1
|
Falso S, Gessi M, Marini S, Benvenuto R, Sabatelli E, D’Amati A, Marini M, Evoli A, Iorio R. Cancer Frequency in MuSK Myasthenia Gravis and Histological Evidence of Paraneoplastic Etiology. Ann Neurol 2024; 96:1020-1025. [PMID: 39007444 PMCID: PMC11496004 DOI: 10.1002/ana.27033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/04/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024]
Abstract
Cancer frequency in muscle-specific kinase myasthenia gravis (MuSK-MG) has not yet been explored and the mechanisms leading to the formation of MuSK IgG remain elusive. We aimed to explore cancer frequency in MuSK-MG patients and to assess MuSK expression in cancer cells from 2 tumors occurred in this cohort. Immunohistochemistry on tumor specimens revealed the expression of MuSK in the cancer cells from primary mediastinal B cell lymphoma and endometrial carcinoma. Twenty-one males and 73 females were enrolled. Fifteen cancers occurred in 13 of 94 patients (13.8%). Patients with cancer were significantly older at time of MuSK-MG onset. ANN NEUROL 2024;96:1020-1025.
Collapse
Affiliation(s)
- Silvia Falso
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Sofia Marini
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Roberta Benvenuto
- Neuropathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Eleonora Sabatelli
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Antonio D’Amati
- Gynecopathology and Breast Pathology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Martina Marini
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Amelia Evoli
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Raffaele Iorio
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
2
|
Zhang Q, Liu J, Wang W, Lin W, Ahmed W, Duan W, Huang S, Zhu Z, Chen L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp Neurol 2024; 380:114882. [PMID: 39002923 DOI: 10.1016/j.expneurol.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiale Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Duan
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Li Z, Jin Y, Zhang P, Zhang XA, Yi G, Zheng H, Yuan X, Wang X, Xu H, Qiu X, Chen C, Que T, Huang G. A Four-Gene Panel for the Prediction of Prognosis and Immune Cell Enrichment in Gliomas. Mol Biotechnol 2024; 66:2308-2321. [PMID: 37644261 DOI: 10.1007/s12033-023-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUNDS Gliomas is a deadly disease without effective therapy. Although immunotherapy has provided novel choices for glioma treatment, the curative efficacy is unsatisfactory due to the complex immune micro-environment and the heterogeneity of the disease. Therefore, it is urgent to identify effective biomarkers and therapeutic targets. METHODS Overall survival, gene ontology (GO), Kyoto Encyclopedia of Genes, and Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and immune infiltration were analyzed by bioinformatics software with The Cancer Genome Atlas (TCGA) database. RESULTS Based on the TCGA database and protein-protein interaction (PPI) analysis revealed a four-gene panels [DNA topoisomerase II alpha (TOP2A); ribonucleotide reductase regulatory subunit M2 (RRM2); kinesin family member 20 A (KIF20A) and DLG associated protein 5 (DLGAP5)], which correlated with poor prognosis, including overall survival (OS), disease specific survival (DSS) and progress free interval (PFI), mitosis, cell cycle, Th2 cells and macrophages enrichment. The four-gene panels correlates with the biomarkers of Th2 cells, macrophages tumor-associated macrophages (TAMs) and the immune checkpoint molecules in gliomas. CONCLUSION The four-gene panels represented a novel prognostic indicator and potential therapeutic target for the treatment of glioma. In addition, the four-gene panels might contribute to enhance the efficacy of immunotherapy in glioma.
Collapse
Affiliation(s)
- Zhiyong Li
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Yinghui Jin
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Peidong Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xi-An Zhang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Guozhong Yi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Haojie Zheng
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xi Yuan
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyan Wang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Haiyan Xu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoyu Qiu
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Chao Chen
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China
| | - Tianshi Que
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| | - Guanglong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, North Guangzhou Avenue, 510515, Guangzhou, Guangdong, People's Republic of China.
- Nanfang Glioma Center, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Pavlov KA, Chekhonin VP. Systemic and local immunosuppression in glioblastoma and its prognostic significance. Front Immunol 2024; 15:1326753. [PMID: 38481999 PMCID: PMC10932993 DOI: 10.3389/fimmu.2024.1326753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/06/2024] [Indexed: 04/07/2024] Open
Abstract
The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Konstantin A. Pavlov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N. I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Karmakar S, Lal G. Role of Serotonergic System in Regulating Brain Tumor-Associated Neuroinflammatory Responses. Methods Mol Biol 2024; 2761:181-207. [PMID: 38427238 DOI: 10.1007/978-1-0716-3662-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Serotonin signaling regulates wide arrays of both neural and extra-neural functions. Serotonin is also found to affect cancer progression directly as well as indirectly by modulating the immune cells. In the brain, serotonin plays a key role in regulating various functions; disturbance of the normal activities of serotonin leads to various mental illnesses, including the neuroinflammatory response in the central nervous system (CNS). The neuroinflammatory response can be initiated in various psychological illnesses and brain cancer. Serotonergic signaling can impact the functions of both glial as well as the immune cells. It can also affect the tumor immune microenvironment and the inflammatory response associated with brain cancers. Apart from this, many drugs used for treatment of psychological illness are known to modulate serotonergic system and can cross the blood-brain barrier. Understanding the role of serotonergic pathways in regulating neuroinflammatory response and brain cancer will provide a new paradigm in modulating the serotonergic components in treating brain cancer and associated inflammation-induced brain damages.
Collapse
Affiliation(s)
- Surojit Karmakar
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India
| | - Girdhari Lal
- National Centre for Cell Science (NCCS), SPPU Campus, Ganeshkhind, Pune, Maharashtra, India.
| |
Collapse
|
6
|
Laws MT, Walker EN, Cozzi FM, Ampie L, Jung MY, Burton EC, Brown DA. Glioblastoma may evade immune surveillance through primary cilia-dependent signaling in an IL-6 dependent manner. Front Oncol 2023; 13:1279923. [PMID: 38188300 PMCID: PMC10766829 DOI: 10.3389/fonc.2023.1279923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Glioblastoma is the most common, malignant primary brain tumor in adults and remains universally fatal. While immunotherapy has vastly improved the treatment of several solid cancers, efficacy in glioblastoma is limited. These challenges are due in part to the propensity of glioblastoma to recruit tumor-suppressive immune cells, which act in conjunction with tumor cells to create a pro-tumor immune microenvironment through secretion of several soluble factors. Glioblastoma-derived EVs induce myeloid-derived suppressor cells (MDSCs) and non-classical monocytes (NCMs) from myeloid precursors leading to systemic and local immunosuppression. This process is mediated by IL-6 which contributes to the recruitment of tumor-associated macrophages of the M2 immunosuppressive subtype, which in turn, upregulates anti-inflammatory cytokines including IL-10 and TGF-β. Primary cilia are highly conserved organelles involved in signal transduction and play critical roles in glioblastoma proliferation, invasion, angiogenesis, and chemoradiation resistance. In this perspectives article, we provide preliminary evidence that primary cilia regulate intracellular release of IL-6. This ties primary cilia mechanistically to tumor-mediated immunosuppression in glioblastomas and potentially, in additional neoplasms which have a shared mechanism for cancer-mediated immunosuppression. We propose potentially testable hypotheses of the cellular mechanisms behind this finding.
Collapse
Affiliation(s)
- Maxwell T. Laws
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Erin N. Walker
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- University of South Carolina School of Medicine Greenville, Greenville, SC, United States
| | - Francesca M. Cozzi
- Cambridge Brain Tumour Imaging Lab, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Addenbroke’s Hospital, Cambridge, United Kingdom
| | - Leonel Ampie
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Mi-Yeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Eric C. Burton
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Desmond A. Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Bauer-Smith H, Sudol ASL, Beers SA, Crispin M. Serum immunoglobulin and the threshold of Fc receptor-mediated immune activation. Biochim Biophys Acta Gen Subj 2023; 1867:130448. [PMID: 37652365 PMCID: PMC11032748 DOI: 10.1016/j.bbagen.2023.130448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Antibodies can mediate immune recruitment or clearance of immune complexes through the interaction of their Fc domain with cellular Fc receptors. Clustering of antibodies is a key step in generating sufficient avidity for efficacious receptor recognition. However, Fc receptors may be saturated with prevailing, endogenous serum immunoglobulin and this raises the threshold by which cellular receptors can be productively engaged. Here, we review the factors controlling serum IgG levels in both healthy and disease states, and discuss how the presence of endogenous IgG is encoded into the functional activation thresholds for low- and high-affinity Fc receptors. We discuss the circumstances where antibody engineering can help overcome these physiological limitations of therapeutic antibodies. Finally, we discuss how the pharmacological control of Fc receptor saturation by endogenous IgG is emerging as a feasible mechanism for the enhancement of antibody therapeutics.
Collapse
Affiliation(s)
- Hannah Bauer-Smith
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK; Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| | - Abigail S L Sudol
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Stephen A Beers
- Centre for Cancer Immunology, School of Cancer Sciences, University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
8
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
9
|
Carata E, Muci M, Di Giulio S, Mariano S, Panzarini E. Looking to the Future of the Role of Macrophages and Extracellular Vesicles in Neuroinflammation in ALS. Int J Mol Sci 2023; 24:11251. [PMID: 37511010 PMCID: PMC10379393 DOI: 10.3390/ijms241411251] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is a common pathological feature of amyotrophic lateral sclerosis (ALS). Although scientific evidence to date does not allow defining neuroinflammation as an ALS trigger, its role in exacerbating motor neuron (MNs) degeneration and disease progression is attracting research interest. Activated CNS (Central Nervous System) glial cells, proinflammatory peripheral and infiltrated T lymphocytes and monocytes/macrophages, as well as the immunoreactive molecules they release, represent the active players for the role of immune dysregulation enhancing neuroinflammation. The crosstalk between the peripheral and CNS immune cells significantly correlates with the survival of ALS patients since the modification of peripheral macrophages can downregulate inflammation at the periphery along the nerves and in the CNS. As putative vehicles for misfolded protein and inflammatory mediators between cells, extracellular vesicles (EVs) have also drawn particular attention in the field of ALS. Both CNS and peripheral immune cells release EVs, which are able to modulate the behavior of neighboring recipient cells; unfortunately, the mechanisms involved in EVs-mediated communication in neuroinflammation remain unclear. This review aims to synthesize the current literature regarding EV-mediated cell-to-cell communication in the brain under ALS, with a particular point of view on the role of peripheral macrophages in responding to inflammation to understand the biological process and exploit it for ALS management.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Simona Di Giulio
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
10
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
11
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
12
|
Allergen immunotherapy, cancer, and immune disorders. Curr Opin Allergy Clin Immunol 2022; 22:428-434. [PMID: 36165426 DOI: 10.1097/aci.0000000000000858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to provide an update on the intriguing relationships between allergies, allergen immunotherapy, cancer, and immune disorders. Allergic diseases and cancer are increasing in incidence and prevalence and a potential relationship, or not, between these diseases have been suggested for many years. RECENT FINDINGS Recent findings suggest that there may be some causative effects between certain types of cancer and allergic diseases, as described in the text. Some types of cancer may be more linked to the presence of an allergic disease, than others. However, epigenetic factors, such as tobacco smoke alcohol and toxic substances should also be taken into consideration. SUMMARY The association between allergy and cancer is complex and depends on the specific allergy and the specific organ under consideration. Regarding pancreatic cancer, colorectal cancer (CRC), and glioma, all types of allergies were shown to be a protective factor. Conversely, asthma is a risk factor for lung cancer as is atopic dermatitis for skin cancer. Despite extensive research, no definite relationship has been determined, and no clear relationship, either positive or negative, to allergies can be observed. These results should be corroborated with large epidemiological well designed prospective studies due to some weaknesses in the previous investigations.
Collapse
|
13
|
Low JJW, Sulaiman SA, Johdi NA, Abu N. Immunomodulatory effects of extracellular vesicles in glioblastoma. Front Cell Dev Biol 2022; 10:996805. [DOI: 10.3389/fcell.2022.996805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GB) is a type of brain cancer that can be considered aggressive. Glioblastoma treatment has significant challenges due to the immune privilege site of the brain and the presentation of an immunosuppressive tumor microenvironment. Extracellular vesicles (EVs) are cell-secreted nanosized vesicles that engage in intercellular communication via delivery of cargo that may cause downstream effects such as tumor progression and recipient cell modulation. Although the roles of extracellular vesicles in cancer progression are well documented, their immunomodulatory effects are less defined. Herein, we focus on glioblastoma and explain the immunomodulatory effects of extracellular vesicles secreted by both tumor and immune cells in detail. The tumor to immune cells, immune cells to the tumor, and intra-immune cells extracellular vesicles crosstalks are involved in various immunomodulatory effects. This includes the promotion of immunosuppressive phenotypes, apoptosis, and inactivation of immune cell subtypes, which affects the central nervous system and peripheral immune system response, aiding in its survival and progression in the brain.
Collapse
|
14
|
Ma Y, Zhan L, Yang J, Zhang J. SLC11A1 associated with tumor microenvironment is a potential biomarker of prognosis and immunotherapy efficacy for colorectal cancer. Front Pharmacol 2022; 13:984555. [PMID: 36438826 PMCID: PMC9681808 DOI: 10.3389/fphar.2022.984555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most lethal cancers of the digestive system. The tumor microenvironment (TME) plays a central role in the initiation and development of CRC. However, little is known about the modulation mechanism of the TME in CRC. In our study, we attempted to identify a biomarker related to the TME modulation that could serve as a potential prognostic biomarker for CRC. We identified differentially expressed genes between the ImmuneScore high/low and StromalScore high/low groups. Using univariate COX regression analysis and hub gene analysis (cytoHubba), SLC11A1 was identified as the only candidate gene for subsequent analysis. CIBERSORT, EPIC, MCPcounter, and immunogenic cell death were performed to evaluate the effect of SLC11A1 on the TME. We also collected samples and performed Real-time quantitative PCR to verify the expression levels of SLC11A1 in CRC and adjacent normal tissues. The IMvigor210 cohort, TIDE score, and immunophenoscore (IPS) were used to analyze the association between SLC11A1 and immunotherapy efficacy. SLC11A1 was highly expressed in CRC tissues compared with its expression in normal colorectal tissues and was associated with poor prognosis and advanced clinicopathological stages. Gene set enrichment analysis showed that TGF-β pathways, JAK-STAT pathways, and angiogenesis were significantly enriched in the high-SLC11A1 group. Single-cell analysis validated the correlation between SLC11A1 and the TME. Using CIBERSORT, EPIC, and MCPcounter algorithms, we found that there was more macrophage and fibroblast infiltration in the SLC11A1 high-expression group. Meanwhile, high-SLC11A1 patients had lower IPS scores, higher TIDE scores, and fewer immunotherapy benefits than those of low-SLC11A1 patients. In conclusion, SLC11A1 plays a crucial role in the TME and could serve as a potential biomarker for poor prognosis and immunotherapy efficacy in CRC.
Collapse
Affiliation(s)
- Yiming Ma
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Lei Zhan
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jun Yang
- Medical Oncology Department of Breast Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Tumors, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
15
|
Wang H, Huang H, Lin X, Chi P, Chen H, Chen J, Mou Y, Chen Z, Yang Q, Guo C. Dynamic analysis of immune status in patients with intracranial germ cell tumor and establishment of an immune risk prognostic model. Front Immunol 2022; 13:1010146. [PMID: 36304453 PMCID: PMC9592720 DOI: 10.3389/fimmu.2022.1010146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022] Open
Abstract
Introduction Immune status was evaluated by means of lymphocyte subset counts and immune factors in cancer. This study analyzed the peripheral blood immune index and survival outcomes in intracranial germ cell tumor (iGCT) patients. Methods Peripheral blood lymphocyte subset counts and levels of interleukin (IL)-2, IL-4, IL-6, IL-10, tumor necrosis factor (TNF), and interferon-γ (IFN) from 133 iGCT patients were collected and retrospectively analyzed. Their clinical information was extracted from the hospital database, and prognosis was confirmed by telephone visit. Patients (n=11) underwent prospective review and their samples of peripheral blood lymphocytes were verified. Results A total of 113 (84.2%) patients received comprehensive treatments, including 96 standard therapy (combination of full course chemotherapy and radiology with or without surgery) and 17 comprehensive but non-standard therapy (either without full course chemotherapy or with non-standard radiotherapy) and 98 (73.7%) reached complete or partial response. T lymphocytes (CD3+), cytotoxic T cells (CD3+CD8+ or Tc), and B lymphocytes (CD19+) decreased (p=0.047, p=0.004, and p<0.001, respectively), while activated cytotoxic T lymphocytes (CD8+CD25+) and IFN increased (p<0.001 and p=0.002, respectively) after treatment. Median survival was 45.33 months, and patients with increased Tc cells and activated Tc cells as well as IFN presented encouraging outcomes (p=0.039, p=0.041, and p=0.017 respectively). Regression analysis showed that non-increased Tc cells and non-increased activated Tc cells were independent factors of poor prognosis (p=0.016, HR=3.96, 95%CI=1.288-12.20; p=0.002, HR=4.37 95%CI= 1.738-10.97). Standard chemo-radiotherapy was independently related to reduced risk of death(p=0.022, HR=0.19, 95%CI=0.044-0.79). Consistence was seen in a nomogram established through retro and prospective studies. An immune risk model indicated the activated group (with both increased activated T cells and IFN levels) had the best prognosis, the mildly activated type with elevated IFN levels had intermediate outcome, and patients with the silent immune status had the worst outcomes (Log rank test, p=0.011). Conclusion Implementation of standard comprehensive treatments led to positive responses. Dynamic monitoring of peripheral blood lymphocyte subsets can be used as an auxiliary indicator for prognosis judgment.
Collapse
Affiliation(s)
- Hairong Wang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - He Huang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoping Lin
- Department of Nuclear Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Peidong Chi
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hongyu Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiangen Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qunying Yang
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chengcheng Guo
- Department of Neurosurgery/Neuro-oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Chengcheng Guo, ; Qunying Yang, ; Zhongping Chen,
| |
Collapse
|
16
|
André-Grégoire G, Maghe C, Douanne T, Rosińska S, Spinelli F, Thys A, Trillet K, Jacobs KA, Ballu C, Dupont A, Lyne AM, Cavalli FM, Busnelli I, Hyenne V, Goetz JG, Bidère N, Gavard J. Inhibition of the pseudokinase MLKL alters extracellular vesicle release and reduces tumor growth in glioblastoma. iScience 2022; 25:105118. [PMID: 36185361 PMCID: PMC9519628 DOI: 10.1016/j.isci.2022.105118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/04/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid-based nanosized particles that convey biological material from donor to recipient cells. EVs play key roles in glioblastoma progression because glioblastoma stem-like cells (GSCs) release pro-oncogenic, pro-angiogenic, and pro-inflammatory EVs. However, the molecular basis of EV release remains poorly understood. Here, we report the identification of the pseudokinase MLKL, a crucial effector of cell death by necroptosis, as a regulator of the constitutive secretion of EVs in GSCs. We find that genetic, protein, and pharmacological targeting of MLKL alters intracellular trafficking and EV release, and reduces GSC expansion. Nevertheless, this function ascribed to MLKL appears independent of its role during necroptosis. In vivo, pharmacological inhibition of MLKL reduces the tumor burden and the level of plasmatic EVs. This work highlights the necroptosis-independent role of MLKL in vesicle release and suggests that interfering with EVs is a promising therapeutic option to sensitize glioblastoma cells. The pseudokinase MLKL governs extracellular vesicle release in glioblastoma cells Blocking MLKL is deleterious to glioblastoma cell expansion in vitro and in vivo MLKL action in glioblastoma patient cells does not involve necroptosis death MLKL inhibition potentiates TMZ-induced cell death in glioblastoma patient cells
Collapse
|
17
|
Franson A, McClellan BL, Varela ML, Comba A, Syed MF, Banerjee K, Zhu Z, Gonzalez N, Candolfi M, Lowenstein P, Castro MG. Development of immunotherapy for high-grade gliomas: Overcoming the immunosuppressive tumor microenvironment. Front Med (Lausanne) 2022; 9:966458. [PMID: 36186781 PMCID: PMC9515652 DOI: 10.3389/fmed.2022.966458] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/22/2022] [Indexed: 01/07/2023] Open
Abstract
The preclinical and clinical development of novel immunotherapies for the treatment of central nervous system (CNS) tumors is advancing at a rapid pace. High-grade gliomas (HGG) are aggressive tumors with poor prognoses in both adult and pediatric patients, and innovative and effective therapies are greatly needed. The use of cytotoxic chemotherapies has marginally improved survival in some HGG patient populations. Although several challenges exist for the successful development of immunotherapies for CNS tumors, recent insights into the genetic alterations that define the pathogenesis of HGG and their direct effects on the tumor microenvironment (TME) may allow for a more refined and targeted therapeutic approach. This review will focus on the TME in HGG, the genetic drivers frequently found in these tumors and their effect on the TME, the development of immunotherapy for HGG, and the practical challenges in clinical trials employing immunotherapy for HGG. Herein, we will discuss broadly the TME and immunotherapy development in HGG, with a specific focus on glioblastoma multiforme (GBM) as well as additional discussion in the context of the pediatric HGG diagnoses of diffuse midline glioma (DMG) and diffuse hemispheric glioma (DHG).
Collapse
Affiliation(s)
- Andrea Franson
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L. McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria Luisa Varela
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mohammad Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ziwen Zhu
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedro Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| | - Maria Graciela Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Biosciences Initiative in Brain Cancer, Biointerface Institute, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
18
|
Yang Y, Duan M, Zha Y, Wu Z. CENP-A is a potential prognostic biomarker and correlated with immune infiltration levels in glioma patients. Front Genet 2022; 13:931222. [PMID: 36105094 PMCID: PMC9465177 DOI: 10.3389/fgene.2022.931222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Centromeric protein A (CENP-A), an essential protein involved in chromosomal segregation during cell division, is associated with several cancer types. However, its role in gliomas remains unclear. This study examined the clinical and prognostic significance of CENP-A in gliomas. Methods: Data of patients with glioma were collected from the Cancer Genome Atlas. Logistic regression, the Kruskal–Wallis test, and the Wilcoxon signed-rank test were performed to assess the relationship between CENP-A expression and clinicopathological parameters. The Cox regression model and Kaplan–Meier curve were used to analyze the association between CENP-A and survival outcomes. A prognostic nomogram was constructed based on Cox multivariate analysis. Gene set enrichment analysis (GSEA) was conducted to identify key CENP-A-related pathways and biological processes. Results:CENP-A was upregulated in glioma samples. Increased CENP-A levels were significantly associated with the world health organization (WHO) grade [Odds ratio (OR) = 49.88 (23.52–129.06) for grade 4 vs. grades 2 and 3], primary therapy outcome [OR = 2.44 (1.64–3.68) for progressive disease (PD) and stable disease (SD) vs. partial response (PR) and complete response (CR)], isocitrate dehydrogenase (IDH) status [OR = 13.76 (9.25–20.96) for wild-type vs. mutant], 1p/19q co-deletion [OR = 5.91 (3.95–9.06) for no codeletion vs. co-deletion], and age [OR = 4.02 (2.68–6.18) for > 60 vs. ≤ 60]. Elevated CENP-A expression was correlated with shorter overall survival in both univariate [hazard ratio (HR): 5.422; 95% confidence interval (CI): 4.044–7.271; p < 0.001] and multivariate analyses (HR: 1.967; 95% CI: 1.280–3.025; p < 0.002). GSEA showed enrichment of numerous cell cycle-and tumor-related pathways in the CENP-A high expression phenotype. The calibration plot and C-index indicated the favorable performance of our nomogram for prognostic prediction in patients with glioma. Conclusion: We propose a role for CENP-A in glioma progression and its potential as a biomarker for glioma diagnosis and prognosis.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengyun Duan
- Health Science Center, Department of Medical Imaging, Yangtze University, Jingzhou, China
| | - Yunfei Zha
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| | - Zijun Wu
- Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yunfei Zha, ; Zijun Wu,
| |
Collapse
|
19
|
Extracellular vesicle-mediated immunoregulation in cancer. Int J Hematol 2022; 117:640-646. [PMID: 35951282 DOI: 10.1007/s12185-022-03436-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 07/31/2022] [Indexed: 10/15/2022]
Abstract
Extracellular vesicles (EVs) have emerged as immunomodulatory regulators during tumor progression. These small vesicles encapsulate a variety of molecules, including DNA, RNA, and proteins. When EVs come in contact with recipient cells, the EVs transmit various physiological characteristics; for example, proteins on the surface of EVs act as ligands. Immune checkpoint blockade targeting cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) has shown promise in a subset of cancer patients. PD-L1 on EVs acts as a key immunomodulator. Suppression of EV secretion enhances the efficacy of immunotherapy using immune checkpoint blockade antibodies. In addition to immune checkpoint blockade therapy, chimeric antigen receptor T (CAR-T) cell therapy has also been used to successfully eliminate cancer cells. Interestingly, CAR-T-cell-derived EVs express CAR on their surface. Compared with CAR-T cells, CAR-expressing EVs do not express PD1, so their antitumor effect cannot be weakened. In this review, we describe the current understanding of EVs in cancer immunity and summarize their crucial roles in immunomodulation.
Collapse
|
20
|
Challenges in glioblastoma immunotherapy: mechanisms of resistance and therapeutic approaches to overcome them. Br J Cancer 2022; 127:976-987. [DOI: 10.1038/s41416-022-01864-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
|
21
|
Zhou J, Wu Y, Xie M, Fang Y, Zhao J, Lee SY, Im Y, Ye L, Su C. The clinical outcome and risk factors analysis of immune checkpoint inhibitor-based treatment in lung adenocarcinoma patients with brain metastases. Transl Lung Cancer Res 2022; 11:656-669. [PMID: 35529783 PMCID: PMC9073749 DOI: 10.21037/tlcr-22-260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/20/2022] [Indexed: 12/03/2022]
Abstract
Background The data about efficacy of immunotherapy for non-small cell lung cancer with brain metastases (BMs) from real-word settings are controversial. This real-word study is aimed to evaluate the clinical outcome of immune checkpoint inhibitor (ICI)-based treatment in lung adenocarcinoma patients with brain metastases (BMs) and explore potential risk factors, with a focus on the spatial distribution of BMs as previous studies suggested spatial heterogeneity on the brain immune microenvironment. Methods Advanced lung adenocarcinoma patients with non-oncogene-addicted, who received ICI monotherapy or plus chemotherapy, were enrolled. Efficacy was assessed by Response Evaluation Criteria in Solid Tumors version 1.1. Intergroup comparisons were performed using Pearson's χ2 or Fisher's exact tests for categorical variables. The progression-free survival (PFS) was estimated using Kaplan-Meier method and compared using log-rank test. Cox proportional hazards model was used for multivariate analyses. Peripheral blood was collected from 15 patients with BMs. Tumor-derived exosomes in plasma were isolated by size exclusion chromatography and the cDNA library preparations for miRNA were sequenced on an Illumina Hiseq platform. Differentially expressed genes in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were analyzed. Results A total of 198 patients were enrolled and brain metastasis occurred in 20.7% patients (N=41). Compared with patients without BMs, those with BMs had a comparable objective response rate (ORR; 29.3% vs. 43.9%; P=0.089), a lower disease control rate (DCR; 58.5% vs. 78.3%; P=0.01), and a shorter PFS (3.6 vs. 8.6 months; P=0.069). For patients with BMs, factors, including the presence of neurological symptoms, the treatment of intracranial radiotherapy, and the combination of ICI with chemotherapy, had no impact on PFS, whereas cerebellum metastasis was significantly associated with shorter PFS (2.8 vs. 13.8 months, P=0.007). Six upregulated miRNAs were identified in patients with cerebellum metastases (N=8) compared with those without (N=7). The enrichment of differentially expression genes in the KEGG pathways indicated upregulated sulfur metabolism pathway in patients with cerebellum metastases. Conclusions For lung adenocarcinoma patients, those with BMs have inferior response to ICI-based treatment, but not significantly, and cerebellum metastasis is an independent risk factor with poor outcome for such patients, might attributing to the upregulated sulfur metabolism.
Collapse
Affiliation(s)
- Juan Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yinfei Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Mengqing Xie
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yujia Fang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing Zhao
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Sung Yong Lee
- Division of Pulmonology, Allergy, and Critical Care Medicine, Department of Internal Medicine, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Yunjoo Im
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Del Bianco P, Pinton L, Magri S, Canè S, Masetto E, Basso D, Padovan M, Volpin F, d'Avella D, Lombardi G, Zagonel V, Bronte V, Della Puppa A, Mandruzzato S. Myeloid Diagnostic and Prognostic Markers of Immune Suppression in the Blood of Glioma Patients. Front Immunol 2022; 12:809826. [PMID: 35069595 PMCID: PMC8777055 DOI: 10.3389/fimmu.2021.809826] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 01/24/2023] Open
Abstract
Background Although gliomas are confined to the central nervous system, their negative influence over the immune system extends to peripheral circulation. The immune suppression exerted by myeloid cells can affect both response to therapy and disease outcome. We analyzed the expansion of several myeloid parameters in the blood of low- and high-grade gliomas and assessed their relevance as biomarkers of disease and clinical outcome. Methods Peripheral blood was obtained from 134 low- and high-grade glioma patients. CD14+, CD14+/p-STAT3+, CD14+/PD-L1+, CD15+ cells and four myeloid-derived suppressor cell (MDSC) subsets, were evaluated by flow cytometry. Arginase-1 (ARG1) quantity and activity was determined in the plasma. Multivariable logistic regression model was used to obtain a diagnostic score to discriminate glioma patients from healthy controls and between each glioma grade. A glioblastoma prognostic model was determined by multiple Cox regression using clinical and myeloid parameters. Results Changes in myeloid parameters associated with immune suppression allowed to define a diagnostic score calculating the risk of being a glioma patient. The same parameters, together with age, permit to calculate the risk score in differentiating each glioma grade. A prognostic model for glioblastoma patients stemmed out from a Cox multiple analysis, highlighting the role of MDSC, p-STAT3, and ARG1 activity together with clinical parameters in predicting patient’s outcome. Conclusions This work emphasizes the role of systemic immune suppression carried out by myeloid cells in gliomas. The identification of biomarkers associated with immune landscape, diagnosis, and outcome of glioblastoma patients lays the ground for their clinical use.
Collapse
Affiliation(s)
- Paola Del Bianco
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Laura Pinton
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Stefania Canè
- University Hospital and Department of Medicine, Verona, Italy
| | - Elena Masetto
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Daniela Basso
- Department of Medicine, University of Padova, Padova, Italy
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Francesco Volpin
- University Hospital of Padova, Neurosurgery Department, Padova, Italy
| | - Domenico d'Avella
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,University Hospital of Padova, Neurosurgery Department, Padova, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Vincenzo Bronte
- University Hospital and Department of Medicine, Verona, Italy
| | - Alessandro Della Puppa
- Neurosurgery, Department of NEUROFARBA, Careggi University Hospital, University of Florence, Florence, Italy
| | - Susanna Mandruzzato
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.,Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
23
|
Toney NJ, Opdenaker LM, Cicek K, Frerichs L, Kennington CR, Oberly S, Archinal H, Somasundaram R, Sims-Mourtada J. Tumor-B-cell interactions promote isotype switching to an immunosuppressive IgG4 antibody response through upregulation of IL-10 in triple negative breast cancers. J Transl Med 2022; 20:112. [PMID: 35255925 PMCID: PMC8900352 DOI: 10.1186/s12967-022-03319-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/23/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) is an aggressive breast cancer for which there is currently no targeted therapy. Tumor-infiltrating B-cells (TIB) have been observed in tumor tissues of TNBC patients, but their functional role is unclear. IgG4 is one of four antibody subclasses of IgG expressed and secreted by B cells. Unlike other IgG isotypes, IgG4 has an immunosuppressive function and is induced by Th2-type cytokines. In cancers such as melanoma, IgG4 has been linked with advanced disease and poor patient survival. Therefore, we sought to determine if IgG4 + B cells are present and determine the mechanisms driving isotype switching in TNBC. METHODS We performed co-culture assays to examine expression of Th2 cytokines by TNBC cells with and without the presence of B cells. We also performed in vitro class switching experiments with peripheral B cells with and without co-culture with TNBC cells in the presence or absence of an IL-10 blocking antibody. We examined expression of CD20+ TIB, IgG4 and Th2 cytokines by immunohistochemistry in 152 TNBC samples. Statistical analysis was done using Log-Rank and Cox-proportional hazards tests. RESULTS Our findings indicate that B cells interact with TNBC to drive chronic inflammatory responses through increased expression of inflammatory cytokines including the TH2 cytokines IL-4 and IL-10. In vitro class switching studies show that interactions between TNBC cell lines and B cells drive isotype switching to the IgG4 isotype in an IL-10 dependent manner. In patient tissues, expression of IgG4 correlates with CD20 and tumor expression of IL-10. Both IgG4 and tumor IL-10 are associated to shorter recurrence free survival (RFS) and overall survival (OS) in TNBC. In a multi-variant analysis, IL-10 was associated with poor outcomes indicating that tumor IL-10 may drive immune escape. CONCLUSIONS These findings indicate that interactions between TIB and TNBC results in activation of chronic inflammatory signals such as IL-10 and IL-4 that drive class switching to an IgG4 + subtype which may suppress antibody driven immune responses. The presence of IgG4 + B cells may serve as a biomarker for poor prognosis.
Collapse
Affiliation(s)
- Nicole J Toney
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Lynn M Opdenaker
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | - Kader Cicek
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA
| | - Lisa Frerichs
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | | | - Samuel Oberly
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | - Holly Archinal
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA
| | | | - Jennifer Sims-Mourtada
- Cawley Center for Translational Cancer Research, Helen F Graham Cancer Center and Research Institute, Christiana Care Health Services, Inc., 4701 Ogletown Stanton Rd Suite 4300, Newark, DE, 19713, USA.
- Department of Biological Sciences, The University of Delaware, Newark, DE, USA.
- The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Challenges and Opportunities for Immunotherapeutic Intervention against Myeloid Immunosuppression in Glioblastoma. J Clin Med 2022; 11:jcm11041069. [PMID: 35207340 PMCID: PMC8880446 DOI: 10.3390/jcm11041069] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and deadly brain cancer, exemplifies the paradigm that cancers grow with help from an immunosuppressive tumor microenvironment (TME). In general, TME includes a large contribution from various myeloid lineage-derived cell types, including (in the brain) altered pathogenic microglia as well as monocyte-macrophages (Macs), myeloid-derived suppressor cells (MDSC) and dendritic cell (DC) populations. Each can have protective roles, but has, by definition, been coopted by the tumor in patients with progressive disease. However, evidence demonstrates that myeloid immunosuppressive activities can be reversed in different ways, leading to enthusiasm for this therapeutic approach, both alone and in combination with potentially synergistic immunotherapeutic and other strategies. Here, we review the current understanding of myeloid cell immunosuppression of anti-tumor responses as well as potential targets, challenges, and developing means to reverse immunosuppression with various therapeutics and their status. Targets include myeloid cell colony stimulating factors (CSFs), insulin-like growth factor 1 (IGF1), several cytokines and chemokines, as well as CD40 activation and COX2 inhibition. Approaches in clinical development include antibodies, antisense RNA-based drugs, cell-based combinations, polarizing cytokines, and utilizing Macs as a platform for Chimeric Antigen Receptors (CAR)-based tumor targeting, like with CAR-T cells. To date, promising clinical results have been reported with several of these approaches.
Collapse
|
25
|
Kim D, Kim SH, Kim EH. Intracranial Tumors Associated With IgG4-Related Disease. Brain Tumor Res Treat 2021; 9:93-99. [PMID: 34725991 PMCID: PMC8561221 DOI: 10.14791/btrt.2021.9.e17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
IgG4-related disease (IgG4-RD) is an immune-mediated inflammatory condition which is characterized by dense lymphoplasmacytic infiltrations with a predominance of IgG4 plasma cells in the affected tissue. Although pachymeninx and pituitary gland are the most common sites where IgG4-RD infiltrates, the associations with IgG4-RD and a true intracranial tumor have not been yet reported in literature. Herein, we report two cases with intracranial tumors associated with IgG4-RD; a 36-year-old male patient with a huge meningioma and another 54-year old woman with a pituitary macroadenoma. Pathological examination revealed their tumors were substantially infiltrated by IgG4 plasma cells indicating its possible relation with IgG4-RD.
Collapse
Affiliation(s)
- Dongkyu Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Korea.,Pituitary Tumor Center, Severance Hospital, Seoul, Korea.,Brain Tumor Center, Severance Hospital, Seoul, Korea.
| |
Collapse
|
26
|
Wu X, Wang X, Wang J, Hao Y, Liu F, Wang X, Yang L, Lu Z. The Roles of Exosomes as Future Therapeutic Agents and Diagnostic Tools for Glioma. Front Oncol 2021; 11:733529. [PMID: 34722277 PMCID: PMC8548662 DOI: 10.3389/fonc.2021.733529] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/20/2021] [Indexed: 12/31/2022] Open
Abstract
Glioma is a common type of tumor originating in the brain. Glioma develops in the gluey supporting cells (glial cells) that surround and support nerve cells. Exosomes are extracellular vesicles that contain microRNAs, messenger RNA, and proteins. Exosomes are the most prominent mediators of intercellular communication, regulating, instructing, and re-educating their surrounding milieu targeting different organs. As exosomes' diameter is in the nano range, the ability to cross the blood-brain barrier, a crucial obstacle in developing therapeutics against brain diseases, including glioma, makes the exosomes a potential candidate for delivering therapeutic agents for targeting malignant glioma. This review communicates the current knowledge of exosomes' significant roles that make them crucial future therapeutic agents and diagnostic tools for glioma.
Collapse
Affiliation(s)
- Xiaoben Wu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xingbang Wang
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Jing Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingying Hao
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fang Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Yang
- Department of Medical Engineering, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
27
|
Alghamri MS, McClellan BL, Hartlage MS, Haase S, Faisal SM, Thalla R, Dabaja A, Banerjee K, Carney SV, Mujeeb AA, Olin MR, Moon JJ, Schwendeman A, Lowenstein PR, Castro MG. Targeting Neuroinflammation in Brain Cancer: Uncovering Mechanisms, Pharmacological Targets, and Neuropharmaceutical Developments. Front Pharmacol 2021; 12:680021. [PMID: 34084145 PMCID: PMC8167057 DOI: 10.3389/fphar.2021.680021] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Gliomas are one of the most lethal types of cancers accounting for ∼80% of all central nervous system (CNS) primary malignancies. Among gliomas, glioblastomas (GBM) are the most aggressive, characterized by a median patient survival of fewer than 15 months. Recent molecular characterization studies uncovered the genetic signatures and methylation status of gliomas and correlate these with clinical prognosis. The most relevant molecular characteristics for the new glioma classification are IDH mutation, chromosome 1p/19q deletion, histone mutations, and other genetic parameters such as ATRX loss, TP53, and TERT mutations, as well as DNA methylation levels. Similar to other solid tumors, glioma progression is impacted by the complex interactions between the tumor cells and immune cells within the tumor microenvironment. The immune system’s response to cancer can impact the glioma’s survival, proliferation, and invasiveness. Salient characteristics of gliomas include enhanced vascularization, stimulation of a hypoxic tumor microenvironment, increased oxidative stress, and an immune suppressive milieu. These processes promote the neuro-inflammatory tumor microenvironment which can lead to the loss of blood-brain barrier (BBB) integrity. The consequences of a compromised BBB are deleteriously exposing the brain to potentially harmful concentrations of substances from the peripheral circulation, adversely affecting neuronal signaling, and abnormal immune cell infiltration; all of which can lead to disruption of brain homeostasis. In this review, we first describe the unique features of inflammation in CNS tumors. We then discuss the mechanisms of tumor-initiating neuro-inflammatory microenvironment and its impact on tumor invasion and progression. Finally, we also discuss potential pharmacological interventions that can be used to target neuro-inflammation in gliomas.
Collapse
Affiliation(s)
- Mahmoud S Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon L McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Margaret S Hartlage
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Syed Mohd Faisal
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Rohit Thalla
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Ali Dabaja
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen V Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anzar A Mujeeb
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Michael R Olin
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| | - Maria G Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States.,Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States.,Biosciences Initiative in Brain Cancer, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Xiao L, Hareendran S, Loh YP. Function of exosomes in neurological disorders and brain tumors. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:55-79. [PMID: 34368812 PMCID: PMC8341051 DOI: 10.20517/evcna.2021.04] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exosomes are a subtype of extracellular vesicles released from different cell types including those in the nervous system, and are enriched in a variety of bioactive molecules such as RNAs, proteins and lipids. Numerous studies have indicated that exosomes play a critical role in many physiological and pathological activities by facilitating intercellular communication and modulating cells' responses to external environments. Particularly in the central nervous system, exosomes have been implicated to play a role in many neurological disorders such as abnormal neuronal development, neurodegenerative diseases, epilepsy, mental disorders, stroke, brain injury and brain cancer. Since exosomes recapitulate the characteristics of the parental cells and have the capacity to cross the blood-brain barrier, their cargo can serve as potential biomarkers for early diagnosis and clinical assessment of disease treatment. In this review, we describe the latest findings and current knowledge of the roles exosomes play in various neurological disorders and brain cancer, as well as their application as promising biomarkers. The potential use of exosomes to deliver therapeutic molecules to treat diseases of the central nervous system is also discussed.
Collapse
Affiliation(s)
- Lan Xiao
- Section on Cellular Neurobiology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sangeetha Hareendran
- Section on Cellular Neurobiology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Y Peng Loh
- Section on Cellular Neurobiology, Eunice Kennedy Shriver, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
29
|
Prosniak M, Harshyne LA, Gorky J, Curtis MT, Kenyon LC, Schwaber JS, Lebrun A, Kean RB, Andrews DW, Hooper DC. Systemic Immune Bias Delineates Malignant Astrocytoma Survival Cohorts. THE JOURNAL OF IMMUNOLOGY 2021; 206:1483-1492. [PMID: 33685995 DOI: 10.4049/jimmunol.2000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/24/2021] [Indexed: 11/19/2022]
Abstract
Patients with grade III anaplastic astrocytomas (AA) separate into survival cohorts based on the presence or absence of mutations in isocitrate dehydrogenase (IDH). Progression to glioblastoma (GBM), morphologically distinguishable by elevated microvascular proliferation, necrosis, and cell division in tumor tissues, is considerably more rapid in IDH wild-type tumors such that their diagnosis as AA is relatively rare. More often initially presenting as GBM, these contain higher numbers of tumor-associated macrophages (TAMs) than most AA, and GBM patients also have higher levels of circulating M2 monocytes. TAM and M2 monocytes share functional properties inhibitory for antitumor immunity. Yet, although there is a wealth of data implicating TAM in tumor-immune evasion, there has been limited analysis of the impact of the circulating M2 monocytes. In the current study, immune parameters in sera, circulating cells, and tumor tissues from patients with primary gliomas morphologically diagnosed as AA were assessed. Profound differences in serum cytokines, glioma extracellular vesicle cross-reactive Abs, and gene expression by circulating cells identified two distinct patient cohorts. Evidence of type 2-immune bias was most often seen in patients with IDH wild-type AA, whereas a type 1 bias was common in patients with tumors expressing the IDH1R132H mutation. Nevertheless, a patient's immune profile was better correlated with the extent of tumor vascular enhancement on magnetic resonance imaging than IDH mutational status. Regardless of IDH genotype, AA progression appears to be associated with a switch in systemic immune bias from type 1 to type 2 and the loss of tumor vasculature integrity.
Collapse
Affiliation(s)
- Michael Prosniak
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Larry A Harshyne
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Jonathan Gorky
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Mark T Curtis
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Lawrence C Kenyon
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - James S Schwaber
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Aurore Lebrun
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Rhonda B Kean
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - David W Andrews
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - D Craig Hooper
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107; .,Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
30
|
Role of Tumor-Derived Extracellular Vesicles in Glioblastoma. Cells 2021; 10:cells10030512. [PMID: 33670924 PMCID: PMC7997231 DOI: 10.3390/cells10030512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma (GBM) is the most common primary central nervous system tumor and one of the most lethal cancers worldwide, with morbidity of 5.26 per 100,000 population per year. These tumors are often associated with poor prognosis and terrible quality of life. Extracellular vesicles (EVs) are membrane-bound nanoparticles secreted by cells and contain lipid, protein, DNA, mRNA, miRNA and other bioactive substances. EVs perform biological functions by binding or horizontal transfer of bioactive substances to target cell receptors. In recent years, EVs have been considered as possible targets for GBM therapy. A great many types of research demonstrated that EVs played a vital role in the GBM microenvironment, development, progression, angiogenesis, invasion, and even the diagnosis of GBM. Nevertheless, the exact molecular mechanisms and roles of EVs in these processes are unclear. It can provide the basis for GBM treatment in the future that clarifying the regulatory mechanism and related signal pathways of EVs derived from GBM and their clinical value in GBM diagnosis and treatment. In this paper, the research progress and clinical application prospects of GBM-derived EVs are reviewed and discussed.
Collapse
|
31
|
Brain-Derived Extracellular Vesicles in Health and Disease: A Methodological Perspective. Int J Mol Sci 2021; 22:ijms22031365. [PMID: 33573018 PMCID: PMC7866382 DOI: 10.3390/ijms22031365] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are double membrane structures released by presumably all cell types that transport and deliver lipids, proteins, and genetic material to near or distant recipient cells, thereby affecting their phenotype. The basic knowledge of their functions in healthy and diseased brain is still murky and many questions about their biology are unsolved. In neurological diseases, EVs are regarded as attractive biomarkers and as therapeutic tools due to their ability to cross the blood–brain barrier (BBB). EVs have been successfully isolated from conditioned media of primary brain cells and cerebrospinal fluid (CSF), but protocols allowing for the direct study of pathophysiological events mediated or influenced by EVs isolated from brain have only recently been published. This review aims to give a brief overview of the current knowledge of EVs’ functions in the central nervous system (CNS) and the current protocols to isolate brain-derived EVs (BDEVs) used in different publications. By comparing the proteomic analysis of some of these publications, we also assess the influence of the isolation method on the protein content of BDEVs.
Collapse
|
32
|
Exosomes in Immune Regulation. Noncoding RNA 2021; 7:ncrna7010004. [PMID: 33435564 PMCID: PMC7838779 DOI: 10.3390/ncrna7010004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/26/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
Exosomes, small extracellular vesicles mediate intercellular communication by transferring their cargo including DNA, RNA, proteins and lipids from cell to cell. Notably, in the immune system, they have protective functions. However in cancer, exosomes acquire new, immunosuppressive properties that cause the dysregulation of immune cells and immune escape of tumor cells supporting cancer progression and metastasis. Therefore, current investigations focus on the regulation of exosome levels for immunotherapeutic interventions. In this review, we discuss the role of exosomes in immunomodulation of lymphoid and myeloid cells, and their use as immune stimulatory agents to elicit specific cytotoxic responses against the tumor.
Collapse
|
33
|
Shi J, Zhang Y, Yao B, Sun P, Hao Y, Piao H, Zhao X. Role of Exosomes in the Progression, Diagnosis, and Treatment of Gliomas. Med Sci Monit 2020; 26:e924023. [PMID: 33245712 PMCID: PMC7706139 DOI: 10.12659/msm.924023] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gliomas are the most common primary malignant brain tumors associated with a low survival rate. Even after surgery, radiotherapy, and chemotherapy, gliomas still have a poor prognosis. Extracellular vesicles are a heterogeneous group of cell-derived membranous structures. Exosomes are a type of extracellular vesicles, their size ranges from 30 nm to 100 nm. Recent studies have proved that glioma cells could release numerous exosomes; therefore, exosomes have gained increasing attention in glioma-related research. Recent studies have confirmed the importance of extracellular vesicles, particularly exosomes, in the development of brain tumors, including gliomas. Exosomes mediate intercellular communication in the tumor microenvironment by transporting biomolecules (proteins, lipids, deoxyribonucleic acid, and ribonucleic acid); thereby playing a prominent role in tumor proliferation, differentiation, metastasis, and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can traverse the blood-brain barrier and promote tumor progression by modifying the tumor microenvironment. Based on their structural and functional characteristics, exosomes are demonstrating their value not only as diagnostic and prognostic markers, but also as tools in therapies specifically targeting glioma cells. Therefore, exosomes are a promising therapeutic target for the diagnosis, prognosis, and treatment of malignant gliomas. More research will be needed before exosomes can be used in clinical applications. Here, we describe the exosomes, their morphology, and their roles in the diagnosis and progression of gliomas. In addition, we discuss the potential of exosomes as a therapeutic target/drug delivery system for patients with gliomas.
Collapse
Affiliation(s)
- Ji Shi
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Yuanyuan Hao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| | - Xi Zhao
- Department of Anesthesia, Cancer Hospital of China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
34
|
van Solinge TS, Abels ER, van de Haar LL, Hanlon KS, Maas SLN, Schnoor R, de Vrij J, Breakefield XO, Broekman MLD. Versatile Role of Rab27a in Glioma: Effects on Release of Extracellular Vesicles, Cell Viability, and Tumor Progression. Front Mol Biosci 2020; 7:554649. [PMID: 33282910 PMCID: PMC7691322 DOI: 10.3389/fmolb.2020.554649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction: Glioma cells exert influence over the tumor-microenvironment in part through the release of extracellular vesicles (EVs), membrane-enclosed structures containing proteins, lipids, and RNAs. In this study, we evaluated the function of Ras-associated protein 27a (Rab27a) in glioma and evaluated the feasibility of assessing its role in EV release in glioma cells in vitro and in vivo. Methods: Rab27a was knocked down via a short hairpin RNA (shRNA) stably expressed in mouse glioma cell line GL261, with a scrambled shRNA as control. EVs were isolated by ultracentrifugation and quantified with Nanoparticle Tracking Analysis (NTA) and Tunable Resistive Pulse Sensing (TRPS). CellTiter-Glo viability assays and cytokine arrays were used to evaluate the impact of Rab27a knockdown. GL261.shRab27a cells and GL261.shControl were implanted into the left striatum of eight mice to assess tumor growth and changes in the tumor microenvironment. Results: Knockdown of Rab27a in GL261 glioma cells decreased the release of small EVs isolated at 100,000 × g in vitro (p = 0.005), but not the release of larger EVs, isolated at 10,000 × g. GL261.shRab27a cells were less viable compared to the scramble control in vitro (p < 0.005). A significant increase in CCL2 expression in shRab27a GL261 cells was also observed (p < 0.001). However, in vivo there was no difference in tumor growth or overall survival between the two groups, while shRab27a tumors showed lower proliferation at the tumor borders. Decreased infiltration of IBA1 positive macrophages and microglia, but not FoxP3 positive regulatory T cells was observed. Conclusion: Rab27a plays an important role in the release of small EVs from glioma cells, and also in their viability and expression of CCL2 in vitro. As interference in Rab27a expression influences glioma cell viability and expression profiles, future studies should be cautious in using the knockdown of Rab27a as a means of studying the role of small EVs in glioma growth.
Collapse
Affiliation(s)
- Thomas S van Solinge
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Erik R Abels
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Lieke L van de Haar
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Killian S Hanlon
- Department of Neurobiology, Harvard Medical School, Boston, MA, United States.,Molecular Neurogenetics Unit, Department of Neurology, Massachusetts General Hospital, Charlestown, MA, United States
| | - Sybren L N Maas
- Department of Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands.,Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Rosalie Schnoor
- Department of Neurosurgery, UMC Utrecht Brain Center, Utrecht University, Utrecht, Netherlands
| | - Jeroen de Vrij
- Department of Neurosurgery, Brain Tumor Center, Erasmus Medical Center, Rotterdam, Netherlands
| | - Xandra O Breakefield
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States
| | - Marike L D Broekman
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,NeuroDiscovery Center, Harvard Medical School, Boston, MA, United States.,Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands.,Department of Neurosurgery, Haaglanden Medical Center, The Hague, Netherlands
| |
Collapse
|
35
|
Romano E, Netti PA, Torino E. Exosomes in Gliomas: Biogenesis, Isolation, and Preliminary Applications in Nanomedicine. Pharmaceuticals (Basel) 2020; 13:ph13100319. [PMID: 33086616 PMCID: PMC7603361 DOI: 10.3390/ph13100319] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022] Open
Abstract
Exosomes are phospholipid-based particles endogenously produced by both normal and tumor cells. Initially identified as a pathway for shuttling cellular waste, for a long time they were thought to act as “garbage bags”, and only in the past few years have they emerged as a promising drug delivery system. In this review, we provide an overview of the knowledge about exosome architecture and biogenesis and the recent progress in isolation methods. Furthermore, we describe the mechanisms involved in both extra- and intracellular communication with a focus on glioma brain tumors. Glioma is considered a rare disease and is the most prominent aggressive brain malignancy. How exosomes target glial tumoral cells in vivo remains largely unknown. However, they are able to influence numerous physio-pathological aspects. Here, we discuss the role they play in this heterogeneous and complex microenvironment and their potential applications.
Collapse
Affiliation(s)
- Eugenia Romano
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
| | - Enza Torino
- Department of Chemical, Materials Engineering & Industrial Production, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy; (E.R.); (P.A.N.)
- Interdisciplinary Research Center on Biomaterials, CRIB, Piazzale Tecchio 80, 80125 Naples, Italy
- Center for Advanced Biomaterials for Health Care, CABHC, Istituto Italiano di Tecnologia, IIT@CRIB, Largo Barsanti e Matteucci 53, 80125 Naples, Italy
- Correspondence: ; Tel.: +39-328-955-8158
| |
Collapse
|
36
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
37
|
Bianchini R, Karagiannis SN, Jordakieva G, Jensen-Jarolim E. The Role of IgG4 in the Fine Tuning of Tolerance in IgE-Mediated Allergy and Cancer. Int J Mol Sci 2020; 21:ijms21145017. [PMID: 32708690 PMCID: PMC7404042 DOI: 10.3390/ijms21145017] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Among the four immunoglobulin G (IgG) subclasses, IgG4 is the least represented in serum of a healthy human and it is considered an “odd” antibody. The IgG4 antibody has unique structural features that affect its biological function. These include the ability to undergo antigen-binding fragment (Fab)-arm exchange, to create fragment crystallizable (Fc) – Fc binding with other IgG4 and other IgG subclass antibodies, have a unique affinity profile for Fc gamma receptors (FcγRs) and no binding to complement component C1q. Altogether, these characteristics support anti-inflammatory roles of IgG4 leading to immune tolerance. Under conditions of chronic antigenic stimulation and Th2-type inflammation, both tissue and serum IgG4 levels are increased. This review seeks to highlight how in allergen immunotherapy IgG4 can confer a protective role as a “blocking” antibody and safeguard from subsequent allergen exposure, while IgG4 can confer immunomodulatory functions to support malignancy. While Th2 conditions drive polarization of macrophages to the M2a subtype, chronic antigen stimulation drives B cell class switching to IgG4 to further support phenotypical macrophage changes towards an M2b-like state. M2b-like macrophages can secrete chemokine (C-C motif) ligand 1 (CCL1) and interleukin-10 (IL-10) to support regulatory cell recruitment and to further shape a tolerogenic microenvironment. Thereby, IgG4 have a Janus-faced role, favorable in allergy but detrimental in cancer.
Collapse
Affiliation(s)
- Rodolfo Bianchini
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, Medical University of Vienna and University of Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK;
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Galateja Jordakieva
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria;
| | - Erika Jensen-Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine, Medical University of Vienna and University of Vienna, Veterinaerplatz 1, 1210 Vienna, Austria;
- Institute Pathophysiology and Allergy Research, Center for Pathophysiology, Infectiology and Immunology, Division of Comparative Immunology and Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
38
|
Grégoire H, Roncali L, Rousseau A, Chérel M, Delneste Y, Jeannin P, Hindré F, Garcion E. Targeting Tumor Associated Macrophages to Overcome Conventional Treatment Resistance in Glioblastoma. Front Pharmacol 2020; 11:368. [PMID: 32322199 PMCID: PMC7158850 DOI: 10.3389/fphar.2020.00368] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma (GB) is the most common and devastating form of brain cancer. Despite conventional treatments, progression or recurrences are systematic. In recent years, immunotherapies have emerged as an effective treatment in a number of cancers, leaving the question of their usefulness also faced with the particular case of brain tumors. The challenge here is major not only because the brain is the seat of our consciousness but also because of its isolation by the blood-brain barrier and the presence of a unique microenvironment that constitutes the central nervous system (CNS) with very specific constituent or patrolling cells. Much of the microenvironment is made up of immune cells or inflammation. Among these, tumor-associated macrophages (TAMs) are of significant interest as they are often involved in facilitating tumor progression as well as the development of resistance to standard therapies. In this review, the ubiquity of TAMs in GB will be discussed while the specific case of microglia resident in the brain will be also emphasized. In addition, the roles of TAMs as accomplices in the progression of GB and resistance to treatment will be presented. Finally, clinical trials targeting TAMs as a means of treating cancer will be discussed.
Collapse
Affiliation(s)
- Hélène Grégoire
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Loris Roncali
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France
| | - Audrey Rousseau
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Département de Pathologie Cellulaire et Tissulaire, CHU Angers, Angers, France
| | - Michel Chérel
- CRCINA, INSERM, Université d'Angers, Université de Nantes, Nantes, France
| | - Yves Delneste
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - Pascale Jeannin
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,Laboratoire d'Immunologie et Allergologie, CHU d'Angers, Angers, France
| | - François Hindré
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PRIMEX, Plateforme de radiobiologie et d'imagerie expérimentale, SFR ICAT, Université d'Angers, Angers, France
| | - Emmanuel Garcion
- CRCINA, INSERM, Université de Nantes, Université d'Angers, Angers, France.,PACeM, Plateforme d'analyses cellulaires et moléculaires, SFR ICAT, Université d'Angers, Angers, France
| |
Collapse
|
39
|
Yang J, Sun G, Hu Y, Yang J, Shi Y, Liu H, Li C, Wang Y, Lv Z, Niu J, Liu H, Shi X, Wang H, Li P, Jiao B. Extracellular Vesicle lncRNA Metastasis-Associated Lung Adenocarcinoma Transcript 1 Released From Glioma Stem Cells Modulates the Inflammatory Response of Microglia After Lipopolysaccharide Stimulation Through Regulating miR-129-5p/High Mobility Group Box-1 Protein Axis. Front Immunol 2020; 10:3161. [PMID: 32117213 PMCID: PMC7020807 DOI: 10.3389/fimmu.2019.03161] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/31/2019] [Indexed: 12/22/2022] Open
Abstract
Glioma stem cell (GSC)–derived extracellular vesicles (EVs) can mediate the communication between GSCs and microglia. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) expression in GSCs, EVs, and supernatant was detected by real-time PCR. The direct targeting between MALAT1 and miR-129-5p, miR-129-5p, and HMGB1 were tested with luciferase reporter analysis. The expression and secretion of interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α were determined in lipopolysaccharide-stimulated microglia or miR-129-5p inhibitor transferred to microglia exposed to GSC EVs or EVs derived from siMALAT1 pre-transferred GSCs. MALAT1 was enriched in GSC EVs compared with GSCs, and up-regulated MALAT1 was also observed in microglia upon GSC EVs incubation. The relative expression and secretion of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia were up-regulated in the GSC supernatant group, which could be reversed by dimethyl amiloride (DMA) (EV secretion inhibitor) co-administration or si-MALAT1 pre-transfection of GSCs. Luciferase reporter assay testified the direct binding of MALAT1 and miR-129-5p, miR-129-5p, and HMGB1, and si-MALAT1 could up-regulate miR-129-5p expression and down-regulate HMGB1 expression in microglia cells. The concentration of IL-6, IL-8, and TNF-α in lipopolysaccharide-stimulated microglia exposed to EVs from siMALAT1 transfected GSCs could be up-regulated by miR-129-5p inhibition. EVs lncRNA MALAT1 released from GSCs could modulate the inflammatory response of microglia after lipopolysaccharide stimulation through regulating the miR-129-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Jiankai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuhua Hu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jipeng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijun Shi
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Hongjiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuanyu Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongqiang Lv
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianxing Niu
- Department of Neurosurgery, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honglei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, Hebei, China
| | - Xuefang Shi
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haiping Wang
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Pan Li
- International Department, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Baohua Jiao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
de Mooij T, Peterson TE, Evans J, McCutcheon B, Parney IF. Short non-coding RNA sequencing of glioblastoma extracellular vesicles. J Neurooncol 2020; 146:253-263. [PMID: 31912278 DOI: 10.1007/s11060-019-03384-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Like all nucleated cells, glioblastoma (GBM) cells shed small membrane-encapsulated particles called extracellular vesicles (EVs). EVs can transfer oncogenic components and promote tumor growth by transferring short non-coding RNAs, altering target cell gene expression. Furthermore, GBM-derived EVs can be detected in blood and have potential to serve as liquid biopsies. METHODS EVs were harvested from culture supernatants from human GBM cell lines, purified via sequential centrifugation, and quantified by nanoparticle tracking. RNA was isolated and short non-coding RNA was sequenced. Data was analyzed via the OASIS-2.0 platform using HG38. MirTarBase and MirDB interrogated validated/predicted miRNA-gene interactions respectively. RESULTS Many short non-coding RNA's were identified within GBM EV's. In keeping with earlier reports utilizing GBM EV micro-RNA (miRNA) arrays, these included abundant micro-RNA's including miR-21. However, RNA sequencing revealed a total of 712 non-coding RNA sequences most of which have not been associated with GBM EV's previously. These included many RNA species (piRNA, snoRNA, snRNA, rRNA and yRNAs) in addition to miRNA's. miR-21-5p, let-7b-5p, miR-3182, miR-4448, let-7i-5p constituted highest overall expression. Top genes targeted by non-coding RNA's were highly conserved and specific for cell cycle, PI3K/Akt signaling, p53 and Glioma curated KEGG pathways. CONCLUSIONS Next generation short non-coding RNA sequencing on GBM EV's validates findings from earlier studies using miRNA arrays but also demonstrates expression of many additional non-coding RNA sequences and classes previously unassociated with GBM. This may yield important insights into pathophysiology, point to new therapeutic targets, and help develop new biomarkers for disease burden and treatment response.
Collapse
Affiliation(s)
- Tristan de Mooij
- Department of Neurological Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA
| | - Timothy E Peterson
- Department of Neurological Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA
| | - Jared Evans
- Department of Biomedical Informatics, Mayo Clinic, Rochester, MN, USA
| | - Brandon McCutcheon
- Department of Neurological Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA
| | - Ian F Parney
- Department of Neurological Surgery, Mayo Clinic, 200 First St SW, Rochester, MN, 55901, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
41
|
Ivanova MV, Chekanova EO, Belugin BV, Tutykhina IL, Dolzhikova IV, Zakroishchikova IV, Vasil’ev AV, Zakharova MN. Exosomal Transport and Progression of Neurodegeneration in Amyotrophic Lateral Sclerosis. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Glioma EVs Contribute to Immune Privilege in the Brain. Trends Cancer 2019; 5:393-396. [PMID: 31311653 DOI: 10.1016/j.trecan.2019.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/14/2019] [Accepted: 05/15/2019] [Indexed: 02/03/2023]
Abstract
Glioblastoma cells release extracellular vesicles (EVs), sometimes referred to as microvesicles and exosomes, to transfer immune modulating molecules to immune cells, resulting in an immune privileged microenvironment. Here we discuss the potential EV-mediated mechanisms underlying glioma immune modulation, as well as the technical difficulties in studying these interactions.
Collapse
|
43
|
Abstract
Glioblastoma ranks among the most lethal of all human cancers. Glioblastomas display striking cellular heterogeneity, with stem-like glioblastoma stem cells (GSCs) at the apex. Although the original identification of GSCs dates back more than a decade, the purification and characterization of GSCs remains challenging. Despite these challenges, the evidence that GSCs play important roles in tumor growth and response to therapy has grown. Like normal stem cells, GSCs are functionally defined and distinguished from their differentiated tumor progeny at core transcriptional, epigenetic, and metabolic regulatory levels, suggesting that no single therapeutic modality will be universally effective against a heterogenous GSC population. Glioblastomas induce a systemic immunosuppression with mixed responses to oncoimmunologic modalities, suggesting the potential for augmentation of response with a deeper consideration of GSCs. Unfortunately, the GSC literature has been complicated by frequent use of inferior cell lines and a lack of proper functional analyses. Collectively, glioblastoma offers a reliable cancer to study cancer stem cells to better model the human disease and inform improved biologic understanding and design of novel therapeutics.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Shruti Bhargava
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Deobrat Dixit
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California at San Diego, La Jolla, California 92037, USA
- Department of Neurosciences, University of California at San Diego School of Medicine, La Jolla, California 92037, USA
| |
Collapse
|
44
|
Graner MW. Roles of Extracellular Vesicles in High-Grade Gliomas: Tiny Particles with Outsized Influence. Annu Rev Genomics Hum Genet 2019; 20:331-357. [PMID: 30978305 DOI: 10.1146/annurev-genom-083118-015324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas, particularly glioblastomas (grade IV), are devastating diseases with dismal prognoses; afflicted patients seldom live longer than 15 months, and their quality of life suffers immensely. Our current standard-of-care therapy has remained essentially unchanged for almost 15 years, with little new therapeutic progress. We desperately need a better biologic understanding of these complicated tumors in a complicated organ. One area of rejuvenated study relates to extracellular vesicles (EVs)-membrane-enclosed nano- or microsized particles that originate from the endosomal system or are shed from the plasma membrane. EVs contribute to tumor heterogeneity (including the maintenance of glioma stem cells or their differentiation), the impacts of hypoxia (angiogenesis and coagulopathies), interactions amid the tumor microenvironment (concerning the survival of astrocytes, neurons, endothelial cells, blood vessels, the blood-brain barrier, and the ensuing inflammation), and influences on the immune system (both stimulatory and suppressive). This article reviews glioma EVs and the ways that EVs manifest themselves as autocrine, paracrine, and endocrine factors in proximal and distal intra- and intercellular communications. The reader should note that there is much controversy, and indeed confusion, in the field over the exact roles for EVs in many biological processes, and we will engage some of these difficulties herein.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA;
| |
Collapse
|
45
|
Pinton L, Masetto E, Vettore M, Solito S, Magri S, D'Andolfi M, Del Bianco P, Lollo G, Benoit JP, Okada H, Diaz A, Della Puppa A, Mandruzzato S. The immune suppressive microenvironment of human gliomas depends on the accumulation of bone marrow-derived macrophages in the center of the lesion. J Immunother Cancer 2019; 7:58. [PMID: 30813960 PMCID: PMC6391795 DOI: 10.1186/s40425-019-0536-x] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Systemic and local immune suppression plays a significant role in glioma progression. Glioma microenvironment contains both brain-resident microglial cells (MG) and bone marrow-derived macrophages (BMDM), but the study of their functional and immune regulatory activity has been hampered until now by the lack of markers allowing a proper identification and isolation to collect pure populations. METHODS Myeloid and lymphoid infiltrate were characterized in grade II, III and IV gliomas by multicolor flow cytometry, along with the composition of the cell subsets of circulating myeloid cells. Macrophages were sorted and tested for their immunosuppressive ability. Moreover, following preoperative administration of 5-aminolevulinic acid to patients, distinct areas of tumor lesion were surgically removed and analyzed, based on protoporphyrin IX fluorescence emission. RESULTS The immune microenvironment of grade II to grade IV gliomas contains a large proportion of myeloid cells and a small proportion of lymphocytes expressing markers of dysfunctional activity. BMDM and resident MG cells were characterized through a combination of markers, thus permitting their geographical identification in the lesions, their sorting and subsequent analysis of the functional characteristics. The infiltration by BMDM reached the highest percentages in grade IV gliomas, and it increased from the periphery to the center of the lesion, where it exerted a strong immunosuppression that was, instead, absent in the marginal area. By contrast, MG showed little or no suppression. Functional differences, such as iron metabolism and phagocytosis, characterized resident versus blood-derived macrophages. Significant alterations in circulating monocytes were present in grade IV patients, correlating with accumulation of tumor macrophages. CONCLUSIONS Grade IV gliomas have an alteration in both circulating and tumor-associated myeloid cells and, differently from grade II and III gliomas, show a significant presence of blood-derived, immune suppressive macrophages. BMDM and MG have different functional properties.
Collapse
Affiliation(s)
- Laura Pinton
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Elena Masetto
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Marina Vettore
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 35128, Padova, Italy
| | - Samantha Solito
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 35128, Padova, Italy
| | - Sara Magri
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 35128, Padova, Italy
| | - Marta D'Andolfi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 35128, Padova, Italy
| | | | - Giovanna Lollo
- LUNAM Universite - Micro et Nanomedecines Biomimetiques, F-49933, Angers, France
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, LAGEP UMR 5007, F-69100, VILLEURBANNE, Lyon, France
| | - Jean-Pierre Benoit
- INSERM U1066/CNRS 6021 University of ANGERS, cedex 9, 49933, Angers, France
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | - Susanna Mandruzzato
- Veneto Institute of Oncology IOV - IRCCS, Padova, Italy.
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Via Gattamelata, 64 35128, Padova, Italy.
| |
Collapse
|
46
|
High-grade glioma associated immunosuppression does not prevent immune responses induced by therapeutic vaccines in combination with T reg depletion. Cancer Immunol Immunother 2018; 67:1545-1558. [PMID: 30054667 PMCID: PMC6182405 DOI: 10.1007/s00262-018-2214-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 07/20/2018] [Indexed: 01/20/2023]
Abstract
High-grade gliomas (HGG) exert systemic immunosuppression, which is of particular importance as immunotherapeutic strategies such as therapeutic vaccines are increasingly used to treat HGGs. In a first cohort of 61 HGG patients we evaluated a panel of 30 hematological and 34 plasma biomarkers. Then, we investigated in a second cohort of 11 relapsed HGG patients receiving immunomodulation with metronomic cyclophosphamide upfront to a DC-based vaccine whether immune abnormalities persisted and whether they hampered induction of IFNγ+ T-cell responses. HGG patients from the first cohort showed increased numbers of leukocytes, neutrophils and MDSCs and in parallel reduced numbers of CD4+/CD8+ T-cells, plasmacytoid and conventional DC2s. MDSCs and T-cell alterations were more profound in WHO IV° glioma patients. Moreover, levels of MDSCs and epidermal growth factor were negatively associated with survival. Serum levels of IL-2, IL-4, IL-5 and IL-10 were altered in HGG patients, however, without any impact on clinical outcome. In the immunotherapy cohort, 6-month overall survival was 100%. Metronomic cyclophosphamide led to > 40% reduction of regulatory T cells (Treg). In parallel to Treg-depletion, MDSCs and DC subsets became indistinguishable from healthy controls, whereas T-lymphopenia persisted. Despite low T-cells, IFNγ-responses could be induced in 9/10 analyzed cases. Importantly, frequency of CD8+VLA-4+ T-cells with CNS-homing properties, but not of CD4+ VLA-4+ T-cells, increased during vaccination. Our study identifies several features of systemic immunosuppression in HGGs. Metronomic cyclophosphamide in combination with an active immunization alleviates the latter and the combined treatment allows induction of a high rate of anti-glioma immune responses.
Collapse
|
47
|
Zhang X, Xin G, Sun D. Serum exosomal miR-328, miR-575, miR-134 and miR-671-5p as potential biomarkers for the diagnosis of Kawasaki disease and the prediction of therapeutic outcomes of intravenous immunoglobulin therapy. Exp Ther Med 2018; 16:2420-2432. [PMID: 30186482 PMCID: PMC6122496 DOI: 10.3892/etm.2018.6458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/17/2018] [Indexed: 12/11/2022] Open
Abstract
The present study was conducted to screen serum exosomal microRNAs (miRNAs) for the early diagnosis of Kawasaki disease (KD) and to investigate their underlying mechanisms by analyzing microarray data under accession numbers GSE60965 [exosomal miRNA, including three pooled serum samples from 5 healthy children, 5 patients with KD and 5 patients with KD following intravenous immunoglobulin (IVIG) therapy] and GSE73577 (mRNA, including peripheral blood mononuclear cell samples from 19 patients with KD prior to and following IVIG treatment) from the Gene Expression Omnibus database. Differentially expressed miRNAs (DE-miRNAs) and genes (DEGs) were identified using the Linear Models for Microarray data method, and the mRNA targets of DE-miRNAs were predicted using the miRWalk 2.0 database. The functions of the target genes were analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID). As a result, 65 DE-miRNAs were identified with different expression patterns between the healthy children and patients with KD and between patients with KD and patients with KD following IVIG therapy. The target genes of 15 common DE-miRNAs were predicted. Following overlapping the target genes of DE-miRNAs with 355 DEGs, 28 common genes were identified and further screened to construct a network containing 30 miRNA-mRNA regulatory associations. Of these associations, only miR-328-spectrin α, erythrocytic 1, miR-575-cyclic AMP-responsive element-binding protein 5/b-1,4-galactosyltransferase 5/WD repeat and FYVE domain-containing 3/cystatin-A/C-X-C motif chemokine receptor 1/protein phosphatase 1 regulatory subunit 3B, miR-134-acyl-CoA synthetase long chain family member 1/C-type lectin domain family 1 member A and miR-671-5p-tripartite motif containing 25/leucine rich repeat kinase 2/kinesin family member 1B/leucine rich repeat neuronal 1 were involved in the negative regulation of gene expression. Functional analysis indicated that the identified target genes may be associated with inflammation. Accordingly, serum exosomal miR-328, miR-575, miR-134 and miR-671-5p may act as potential biomarkers for the diagnosis of KD and the prediction of outcomes of the IVIG therapy by influencing the expression of inflammatory genes.
Collapse
Affiliation(s)
- Xiaofei Zhang
- Department of Pediatrics, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Guangda Xin
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
48
|
Mrowczynski OD, Zacharia BE, Connor JR. Exosomes and their implications in central nervous system tumor biology. Prog Neurobiol 2018; 172:71-83. [PMID: 30003942 DOI: 10.1016/j.pneurobio.2018.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 05/04/2018] [Accepted: 06/30/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are 20-100 nm cellular derived vesicles that upon discovery, were thought to be a form of cellular recycling of intracellular contents. More recently, these vesicles are under investigation for their purported significant roles in intercellular communication in both healthy and diseased states. Herein, we focus on the secretion of exosomes associated with glioblastoma, as most exosome studies on brain tumors have been performed in this tumor type. However, we included exosomes secreted from other forms of brain tumors for comparison as available. Exosomes contain intracellular content that can be transferred to other cells in the tumor or to cells of the immune system and endothelial cells. These recipient cells may subsequently take on oncogenic properties, including therapeutic resistance, cancer progression, and angiogenesis. Genetic components (DNA, RNA and miRNA) of the cell of origin may be included in the secreted exosomes. The presence of genetic material in the exosomes could serve as a biomarker for mutations in tumors, potentially leading to novel treatment strategies. In the last decade, exosomes have been identified as having a major impact on multiple aspects of medicine and tumor biology, and appear to be primed for a critical position in cancer diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Oliver D Mrowczynski
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Brad E Zacharia
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - James R Connor
- Department of Neurosurgery, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States.
| |
Collapse
|
49
|
Zhenjiang L, Rao M, Luo X, Valentini D, von Landenberg A, Meng Q, Sinclair G, Hoffmann N, Karbach J, Altmannsberger HM, Jäger E, Peredo IH, Dodoo E, Maeurer M. Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme. EBioMedicine 2018; 33:49-56. [PMID: 30049387 PMCID: PMC6085502 DOI: 10.1016/j.ebiom.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics. RESULTS Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin97-111 peptide (p = .0152) correlated with longer survival among patients with GBM. Multivariate analysis identified survivin97-111-directed IFN-γ production with IL-2/IL-15/IL-21 conditioning (p = .024), and the combined presence of serum IFN-γ/TNF-α/IL-17a (p = .003) as independent predictors of survival. CONCLUSION Serum cytokine patterns and lymphocyte reactivity to survivin97-111, particularly with IL-2, IL-15 and IL-21 conditioning may be instrumental in predicting survival among patients with GBM. This has implications for clinical follow-up of patients with GBM and the targeted development of immunotherapy for patients with CNS tumours.
Collapse
Affiliation(s)
- Liu Zhenjiang
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Anna von Landenberg
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hoffmann
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Karbach
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | | | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
50
|
Exosomes: mediators of bone diseases, protection, and therapeutics potential. Oncoscience 2018; 5:181-195. [PMID: 30035185 PMCID: PMC6049320 DOI: 10.18632/oncoscience.421] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/06/2018] [Indexed: 12/15/2022] Open
Abstract
Bone remodeling is a continuous lifelong process in the repair of micro-damage to bone architecture and replacement of aging tissue in bone. A failure to such process leads to pathological destructive bone diseases such as osteoporosis, rheumatoid arthritis, and osteoarthritis. However, this active process is regulated by; osteoclasts, which are involved in the bone resorption process; osteoblasts, with involvement in the bone formation process and bone-derived endothelial cells, which promote angiogenesis. In the bone micro-environment, these cellular interactions are mediated by a complex interplay between cell types via direct interaction of cell secreted growth factors, such as cytokines. Recently, the discovery of exosomes (∼ 40–100 nm in size), has attracted more attention in the field of the bone remodeling process. Exosomes and microvesicles are derived from different types of bone cells such as mesenchymal stem cells, osteoblasts, osteoclasts and their precursors. They are also recognized to play pivotal roles in bone remodeling processes including osteogenesis, osteoclastogenesis, and angiogenesis. In this review, we especially emphasize the origin and biogenesis of exosomes and bone cell derived exosomes in the regulatory process of bone remodeling. Moreover, this review article also focuses on exosomal secreted proteins and microRNAs and their involvement in the regulation of bone remodeling.
Collapse
|