1
|
Maleszewska M, Roura AJ, Dabrowski MJ, Draminski M, Wojtas B. Decoding glioblastoma's diversity: Are neurons part of the game? Cancer Lett 2025; 620:217666. [PMID: 40147584 DOI: 10.1016/j.canlet.2025.217666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Glioblastoma multiforme (GBM, WHO Grade 4) is a highly aggressive primary brain tumor with limited treatment options and a poor prognosis. A key challenge in GBM therapy lies in its pronounced heterogeneity, both within individual tumors (intratumoral) and between patients (intertumoral). Historically, neurons have been underexplored in GBM research; however, recent studies reveal that GBM development is closely linked to neural and glial progenitors, often mimicking neurodevelopmental processes in a dysregulated manner. Beyond damaging neuronal tissue, GBM actively engages with neurons to promote pro-tumorigenic signaling, including neuronal hyperexcitability and seizures. Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of the tumor microenvironment (TME), uncovering the critical roles of immune cells, endothelial cells, and astrocytes in tumor progression. However, technical limitations of scRNA-seq hinder its ability to capture the transcriptomes of neurons, necessitating the use of single-nucleus RNA sequencing (snRNA-seq) to study these interactions at single-cell resolution. This work collects the emerging insights of glioblastoma-neuron interactions, focusing on how GBM exploits neurodevelopmental pathways and reshapes neuronal networks. Moreover, we perform bioinformatic analysis of publicly available snRNA-seq datasets to propose putative cell-cell interactions driving glioma-neuronal dynamics. This study delineates key signaling pathways and underscores the need for further investigation to evaluate their potential as therapeutic targets.
Collapse
Affiliation(s)
- Marta Maleszewska
- Department of Animal Physiology, Institute of Experimental Zoology, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str, 02-096, Warsaw, Poland.
| | - Adrià-Jaume Roura
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Barcelona, Spain
| | - Michal J Dabrowski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal Draminski
- Computational Biology Group, Institute of Computer Science of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Sequencing, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Pu J, Yuan K, Tao J, Qin Y, Li Y, Fu J, Li Z, Zhou H, Tang Z, Li L, Gai X, Qin D. Glioblastoma multiforme: an updated overview of temozolomide resistance mechanisms and strategies to overcome resistance. Discov Oncol 2025; 16:731. [PMID: 40353925 DOI: 10.1007/s12672-025-02567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 05/05/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain tumor with high lethality. The typical treatment regimen includes post-surgical radiotherapy and temozolomide (TMZ) chemotherapy, which helps extend survival. Nevertheless, TMZ resistance occurs in approximately 50% of patients. This resistance is primarily associated with the expression of O6-methylguanine-DNA methyltransferase (MGMT), which repairs O6-methylguanine lesions generated by TMZ and is thought to be the major mechanism of drug resistance. Additionally, the mismatch repair and base excision repair pathways play crucial roles in TMZ resistance. Emerging studies also point to drug transport mechanisms, glioma stem cells, and the heterogeneous tumor microenvironment as additional influences on TMZ resistance in gliomas. A better understanding of these mechanisms is vital for developing new treatments to improve TMZ effectiveness, such as DNA repair inhibitors, inhibitors of multidrug transporting proteins, TMZ analogs, and combination therapies targeting multiple pathways. This article discusses the main resistance mechanisms and potential strategies to counteract resistance in GBM patients, aiming to broaden the understanding of these mechanisms for future research and to explore the therapeutic effects of traditional Chinese medicines and their active components in overcoming TMZ resistance.
Collapse
Affiliation(s)
- Jianlin Pu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Kai Yuan
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Jian Tao
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Yuliang Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Yongxin Li
- Department of Rehabilitation Medicine, Mojiang Hani Autonomous Country Hospital of Traditional Chinese Medicine, Mojiang, China
| | - Jing Fu
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhong Li
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
- Second Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, China
| | - Haimei Zhou
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Zhengxiu Tang
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China
| | - Li Li
- Department of Emergency Trauma Surgery, The First People's Hospital of Yunnan Province, Kunming, China
| | - Xuesong Gai
- Department of Rehabilitation Medicine, The First People's Hospital of Yunnan Province, Kunming, China.
| | - Dongdong Qin
- Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Neuropsychiatric Diseases, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
3
|
Sun M, Zheng J, Gong L, Li Z, Wang L. Personalized combination therapy for diffuse midline glioma: A case report. Oncol Lett 2025; 29:234. [PMID: 40151419 PMCID: PMC11948954 DOI: 10.3892/ol.2025.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/06/2025] [Indexed: 03/29/2025] Open
Abstract
The present study aimed to analyze the efficacy of personalized combination therapy for patients with H3K27M mutant diffuse midline glioma (DMG) so as to explore new treatment options for further clinical research. The clinical data and prognosis of a patient with H3K27M mutant DMG are summarized and discussed in the context of the relevant literature. The patient was a 20-year-old female diagnosed with DMG treated with a combination of surgery, radiotherapy, chemotherapy, electric field therapy, immunotherapy and targeted therapy. An overall survival time of 28 months was achieved. In summary, personalized treatment strategies are expected to provide longer-lasting survival benefits for patients with DMG.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518000, P.R. China
| | - Jizhou Zheng
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518000, P.R. China
| | - Long Gong
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518000, P.R. China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518000, P.R. China
| | - Lijun Wang
- Department of Radiation Oncology, Shenzhen People's Hospital (The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology), Shenzhen, Guangdong 518000, P.R. China
| |
Collapse
|
4
|
Bhutani B, Sharma V, Ganguly NK, Rana R. Unravelling the modified T cell receptor through Gen-Next CAR T cell therapy in Glioblastoma: Current status and future challenges. Biomed Pharmacother 2025; 186:117987. [PMID: 40117901 DOI: 10.1016/j.biopha.2025.117987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/05/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025] Open
Abstract
PURPOSE Despite current technological advancements in the treatment of glioma, immediate alleviation of symptoms can be catered by therapeutic modalities, including surgery, chemotherapy, and combinatorial radiotherapy that exploit aberrations of glioma. Additionally, a small number of target antigens, their heterogeneity, and immune evasion are the potential reasons for developing targeted therapies. This oncologic milestone has catalyzed interest in developing immunotherapies against Glioblastoma to improve overall survival and cure patients with high-grade glioma. The next-gen CAR-T Cell therapy is one of the effective immunotherapeutic strategies in which autologous T cells have been modified to express receptors against GBM and it modulates cytotoxicity. METHODS In this review article, we examine preclinical and clinical outcomes, and limitations as well as present cutting-edge techniques to improve the function of CAR-T cell therapy and explore the possibility of combination therapy. FINDINGS To date, several CAR T-cell therapies are being evaluated in clinical trials for GBM and other brain malignancies and multiple preclinical studies have demonstrated encouraging outcomes. IMPLICATIONS CAR-T cell therapy represents a promising therapeutic paradigm in the treatment of solid tumors but a few limitations include, the blood-brain barrier (BBB), antigen escape, tumor microenvironment (TME), tumor heterogeneity, and its plasticity that suppresses immune responses weakens the ability of this therapy. Additional investigation is required that can accurately identify the targets and reflect the similar architecture of glioblastoma, thus optimizing the efficiency of CAR-T cell therapy; allowing for the selection of patients most likely to benefit from immuno-based treatments.
Collapse
Affiliation(s)
- Bhavya Bhutani
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Vyoma Sharma
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Nirmal Kumar Ganguly
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India
| | - Rashmi Rana
- Department of Biotechnology and Research, Sir Ganga Ram Hospital, New Delhi 110060, India.
| |
Collapse
|
5
|
Beylerli O, Gareev I, Musaev E, Roumiantsev S, Chekhonin V, Ahmad A, Chao Y, Yang G. New approaches to targeted drug therapy of intracranial tumors. Cell Death Discov 2025; 11:111. [PMID: 40113789 PMCID: PMC11926108 DOI: 10.1038/s41420-025-02358-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Intracranial tumors encompass a heterogeneous group of neoplasms, including gliomas, meningiomas, pituitary adenomas, schwannomas, craniopharyngiomas, ependymomas, medulloblastomas, and primary central nervous system lymphomas. These tumors present significant challenges due to their diverse molecular characteristics, critical locations, and the unique obstacles posed by the blood-brain barrier (BBB) and blood-tumor barrier (BTB), which limit the efficacy of systemic therapies. Recent advances in molecular biology and genomics have enabled the identification of specific molecular pathways and targets, paving the way for innovative precision therapies. This review examines the current state of targeted therapies for intracranial tumors, including receptor tyrosine kinase (RTK) inhibitors, PI3K/AKT/mTOR inhibitors, RAF/MEK/ERK pathway inhibitors, IDH mutation inhibitors, immune checkpoint inhibitors, and CAR-T cell therapies. Emphasis is placed on the role of the BBB and BTB in modulating drug delivery and therapeutic outcomes. Strategies to overcome these barriers, such as focused ultrasound, nanoparticle-based delivery systems, and convection-enhanced delivery, are also explored. Furthermore, the manuscript reviews clinical trial data, highlighting successes and limitations across different tumor types. It delves into emerging therapeutic approaches, including combination of regimens and personalized treatments based on molecular profiling. By synthesizing the latest research, this article aims to provide a comprehensive understanding of the advancements and ongoing challenges in the targeted treatment of intracranial tumors. The findings underscore the necessity for innovative delivery systems and more extensive clinical trials to optimize therapeutic strategies. This review aspires to inform future research and clinical practices, aiming to improve patient outcomes and quality of life in the management of these complex and life-threatening conditions.
Collapse
Affiliation(s)
- Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation.
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, Republic of Bashkortostan, Russian Federation
| | - Elmar Musaev
- Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Sergey Roumiantsev
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
| | - Vladimir Chekhonin
- Pirogov Russian National Research Medical University of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Serbsky Federal Medical Research Centre of Psychiatry and Narcology of the Ministry of Healthcare of Russian Federation, Moscow, Russian Federation
- Endocrinology Research Center, Moscow, Russian Federation
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Yuan Chao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China
- Heilongjiang Province Neuroscience Institute, Harbin, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang Province, China.
- Heilongjiang Province Neuroscience Institute, Harbin, China.
| |
Collapse
|
6
|
Fang Y, Pan J, Wang P, Wang R, Liang S. A comprehensive review of Schisandrin B's preclinical antitumor activity and mechanistic insights from network pharmacology. Front Pharmacol 2025; 16:1528533. [PMID: 39995410 PMCID: PMC11847788 DOI: 10.3389/fphar.2025.1528533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
As an active constituent in the extract of dried fruits of Schisandra chinensis, Schisandrin B exhibits diverse pharmacological effects, including liver protection, anti-inflammatory and anti-oxidant. Numerous studies have demonstrated that Schisandrin B exhibits significant antitumor activity against various malignant tumors in preclinical studies, which is achieved by inhibiting cell proliferation and metastasis and promoting apoptosis. As a potential antitumor agent, Schisandrin B holds broad application prospects. This review systematically elaborates on the antitumor effect of Schisandrin B and the related molecular mechanism, and preliminarily predicts its antitumor targets by network pharmacology, thereby pave the way for further research, development, and clinical application.
Collapse
Affiliation(s)
- Yanhua Fang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Juan Pan
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Piao Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
- Department of Oncology, Central Hospital of Liwan, Guangzhou, China
| | - Ruoyu Wang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Shanshan Liang
- The Key Laboratory of biomarker high throughput screening and target translation of breast and gastrointestinal tumor, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| |
Collapse
|
7
|
Hsu CY, Lin J, Wei MF, Chen LH, Liang HKT, Lin FH. Local delivery of carboplatin-loaded hydrogel and calcium carbonate enables two-stage drug release for limited-dose radiation to eliminate mouse malignant glioma. Biomaterials 2025; 312:122746. [PMID: 39106816 DOI: 10.1016/j.biomaterials.2024.122746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/07/2023] [Accepted: 08/02/2024] [Indexed: 08/09/2024]
Abstract
Postoperative radiotherapy remains the gold standard for malignant glioma treatment. Clinical limitations, including tumor growth between surgery and radiotherapy and the emergence of radioresistance, reduce treatment effectiveness and result in local disease progression. This study aimed to develop a local drug delivery system to inhibit tumor growth before radiotherapy and enhance the subsequent anticancer effects of limited-dose radiotherapy. We developed a compound of carboplatin-loaded hydrogel (CPH) incorporated with carboplatin-loaded calcium carbonate (CPCC) to enable two-stage (peritumoral and intracellular) release of carboplatin to initially inhibit tumor growth and to synergize with limited-dose radiation (10 Gy in a single fraction) to eliminate malignant glioma (ALTS1C1 cells) in a C57BL/6 mouse subcutaneous tumor model. The doses of carboplatin in CPH and CPCC treatments were 150 μL (carboplatin concentration of 5 mg/mL) and 15 mg (carboplatin concentration of 4.1 μg/mg), respectively. Mice receiving the combination of CPH-CPCC treatment and limited-dose radiation exhibited significantly reduced tumor growth volume compared to those receiving double-dose radiation alone. Furthermore, combining CPH-CPCC treatment with limited-dose radiation resulted in significantly longer progression-free survival than combining CPH treatment with limited-dose radiation. Local CPH-CPCC delivery synergized effectively with limited-dose radiation to eliminate mouse glioma, offering a promising solution for overcoming clinical limitations.
Collapse
Affiliation(s)
- Cheng-Yi Hsu
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Jason Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan.
| | - Ming-Feng Wei
- Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan.
| | - Liang-Hsin Chen
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Hsiang-Kuang Tony Liang
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Division of Radiation Oncology, Department of Oncology, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7, Chung Shan South Rd., Zhongzheng Dist., Taipei 10002, Taiwan; Division of Proton Therapy, Department of Radiation Oncology, National Taiwan University Cancer Center, National Taiwan University College of Medicine, No.57, Ln. 155, Sec. 3, Keelung Rd., Da'an Dist., Taipei 10672, Taiwan.
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan; Institute of Biomedical Engineering and Nano-medicine, National Health Research Institutes, No. 35, Keyan Road, Zhunan Town, Miaoli County 35053, Miaoli County, Taiwan.
| |
Collapse
|
8
|
Ntafoulis I, Koolen SLW, van Tellingen O, den Hollander CWJ, Sabel-Goedknegt H, Dijkhuizen S, Haeck J, Reuvers TGA, de Bruijn P, van den Bosch TPP, van Dis V, Gao Z, Dirven CMF, Leenstra S, Lamfers MLM. A Repurposed Drug Selection Pipeline to Identify CNS-Penetrant Drug Candidates for Glioblastoma. Pharmaceuticals (Basel) 2024; 17:1687. [PMID: 39770529 PMCID: PMC11678797 DOI: 10.3390/ph17121687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Glioblastoma is an aggressive and incurable type of brain cancer. Little progress has been made in the development of effective new therapies in the past decades. The blood-brain barrier (BBB) and drug efflux pumps, which together hamper drug delivery to these tumors, play a pivotal role in the gap between promising preclinical findings and failure in clinical trials. Therefore, selecting drugs that can reach the tumor region in pharmacologically effective concentrations is of major importance. METHODS In the current study, we utilized a drug selection platform to identify candidate drugs by combining in vitro oncological drug screening data and pharmacokinetic (PK) profiles for central nervous system (CNS) penetration using the multiparameter optimization (MPO) score. Furthermore, we developed intracranial patient-derived xenograft (PDX) models that recapitulated the in situ characteristics of glioblastoma and characterized them in terms of vascular integrity, BBB permeability and expression of ATP-binding cassette (ABC) transporters. Omacetaxine mepesuccinate (OMA) was selected as a proof-of-concept drug candidate to validate our drug selection pipeline. RESULTS We assessed OMA's PK profile in three different orthotopic mouse PDX models and found that OMA reaches the brain tumor tissue at concentrations ranging from 2- to 11-fold higher than in vitro IC50 values on patient-derived glioblastoma cell cultures. CONCLUSIONS This study demonstrates that OMA, a drug selected for its in vitro anti-glioma activity and CNS- MPO score, achieves brain tumor tissue concentrations exceeding its in vitro IC50 values in patient-derived glioblastoma cell cultures, as shown in three orthotopic mouse PDX models. We emphasize the importance of such approaches at the preclinical level, highlighting both their significance and limitations in identifying compounds with potential clinical implementation in glioblastoma.
Collapse
Affiliation(s)
- Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Stijn L. W. Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Chelsea W. J. den Hollander
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | | | - Stephanie Dijkhuizen
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Joost Haeck
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Thom G. A. Reuvers
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
- Department of Molecular Genetics, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | | | - Vera van Dis
- Department of Pathology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands; (T.P.P.v.d.B.)
| | - Zhenyu Gao
- Department of Neuroscience, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands (Z.G.)
| | - Clemens M. F. Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| | - Martine L. M. Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands (C.M.F.D.); (S.L.)
| |
Collapse
|
9
|
Huang J, Liu Y, Wang G, Chen Y, Shen Y, Zhang J, Ji W, Shao J. The Expression Profiles and Clinical Significance of Mixed Lineage Kinases in Glioma. Mediators Inflamm 2024; 2024:5521016. [PMID: 39610810 PMCID: PMC11604285 DOI: 10.1155/2024/5521016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/14/2024] [Accepted: 10/12/2024] [Indexed: 11/30/2024] Open
Abstract
Mixed lineage kinases (MLKs), comprising seven members: MLK1-4, dual leucine zipper kinase (DLK), leucine zipper kinase (LZK), and sterile alpha motif and leucine zipper containing kinase (ZAK), belong to the mitogen-activated protein kinase kinase kinase (MAP3K) family. These kinases are implicated in the progression of numerous cancers by activating mitogen-activated protein kinase (MAPK) cascades or functioning as ser/thr and tyr kinases. However, their specific roles in glioma remain elusive. In the present study, we utilized bioinformatics approaches to investigate the expression patterns of MLKs in low-grade gliomas (LGG) and glioblastoma multiforme (GBM). Additionally, we analyzed their clinical significance and delved into the potential mechanisms underlying MLK activity as well as their association with tumor-immune infiltrating cells (TIICs) in glioma. Furthermore, we conducted in vitro studies to elucidate the functional roles of MLK1-2 in glioma. Our findings revealed that the expressions of MLK1-2 were conspicuously downregulated in GBM and positively correlated with patients' overall survival. Conversely, ZAK exhibited an opposing trend. Notably, our newly devised risk score model exhibited superior performance in predicting patient prognoses. Moreover, we analyzed the potential mechanisms of MLK activity and its interplay with tumor immune infiltration. Last, we validated the antitumor effect of MLK1-2 at the in vitro level. In summary, our study sheds new insights into the roles of MLKs in glioma, particularly MLK1-2, and their potential as therapeutic targets.
Collapse
Affiliation(s)
- Jin Huang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yuankun Liu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Gaosong Wang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yuning Chen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Yifan Shen
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Jiahao Zhang
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Wei Ji
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| | - Junfei Shao
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Zhou D, Zhu X, Xiao Y. Advances in CAR-T therapy for central nervous system tumors. Biomark Res 2024; 12:132. [PMID: 39506843 PMCID: PMC11539471 DOI: 10.1186/s40364-024-00679-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The application of chimeric antigen receptor T-cell therapy in central nervous system tumors has significantly advanced; however, challenges pertaining to the blood-brain barrier, immunosuppressive microenvironment, and antigenic heterogeneity continue to be encountered, unlike its success in hematological malignancies such as acute lymphoblastic leukemia and diffuse large B-cell lymphomas. This review examined the research progress of chimeric antigen receptor T-cell therapy in gliomas, medulloblastomas, and lymphohematopoietic tumors of the central nervous system, focusing on chimeric antigen receptor T-cells targeting antigens such as EGFRvIII, HER2, B7H3, GD2, and CD19 in preclinical and clinical studies. It synthesized current research findings to offer valuable insights for future chimeric antigen receptor T-cell therapeutic strategies for central nervous system tumors and advance the development and application of this therapeutic modality in this domain.
Collapse
Affiliation(s)
- Delian Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Yi Xiao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
11
|
Seok HJ, Choi JY, Lee DH, Shin I, Bae IH. Atomoxetine suppresses radioresistance in glioblastoma via circATIC/miR-520d-5p/Notch2-Hey1 axis. Cell Commun Signal 2024; 22:532. [PMID: 39501373 PMCID: PMC11536942 DOI: 10.1186/s12964-024-01915-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024] Open
Abstract
BACKGROUND Resistance acquired after radiotherapy is directly related to the failure of various cancer treatments, including GBM. Because the mechanism for overcoming radioresistance has not yet been clearly identified, the development of diagnostic and therapeutic markers to treat radioresistance is necessary. Since increased expression of stemness- and EMT-related markers are reported to be closely correlated with radioresistance, research is underway to develop new drugs targeting these factors. METHODS To develop an anticancer drug that overcomes radioresistance, a library of drugs already approved by the FDA was used. After treating radioresistant GBM cells with each drug, the expression of stemness- and EMT-related markers was confirmed by qRT-PCR, and as a result, Atomoxetine (ATX) was selected. It was confirmed that radioresistance-induced cell migratory, invasive, sphere formation abilities, and tumor growth using a xenograft mouse model were suppressed upon ATX treatment. Using a miRNA prediction tool, we discovered miR-520d-5p, which targets Notch2 and Hey1, key factors in radioresistance, and discovered circATIC targeting this miRNA, revealing its relationship with ATX. We demonstrated the expression regulation mechanism and signaling mechanism between circATIC, miR-520d-5p, Notch2, and Hey1 factors using a luciferase reporter assay. In addition, the results at the cellular level were clinically verified by confirming the correlation between radiation, miR-520d-5p, and circATIC using patient plasma by qRT-PCR. RESULTS ATX showed potential as a treatment for radioresistance by suppressing the malignant phenotype by regulating the circATIC/miR-520d-5p/Notch2-Hey1 signaling mechanism in vitro and in vivo using radioresistant GBM cells. CONCLUSIONS This study revealed that ATX suppresses radioresistance through the circATIC/miR-520d-5p/Notch2-Hey1 signaling pathway. These results showed the potential of ATX as a new drug that can overcome radioresistance, a major challenge in cancer treatment, and the signaling factors identified in this mechanism suggest the possibility of use as potential targets for the diagnosis and treatment of radioresistance.
Collapse
Affiliation(s)
- Hyun Jeong Seok
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jae Yeon Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Dong Hyeon Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea
| | - Incheol Shin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - In Hwa Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Republic of Korea.
| |
Collapse
|
12
|
Cunha Silva L, Branco F, Cunha J, Vitorino C, Gomes C, Carrascal MA, Falcão A, Miguel Neves B, Teresa Cruz M. The potential of exosomes as a new therapeutic strategy for glioblastoma. Eur J Pharm Biopharm 2024; 203:114460. [PMID: 39218361 DOI: 10.1016/j.ejpb.2024.114460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/30/2024] [Accepted: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Glioblastoma (GBM) stands for the most common and aggressive type of brain tumour in adults. It is highly invasive, which explains its short rate of survival. Little is known about its risk factors, and current therapy is still ineffective. Hence, efforts are underway to develop novel and effective treatment approaches against this type of cancer. Exosomes are being explored as a promising strategy for conveying and delivering therapeutic cargo to GBM cells. They can fuse with the GBM cell membrane and, consequently, serve as delivery systems in this context. Due to their nanoscale size, exosomes can cross the blood-brain barrier (BBB), which constitutes a significant hurdle to most chemotherapeutic drugs used against GBM. They can subsequently inhibit oncogenes, activate tumour suppressor genes, induce immune responses, and control cell growth. However, despite representing a promising tool for the treatment of GBM, further research and clinical studies regarding exosome biology, engineering, and clinical applications still need to be completed. Here, we sought to review the application of exosomes in the treatment of GBM through an in-depth analysis of the scientific and clinical studies on the entire process, from the isolation and purification of exosomes to their design and transformation into anti-oncogenic drug delivery systems. Surface modification of exosomes to enhance BBB penetration and GBM-cell targeting is also a topic of discussion.
Collapse
Affiliation(s)
- Leonor Cunha Silva
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Francisco Branco
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Joana Cunha
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, Coimbra 3004 535, Portugal
| | - Célia Gomes
- Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Innovation in Biomedicine and Biotechnology, CIBB, University of Coimbra, Coimbra 3000-504, Portugal
| | - Mylène A Carrascal
- Tecnimede Group, Sintra 2710-089, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal
| | - Amílcar Falcão
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Biomedical Imaging and Translational Research, CIBIT, University of Coimbra, Coimbra 3000-548, Portugal
| | - Bruno Miguel Neves
- Department of Medical Sciences and Institute of Biomedicine, iBiMED, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, FFUC, University of Coimbra, Coimbra 3000-548, Portugal; Coimbra Institute for Clinical and Biomedical Research, iCBR, Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal; Center for Neuroscience and Cell Biology, CNC, University of Coimbra, Coimbra 3004-504, Portugal.
| |
Collapse
|
13
|
Guo J, Zhu Y, Qu Y, Zhang L, Fang M, Xu Z, Wang T, Qin Y, Xu Y, Li Y, Chen Y, Fu H, Liu X, Liu Y, Liu C, Gao Y, Cui M, Zhou K. Structure Tailoring of Hemicyanine Dyes for In Vivo Shortwave Infrared Imaging. J Med Chem 2024; 67:16820-16834. [PMID: 39237317 DOI: 10.1021/acs.jmedchem.4c01662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
In vivo bioimaging using shortwave infrared (SWIR) (1000-2000 nm) molecular dyes enables deeper penetration and higher contrast compared to visible and near-infrared-I (NIR-I, 700-900 nm) dyes. Developing new SWIR molecules is still quite challenging. This study developed SRHCYs, a panel of fluorescent dyes based on hemicyanine, with adjustable absorbance (830-1144 nm) and emission (886-1217 nm) wavelength. The photophysical attributes of these dyes are precisely tailored by strengthening the donor parts and extending polymethine chains. SRHCY-3, with its clickable azido group, was chosen for high-performance imaging of blood vessels in living mice, enabling the precise detection of brain and lung cancer. The combination of these probes achieved in vivo multicolor imaging with negligible optical crosstalk. This report presents a series of SWIR hemicyanine dyes with promising spectroscopic properties for high-contrast bioimaging and multiplexing detection.
Collapse
Affiliation(s)
- Jiaming Guo
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yiling Zhu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yuqian Qu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Longfei Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Zihan Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, China
| | - Tianbao Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yufei Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yihan Xu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yuying Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yimin Chen
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Hualong Fu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Xiayu Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yajun Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Cheng Liu
- Department of Molecular & Cellular Physiology, School of Medicine, Stanford University, California 94305, United States
| | - Yuan Gao
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Mengchao Cui
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
14
|
Shin S, Jo H, Agura T, Jeong S, Ahn H, Kim Y, Kang JS. Use of surface-modified porous silicon nanoparticles to deliver temozolomide with enhanced pharmacokinetic and therapeutic efficacy for intracranial glioblastoma in mice. J Mater Chem B 2024; 12:9335-9344. [PMID: 39171683 DOI: 10.1039/d4tb00631c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Glioblastoma (GBM) is one of the most common and fatal primary brain tumors, with a 5-year survival rate of 7.2%. The standard treatment for GBM involves surgical resection followed by chemoradiotherapy, and temozolomide (TMZ) is currently the only approved chemotherapeutic agent for the treatment of GBM. However, hydrolytic instability and insufficient drug accumulation are major challenges that limit the effectiveness of TMZ chemotherapy. To overcome these limitations, we have developed a drug delivery platform utilizing porous silicon nanoparticles (pSiNPs) to improve the stability and blood-brain barrier penetration of TMZ. The pSiNPs are synthesized via electrochemical etching and functionalized with octadecane. The octadecyl-modified pSiNP (pSiNP-C18) demonstrates the superiority of loading efficiency, in vivo stability, and brain accumulation of TMZ. Treatment of intracranial tumor-bearing mice with TMZ-loaded pSiNP-C18 results in a decreased tumor burden and a corresponding increase in survival compared with equivalent free-drug dosing. Furthermore, the mice treated with TMZ-loaded nanoparticles do not exhibit in vivo toxicity, thus underscoring the preclinical potential of the pSiNP-based platform for the delivery of therapeutic agents to gliomas.
Collapse
Affiliation(s)
- Seulgi Shin
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Research and Development, N therapeutics Co., Ltd, Seoul 08813, Republic of Korea
| | - Hyejung Jo
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Tomoyo Agura
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Seoyoun Jeong
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Hyovin Ahn
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Yejin Kim
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Jae Seung Kang
- Laboratory of Vitamin C and Antioxidant Immunology, Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
15
|
Andrew Awuah W, Shah MH, Tan JK, Ranganathan S, Sanker V, Darko K, Tenkorang PO, Adageba BB, Ahluwalia A, Shet V, Aderinto N, Kundu M, Abdul‐Rahman T, Atallah O. Immunotherapeutic advances in glioma management: The rise of vaccine-based approaches. CNS Neurosci Ther 2024; 30:e70013. [PMID: 39215399 PMCID: PMC11364516 DOI: 10.1111/cns.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Gliomas, particularly glioblastoma multiforme (GBM), are highly aggressive brain tumors that present significant challenges in oncology due to their rapid progression and resistance to conventional therapies. Despite advancements in treatment, the prognosis for patients with GBM remains poor, necessitating the exploration of novel therapeutic approaches. One such emerging strategy is the development of glioma vaccines, which aim to stimulate the immune system to target and destroy tumor cells. AIMS This review aims to provide a comprehensive evaluation of the current landscape of glioma vaccine development, analyzing the types of vaccines under investigation, the outcomes of clinical trials, and the challenges and opportunities associated with their implementation. The goal is to highlight the potential of glioma vaccines in advancing more effective and personalized treatments for glioma patients. MATERIALS AND METHODS This narrative review systematically assessed the role of glioma vaccines by including full-text articles published between 2000 and 2024 in English. Databases such as PubMed/MEDLINE, EMBASE, the Cochrane Library, and Scopus were searched using key terms like "glioma," "brain tumor," "glioblastoma," "vaccine," and "immunotherapy." The review incorporated both pre-clinical and clinical studies, including descriptive studies, animal-model studies, cohort studies, and observational studies. Exclusion criteria were applied to omit abstracts, case reports, posters, and non-peer-reviewed studies, ensuring the inclusion of high-quality evidence. RESULTS Clinical trials investigating various glioma vaccines, including peptide-based, DNA/RNA-based, whole-cell, and dendritic-cell vaccines, have shown promising results. These vaccines demonstrated potential in extending survival rates and managing adverse events in glioma patients. However, significant challenges remain, such as therapeutic resistance due to tumor heterogeneity and immune evasion mechanisms. Moreover, the lack of standardized guidelines for evaluating vaccine responses and issues related to ethical considerations, regulatory hurdles, and vaccine acceptance among patients further complicate the implementation of glioma vaccines. DISCUSSION Addressing the challenges associated with glioma vaccines involves exploring combination therapies, targeted approaches, and personalized medicine. Combining vaccines with traditional therapies like radiotherapy or chemotherapy may enhance efficacy by boosting the immune system's ability to fight tumor cells. Personalized vaccines tailored to individual patient profiles present an opportunity for improved outcomes. Furthermore, global collaboration and equitable distribution are critical for ensuring access to glioma vaccines, especially in low- and middle-income countries with limited healthcare resources CONCLUSION: Glioma vaccines represent a promising avenue in the fight against gliomas, offering hope for improving patient outcomes in a disease that is notoriously difficult to treat. Despite the challenges, continued research and the development of innovative strategies, including combination therapies and personalized approaches, are essential for overcoming current barriers and transforming the treatment landscape for glioma patients.
Collapse
Affiliation(s)
| | | | | | | | - Vivek Sanker
- Department of NeurosurgeryTrivandrum Medical CollegeTrivandrumKeralaIndia
| | - Kwadwo Darko
- Department of NeurosurgeryKorle Bu Teaching HospitalAccraGhana
| | | | - Bryan Badayelba Adageba
- Kwame Nkrumah University of Science and Technology School of Medicine and DentistryKumasiGhana
| | | | - Vallabh Shet
- Faculty of MedicineBangalore Medical College and Research InstituteBangaloreKarnatakaIndia
| | - Nicholas Aderinto
- Department of Internal MedicineLAUTECH Teaching HospitalOgbomosoNigeria
| | - Mrinmoy Kundu
- Institute of Medical Sciences and SUM HospitalBhubaneswarOdishaIndia
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical SchoolHannoverGermany
| |
Collapse
|
16
|
Vergez I, Nekoua MP, Rubrecht C, Fasquelle F, Scuotto A, Alidjinou EK, Betbeder D, Hober D. Nanoparticles with a Lipid Core Can Enhance the Infection of Epithelial Cells with an Enterovirus. Intervirology 2024; 67:99-105. [PMID: 39068921 PMCID: PMC11524536 DOI: 10.1159/000539601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 05/30/2024] [Indexed: 07/30/2024] Open
Abstract
INTRODUCTION The effect of maltodextrin-based nanoparticles with an anionic phospholipid core (lipid-based nanoparticles [NPLs]) on the infection of a human tumoral cell line with poliovirus (PV) has been studied. METHODS NPLs were synthesized and associated with the PV type 1 Sabin strain, and the formulations were characterized. PV and PV/NPL formulations were inoculated to HEp-2 cells. RESULTS The surface charge and the diameter of PV/NPL formulation suggest that viral particles were adsorbed onto NPLs. When HEp-2 cells were inoculated with 1 tissue culture 50% infectious dose/mL PV associated with NPLs, the cytopathic effect appeared obvious; the levels of the infectious titer of culture supernatants and the proportion of VP1-positive cells were higher. The level of intracellular viral RNA extracted from HEp-2 cells inoculated with PV/NPL formulation was higher as well. CONCLUSION These results show that NPLs can enhance the infection with a virus and suggest that they might be used in virotherapy to increase the virus-mediated lysis of tumor cells.
Collapse
Affiliation(s)
- Inès Vergez
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| | | | - Cédric Rubrecht
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| | | | | | | | - Didier Betbeder
- Vaxinano SAS, Loos, France
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Didier Hober
- Univ. Lille, CHU Lille, Laboratoire de Virologie URL3610, Lille, France
| |
Collapse
|
17
|
BenDavid E, Ramezanian S, Lu Y, Rousseau J, Schroeder A, Lavertu M, Tremblay JP. Emerging Perspectives on Prime Editor Delivery to the Brain. Pharmaceuticals (Basel) 2024; 17:763. [PMID: 38931430 PMCID: PMC11206523 DOI: 10.3390/ph17060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/02/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Prime editing shows potential as a precision genome editing technology, as well as the potential to advance the development of next-generation nanomedicine for addressing neurological disorders. However, turning in prime editors (PEs), which are macromolecular complexes composed of CRISPR/Cas9 nickase fused with a reverse transcriptase and a prime editing guide RNA (pegRNA), to the brain remains a considerable challenge due to physiological obstacles, including the blood-brain barrier (BBB). This review article offers an up-to-date overview and perspective on the latest technologies and strategies for the precision delivery of PEs to the brain and passage through blood barriers. Furthermore, it delves into the scientific significance and possible therapeutic applications of prime editing in conditions related to neurological diseases. It is targeted at clinicians and clinical researchers working on advancing precision nanomedicine for neuropathologies.
Collapse
Affiliation(s)
- Eli BenDavid
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
- Laboratory of Nanopharmacology and Pharmaceutical Nanoscience, Faculty of Pharmacy, Laval University, Québec, QC G1V 4G2, Canada
- Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel
| | - Sina Ramezanian
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Yaoyao Lu
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| | - Joël Rousseau
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel;
| | - Marc Lavertu
- Laboratory of Biomaterials and Tissue Engineering, Department of Chemical Engineering, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada;
| | - Jacques P. Tremblay
- Division of Human Genetics, Centre de Recherche du CHU de Québec—Université Laval, Québec, QC G1V 4G2, Canada
- Laboratory of Molecular Genetics and Gene Therapy, Department of Molecular Medicine, Faculty of Medicine, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
18
|
ter Linden E, Abels ER, van Solinge TS, Neefjes J, Broekman MLD. Overcoming Barriers in Glioblastoma-Advances in Drug Delivery Strategies. Cells 2024; 13:998. [PMID: 38920629 PMCID: PMC11201826 DOI: 10.3390/cells13120998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The world of cancer treatment is evolving rapidly and has improved the prospects of many cancer patients. Yet, there are still many cancers where treatment prospects have not (or hardly) improved. Glioblastoma is the most common malignant primary brain tumor, and even though it is sensitive to many chemotherapeutics when tested under laboratory conditions, its clinical prospects are still very poor. The blood-brain barrier (BBB) is considered at least partly responsible for the high failure rate of many promising treatment strategies. We describe the workings of the BBB during healthy conditions and within the glioblastoma environment. How the BBB acts as a barrier for therapeutic options is described as well as various approaches developed and tested for passing or opening the BBB, with the ultimate aim to allow access to brain tumors and improve patient perspectives.
Collapse
Affiliation(s)
- Esther ter Linden
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Erik R. Abels
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Thomas S. van Solinge
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
| | - Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
| | - Marike L. D. Broekman
- Department of Cell and Chemical Biology and Oncode Institute, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; (E.t.L.); (E.R.A.)
- Department of Neurosurgery, Leiden University Medical Center, 2300 RC Leiden, The Netherlands;
- Department of Neurosurgery, Haaglanden Medical Center, 2512 VA The Hague, The Netherlands
| |
Collapse
|
19
|
Zheng L, He JJ, Zhao KX, Pan YF, Liu WX. Expression of overall survival-EMT-immune cell infiltration genes predict the prognosis of glioma. Noncoding RNA Res 2024; 9:407-420. [PMID: 38511063 PMCID: PMC10950607 DOI: 10.1016/j.ncrna.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 03/22/2024] Open
Abstract
This study investigates the crucial role of immune- and epithelial-mesenchymal transition (EMT)-associated genes and non-coding RNAs in glioma development and diagnosis, given the challenging 5-year survival rates associated with this prevalent CNS malignant tumor. Clinical and RNA data from glioma patients were meticulously gathered from CGGA databases, and EMT-related genes were sourced from dbEMT2.0, while immune-related genes were obtained from MSigDB. Employing consensus clustering, novel molecular subgroups were identified. Subsequent analyses, including ESTIMATE, TIMER, and MCP counter, provided insights into the tumor microenvironment (TIME) and immune status. Functional studies, embracing GO, KEGG, GSVA, and GSEA analyses, unraveled the underlying mechanisms governing these molecular subgroups. Utilizing the LASSO algorithm and multivariate Cox regression, a prognostic risk model was crafted. The study unveiled two distinct molecular subgroups with significantly disparate survival outcomes. A more favorable prognosis was linked to low immune scores, high tumor purity, and an abundance of immune infiltrating cells with differential expression of non-coding RNAs, including miRNAs. Functional analyses illuminated enrichment of immune- and EMT-associated pathways in differentially expressed genes and non-coding RNAs between these subgroups. GSVA and GSEA analyses hinted at abnormal EMT status potentially contributing to glioma-associated immune disorders. The risk model, centered on OS-EMT-ICI genes, exhibited promise in accurately predicting survival in glioma. Additionally, a nomogram integrating the risk model with clinical characteristics demonstrated notable accuracy in prognostic predictions for glioma patients. In conclusion, OS-EMT-ICI gene and non-coding RNA expression emerges as a valuable indicator intricately linked to immune microenvironment dysregulation, offering a robust tool for precise prognosis prediction in glioma patients within the OBMRC framework.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Breast Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Jin-jing He
- Department of Operating Room, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Kai-xiang Zhao
- Department of Thoracic Surgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Ya-fei Pan
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| | - Wei-xian Liu
- Department of Neurosurgery, Zhejiang Hospital, Hangzhou, Zhejiang Province, 310000, PR China
| |
Collapse
|
20
|
Cui C, Yang T, Wang S, Jia Z, Zhao L, Han X, Sun X, Zong J, Wang S, Chen D. Discussion on the relationship between gut microbiota and glioma through Mendelian randomization test based on the brain gut axis. PLoS One 2024; 19:e0304403. [PMID: 38809931 PMCID: PMC11135782 DOI: 10.1371/journal.pone.0304403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND In the realm of Gut-Brain axis research, existing evidence points to a complex bidirectional regulatory mechanism between gut microbiota and the brain. However, the question of whether a causal relationship exists between gut microbiota and specific types of brain tumors, such as gliomas, remains unresolved. To address this gap, we employed publicly available Genome-Wide Association Study (GWAS) and MIOBEN databases, conducting an in-depth analysis using Two-Sample Mendelian Randomization (MR). METHOD We carried out two sets of MR analyses. The preliminary analysis included fewer instrumental variables due to a high genome-wide statistical significance threshold (5×10-8). To enable a more comprehensive and detailed analysis, we adjusted the significance threshold to 1×10-5. We performed linkage disequilibrium analysis (R2 <0.001, clumping distance = 10,000kb) and detailed screening of palindromic SNPs, followed by MR analysis and validation through sensitivity analysis. RESULTS Our findings reveal a causal relationship between gut microbiota and gliomas. Further confirmation via Inverse Variance Weighting (IVW) identified eight specific microbial communities related to gliomas. Notably, the Peptostreptococcaceae and Olsenella communities appear to have a protective effect, reducing glioma risk. CONCLUSION This study not only confirms the causal link between gut microbiota and gliomas but also suggests a new avenue for future glioma treatment.
Collapse
Affiliation(s)
- Chenzhi Cui
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| | - Tianke Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- College of Integrative Medicine, Dalian Medical University, Dalian, China
| | - ShengYu Wang
- Medical Laboratory Technology, College of Medical Laboratory, Dalian Medical University, Dalian, China
| | - Zhuqiang Jia
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Naqu People’s Hospital, Tibet, China
| | - Lin Zhao
- Department of Quality Management, Dalian Municipal Central Hospital, Dalian, China
| | - Xin Han
- Naqu People’s Hospital, Tibet, China
- Department of Orthopaedic Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiaohong Sun
- Department of Nursing, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junwei Zong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shouyu Wang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Dong Chen
- Graduate school, Dalian Medical University, Dalian, Dalian, China
- Department of Neurosurgery, Dalian Municipal Central Hospital, Dalian, China
| |
Collapse
|
21
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
22
|
Zhu N, Chen S, Jin Y, Wang M, Fang L, Xue L, Hua D, Zhang Z, Jia M, Hao M, Zhang C. Enhancing Glioblastoma Immunotherapy with Integrated Chimeric Antigen Receptor T Cells through the Re-Education of Tumor-Associated Microglia and Macrophages. ACS NANO 2024; 18:11165-11182. [PMID: 38626338 DOI: 10.1021/acsnano.4c00050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Glioblastoma (GBM) is an aggressive brain cancer that is highly resistant to treatment including chimeric antigen receptor (CAR)-T cells. Tumor-associated microglia and macrophages (TAMs) are major contributors to the immunosuppressive GBM microenvironment, which promotes tumor progression and treatment resistance. Hence, the modulation of TAMs is a promising strategy for improving the immunotherapeutic efficacy of CAR-T cells against GBM. Molecularly targeting drug pexidartinib (PLX) has been reported to re-educate TAMs toward the antitumorigenic M1-like phenotype. Here, we developed a cell-drug integrated technology to reversibly conjugate PLX-containing liposomes (PLX-Lip) to CAR-T cells and establish tumor-responsive integrated CAR-T cells (PLX-Lip/AZO-T cells) as a combination therapy for GBM. We used a mouse model of GBM to show that PLX-Lip was stably maintained on the surface of PLX-Lip/AZO-T cells in circulation and these cells could transmigrate across the blood-brain barrier and deposit PLX-Lip at the tumor site. The uptake of PLX-Lip by TAMs effectively re-educated them into the M1-like phenotype, which in turn boosted the antitumor function of CAR-T cells. GBM tumor growth was completely eradicated in 60% of the mice after receiving PLX-Lip/AZO-T cells and extended their overall survival time beyond 50 days; in comparison, the median survival time of mice in other treatment groups did not exceed 35 days. Overall, we demonstrated the successful fusion of CAR-T cells and small-molecule drugs with the cell-drug integrated technology. These integrated CAR-T cells provided a superior combination strategy for GBM treatment and presented a reference for the construction of integrated cell-based drugs.
Collapse
Affiliation(s)
- Nianci Zhu
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Sijia Chen
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Yu Jin
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Wang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Luyao Fang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Dexiang Hua
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Ziyao Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Meng Jia
- School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, China
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China
| |
Collapse
|
23
|
Pike KG, Hunt TA, Barlaam B, Benstead D, Cadogan E, Chen K, Cook CR, Colclough N, Deng C, Durant ST, Eatherton A, Goldberg K, Johnström P, Liu L, Liu Z, Nissink JWM, Pang C, Pass M, Robb GR, Roberts C, Schou M, Steward O, Sykes A, Yan Y, Zhai B, Zheng L. Identification of Novel, Selective Ataxia-Telangiectasia Mutated Kinase Inhibitors with the Ability to Penetrate the Blood-Brain Barrier: The Discovery of AZD1390. J Med Chem 2024; 67:3090-3111. [PMID: 38306388 DOI: 10.1021/acs.jmedchem.3c02277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.
Collapse
Affiliation(s)
- Kurt G Pike
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | | | - David Benstead
- Pharmaceutical Sciences, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | | | - Kan Chen
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Calum R Cook
- Pharmaceutical Sciences, AstraZeneca, Silk Road Business Park, Macclesfield SK10 2NA, U.K
| | | | - Chao Deng
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | | | | | | | - Peter Johnström
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm SE-171 76, Sweden
| | - Libin Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Zhaoqun Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | | | - Chengling Pang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Martin Pass
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | | | - Magnus Schou
- PET Science Centre, Precision Medicine and Biosamples, Oncology R&D, AstraZeneca, Karolinska Institutet, Stockholm SE-171 76, Sweden
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm SE-171 76, Sweden
| | | | - Andy Sykes
- Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Yumei Yan
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Baochang Zhai
- Pharmaron Beijing Co., Ltd., 6 Taihe Road BDA, Beijing 100176, P. R. China
| | - Li Zheng
- Innovation Center China, Asia & Emerging Markets iMED, 199 Liangjing Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| |
Collapse
|
24
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
25
|
Morimoto T, Nakazawa T, Matsuda R, Maeoka R, Nishimura F, Nakamura M, Yamada S, Park YS, Tsujimura T, Nakagawa I. Antitumor Effects of Intravenous Natural Killer Cell Infusion in an Orthotopic Glioblastoma Xenograft Murine Model and Gene Expression Profile Analysis. Int J Mol Sci 2024; 25:2435. [PMID: 38397112 PMCID: PMC10889440 DOI: 10.3390/ijms25042435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Despite standard multimodality treatment, containing maximum safety resection, temozolomide, radiotherapy, and a tumor-treating field, patients with glioblastoma (GBM) present with a dismal prognosis. Natural killer cell (NKC)-based immunotherapy would play a critical role in GBM treatment. We have previously reported highly activated and ex vivo expanded NK cells derived from human peripheral blood, which exhibited anti-tumor effect against GBM cells. Here, we performed preclinical evaluation of the NK cells using an in vivo orthotopic xenograft model, the U87MG cell-derived brain tumor in NOD/Shi-scid, IL-2RɤKO (NOG) mouse. In the orthotopic xenograft model, the retro-orbital venous injection of NK cells prolonged overall survival of the NOG mouse, indirectly indicating the growth-inhibition effect of NK cells. In addition, we comprehensively summarized the differentially expressed genes, especially focusing on the expression of the NKC-activating receptors' ligands, inhibitory receptors' ligands, chemokines, and chemokine receptors, between murine brain tumor treated with NKCs and with no agents, by using microarray. Furthermore, we also performed differentially expressed gene analysis between an internal and external brain tumor in the orthotopic xenograft model. Our findings could provide pivotal information for the NK-cell-based immunotherapy for patients with GBM.
Collapse
Affiliation(s)
- Takayuki Morimoto
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Tsutomu Nakazawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Department of Neurosurgery, Nara City Hospital, Nara 630-8305, Nara, Japan
| | - Ryosuke Matsuda
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Ryosuke Maeoka
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Fumihiko Nishimura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Mitsutoshi Nakamura
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Shuichi Yamada
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Young-Soo Park
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| | - Takahiro Tsujimura
- Grandsoul Research Institute for Immunology, Inc., Uda 633-2221, Nara, Japan;
| | - Ichiro Nakagawa
- Department of Neurosurgery, Nara Medical University, Kashihara 634-8521, Nara, Japan; (T.M.); (T.N.); (R.M.); (F.N.); (M.N.); (S.Y.); (Y.-S.P.); (I.N.)
| |
Collapse
|
26
|
Yang Z, Sun L, Chen H, Sun C, Xia L. New progress in the treatment of diffuse midline glioma with H3K27M alteration. Heliyon 2024; 10:e24877. [PMID: 38312649 PMCID: PMC10835306 DOI: 10.1016/j.heliyon.2024.e24877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/06/2024] Open
Abstract
Diffuse midline glioma with H3K27 M alteration is a primary malignant tumor located along the linear structure of the brain, predominantly manifesting in children and adolescents. The mortality rate is exceptionally high, with a mere 1 % 5-year survival rate for newly diagnosed patients. Beyond conventional surgery, radiotherapy, and chemotherapy, novel approaches are imperative to enhance patient prognosis. This article comprehensively reviews current innovative treatment modalities and provides updates on the latest research advancements in preclinical studies and clinical trials focusing on H3K27M-altered diffuse midline glioma. The goal is to contribute positively to clinical treatment strategies.
Collapse
Affiliation(s)
- Zhi Yang
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Haibin Chen
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Caixing Sun
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| | - Liang Xia
- Department of Neurosurgery, Cancer Hospital of University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Postgraduate Training Base Alliance of Wenzhou Medical University, WenZhou, 325035, Zhejiang province, China
| |
Collapse
|
27
|
Lee J, Fernandez K, Cunningham LL. Hear and Now: Ongoing Clinical Trials to Prevent Drug-Induced Hearing Loss. Annu Rev Pharmacol Toxicol 2024; 64:211-230. [PMID: 37562496 DOI: 10.1146/annurev-pharmtox-033123-114106] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Each year over half a million people experience permanent hearing loss caused by treatment with therapeutic drugs with ototoxic side effects. There is a major unmet clinical need for therapies that protect against this hearing loss without reducing the therapeutic efficacy of these lifesaving drugs. At least 17 clinical trials evaluating 10 therapeutics are currently underway for therapies aimed at preventing aminoglycoside- and/or cisplatin-induced ototoxicity. This review describes the preclinical and clinical development of each of these approaches, provides updates on the status of ongoing trials, and highlights the importance of appropriate outcome measures in trial design and the value of reporting criteria in the dissemination of results.
Collapse
Affiliation(s)
- John Lee
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Katharine Fernandez
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| | - Lisa L Cunningham
- Laboratory of Hearing Biology and Therapeutics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
28
|
Colclough N, Alluri RV, Tucker JW, Gozalpour E, Li D, Du H, Li W, Harlfinger S, O'Neill DJ, Sproat GG, Chen K, Yan Y, McGinnity DF. Utilizing a Dual Human Transporter MDCKII-MDR1-BCRP Cell Line to Assess Efflux at the Blood Brain Barrier. Drug Metab Dispos 2024; 52:95-105. [PMID: 38071533 DOI: 10.1124/dmd.123.001476] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/24/2023] [Accepted: 11/27/2023] [Indexed: 12/22/2023] Open
Abstract
To facilitate the design of drugs readily able to cross the blood brain barrier (BBB), a Madin-Darby canine kidney (MDCK) cell line was established that over expresses both P-glycoprotein (Pgp) and breast cancer resistance protein (BCRP), the main human efflux transporters of the BBB. Proteomics analyses indicate BCRP is expressed at a higher level than Pgp in this cell line. This cell line shows good activity for both transporters [BCRP substrate dantrolene efflux ratio (ER) 16.3 ± 0.9, Pgp substrate quinidine ER 27.5 ± 1.2], and use of selective transporter inhibitors enables an assessment of the relative contributions to overall ERs. The MDCKII-MDR1-BCRP ER negatively correlates with rat unbound brain/unbound plasma ratio, Kpuu Highly brain penetrant compounds with rat Kpuu ≥ 0.3 show ERs ≤ 2 in the MDCKII-MDR1-BCRP assay while compounds predominantly excluded from the brain, Kpuu ≤ 0.05, demonstrate ERs ≥ 20. A subset of compounds with MDCKII-MDR1-BCRP ER < 2 and rat Kpuu < 0.3 were shown to be substrates of rat Pgp using a rat transfected cell line, MDCKII-rMdr1a. These compounds also showed ERs > 2 in the human National Institutes of Health (NIH) MDCKI-MDR1 (high Pgp expression) cell line, which suggests that they are weak human Pgp substrates. Characterization of 37 drugs targeting the central nervous system in the MDCKII-MDR1-BCRP efflux assay show 36 have ERs < 2. In drug discovery, use of the MDCKII-MDR1-BCRP in parallel with the NIH MDCKI-MDR1 cell line is useful for identification of compounds with high brain penetration. SIGNIFICANCE STATEMENT: A single cell line that includes both the major human efflux transporters of the blood brain barrier (MDCKII-MDR1-BCRP) has been established facilitating the rapid identification of efflux substrates and enabling the design of brain penetrant molecules. Efflux ratios using this cell line demonstrate a clear relationship with brain penetration as defined by rat brain Kpuu.
Collapse
Affiliation(s)
- Nicola Colclough
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Ravindra V Alluri
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - James W Tucker
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Elnaz Gozalpour
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Danxi Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Hongwen Du
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Wei Li
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Stephanie Harlfinger
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Daniel J O'Neill
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Graham G Sproat
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Kan Chen
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Yumei Yan
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| | - Dermot F McGinnity
- DMPK, Oncology R & D, AstraZeneca, Cambridge, United Kingdom (N.C., J.W.T., E.G., S.H., D.F.M.); Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (R.V.A.); DMPK, Pharmaron, Beijing, China (D.L., H.D., W.L.); Discovery Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom (D.J.O., G.G.S.); and DMPK Asia, Oncology R & D, AstraZeneca, Shanghai, China (K.C., Y.Y.)
| |
Collapse
|
29
|
Li R, Chen Y, Yang B, Li Z, Wang S, He J, Zhou Z, Li X, Li J, Sun Y, Guo X, Wang X, Wu Y, Zhang W, Guo G. Integrated bioinformatics analysis and experimental validation identified CDCA families as prognostic biomarkers and sensitive indicators for rapamycin treatment of glioma. PLoS One 2024; 19:e0295346. [PMID: 38181024 PMCID: PMC10769025 DOI: 10.1371/journal.pone.0295346] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024] Open
Abstract
The cell division cycle associated (CDCA) genes regulate the cell cycle; however, their relationship with prognosis in glioma has been poorly reported in the literature. The Cancer Genome Atlas (TCGA) was utilized to probe the CDCA family in relation to the adverse clinical features of glioma. Glioma single-cell atlas reveals specific expression of CDCA3, 4, 5, 8 in malignant cells and CDCA7 in neural progenitor cells (NPC)-like malignant cells. Glioma data from TCGA, the China Glioma Genome Atlas Project (CGGA) and the gene expression omnibus (GEO) database all demonstrated that CDCA2, 3, 4, 5, 7 and 8 are prognostic markers for glioma. Further analysis identified CDCA2, 5 and 8 as independent prognostic factors for glioma. Lasso regression-based risk models for CDCA families demonstrated that high-risk patients were characterized by high tumor mutational burden (TMB), low levels of microsatellite instability (MSI), and low tumor immune dysfunction and rejection (TIDE) scores. These pointed to immunotherapy for glioma as a potentially viable treatment option Further CDCA clustering suggested that the high CDCA subtype exhibited a high macrophage phenotype and was associated with a higher antigen presentation capacity and high levels of immune escape. In addition, hsa-mir-15b-5p was predicted to be common regulator of CDCA3 and CDCA4, which was validated in U87 and U251 cells. Importantly, we found that CDCAs may indicate response to drug treatment, especially rapamycin, in glioma. In summary, our results suggest that CDCAs have potential applications in clinical diagnosis and as drug sensitivity markers in glioma.
Collapse
Affiliation(s)
- Ren Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yang Chen
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Biao Yang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ziao Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shule Wang
- Department of General and Vascular Surgery, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jianhang He
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zihan Zhou
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuepeng Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiayu Li
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanqi Sun
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaolong Guo
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xiaogang Wang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongqiang Wu
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenju Zhang
- Department of Neurosurgery, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Geng Guo
- Department of Emergency, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
30
|
Wang S, Yin F, Guo Z, Li R, Sun W, Wang Y, Geng Y, Sun C, Sun D. Association between gut microbiota and glioblastoma: a Mendelian randomization study. Front Genet 2024; 14:1308263. [PMID: 38239850 PMCID: PMC10794655 DOI: 10.3389/fgene.2023.1308263] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/01/2023] [Indexed: 01/22/2024] Open
Abstract
Background: Glioblastoma (GBM) is the most prevalent malignant brain tumor, significantly impacting the physical and mental wellbeing of patients. Several studies have demonstrated a close association between gut microbiota and the development of GBM. In this investigation, Mendelian randomization (MR) was employed to rigorously evaluate the potential causal relationship between gut microbiota and GBM. Methods: We utilized summary statistics derived from genome-wide association studies (GWAS) encompassing 211 gut microbiota and GBM. The causal association between gut microbiota and GBM was scrutinized using Inverse Variance Weighted (IVW), MR-Egger, and Weighted Median (WM) methods. Cochrane's Q statistic was employed to conduct a heterogeneity test. MR-Pleiotropic Residuals and Outliers (MR-PRESSO) were applied to identify and eliminate SNPs with horizontal pleiotropic outliers. Additionally, Reverse MR was employed to assess the causal relationship between GBM and pertinent gut microbiota. Results: The MR study estimates suggest that the nine gut microbiota remain stable, considering heterogeneity and sensitivity methods. Among these, the family.Peptostreptococcaceae and genus.Eubacterium brachy group were associated with an increased risk of GBM, whereas family.Ruminococcaceae, genus.Anaerostipes, genus.Faecalibacterium, genus.LachnospiraceaeUCG004, genus.Phascolarctobacterium, genus.Prevotella7, and genus.Streptococcus were associated with a reduced risk of GBM. Following Benjamini and Hochberg (BH) correction, family.Ruminococcaceae (OR = 0.04, 95% CI: 0.01-0.19, FDR = 0.003) was identified as playing a protective role against GBM. Conclusion: This groundbreaking study is the first to demonstrate that family.Ruminococcaceae is significantly associated with a reduced risk of GBM. The modulation of family_Ruminococcaceae for the treatment of GBM holds considerable potential clinical significance.
Collapse
Affiliation(s)
- Song Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Fangxu Yin
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zheng Guo
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Rui Li
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wei Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuchao Wang
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yichen Geng
- Nursing College of Binzhou Medical University, Yantai, Shandong, China
| | - Chao Sun
- Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Daqing Sun
- Department of Pediatric Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
31
|
Sharma M, Barravecchia I, Teis R, Cruz J, Mumby R, Ziemke EK, Espinoza CE, Krishnamoorthy V, Magnuson B, Ljungman M, Koschmann C, Chandra J, Whitehead CE, Sebolt-Leopold JS, Galban S. Targeting DNA Repair and Survival Signaling in Diffuse Intrinsic Pontine Gliomas to Prevent Tumor Recurrence. Mol Cancer Ther 2024; 23:24-34. [PMID: 37723046 PMCID: PMC10762335 DOI: 10.1158/1535-7163.mct-23-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Therapeutic resistance remains a major obstacle to successful clinical management of diffuse intrinsic pontine glioma (DIPG), a high-grade pediatric tumor of the brain stem. In nearly all patients, available therapies fail to prevent progression. Innovative combinatorial therapies that penetrate the blood-brain barrier and lead to long-term control of tumor growth are desperately needed. We identified mechanisms of resistance to radiotherapy, the standard of care for DIPG. On the basis of these findings, we rationally designed a brain-penetrant small molecule, MTX-241F, that is a highly selective inhibitor of EGFR and PI3 kinase family members, including the DNA repair protein DNA-PK. Preliminary studies demonstrated that micromolar levels of this inhibitor can be achieved in murine brain tissue and that MTX-241F exhibits promising single-agent efficacy and radiosensitizing activity in patient-derived DIPG neurospheres. Its physiochemical properties include high exposure in the brain, indicating excellent brain penetrance. Because radiotherapy results in double-strand breaks that are repaired by homologous recombination (HR) and non-homologous DNA end joining (NHEJ), we have tested the combination of MTX-241F with an inhibitor of Ataxia Telangiectasia Mutated to achieve blockade of HR and NHEJ, respectively, with or without radiotherapy. When HR blockers were combined with MTX-241F and radiotherapy, synthetic lethality was observed, providing impetus to explore this combination in clinically relevant models of DIPG. Our data provide proof-of-concept evidence to support advanced development of MTX-241F for the treatment of DIPG. Future studies will be designed to inform rapid clinical translation to ultimately impact patients diagnosed with this devastating disease.
Collapse
Affiliation(s)
- Monika Sharma
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Ivana Barravecchia
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Robert Teis
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Jeanette Cruz
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Rachel Mumby
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth K. Ziemke
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Carlos E. Espinoza
- Department of Surgery, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Varunkumar Krishnamoorthy
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Brian Magnuson
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Biostatistics, School of Public Health, The University of Michigan, Ann Arbor, Michigan
| | - Mats Ljungman
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiation Oncology, The University of Michigan Medical School, Ann Arbor, Michigan
- Center for RNA Biomedicine, The University of Michigan, Ann Arbor, Michigan
| | - Carl Koschmann
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pediatrics, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Joya Chandra
- Department of Pediatrics Research, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher E. Whitehead
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- MEKanistic Therapeutics, Ann Arbor, Michigan
| | - Judith S. Sebolt-Leopold
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
- MEKanistic Therapeutics, Ann Arbor, Michigan
- Department of Pharmacology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Stefanie Galban
- Center for Molecular Imaging, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Radiology, The University of Michigan Medical School, Ann Arbor, Michigan
- Rogel Cancer Center, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
32
|
Sahoo L, Tripathy NS, Dilnawaz F. Naringenin Nanoformulations for Neurodegenerative Diseases. Curr Pharm Biotechnol 2024; 25:2108-2124. [PMID: 38347794 DOI: 10.2174/0113892010281459240118091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 09/10/2024]
Abstract
Glioblastoma (GBM) is a grade-IV astrocytoma, which is the most common and aggressive type of brain tumor, spreads rapidly and has a life-threatening catastrophic effect. GBM mostly occurs in adults with an average survival time of 15 to 18 months, and the overall mortality rate is 5%. Significant invasion and drug resistance activity cause the poor diagnosis of GBM. Naringenin (NRG) is a plant secondary metabolite byproduct of the flavanone subgroup. NRG can cross the blood-brain barrier and deliver drugs into the central nervous system when conjugated with appropriate nanocarriers to overcome the challenges associated with gliomas through naringenin-loaded nanoformulations. Here, we discuss several nanocarriers employed that are as delivery systems, such as polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanosuspensions, and nanoemulsions. These naringenin-loaded nanoformulations have been tested in various in vitro and in vivo models as a potential treatment for brain disorders. This review nanoformulations of NRG can a possible therapeutic alternative for the treatment of neurological diseases are discussed.
Collapse
Affiliation(s)
- Liza Sahoo
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Nigam Sekhar Tripathy
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| | - Fahima Dilnawaz
- Department of Biotechnology, School of Engineering and Technology, Centurion University of Technology and Management, Jatni, 752050, Bhubaneswar, Odisha, India
| |
Collapse
|
33
|
Shi W, Tanzhu G, Chen L, Ning J, Wang H, Xiao G, Peng H, Jing D, Liang H, Nie J, Yi M, Zhou R. Radiotherapy in Preclinical Models of Brain Metastases: A Review and Recommendations for Future Studies. Int J Biol Sci 2024; 20:765-783. [PMID: 38169621 PMCID: PMC10758094 DOI: 10.7150/ijbs.91295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Brain metastases (BMs) frequently occur in primary tumors such as lung cancer, breast cancer, and melanoma, and are associated with notably short natural survival. In addition to surgical interventions, chemotherapy, targeted therapy, and immunotherapy, radiotherapy (RT) is a crucial treatment for BM and encompasses whole-brain radiotherapy (WBRT) and stereotactic radiosurgery (SRS). Validating the efficacy and safety of treatment regimens through preclinical models is imperative for successful translation to clinical application. This not only advances fundamental research but also forms the theoretical foundation for clinical study. This review, grounded in animal models of brain metastases (AM-BM), explores the theoretical underpinnings and practical applications of radiotherapy in combination with chemotherapy, targeted therapy, immunotherapy, and emerging technologies such as nanomaterials and oxygen-containing microbubbles. Initially, we provided a concise overview of the establishment of AM-BMs. Subsequently, we summarize key RT parameters (RT mode, dose, fraction, dose rate) and their corresponding effects in AM-BMs. Finally, we present a comprehensive analysis of the current research status and future directions for combination therapy based on RT. In summary, there is presently no standardized regimen for AM-BM treatment involving RT. Further research is essential to deepen our understanding of the relationships between various parameters and their respective effects.
Collapse
Affiliation(s)
- Wen Shi
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Liu Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Hongji Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Haiqin Peng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Di Jing
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huadong Liang
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Jing Nie
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Min Yi
- Department of Technology, Hunan SJA Laboratory Animal Co., Ltd., Changsha, Hunan Province, China
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
34
|
Umlauf BJ, Frampton G, Cooper A, Greene HF. A novel strategy to increase the therapeutic potency of GBM chemotherapy via altering parenchymal/cerebral spinal fluid clearance rate. J Control Release 2023; 364:195-205. [PMID: 37865172 DOI: 10.1016/j.jconrel.2023.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Patients with glioblastoma (GBM) face a poor prognosis with a median survival of less than two years. Escalating the dose of chemotherapy is often impossible due to patient comorbidities; thus, we focused on modulating brain clearance as a mechanism to enhance drug accumulation. Given the recently identified interconnectivity between brain parenchymal fluid and cerebral spinal fluid (CSF), we reasoned enhancing drug concentration in the CSF also increases drug concentration in the parenchyma where a GBM resides. To improve drug accumulation in the CSF, we impair the motility of ependymal cell cilia. We identified FDA-approved therapeutics that interact with cilia as a "side effect." Therapeutics that inhibit airway cilia also inhibit ependymal cilia. Multiple cilia-inhibiting drugs, when administered in combination with GBM chemotherapy temozolomide (TMZ), significantly improved the overall survival of mice bearing orthotopic GBM. Combining TMZ with lidocaine results in 100% of animals surviving tumor-free to the study endpoint. This treatment results in a ~ 40-fold increase in brain TMZ levels and is well-tolerated. Mice bearing MGMT methylated, human PDX orthotopic GBM also responded with 100% of animals surviving tumor-free to the study endpoint. Finally, even mice bearing TMZ-resistant, orthotopic GBM responded to the combination treatment with 40% of animals surviving tumor-free to the study endpoint, implying this strategy can sensitize TMZ-resistant GBM. These studies offer a new concept for treating malignant brain tumors by improving the accumulation of TMZ in the CNS. In the future, this regimen may also improve the treatment of additional encephalopathies treated by brain-penetrating therapeutics. SIGNIFICANCE: We exploit the interconnectivity of parenchymal and cerebral spinal fluid to enhance the amount of temozolomide that accumulates in the central nervous system to improve the survival of mice bearing brain tumors.
Collapse
Affiliation(s)
- Benjamin J Umlauf
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA; Mulva Clinic for the Neurosciences, The University of Texas at Austin, 1601 Trinity St. Bldg A., Austin, USA.
| | - Gabriel Frampton
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Alexis Cooper
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| | - Hannah-Faith Greene
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1601 Trinity St. Bldg B., Austin, USA
| |
Collapse
|
35
|
Stamp MEM, Halwes M, Nisbet D, Collins DJ. Breaking barriers: exploring mechanisms behind opening the blood-brain barrier. Fluids Barriers CNS 2023; 20:87. [PMID: 38017530 PMCID: PMC10683235 DOI: 10.1186/s12987-023-00489-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
The blood-brain barrier (BBB) is a selectively permeable membrane that separates the bloodstream from the brain. While useful for protecting neural tissue from harmful substances, brain-related diseases are difficult to treat due to this barrier, as it also limits the efficacy of drug delivery. To address this, promising new approaches for enhancing drug delivery are based on disrupting the BBB using physical means, including optical/photothermal therapy, electrical stimulation, and acoustic/mechanical stimulation. These physical mechanisms can temporarily and locally open the BBB, allowing drugs and other substances to enter. Focused ultrasound is particularly promising, with the ability to focus energies to targeted, deep-brain regions. In this review, we examine recent advances in physical approaches for temporary BBB disruption, describing their underlying mechanisms as well as evaluating the utility of these physical approaches with regard to their potential risks and limitations. While these methods have demonstrated efficacy in disrupting the BBB, their safety, comparative efficacy, and practicality for clinical use remain an ongoing topic of research.
Collapse
Affiliation(s)
- Melanie E M Stamp
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia.
| | - Michael Halwes
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David Nisbet
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - David J Collins
- Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
- Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
36
|
Lo YC, Lin WJ. Improve BBB Penetration and Cytotoxicity of Palbociclib in U87-MG Glioblastoma Cells Delivered by Dual Peptide Functionalized Nanoparticles. Pharmaceutics 2023; 15:2429. [PMID: 37896189 PMCID: PMC10610156 DOI: 10.3390/pharmaceutics15102429] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Palbociclib (PBC) is an FDA-approved CDK4/6 inhibitor used for breast cancer treatment. PBC has been demonstrated its ability to suppress the proliferation of glioma cells by inducing cell cycle arrest. However, the efflux transporters on the blood-brain barrier (BBB) restricts the delivery of PBC to the brain. The nano-delivery strategy with BBB-penetrating and glioma-targeting abilities was designed. Poly(lactide-co-glycolide)-poly(ethylene glycol) (PLGA-PEG) was functionalized with the potential peptide, T7 targeting peptide and/or R9 penetrating peptide, to prepare PBC-loaded nanoparticles (PBC@NPs). The size of PBC@NPs was in the range of 168.4 ± 4.3-185.8 ± 4.4 nm (PDI < 0.2), and the zeta potential ranged from -17.8 ± 1.4 mV to -14.3 ± 1.0 mV dependent of conjugated peptide. The transport of PBC@NPs across the bEnd.3 cell model was in the order of dual-peptide modified NPs > T7-peptide modified NPs > peptide-free NPs > free PBC, indicating facilitated delivery of PBC by NPs, particularly the T7/R9 dual-peptide modified NPs. Moreover, PBC@NPs significantly enhanced U87-MG glioma cell apoptosis by 2.3-6.5 folds relative to PBC, where the dual-peptide modified NPs was the most effective one. In conclusion, the PBC loaded dual-peptide functionalized NPs improved cellular uptake in bEnd.3 cells followed by targeting to U87-MG glioma cells, leading to effective cytotoxicity and promoting cell death.
Collapse
Affiliation(s)
- Yu-Chen Lo
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
| | - Wen-Jen Lin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 10050, Taiwan;
- Drug Research Center, College of Medicine, National Taiwan University, Taipei 10050, Taiwan
| |
Collapse
|
37
|
Floryanzia SD, Nance E. Applications and Considerations for Microfluidic Systems To Model the Blood-Brain Barrier. ACS APPLIED BIO MATERIALS 2023; 6:3617-3632. [PMID: 37582179 PMCID: PMC11646049 DOI: 10.1021/acsabm.3c00364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
In a myriad of developmental and degenerative brain diseases, characteristic pathological biomarkers are often associated with cerebral blood flow and vasculature. However, the relationship between vascular dysfunction and markers of brain disease is not well-defined. Additionally, it is difficult to deliver effective therapeutics to the brain due to the highly regulated blood-brain barrier (BBB) at the microvasculature interface of the brain. This Review first covers the need for modeling the BBB and the challenges of modeling the BBB. In vitro models of the BBB enable the study of the relationship between vascular dysfunction, BBB function, and disease progression and can serve as a platform to screen therapeutics. In particular, microfluidic-based in vitro BBB models are useful for studying brain vasculature as they support cell culture within the presence of continuous perfusion, which mirrors the in vivo flow and associated stress conditions in the brain. Early microfluidic models of the BBB created the most simplistic models possible that still displayed some functional aspects of the in vivo BBB. Therefore, this Review also discusses the emerging unique ways in which microfluidics in tandem with recent advancements in cell culture, biomaterials, and in vitro modeling can be used to develop more complex and physiologically relevant models of the BBB. Finally, we discuss the current and future state-of-the-art application of microfluidic BBB models for drug development and disease modeling, and the ongoing areas of needed innovation in this field.
Collapse
Affiliation(s)
- Sydney D Floryanzia
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Elizabeth Nance
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
38
|
Wu Y, Mao M, Wang LJ. Integrated clustering signature of genomic heterogeneity, stemness and tumor microenvironment predicts glioma prognosis and immunotherapy response. Aging (Albany NY) 2023; 15:9086-9104. [PMID: 37698534 PMCID: PMC10522363 DOI: 10.18632/aging.205018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND Glioma is the most frequent primary tumor of the central nervous system. The high heterogeneity of glioma tumors enables them to adapt to challenging environments, leading to resistance to treatment. Therefore, to detect the driving factors and improve the prognosis of glioma, it is essential to have a comprehensive understanding of the genomic heterogeneity, stemness, and immune microenvironment of glioma. METHODS We classified gliomas into various subtypes based on stemness, genomic heterogeneity, and immune microenvironment consensus clustering analysis. We identified risk hub genes linked to heterogeneous characteristics using WGCNA, LASSO, and multivariate Cox regression analysis and utilized them to create an effective risk model. RESULTS We thoroughly investigated the genomic heterogeneity, stemness, and immune microenvironment of glioma and identified the risk hub genes RAB42, SH2D4A, and GDF15 based on the TCGA dataset. We developed a risk model utilizing these genes that can reliably predict the prognosis of glioma patients. The risk signature showed a positive correlation with T cell exhaustion and increased infiltration of immunosuppressive cells, and a negative correlation with the response to immunotherapy. Moreover, we discovered that SH2D4A, one of the risk hub genes, could stimulate the migration and proliferation of glioma cells. CONCLUSIONS This study identified risk hub genes and established a risk model by analyzing the genomic heterogeneity, stemness, and immune microenvironment of glioma. Our findings will facilitate the diagnosis and prediction of glioma prognosis and may lead to potential treatment strategies for glioma.
Collapse
Affiliation(s)
- Yangyang Wu
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Meng Mao
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Lin-Jian Wang
- Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research of Trauma Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Department of Neurosurgery, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| |
Collapse
|
39
|
Tozuka T, Noro R, Miyanaga A, Nakamichi S, Takeuchi S, Matsumoto M, Kubota K, Kasahara K, Seike M. Osimertinib early dose reduction as a risk to brain metastasis control in EGFR-mutant non-small cell lung cancer. Cancer Med 2023; 12:17731-17739. [PMID: 37691552 PMCID: PMC10524078 DOI: 10.1002/cam4.6393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND The epidermal growth factor receptor (EGFR) mutation is a risk factor associated with brain metastases (BMs) in patients with non-small cell lung cancer (NSCLC). This study aimed to evaluate the impact of osimertinib early dose reduction on BM worsening. METHODS We retrospectively analyzed EGFR-mutant NSCLC patients treated with osimertinib as first-line treatment between August 2018 and October 2021. To evaluate the impact of osimertinib early dose reduction, we performed a landmark analysis of patients who achieved disease control at 4 months. Patients were divided into two groups according to whether the osimertinib dose was reduced or not, within 4 months after the start of treatment. We evaluated the time to BMs onset or progression, progression-free survival, and overall survival. RESULTS In total, 62 NSCLC patients with EGFR mutations were analyzed. Thirteen patients experienced early dose reduction of osimertinib treatment. Seven patients received osimertinib 40 mg daily, and six received 80 mg every other day. The most common reason for dose reduction was gastrointestinal toxicity (n = 4), followed by skin rashes (n = 3). The time to BMs onset or progression was significantly shorter in patients who experienced early dose reduction than in those who continued regular treatment (Hazard ratio 4.47, 95% confidence interval, 1.52-13.11). The 1-year cumulative incidence of BM onset or progression was 23.1% in the reduced-dose group and 5.0% in the standard dose group. The risk of worsening BMs with early dose reduction of osimertinib treatment was higher in patients who had BMs before treatment and in younger patients. CONCLUSION Early dose reduction of osimertinib was a risk factor for the worsening of BMs. A higher risk was associated with younger patients and those presenting BMs before treatment.
Collapse
Affiliation(s)
- Takehiro Tozuka
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Rintaro Noro
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Akihiko Miyanaga
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Shinji Nakamichi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Susumu Takeuchi
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masaru Matsumoto
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kaoru Kubota
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Kazuo Kasahara
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| | - Masahiro Seike
- Department of Pulmonary Medicine and Oncology, Graduate School of MedicineNippon Medical SchoolTokyoJapan
| |
Collapse
|
40
|
Borges HS, Gusmão LA, Tedesco AC. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagnosis Photodyn Ther 2023; 43:103723. [PMID: 37487809 DOI: 10.1016/j.pdpdt.2023.103723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.
Collapse
Affiliation(s)
- Hiago Salge Borges
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Luiza Araújo Gusmão
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil
| | - Antonio Claudio Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering ‒ Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901, Ribeirão Preto-SP, Brazil.
| |
Collapse
|
41
|
Liu C, Zhang N, Xu Z, Wang X, Yang Y, Bu J, Cao H, Xiao J, Xie Y. Nuclear mitochondria-related genes-based molecular classification and prognostic signature reveal immune landscape, somatic mutation, and prognosis for glioma. Heliyon 2023; 9:e19856. [PMID: 37809472 PMCID: PMC10559255 DOI: 10.1016/j.heliyon.2023.e19856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background Glioma is the most frequent malignant primary brain tumor, and mitochondria may influence the progression of glioma. The aim of this study was to analyze the role of nuclear mitochondria related genes (MTRGs) in glioma, identify subtypes and construct a prognostic model based on nuclear MTRGs and machine learning algorithms. Methods Samples containing both gene expression profiles and clinical information were retrieved from the TCGA database, CGGA database, and GEO database. We selected 16 nuclear MTRGs and identified two clusters of glioma. Prognostic features, microenvironment, mutation landscape, and drug sensitivity were compared between the clusters. A prognostic model based on multiple machine learning algorithms was then constructed and validated by multiple datasets. Results We observed significant discrepancies between the two clusters. Cluster One had higher nuclear MTRG expression, a lower survival rate, and higher immune infiltration than Cluster Two. For the two clusters, we found distinct predictive drug sensitivities and responses to immune therapy, and the infiltration of immune cells was significantly different. Among the 22 combinations of machine learning algorithms we tested, LASSO was the most effective in constructing the prognostic model. The model's accuracy was further verified in three independent glioma datasets. We identified MGME1 as a vital gene associated with infiltrating immune cells in multiple types of tumors. Conclusion In short, our research identified two clusters of glioma and developed a dependable prognostic model based on machine learning methods. MGME1 was identified as a potential biomarker for multiple tumors. Our results will contribute to precise medicine and glioma management.
Collapse
Affiliation(s)
- Chang Liu
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ning Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Zhihao Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Xiaofeng Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yang Yang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junming Bu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huake Cao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
- First School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jin Xiao
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Yinyin Xie
- College of Life Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
42
|
Tao JC, Yu D, Shao W, Zhou DR, Wang Y, Hou SQ, Deng K, Lin N. Interactions between microglia and glioma in tumor microenvironment. Front Oncol 2023; 13:1236268. [PMID: 37700840 PMCID: PMC10493873 DOI: 10.3389/fonc.2023.1236268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Gliomas, the most prevalent primary tumors in the central nervous system, are marked by their immunosuppressive properties and consequent poor patient prognosis. Current evidence emphasizes the pivotal role of the tumor microenvironment in the progression of gliomas, largely attributed to tumor-associated macrophages (brain-resident microglia and bone marrow-derived macrophages) that create a tumor microenvironment conducive to the growth and invasion of tumor cells. Yet, distinguishing between these two cell subgroups remains a challenge. Thus, our review starts by analyzing the heterogeneity between these two cell subsets, then places emphasis on elucidating the complex interactions between microglia and glioma cells. Finally, we conclude with a summary of current attempts at immunotherapy that target microglia. However, given that independent research on microglia is still in its initial stages and has many shortcomings at the present time, we express our related concerns and hope that further research will be carried out to address these issues in the future.
Collapse
Affiliation(s)
- Jin-Cheng Tao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dong Yu
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Wei Shao
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Dong-Rui Zhou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Yu Wang
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Shi-Qiang Hou
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| | - Ke Deng
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Lin
- Department of Neurosurgery, The Affiliated Chuzhou Hospital of Anhui Medical University, The First People’s Hospital of Chuzhou, Chuzhou, Anhui, China
| |
Collapse
|
43
|
Guo J, Feng S, Liu H, Chen Z, Ding C, Jin Y, Chen X, Ling Y, Zeng Y, Long H, Qiu H. TRIM6: An Upregulated Biomarker with Prognostic Significance and Immune Correlations in Gliomas. Biomolecules 2023; 13:1298. [PMID: 37759698 PMCID: PMC10527026 DOI: 10.3390/biom13091298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigates the expression and prognostic value of TRIM6 in gliomas, the most prevalent primary brain and spinal cord tumors. Our results show that TRIM6 is predominantly overexpressed in glioma tissues and is associated with reduced overall survival, disease-specific survival, and progression-free interval. Furthermore, TRIM6 expression is correlated with WHO grade and primary treatment outcomes. Functional analysis indicates that interactions between cytokines and their receptors play a critical role in the prognosis of glioma patients. A protein-protein interaction network reveals 10 hub genes closely linked to cytokine-cytokine receptor interaction. In vitro experiments demonstrate that silencing TRIM6 impairs the proliferation, invasion, and migration of glioma cells, while overexpressing TRIM6 enhances these abilities. Additionally, TRIM6 expression is positively associated with the abundance of innate immune cells and negatively associated with the abundance of adaptive immune cells. In summary, TRIM6 is significantly upregulated in gliomas and linked to poor prognosis, making it a potential diagnostic and prognostic biomarker. TRIM6 plays a crucial role in promoting cell viability, clonogenic potential, migration, and invasion in glioma cells. It may regulate glioma progression by modulating cytokine-cytokine receptor interaction, leading to an inflammatory response and an imbalance in immunomodulation, thereby representing a potential therapeutic target.
Collapse
Affiliation(s)
- Jianrong Guo
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Shoucheng Feng
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Hong Liu
- State Key Laboratory of Oncology in South China, Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (H.L.); (Z.C.)
| | - Zhuopeng Chen
- State Key Laboratory of Oncology in South China, Department of Neurosurgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (H.L.); (Z.C.)
| | - Chao Ding
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Yukai Jin
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Xiaojiang Chen
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Yudong Ling
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Yi Zeng
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| | - Hao Long
- State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China;
| | - Haibo Qiu
- State Key Laboratory of Oncology in South China, Department of Gastric Surgery, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; (J.G.); (C.D.); (Y.J.); (X.C.); (Y.L.); (Y.Z.)
| |
Collapse
|
44
|
Zhang C, Zhou W. Machine learning-based identification of glycosyltransferase-related mRNAs for improving outcomes and the anti-tumor therapeutic response of gliomas. Front Pharmacol 2023; 14:1200795. [PMID: 37663248 PMCID: PMC10468601 DOI: 10.3389/fphar.2023.1200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/02/2023] [Indexed: 09/05/2023] Open
Abstract
Background: Glycosyltransferase participates in glycosylation modification, and glycosyltransferase alterations are involved in carcinogenesis, progression, and immune evasion, leading to poor outcomes. However, in-depth studies on the influence of glycosyltransferase on clinical outcomes and treatments are lacking. Methods: The analysis of differentially expressed genes was performed using the Gene Expression Profiling Interactive Analysis 2 database. A total of 10 machine learning algorithms were introduced, namely, random survival forest, elastic network, least absolute shrinkage and selection operator, Ridge, stepwise Cox, CoxBoost, partial least squares regression for Cox, supervised principal components, generalized boosted regression modeling, and survival support vector machine. Gene Set Enrichment Analysis was performed to explore signaling pathways regulated by the signature. Cell-type identification by estimating relative subsets of RNA transcripts was used for estimating the fractions of immune cell types. Results: Here, we analyzed the genomic and expressive alterations in glycosyltransferase-related genes in gliomas. A combination of 80 machine learning algorithms was introduced to establish the glycosyltransferase-related mRNA signature (GRMS) based on 2,030 glioma samples from The Cancer Genome Atlas Program, Chinese Glioma Genome Atlas, Rembrandt, Gravendeel, and Kamoun cohorts. The GRMS was identified as an independent hazardous factor for overall survival and exhibited stable and robust performance. Notably, gliomas in the high-GRMS subgroup exhibited abundant tumor-infiltrating lymphocytes and tumor mutation burden values, increased expressive levels of hepatitis A virus cellular receptor 2 and CD274, and improved progression-free survival when subjected to anti-tumor immunotherapy. Conclusion: The GRMS may act as a powerful and promising biomarker for improving the clinical prognosis of glioma patients.
Collapse
Affiliation(s)
- Chunyu Zhang
- School of Medicine, Tongji University, Shanghai, China
| | - Wei Zhou
- Department of Anesthesiology, Huzhou Central Hospital, The Affiliated Huzhou Hospital, Zhejiang University School of Medicine, Huzhou, Zhejiang, China
| |
Collapse
|
45
|
Wu H, Zhang T, Li N, Gao J. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: Insights and challenges. J Control Release 2023; 360:169-184. [PMID: 37343724 DOI: 10.1016/j.jconrel.2023.06.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
Central nervous system (CNS) disorders, including brain tumor, ischemic stroke, Alzheimer's disease, and Parkinson's disease, threaten human health. And the existence of the blood-brain barrier (BBB) hinders the delivery of drugs and the design of drug targeting delivery vehicles. Over the past decades, great interest has been given to cell membrane-based biomimetic vehicles since the rise of targeting drug delivery systems and biomimetic nanotechnology. Cell membranes are regarded as natural multifunction biomaterials, and provide potential for targeting delivery design and modification. Cell membrane-based biomimetic vehicles appear timely with the participation of cell membranes and nanoparticles, and raises new lights for BBB recognition and transport, and effective therapy with its biological multifunction and high biocompatibility. This review summarizes existing challenges in CNS target delivery and recent advances of different kinds of cell membrane-based biomimetic vehicles for effective CNS target delivery, and deliberates the BBB targeting mechanism. It also discusses the challenges and possibility of clinical translation, and presents new insights for development.
Collapse
Affiliation(s)
- Honghui Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China
| | - Ni Li
- Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, PR China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, PR China; Department of Cardiothoracic Surgery, Ningbo Medical Centre Lihuili Hospital, Ningbo University, Ningbo 315041, Zhejiang, PR China.
| |
Collapse
|
46
|
Smriti, Singla M, Gupta S, Porwal O, Nasser Binjawhar D, Sayed AA, Mittal P, El-Demerdash FM, Algahtani M, Singh SK, Dua K, Gupta G, Bawa P, Altyar AE, Abdel-Daim MM. Theoretical design for covering Engeletin with functionalized nanostructure-lipid carriers as neuroprotective agents against Huntington's disease via the nasal-brain route. Front Pharmacol 2023; 14:1218625. [PMID: 37492081 PMCID: PMC10364480 DOI: 10.3389/fphar.2023.1218625] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/26/2023] [Indexed: 07/27/2023] Open
Abstract
Objective: To propose a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery and increased bioavailability in treating Huntington's disease (HD). Methods: We conducted a literature review of the pathophysiology of HD and the limitations of currently available medications. We also reviewed the potential therapeutic benefits of engeletin, a flavanol glycoside, in treating HD through the Keap1/nrf2 pathway. We then proposed a theoretical formulation of engeletin-nanostructured lipid nanocarriers for improved delivery across the blood-brain barrier (BBB) and increased bioavailability. Results: HD is an autosomal dominant neurological illness caused by a repetition of the cytosine-adenine-guanine trinucleotide, producing a mutant protein called Huntingtin, which degenerates the brain's motor and cognitive functions. Excitotoxicity, mitochondrial dysfunction, oxidative stress, elevated concentration of ROS and RNS, neuroinflammation, and protein aggregation significantly impact HD development. Current therapeutic medications can postpone HD symptoms but have long-term adverse effects when used regularly. Herbal medications such as engeletin have drawn attention due to their minimal side effects. Engeletin has been shown to reduce mitochondrial dysfunction and suppress inflammation through the Keap1/NRF2 pathway. However, its limited solubility and permeability hinder it from reaching the target site. A theoretical formulation of engeletin-nanostructured lipid nanocarriers may allow for free transit over the BBB due to offering a similar composition to the natural lipids present in the body a lipid solubility and increase bioavailability, potentially leading to a cure or prevention of HD. Conclusion: The theoretical formulation of engeletin-nanostructured lipid nanocarriers has the potential to improve delivery and increase the bioavailability of engeletin in the treatment of HD, which may lead to a cure or prevention of this fatal illness.
Collapse
Affiliation(s)
- Smriti
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, Iraq
| | - Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Pooja Mittal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Fatma M. El-Demerdash
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, Alexandria, Egypt
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Kamal Dua
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, India
- Center for Transdisciplinary Research, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Puneet Bawa
- Center of Excellence for Speech and Multimodel Laboratory, Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
47
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
48
|
Vanbilloen WJF, Rechberger JS, Anderson JB, Nonnenbroich LF, Zhang L, Daniels DJ. Nanoparticle Strategies to Improve the Delivery of Anticancer Drugs across the Blood-Brain Barrier to Treat Brain Tumors. Pharmaceutics 2023; 15:1804. [PMID: 37513992 PMCID: PMC10383584 DOI: 10.3390/pharmaceutics15071804] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Primary brain and central nervous system (CNS) tumors are a diverse group of neoplasms that occur within the brain and spinal cord. Although significant advances in our understanding of the intricate biological underpinnings of CNS neoplasm tumorigenesis and progression have been made, the translation of these discoveries into effective therapies has been stymied by the unique challenges presented by these tumors' exquisitely sensitive location and the body's own defense mechanisms (e.g., the brain-CSF barrier and blood-brain barrier), which normally protect the CNS from toxic insult. These barriers effectively prevent the delivery of therapeutics to the site of disease. To overcome these obstacles, new methods for therapeutic delivery are being developed, with one such approach being the utilization of nanoparticles. Here, we will cover the current state of the field with a particular focus on the challenges posed by the BBB, the different nanoparticle classes which are under development for targeted CNS tumor therapeutics delivery, and strategies which have been developed to bypass the BBB and enable effective therapeutics delivery to the site of disease.
Collapse
Affiliation(s)
- Wouter J. F. Vanbilloen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Neurology, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands
| | - Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jacob B. Anderson
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
- Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
| | - Leo F. Nonnenbroich
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA (J.S.R.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
49
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
50
|
Fang X, Chen Z, Zhou W, Li T, Wang M, Gao Y, Ma S, Feng Y, Du S, Lan P, Chen H, Wei J, Zhang S, Li Z, Liu X, Zhang H, Guo X, Luo J. Boosting Glioblastoma Therapy with Targeted Pyroptosis Induction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2207604. [PMID: 37066699 DOI: 10.1002/smll.202207604] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive cancer that currently lacks effective treatments. Pyroptosis has emerged as a promising therapeutic approach for cancer, but there is still a need for new pyroptosis boosters to target cancer cells. In this study, it is reported that Aloe-emodin (AE), a natural compound derived from plants, can inhibit GBM cells by inducing pyroptosis, making it a potential booster for pyroptosis-mediated GBM therapy. However, administering AE is challenging due to the blood-brain barrier (BBB) and its non-selectivity. To overcome this obstacle, AE@ZIF-8 NPs are developed, a biomineralized nanocarrier that releases AE in response to the tumor's acidic microenvironment (TAM). Further modification of the nanocarrier with transferrin (Tf) and polyethylene glycol-poly (lactic-co-glycolic acid) (PEG-PLGA) improves its penetration through the BBB and tumor targeting, respectively. The results show that AE-NPs (Tf-PEG-PLGA modified AE@ZIF-8 NPs) significantly increase the intracranial distribution and tumor tissue accumulation, enhancing GBM pyroptosis. Additionally, AE-NPs activate antitumor immunity and reduce AE-related toxicity. Overall, this study provides a new approach for GBM therapy and offers a nanocarrier that is capable of penetrating the BBB, targeting tumors, and attenuating toxicity.
Collapse
Affiliation(s)
- Xinggang Fang
- Clinical College of Traditional Chinese Medicine, Taihe Hospital, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, P. R. China
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
- Department of Integrated Chinese and Western Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Zhuo Chen
- Clinical College of Traditional Chinese Medicine, Taihe Hospital, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, P. R. China
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Wenhui Zhou
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Tongfei Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Man Wang
- Pharmacy intravenous admixture service, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Yujiu Gao
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Shinan Ma
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Ying Feng
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Shiming Du
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Peimin Lan
- Department of Integrated Chinese and Western Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Hanyu Chen
- Department of Integrated Chinese and Western Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Jiarui Wei
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Sisi Zhang
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Zixiang Li
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Xinglin Liu
- Institute of Biomedicine, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Xingrong Guo
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| | - Jie Luo
- Clinical College of Traditional Chinese Medicine, Taihe Hospital, Hubei University of Chinese Medicine, Wuhan, Hubei, 430065, P. R. China
- Department of Neurosurgery, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, 442000, P. R. China
| |
Collapse
|