR in melanoma. Clin Epigenetics 2019; 11:9. [PMID: 30651148 PMCID: PMC6335767 DOI: 10.1186/s13148-018-0600-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/17/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Efficient treatments against metastatic melanoma dissemination are still lacking. Here, we report that low-cytotoxic concentrations of 5-aza-2'-deoxycytidine, a DNA demethylating agent, prevent in vitro 3D invasiveness of metastatic melanoma cells and reduce lung metastasis formation in vivo. RESULTS We unravelled that this beneficial effect is in part due to MIR-199A2 re-expression by promoter demethylation. Alone, this miR showed an anti-invasive and anti-metastatic effect. Throughout integration of micro-RNA target prediction databases with transcriptomic analysis after 5-aza-2'-deoxycytidine treatments, we found that miR-199a-3p downregulates set of genes significantly involved in invasion/migration processes. In addition, analysis of data from melanoma patients showed a stage- and tissue type-dependent modulation of MIR-199A2 expression by DNA methylation. CONCLUSIONS Thus, our data suggest that epigenetic- and/or miR-based therapeutic strategies can be relevant to limit metastatic dissemination of melanoma.
Collapse
Affiliation(s)
- Cécile Desjobert
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Arnaud Carrier
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France
| | - Audrey Delmas
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Antoine Daunay
- Laboratory for Functional Genomics, Fondation Jean Dausset - CEPH, Paris, France
| | - Florence Busato
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Arnaud Pillon
- Institut de Recherche Pierre Fabre, CRDPF, Toulouse, France
| | - Jörg Tost
- Laboratory for Epigenetics and Environment, Centre National de la Recherche en Génomique Humaine, CEA, Evry, France
| | - Joëlle Riond
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France.,UMR 1037 INSERM/Université Toulouse III, CRCT, Toulouse, France
| | - Gilles Favre
- Cancer Research Center of Toulouse, CRCT, Toulouse, France
| | | | - Paola B Arimondo
- FRE no. 3600 CNRS, Epigenetic Targeting of Cancer (ETaC), Toulouse, France. .,Institut Pasteur CNRS UMR3523, Epigenetic Chemical Biology, Paris, France.
| |
Collapse
|
35
|
Salomon MP, Orozco JIJ, Wilmott JS, Hothi P, Manughian-Peter AO, Cobbs CS, Scolyer RA, Hoon DSB, Marzese DM. Brain metastasis DNA methylomes, a novel resource for the identification of biological and clinical features. Sci Data 2018; 5:180245. [PMID: 30398472 PMCID: PMC6219670 DOI: 10.1038/sdata.2018.245] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Brain metastases (BM) are one the most lethal and poorly managed clinical complications in cancer patients. These secondary tumors represent the most common intracranial neoplasm in adults, most frequently originating from lung cancer, breast cancer, and cutaneous melanoma. In primary brain tumors, such as gliomas, recent advances in DNA methylation profiling have allowed for a comprehensive molecular classification. Such data provide prognostic information, in addition to helping predict patient response to specific systemic therapies. However, epigenetic alterations of metastatic brain tumors with specific biological and translational relevance still require much further exploration. Using the widely employed Illumina Infinium HumanMethylation 450K platform, we have generated a cohort of genome-wide DNA methylomes from ninety-six needle-dissected BM specimens from patients with lung cancer, breast cancer, and cutaneous melanoma with clinical, pathological, and demographic annotations. This resource offers an unprecedented and unique opportunity to identify novel DNA methylation features influencing the behavior of brain metastasis, and thus accelerate the discovery of BM-specific theranostic epigenetic alterations.
Collapse
Affiliation(s)
- Matthew P. Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Javier I. J. Orozco
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - James S. Wilmott
- Melanoma Institute Australia, The University of Sydney, Camperdown, NSW, 2065, Australia
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Ayla O. Manughian-Peter
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Charles S. Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA 98122, USA
| | - Richard A. Scolyer
- Melanoma Institute Australia, The University of Sydney, Camperdown, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Sydney, New South Wales, 2050, Australia
| | - Dave S. B. Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| | - Diego M. Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA 90404, USA
| |
Collapse
|
36
|
Orozco JIJ, Knijnenburg TA, Manughian-Peter AO, Salomon MP, Barkhoudarian G, Jalas JR, Wilmott JS, Hothi P, Wang X, Takasumi Y, Buckland ME, Thompson JF, Long GV, Cobbs CS, Shmulevich I, Kelly DF, Scolyer RA, Hoon DSB, Marzese DM. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun 2018; 9:4627. [PMID: 30401823 PMCID: PMC6219520 DOI: 10.1038/s41467-018-06715-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/19/2018] [Indexed: 01/29/2023] Open
Abstract
Optimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet this challenge, here we profile DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n = 96). Using supervised machine learning and integration of DNA methylomes from normal, primary, and metastatic tumor specimens (n = 1860), we unravel epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically relevant subtypes. BrainMETH predictions are supported by routine histopathologic evaluation. We further characterize and validate the most predictive genomic regions in a large cohort of brain tumors (n = 165) using quantitative-methylation-specific PCR. Our study highlights the importance of brain tumor-defining epigenetic alterations, which can be utilized to further develop DNA methylation profiling as a critical tool in the histomolecular stratification of patients with brain metastases.
Collapse
Affiliation(s)
- Javier I J Orozco
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | | | - Ayla O Manughian-Peter
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - John R Jalas
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Xiaowen Wang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Yuki Takasumi
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, the Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Charles S Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | - Daniel F Kelly
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA.
| |
Collapse
|
37
|
Graff-Baker AN, Orozco JIJ, Marzese DM, Salomon MP, Hoon DSB, Goldfarb M. Epigenomic and Transcriptomic Characterization of Secondary Breast Cancers. Ann Surg Oncol 2018; 25:3082-3087. [PMID: 29956094 DOI: 10.1245/s10434-018-6582-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Molecular alterations impact tumor prognosis and response to treatment. This study was designed to identify transcriptomic and epigenomic signatures of breast cancer (BC) tumors from patients with any prior malignancy. METHODS RNA-sequencing and genome-wide DNA methylation profiles from BCs were generated in the Cancer Genome Atlas project. Patients with secondary breast cancer (SBC) were separated by histological subtype and matched to primary breast cancer controls to create two independent cohorts of invasive ductal (IDC, n = 36) and invasive lobular (ILC, n = 40) carcinoma. Differentially expressed genes, as well as differentially methylated genomic regions, were integrated to identify epigenetically regulated abnormal gene pathways in SBCs. RESULTS Differentially expressed genes were identified in IDC SBCs (n = 727) and in ILC SBCs (n = 261; Wilcoxon's test; P < 0.05). In IDC SBCs, 105 genes were upregulated and hypomethylated, including an estrogen receptor gene, and 73 genes were downregulated and hypermethylated, including genes involved in antigen presentation and interferon response pathways (HLA-E, IRF8, and RELA). In ILC SBCs, however, only 17 genes were synchronously hypomethylated and upregulated, whereas 46 genes hypermethylated and downregulated. Interestingly, the SBC gene expression signatures closely corresponded with each histological subtype with only 1.51% of genes overlapping between the two histological subtypes. CONCLUSIONS Differential gene expression and DNA methylation signatures are seen in both IDC and ILC SBCs, including genes that are relevant to tumor growth and proliferation. Differences in gene expression signatures corresponding with each histological subtype emphasize the importance of disease subtype-specific evaluations of molecular alterations.
Collapse
Affiliation(s)
- Amanda N Graff-Baker
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Javier I J Orozco
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Diego M Marzese
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Matthew P Salomon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Dave S B Hoon
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA
| | - Melanie Goldfarb
- Center for Endocrine Tumors and Disorders, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, USA.
| |
Collapse
|
38
|
Patterns of disease control and survival in patients with melanoma brain metastases undergoing immune-checkpoint blockade. Eur J Cancer 2018; 99:58-65. [PMID: 29906735 DOI: 10.1016/j.ejca.2018.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/03/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Immune-checkpoint blockers (ICBs) significantly prolong overall survival (OS) in patients with advanced melanoma. Limited data are available on the efficacy and clinical benefit in patients with melanoma brain metastases (MBMs). The aim of this study was to determine whether ICB is active in an unselected cohort treated of patients with known brain metastases and if disease control correlates with the survival. METHODS A total of 385 patients with metastatic malignant melanoma treated with ICB as monotherapy between 2005 and 2017 in two tertiary referral centres were included. Patient records were searched for the development of brain metastases. Demographic and clinical data of all patients were collected retrospectively. RESULTS We identified 177 patients with MBM who received ICBs (ipilimumab, nivolumab, pembrolizumab). Patients with and without brain metastases received similar ICB regimens. Prognosis was inferior in patients with brain metastases; patients with >1 brain metastasis showed even poorer survival. For extracranial (ec) metastases, disease control was associated with improved survival. However, when comparing patients with intracranial (ic) disease control during immunotherapy to patients with ic disease progression, no difference in OS could be observed. CONCLUSIONS In our study, ec disease control was the dominant predictive factor for OS in both patients with or without melanoma brain metastases. These data indicate that clinical trials in melanoma patients with brain metastases should address end-points such as symptom control, quality of life or OS in addition to ic response rates.
Collapse
|
39
|
de Unamuno Bustos B, Murria Estal R, Pérez Simó G, Simarro Farinos J, Pujol Marco C, Navarro Mira M, Alegre de Miquel V, Ballester Sánchez R, Sabater Marco V, Llavador Ros M, Palanca Suela S, Botella Estrada R. Aberrant DNA methylation is associated with aggressive clinicopathological features and poor survival in cutaneous melanoma. Br J Dermatol 2018; 179:394-404. [PMID: 29278418 DOI: 10.1111/bjd.16254] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2017] [Indexed: 01/19/2023]
Abstract
BACKGROUND Promoter methylation of tumour suppressor genes (TSGs) has recently been implicated in the pathogenesis of several types of cancer. Regarding melanoma, over 100 genes that contribute to its pathogenesis have been identified to be aberrantly hypermethylated. OBJECTIVES This is a retrospective observational study that aims to analyse the prevalence of CpG island methylation in a series of primary melanomas, to identify the associations with the main clinicopathological features, and to explore the prognostic significance of methylation in melanoma survival. MATERIALS AND METHODS DNA methylation was analysed using methylation-specific multiplex ligation-dependent probe amplification in a series of 170 melanoma formalin-fixed paraffin-embedded tumour samples. The relationship between the methylation status, known somatic mutations and clinicopathological features was evaluated. Disease-free survival (DFS) and overall survival (OS) were displayed by the Kaplan-Meier method. RESULTS In the entire cohort, one or more genes were detected to be methylated in 55% of the patients. The most prevalent methylated genes were RARB 31%, PTEN 24%, APC 16%, CDH13 16%, ESR1 14%, CDKN2A 6% and RASSF1 5%. An association between aberrant methylation and aggressive clinicopathological features was observed (older age, increased Breslow thickness, presence of mitosis and ulceration, fast-growing melanomas, advancing stage and TERT mutations). Furthermore, Kaplan-Meier survival analysis showed a correlation of methylation and poorer DFS and OS. CONCLUSIONS Aberrant methylation of TSGs is a frequent event in melanoma. It is associated with aggressive clinicopathological features and poorer survival. Epigenetic alterations may represent a significant prognostic marker with utility in routine practice.
Collapse
Affiliation(s)
- B de Unamuno Bustos
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Murria Estal
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - G Pérez Simó
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - J Simarro Farinos
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - C Pujol Marco
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - M Navarro Mira
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - V Alegre de Miquel
- Department of Dermatology, Hospital General Universitario de Valencia, Valencia, Spain
| | | | - V Sabater Marco
- Department of Pathology, Hospital General Universitario de Valencia, Valencia, Spain
| | - M Llavador Ros
- Department of Pathology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - S Palanca Suela
- Department of Molecular Biology Laboratory, Service of Clinical Analysis, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| | - R Botella Estrada
- Department of Dermatology, Hospital Universitari i Politecnic La Fe, Valencia, Spain
| |
Collapse
|
40
|
Assenov Y, Brocks D, Gerhäuser C. Intratumor heterogeneity in epigenetic patterns. Semin Cancer Biol 2018; 51:12-21. [PMID: 29366906 DOI: 10.1016/j.semcancer.2018.01.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/24/2017] [Accepted: 01/17/2018] [Indexed: 02/08/2023]
Abstract
Analogous to life on earth, tumor cells evolve through space and time and adapt to different micro-environmental conditions. As a result, tumors are composed of millions of genetically diversified cells at the time of diagnosis. Profiling these variants contributes to understanding tumors' clonal origins and might help to better understand response to therapy. However, even genetically homogenous cell populations show remarkable diversity in their response to different environmental stimuli, suggesting that genetic heterogeneity does not explain the full spectrum of tumor plasticity. Understanding epigenetic diversity across cancer cells provides important additional information about the functional state of subclones and therefore allows better understanding of tumor evolution and resistance to current therapies.
Collapse
Affiliation(s)
- Yassen Assenov
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David Brocks
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Clarissa Gerhäuser
- Epigenomics and Cancer Risk Factors, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
41
|
Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, Psyrri A, Georgoulias V, Lianidou E. ESR1 Methylation: A Liquid Biopsy-Based Epigenetic Assay for the Follow-up of Patients with Metastatic Breast Cancer Receiving Endocrine Treatment. Clin Cancer Res 2017; 24:1500-1510. [PMID: 29284708 DOI: 10.1158/1078-0432.ccr-17-1181] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 05/29/2017] [Accepted: 12/21/2017] [Indexed: 11/16/2022]
Abstract
Purpose: Liquid biopsy provides real-time monitoring of tumor evolution and response to therapy through analysis of circulating tumor cells (CTCs) and plasma-circulating tumor DNA (ctDNA). ESR1 epigenetic silencing potentially affects response to endocrine treatment. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA. We evaluated ESR1 methylation in CTCs and paired plasma ctDNA as a potential biomarker for response to everolimus/exemestane treatment.Experimental Design: A highly sensitive and specific real-time MSP assay for ESR1 methylation was developed and validated in (i) 65 primary breast tumors formalin-fixed paraffin-embedded (FFPE), (ii) EpCAM+ CTC fractions (122 patients and 30 healthy donors; HD), (iii) plasma ctDNA (108 patients and 30HD), and (iv) in CTCs (CellSearch) and in paired plasma ctDNA for 58 patients with breast cancer. ESR1 methylation status was investigated in CTCs isolated from serial peripheral blood samples of 19 patients with ER+/HER2- advanced breast cancer receiving everolimus/exemestane.Results:ESR1 methylation was detected in: (i) 25/65 (38.5%) FFPEs, (ii) EpCAM+ CTC fractions: 26/112 (23.3%) patients and 1/30 (3.3%) HD, and (iii) plasma ctDNA: 8/108 (7.4%) patients and 1/30 (3.3%) HD. ESR1 methylation was highly concordant in 58 paired DNA samples, isolated from CTCs (CellSearch) and corresponding plasma. In serial peripheral blood samples of patients treated with everolimus/exemestane, ESR1 methylation was observed in 10/36 (27.8%) CTC-positive samples, and was associated with lack of response to treatment (P = 0.023, Fisher exact test).Conclusions: We report for the first time the detection of ESR1 methylation in CTCs and a high concordance with paired plasma ctDNA. ESR1 methylation in CTCs was associated with lack of response to everolimus/exemestane regimen. ESR1 methylation should be further evaluated as a potential liquid biopsy-based biomarker. Clin Cancer Res; 24(6); 1500-10. ©2017 AACR.
Collapse
Affiliation(s)
- Sophia Mastoraki
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Areti Strati
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Eleni Tzanikou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | - Maria Chimonidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece
| | | | | | - Amanda Psyrri
- Oncology Unit, 2nd Department of Internal Medicine-Propaedeutic, Attikon University Hospital, Haidari, Greece
| | | | - Evi Lianidou
- Analysis of Circulating Tumor Cells, Lab of Analytical Chemistry, Department of Chemistry, University of Athens, Athens, Greece.
| |
Collapse
|
42
|
Duan H, Jiang K, Wei D, Zhang L, Cheng D, Lv M, Xu Y, He A. Identification of epigenetically altered genes and potential gene targets in melanoma using bioinformatic methods. Onco Targets Ther 2017; 11:9-15. [PMID: 29302192 PMCID: PMC5741985 DOI: 10.2147/ott.s146663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This study aimed to analyze epigenetically and genetically altered genes in melanoma to get a better understanding of the molecular circuitry of melanoma and identify potential gene targets for the treatment of melanoma. The microarray data of GSE31879, including mRNA expression profiles (seven melanoma and four melanocyte samples) and DNA methylation profiles (seven melanoma and five melanocyte samples), were downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) and differentially methylated positions (DMPs) were screened using the linear models for microarray data (limma) package in melanoma compared with melanocyte samples. Gene ontology (GO) and pathway enrichment analysis of the DEGs were carried out using the Database for Annotation, Visualization, and Integrated Discovery. Moreover, differentially methylated genes (DMGs) were identified, and a transcriptional regulatory network was constructed using the University of California Santa Cruz genome browser database. A total of 1,215 DEGs (199 upregulated and 1,016 downregulated) and 14,094 DMPs (10,450 upregulated and 3,644 downregulated) were identified in melanoma compared with melanocyte samples. Additionally, the upregulated and downregulated DEGs were significantly associated with different GO terms and pathways, such as pigment cell differentiation, biosynthesis, and metabolism. Furthermore, the transcriptional regulatory network showed that DMGs such as Aristaless-related homeobox (ARX), damage-specific DNA binding protein 2 (DDB2), and myelin basic protein (MBP) had higher node degrees. Our results showed that several methylated genes (ARX, DDB2, and MBP) may be involved in melanoma progression.
Collapse
Affiliation(s)
- Honghao Duan
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Ke Jiang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Dengke Wei
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Lijun Zhang
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Deliang Cheng
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Min Lv
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Yuben Xu
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Aimin He
- Department of Hand Surgery, Honghui Hospital, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
43
|
Furet E, Bouchtaoui ME, Feugeas JP, Miquel C, Leboeuf C, Beytout C, Bertheau P, Le Rhun E, Bonneterre J, Janin A, Bousquet G. Increased risk of brain metastases in women with breast cancer and p16 expression in metastatic lymph-nodes. Oncotarget 2017; 8:37332-37341. [PMID: 28445153 PMCID: PMC5514912 DOI: 10.18632/oncotarget.16953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/08/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Metastatic breast cancer is a leading cause of mortality in women, partly on account of brain metastases. However, the mechanisms by which cancer cells cross the blood-brain barrier remain undeciphered. Most molecular studies predicting metastatic risk have been performed on primary breast cancer samples. Here we studied metastatic lymph-nodes from patients with breast cancers to identify markers associated with the occurrence of brain metastases. RESULTS Transcriptomic analyses identified CDKN2A/p16 as a gene potentially associated with brain metastases. MATERIALS AND METHODS Fifty-two patients with HER2-overexpressing or triple-negative breast carcinoma with lymph nodes and distant metastases were included in this study. Transcriptomic analyses were performed on laser-microdissected tumor cells from 28 metastatic lymph-nodes. Supervised analyses compared the transcriptomic profiles of women who developed brain metastases and those who did not. As a validation series, we studied metastatic lymph-nodes from 24 other patients.Immunohistochemistry investigations showed that p16 mean scores were significantly higher in patients with brain metastases than in patients without (7.4 vs. 1.7 respectively, p < 0.01). This result was confirmed on the validation series. Multivariate analyses showed that the p16 score was the only variable positively associated with the risk of brain metastases (p = 0.01).With the same threshold of 5 for p16 scores using a Cox model, overall survival was shorter in women with a p16 score over 5 in both series. CONCLUSIONS The risk of brain metastases in women with HER2-overexpressing or triple-negative breast cancer could be better assessed by studying p16 protein expression on surgically removed axillary lymph-nodes.
Collapse
Affiliation(s)
- Elise Furet
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
| | | | - Jean-Paul Feugeas
- INSERM, U1137-Paris, France
- Université de Franche-Comté, Département de Biologie, Besançon, France
| | - Catherine Miquel
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
- Hôpital Saint-Louis, APHP, Service de Pathologie, Paris, France
| | - Christophe Leboeuf
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
| | | | - Philippe Bertheau
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
- Hôpital Saint-Louis, APHP, Service de Pathologie, Paris, France
| | - Emilie Le Rhun
- Centre Oscar Lambret, Département de Sénologie, Lille, France
- CHRU de Lille, Neuro-oncologie, Département de neurochirurgie, Lille, France
- INSERM, Villeneuve d’Ascq, France
| | - Jacques Bonneterre
- Centre Oscar Lambret, Département de Sénologie, Lille, France
- Université Lille 2, Département de Sénologie, Lille, France
| | - Anne Janin
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
- Hôpital Saint-Louis, APHP, Service de Pathologie, Paris, France
| | - Guilhem Bousquet
- Université Paris Diderot, Inserm, Paris, France
- INSERM, U1165-Paris, France
- Université Paris 13, Service d’Oncologie, Villetaneuse, France
- Hôpital Avicenne, APHP, Service d’Oncologie Médicale, Bobigny, France
| |
Collapse
|
44
|
Bustos MA, Salomon MP, Nelson N, Hsu SC, DiNome ML, Hoon DSB, Marzese DM. Genome-wide chromatin accessibility, DNA methylation and gene expression analysis of histone deacetylase inhibition in triple-negative breast cancer. GENOMICS DATA 2017; 12:14-16. [PMID: 28239551 PMCID: PMC5318344 DOI: 10.1016/j.gdata.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 12/27/2022]
Abstract
Triple-negative breast cancer (TNBC), especially the subset with a basal phenotype, represents the most aggressive subtype of breast cancer. Unlike other solid tumors, TNBCs harbor a low number of driver mutations. Conversely, we and others have demonstrated a significant impact of epigenetic alterations, including DNA methylation and histone post-translational modifications, affecting TNBCs. Due to the promising results in pre-clinical studies, histone deacetylase inhibitors (HDACi) are currently being tested in several clinical trials for breast cancer and other solid tumors. However, the genome-wide epigenetic and transcriptomic implications of HDAC inhibition are still poorly understood. Here, we provide detailed information about the design of a multi-platform dataset that describes the epigenomic and transcriptomic effects of HDACi. This dataset includes genome-wide chromatin accessibility (assessed by ATAC-Sequencing), DNA methylation (assessed by Illumina HM450K BeadChip) and gene expression (assessed by RNA-Sequencing) analyses before and after HDACi treatment of HCC1806 and MDA-MB-231, two human TNBC cell lines with basal-like phenotype.
Collapse
Affiliation(s)
- Matias A Bustos
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Nellie Nelson
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Sandy C Hsu
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Maggie L DiNome
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles (UCLA), CA, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA; Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| |
Collapse
|
45
|
Abstract
Biological variability has confounded efforts to confirm the role of PREX2 mutations in melanoma.
Collapse
Affiliation(s)
- Roger J Davis
- Howard Hughes Medical Institute and the Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
46
|
Horrigan SK, Courville P, Sampey D, Zhou F, Cai S. Replication Study: Melanoma genome sequencing reveals frequent PREX2 mutations. eLife 2017; 6. [PMID: 28100394 PMCID: PMC5245968 DOI: 10.7554/elife.21634] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/21/2016] [Indexed: 12/30/2022] Open
Abstract
In 2015, as part of the Reproducibility Project: Cancer Biology, we published a Registered Report (Chroscinski et al., 2014) that described how we intended to replicate selected experiments from the paper "Melanoma genome sequencing reveals frequent PREX2 mutations" (Berger et al., 2012). Here we report the results of those experiments. We regenerated cells stably expressing ectopic wild-type and mutant phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 2 (PREX2) using the same immortalized human NRASG12D melanocytes as the original study. Evaluation of PREX2 expression in these newly generated stable cells revealed varying levels of expression among the PREX2 isoforms, which was also observed in the stable cells made in the original study (Figure S6A; Berger et al., 2012). Additionally, ectopically expressed PREX2 was found to be at least 5 times above endogenous PREX2 expression. The monitoring of tumor formation of these stable cells in vivo resulted in no statistically significant difference in tumor-free survival driven by PREX2 variants, whereas the original study reported that these PREX2 mutations increased the rate of tumor incidence compared to controls (Figure 3B and S6B; Berger et al., 2012). Surprisingly, the median tumor-free survival was 1 week in this replication attempt, while 70% of the control mice were reported to be tumor-free after 9 weeks in the original study. The rapid tumor onset observed in this replication attempt, compared to the original study, makes the detection of accelerated tumor growth in PREX2 expressing NRASG12D melanocytes extremely difficult. Finally, we report meta-analyses for each result.
Collapse
|
47
|
Vlahov N, Scrace S, Soto MS, Grawenda AM, Bradley L, Pankova D, Papaspyropoulos A, Yee KS, Buffa F, Goding CR, Timpson P, Sibson N, O'Neill E. Alternate RASSF1 Transcripts Control SRC Activity, E-Cadherin Contacts, and YAP-Mediated Invasion. Curr Biol 2015; 25:3019-34. [PMID: 26549256 PMCID: PMC4683097 DOI: 10.1016/j.cub.2015.09.072] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 07/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Tumor progression to invasive carcinoma is associated with activation of SRC family kinase (SRC, YES, FYN) activity and loss of cellular cohesion. The hippo pathway-regulated cofactor YAP1 supports the tumorigenicity of RAS mutations but requires both inactivation of hippo signaling and YES-mediated phosphorylation of YAP1 for oncogenic activity. Exactly how SRC kinases are activated and hippo signaling is lost in sporadic human malignancies remains unknown. Here, we provide evidence that hippo-mediated inhibition of YAP1 is lost upon promoter methylation of the RAS effector and hippo kinase scaffold RASSF1A. We find that RASSF1A promoter methylation reduces YAP phospho-S127, which derepresses YAP1, and actively supports YAP1 activation by switching RASSF1 transcription to the independently transcribed RASSF1C isoform that promotes Tyr kinase activity. Using affinity proteomics, proximity ligation, and real-time molecular visualization, we find that RASSF1C targets SRC/YES to epithelial cell-cell junctions and promotes tyrosine phosphorylation of E-cadherin, β-catenin, and YAP1. RASSF1A restricts SRC activity, preventing motility, invasion, and tumorigenesis in vitro and in vivo, with epigenetic inactivation correlating with increased inhibitory pY527-SRC in breast tumors. These data imply that distinct RASSF1 isoforms have opposing functions, which provide a biomarker for YAP1 activation and explain correlations of RASSF1 methylation with advanced invasive disease in humans. The ablation of epithelial integrity together with subsequent YAP1 nuclear localization allows transcriptional activation of β-catenin/TBX-YAP/TEAD target genes, including Myc, and an invasive phenotype. These findings define gene transcript switching as a tumor suppressor mechanism under epigenetic control.
Collapse
Affiliation(s)
- Nikola Vlahov
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Simon Scrace
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Manuel Sarmiento Soto
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Anna M Grawenda
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Leanne Bradley
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Daniela Pankova
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | | - Karen S Yee
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Francesca Buffa
- Applied Computational Genomics Group, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Colin R Goding
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | - Paul Timpson
- Faculty of Medicine, Garvan Institute of Medical Research, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Nicola Sibson
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Eric O'Neill
- CRUK/MRC Oxford Institute, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
48
|
Marzese DM, Witz IP, Kelly DF, Hoon DSB. Epigenomic landscape of melanoma progression to brain metastasis: unexplored therapeutic alternatives. Epigenomics 2015; 7:1303-11. [PMID: 26638944 DOI: 10.2217/epi.15.77] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Melanoma brain metastasis is a complication with rising incidence. Despite the high rate of somatic mutations driving the initial stages of melanocyte transformation, the brain colonization requires a phenotypic reprogramming that is, in part, influenced by epigenomic modifications. This special report summarizes recent findings in the epigenomic landscape of melanoma progression to brain metastasis, with particular emphasis on the clinical utility of DNA methylation, chromatin modifications and ncRNA expression as theragnostic markers, as well as the significance of the metastatic microenvironment on melanoma brain metastasis epigenome.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| | - Isaac P Witz
- Department of Cell Research & Immunology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel F Kelly
- Brain Tumor Center, Providence Saint John's Health Center, Santa Monica, CA 90404, USA
| | - Dave S B Hoon
- Department of Molecular Oncology, John Wayne Cancer Institute at Providence Saint John's Health Center, 2200 Santa Monica Boulevard, Santa Monica, CA 90404, USA
| |
Collapse
|
49
|
Lauss M, Ringnér M, Karlsson A, Harbst K, Busch C, Geisler J, Lønning PE, Staaf J, Jönsson G. DNA methylation subgroups in melanoma are associated with proliferative and immunological processes. BMC Med Genomics 2015; 8:73. [PMID: 26545983 PMCID: PMC4636848 DOI: 10.1186/s12920-015-0147-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 10/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND DNA methylation at CpG dinucleotides is modified in tumorigenesis with potential impact on transcriptional activity. METHODS We used the Illumina 450 K platform to evaluate DNA methylation patterns of 50 metastatic melanoma tumors, with matched gene expression data. RESULTS We identified three different methylation groups and validated the groups in independent data from The Cancer Genome Atlas. One group displayed hypermethylation of a developmental promoter set, genome-wide demethylation, increased proliferation and activity of the SWI/SNF complex. A second group had a methylation pattern resembling stromal and leukocyte cells, over-expressed an immune signature and had improved survival rates in metastatic tumors (p < 0.05). A third group had intermediate methylation levels and expressed both proliferative and immune signatures. The methylation groups corresponded to some degree with previously identified gene expression phenotypes. CONCLUSIONS Melanoma consists of divergent methylation groups that are distinguished by promoter methylation, proliferation and content of immunological cells.
Collapse
Affiliation(s)
- Martin Lauss
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Markus Ringnér
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Anna Karlsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Katja Harbst
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Christian Busch
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway.
| | - Jürgen Geisler
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Present Address: Department of Clinical Molecular Biology and Laboratory Sciences, Akershus University Hospital, Lørenskog, Norway.
| | - Per Eystein Lønning
- Section of Oncology, Department of Clinical Science, University of Bergen, Bergen, Norway. .,Department of Clinical Oncology, Haukeland University Hospital, Bergen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Johan Staaf
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| | - Göran Jönsson
- Department of Oncology and Pathology, Clinical Sciences, Lund University Hospital, Lund University, Lund, 221 85, Sweden.
| |
Collapse
|
50
|
Ralhan R, Veyhl J, Chaker S, Assi J, Alyass A, Jeganathan A, Somasundaram RT, MacMillan C, Freeman J, Vescan AD, Witterick IJ, Walfish PG. Immunohistochemical Subcellular Localization of Protein Biomarkers Distinguishes Benign from Malignant Thyroid Nodules: Potential for Fine-Needle Aspiration Biopsy Clinical Application. Thyroid 2015; 25:1224-34. [PMID: 26131603 DOI: 10.1089/thy.2015.0114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND It is of critical clinical importance to select accurately for surgery thyroid nodules at risk for malignancy and avoid surgery on those that are benign. Using alterations in subcellular localization for seven putative biomarker proteins (identified by proteomics), this study aimed to define a specific combination of proteins in surgical tissues that could distinguish benign from malignant nodules to assist in future surgical selection by fine-needle aspiration biopsy (FNAB). METHODS Immunohistochemical subcellular localization (IHC) analyses of seven proteins were retrospectively performed on surgical tissues (115 benign nodules and 114 papillary-based thyroid carcinomas [TC]), and a risk model biomarker panel was developed and validated. The biomarker panel efficacy was verified in 50 FNAB formalin-fixed and paraffin-embedded cell blocks, and 26 cytosmears were prepared from fresh surgically resected thyroid nodules. RESULTS Selection modeling using these proteins resulted in nuclear phosphoglycerate kinase 1 (PGK1) loss and nuclear Galectin-3 overexpression as the best combination for distinguishing TC from benign nodules (area under the curve [AUC] 0.96 and 0.95 in test and validation sets, respectively). A computed malignancy score also accurately identified TC in benign and indeterminate nodules (test and validation sets: AUC 0.94, 0.90; specificity 98%, 99%). Its efficacy was confirmed in surgical FNAB cell blocks and cytosmears. CONCLUSION Using surgical tissues, it was observed that a combination of PGK1 and Galectin-3 had high efficiency for distinguishing benign from malignant thyroid nodules and could improve surgical selection for TC among indeterminate nodules. Further validation in prospective preoperative FNAB will be required to confirm such a clinical application.
Collapse
Affiliation(s)
- Ranju Ralhan
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
- 2 Department of Pathology and Laboratory Medicine, Mount Sinai Hospital , Toronto, Canada
- 3 Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
- 4 Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital , Toronto, Canada
- 5 Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital , Toronto, Canada
- 6 Department of Otolaryngology-Head and Neck Surgery, University of Toronto , Toronto, Canada
| | - Joe Veyhl
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Seham Chaker
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Jasmeet Assi
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Akram Alyass
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Ajitha Jeganathan
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Raj Thani Somasundaram
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
| | - Christina MacMillan
- 2 Department of Pathology and Laboratory Medicine, Mount Sinai Hospital , Toronto, Canada
- 3 Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
| | - Jeremy Freeman
- 4 Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital , Toronto, Canada
- 5 Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital , Toronto, Canada
- 6 Department of Otolaryngology-Head and Neck Surgery, University of Toronto , Toronto, Canada
| | - Allan D Vescan
- 4 Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital , Toronto, Canada
- 5 Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital , Toronto, Canada
- 6 Department of Otolaryngology-Head and Neck Surgery, University of Toronto , Toronto, Canada
| | - Ian J Witterick
- 4 Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital , Toronto, Canada
- 5 Department of Otolaryngology-Head and Neck Surgery, Mount Sinai Hospital , Toronto, Canada
- 6 Department of Otolaryngology-Head and Neck Surgery, University of Toronto , Toronto, Canada
| | - Paul G Walfish
- 1 Alex and Simona Shnaider Research Laboratory in Molecular Oncology, Mount Sinai Hospital , Toronto, Canada
- 2 Department of Pathology and Laboratory Medicine, Mount Sinai Hospital , Toronto, Canada
- 3 Laboratory Medicine and Pathobiology, University of Toronto , Toronto, Canada
- 4 Joseph and Mildred Sonshine Family Centre for Head and Neck Diseases, Department of Otolaryngology-Head and Neck Surgery Program, Mount Sinai Hospital , Toronto, Canada
- 7 Department of Medicine, Endocrine Division, Mount Sinai Hospital , Toronto, Canada
- 8 Department of Medicine, University of Toronto Medical School , Toronto, Canada
| |
Collapse
|